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Abstract—High capacity end-to-end approaches for human

motion (behavior) prediction have the ability to represent

subtle nuances in human behavior, but struggle with robust-

ness to out of distribution inputs and tail events. Planning-

based prediction, on the other hand, can reliably output

decent-but-not-great predictions: it is much more stable in

the face of distribution shift (as we verify in this work), but

it has high inductive bias, missing important aspects that

drive human decisions, and ignoring cognitive biases that

make human behavior suboptimal. In this work, we analyze

one family of approaches that strive to get the best of both

worlds: use the end-to-end predictor on common cases, but

do not rely on it for tail events / out-of-distribution inputs –

switch to the planning-based predictor there. We contribute

an analysis of different approaches for detecting when to

make this switch, using an autonomous driving domain.

We find that promising approaches based on ensembling or

generative modeling of the training distribution might not

be reliable, but that there very simple methods which can

perform surprisingly well – including training a classifier to

pick up on tell-tale issues in predicted trajectories.

I. Introduction

Robots that need to share their environments with hu-
mans learn predictive models of human behavior, which
they use to generate their own behavior in response.
Autonomous cars try to predict where other cars will go
[7, 21] and what pedestrians will do [17], indoor mobile
robots try to predict where the people around them will
move [27], and manipulators try to predict how human
collaborators will reach for objects in their workspace
[18, 15, 6, 10, 14].

When choosing the function class for these learned
predictors, high capacity models are very appealing.
Recent progress has shown that we can train deep neural
networks end-to-end to go from a history of raw state
information or even raw sensor data to a distribution
over predicted trajectories for a human, implicitly or ex-
plicitly extracting relevant features, identifying potential
targets in the scene, computing trajectories for each, and
assessing their relative likelihoods [2, 16, 26, 24]. Such
models dominate the leaderboards in benchmarks for
motion prediction (or ”forecasting”, as it is sometimes
referred to) like Argoverse [3] or INTERACTION [25].
They free us from specifying what features might be
important or identifying a ”theory of mind” for how
humans make decisions. Their capacity enables them
to represent subtle nuances of human behavior, like
people’s implicit proxemics preferences, risk aversion
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Fig. 1. We analyze methods for using an end-to-end predictor on
common cases (gray region), and relying on planning-based prediction
outside of that (orange region).

level, or anything else that influences where humans go
that would be otherwise very challenging to explicitly
write down.

But one challenge that such high capacity, end-to-
end models face is their performance in the face of
distribution shift or tail events. Our understanding of the
nuances of this challenge is still evolving, but there seem
to be at least two phenomena at play: one stemming from
the model’s capacity itself, and one stemming from the
way we train these models.

On the capacity side, the function class can represent
so many hypotheses that there will exist many of them
which fit the data, some based on spurious correlations
rather than on the underlying human decision making
process that generated those motions. The learner will
not be able to disambiguate among them, and can
converge to a hypothesis based on a correlate. Over-
parametrization increases the ability to represent such
hypotheses, lowering average error but possibly increas-
ing error for tail events [20].

Then on the training side, stochastic gradient descent
methods introduce their own biases. Sometimes, this
bias helps with the capacity issue by pushing the op-
timization away from the correlates and enabling gen-
eralization [22]. However, if there is an easy correlate
in the data that helps get most examples right, training
might ”lazily” converge to that instead of identifying the
(more complex) causal variables that explain the data.
For instance, a model might learn to predict braking only
once the brake light is on, instead of solving the more
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complex problem of identifying the need for human to
begin braking. This is the more problematic the more
information the model has access to, because more cor-
relates exist (the ”causal misindentification” [5].

On the other hand, we have planning-based predictors.
These are based on the idea that human motion results
from decisions people make in pursuit of their goals
and preferences. Learn their goals and preferences, and
leverage planning to generate the corresponding motions
[27, 19, 11]. Sticking to the braking example: this type of
predictor will easily figure out that a human will need
to brake without needing to see their brake lights first.
It learns that people want to make progress but avoid
collisions and stop at stop signs, and it uses a planner
to generate a motion that will do just that. If slowing
down is necessary for collision avoidance or because a
stop sign is coming up, that is what the planner will do.
And indeed, prior work has shown such predictors to be
preferable in highly interactive domains, depending on
how one collects their training data [4].

However, planning-based predictors suffer from too
much inductive bias. They commit to predefined no-
tions (features) for what humans care about which are
inevitably both inaccurate (e.g. humans do care about
collision avoidance, but might be more sensitive to front
collisions than side collisions, for instance), as well as
missing important aspects altogether [8]. Further, real
people are far from optimal decision makers: we have
all sorts of systematic biases, from perception biases
to wrong beliefs to risk-aversion to optimism bias and
beyond. In short, these predictors are not expressive
enough to capture the nuances in human behavior.

Naturally, we would want the best of both worlds. In
this work, we analyze one way to strive for that: use the
end-to-end predictor on common cases, but do not rely on it
for rare / out-of-distribution inputs – switch to the planning-
based predictor there (Fig. 1). On these inputs, even though
the planning-based predictor will not be able to perfectly
anticipate human behavior, it will still get the basics
right (in our driving domain, for instance, it will output
trajectories that stay on the road, avoid collisions, etc.).

We contribute an analysis of different approaches for
detecting when to make this switch. We start by outlin-
ing natural ways to solve the problem, from detecting
out-of-distribution inputs by ensembling and generative
methods, to learning to classify when the predictor
failed, to using real-time observations of the human’s
current motion to detect that the predictor is doing a
poor job at anticipating what is happening. In order to
assess and compare their ability to make more accu-
rate predictions on difficult inputs by switching to the
planning-based predictor when they have to, but keeping
the end-to-end one when it performs well, we create
tests sets that purposefully introduce domain shift. We
measure each method’s ability to accurately identify the
shift, as well the resulting ”hybrid” predictor’s accuracy.

Our findings first support this hypothesized relation-
ship between end-to-end predictors and planning-based
ones. Our end-to-end predictor does much better in-
distribution (on a validation set drawn from the same
distribution as the training data) than the planning-
based one. On the other hand, it is not robust to the shifts
and perturbations we introduce, whereas the planning-
based one stays remarkably consistent. One of our contri-
butions is merely showcasing this in the driving domain.

As for the switching methods, the results are quite in-
teresting. Training an ensemble and using disagreement
as a stand in for ”the predictor is uncertain here” [13]
fails to identify many of the cases that it should, because
the members agree even when making the wrong pre-
diction. Switching based on observing the real human
online to take actions that the predictor is assigning
low probability to is very reliable, but it does introduce
a significant switching delay because the robot has to
observe enough such ”low probability” human actions.
Surprisingly, a simple classifier that we train to label
predictions as good or bad based on the predictor’s
performance on training data is also very reliable. The
classifier is not meant to quantify uncertainty or detect
out of distribution issues, but it implicitly does that by
learning to pick up on features of predicted trajectories
that are suggestive of something having gone wrong, like
going off the road or not stopping at a stop sign.

Overall, if we can combine the power of end-to-end
prediction with the robustness we get out of planning-
based prediction, robots that act around people will be
able to anticipate and adapt to nuanced human behavior
while still maintaining reasonable performance in the
long tail. Our work analyzes one family of approaches
that strive for this combination, with somewhat surpris-
ing but promising results. We intend this as a first step in
this direction, starting a discussion into what approaches
and ideas are most promising when it comes to this
general goal of getting the best out of both worlds.

II. Methods

A. Problem Statement
We are given a training set D consisting of tuples

(x, h, x), where x is the state of the environment (includ-
ing map data), h is the history of motion observation
for all agents in the scene, and x is the trajectory label
for the target agent. We are also given two predictors
trained on (a subset of) this data: 1) a high capacity
”end-to-end” model fe2e that learns to map (x, h) to
x; 2) a planning-based model fplan that learns a cost
function that explains the motions observed in training,
and optimizes it to generate predictions x for the target
agent (and the other agents in the scene).1

1Note that planning-based models need to make explicit joint or
iterative predictions about other agents as well, since the target agent
optimizes to avoid collisions with them.



The goal is to output a switching detector s :
(x, h, fe2e(x, h)) 7! {0, 1} that determines, based on a
new input (x, h) from a test distribution T and optimally
the prediction x̂ = fe2e(x, h) on that new input, whether
this is an input on which the end-to-end predictor will
have high error. Needless to say, s does not get access
to the test distribution T .

Armed with s, the robot, upon encountering a new
input (x, h), can predict an agent’s trajectory using

fs(x, h) =

(
fe2e(x, h), s(x, h, fe2e(x, h)) = 0
fplan(x, h), s(x, h, fe2e(x, h)) = 1

We discuss below four natural ways to train such a s.
Aside: Note that this makes the assumption that

the end-to-end model will only fail in rare or out-of-
distribution situations, where our best bet will be the
planning model. Depending on how these are trained,
this will not always be true (end to end models might
break on common cases as well, and planning-based pre-
dictors might not be better on rare cases). Nonetheless,
we choose to focus on this setting because we believe
it to be most representative of how these predictors
will be developed in the real world, where end to end
models will have high enough capacity to fit the average
case well, and planning-based models will be of low
enough capacity to generalize well. Our experiments
below support these assumptions.

B. Preliminaries: Example Predictors
We use the INTERACTION dataset [25] to train

our predictors. We use segments of the data of 40
timesteps from the beginning, middle, and end of runs
(10 timesteps as the history, and the other 30 timesteps
as the label). We train a LSTM model for our end-
to-end predictor with pooling layers to encourage the
interactions among agents in a similar way as social-
LSTM [1] (see Appendix B for details), and we use
Inverse Reinforcement Learning (IRL) to recover a cost
function for our planning-based predictor using features
for collision avoidance, progress, lane keeping, etc., sim-
ilar to [12, 23]. To enable the model to predict collision
avoidance with other agents, we use the cost function to
first optimize predictions for further away agents, and
iteratively compute trajectories for nearby agents until
we reach the target agent. To avoid counfounding effects
from the need to predict the geometric intent of agents,
we provide both predictors with the overall reference
path the agent is following (e.g. which exit they are
taking in a roundabout). Further details are in Appendix
A.

C. Ensemble Disagreement
Following [13], we note that if we train an ensemble

instead of a single end-to-end predictor, ensemble dis-
agreement can be used as a measure of uncertainty or
confidence. When the members of the ensemble make

contradicting predictions, this is a signal that we are out-
of-distribution.

We select 5 different models as the ensemble mem-
bers. All the members share the same structure as the
end-to-end predictor, and they all train with the same
training data. However, each of them is trained with
different initialization, and the order of examples they
use naturally differ because of SGD (stochastic gradient
descent). To quantify their disagreement, we take the
most-probable prediction from each of them, denoted
by x̂ j(j = 1, 2, · · · , 5), and calculate the variance on their
final positions. Namely, suppose the final positions on x̂ j
is (xF

j , yF
j ), then the metric for the disagreement is given

by2

Edisagree = max{var{xF
j=1,··· ,5}, var{yF

j=1,··· ,5}}

s(x, h) =

(
1, Edisagree � t

0, otherwise

with t a threshold we tune on the training set.

D. Generative Modeling of the Training Distribution
Another way to detect whether a new input is in the

training distribution is to train a generative model of the
inputs – train a GAN (generative adversarial network)
on inputs (x, h), and use its discriminator at test time as
our s to tell whether the test input is ”real”, i.e. from
the training data, or not.

We use the architecture from Fig. 2. In our experiments
we only focus on the h side of the input (the history)
and not the whole scene x because of the difficulty in
generating scene configurations, but in principle that
would be possible as well. The generated data is labeled
as ”fake”, the training data is labeled as ”real”.

E. Classifying Poor Predictions
The third approach is to simply train a classifier

to explicitly distinguish whether a prediction is good
enough. That is, instead of attempting to detect whether
an input is out of distribution or rare, simply look at the
prediction and classify whether it’s correct – with the
hope that discriminating that a prediction is poor is an
easier task for a neural network that producing a good
prediction in the first place. The classifier tries to learn
a function s : (x, h, fe2e(x, h)) 7! {0, 1} from training
data Dclassifier that we auto-label based on the average
distance error (ADE) between the predicted trajectory
and the ground-truth trajectory in the predictor training
data. We label all predicted trajectories that generate

2We experimented with several distance metrics in our experiment
and this performed the best, though the results are very sensitive to
the choice of a metric, so we encourage practitioners to both analyze
different metrics when trying this, as well as different ways of creating
diversity in the ensemble – ours is but a starting point, so we used the
simplest approach.
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large ADEs (2 sigmas beyond the mean ADE of the
training set) as bad predictions (1).

Fig. 3 shows the structure of the classifier, similar to
that in the discriminator of the generative modelling
approach (but with access to the predicted trajectory as
well). We use a softmax loss for training.
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Fig. 3. The structure for the classifier

F. Online (Bayesian) Failure Estimation

The fourth approach we investigate is a bit different
in what it has access to. Rather than training something
ahead of time, here the robot at test time receives ground
truth human observations from the human it is trying
to predict, and uses them to determine whether its
predictor is operating accurately or not in that particular
new setting. This is directly inspired by [8]: if at test time
the human takes actions that are too low of a probability
under the predictor, we conclude that the predictor is not
correctly handling the current situation.

Suppose that at time t, we have the predicted trajectory
as x̂t = fe2e(x, h). After another m timesteps (m is smaller
than the length of the predicted trajectory), we have
new human observations, denoted as xt:t+m. From the
discrepancy between xt:t+m and x̂t, we can infer whether
the prediction x̂t is good or not. An illustrative example
is given in Fig. 4.

In general, for probabilistic predictors where fe2e(x, h)
is a probability distribution, we can use

s(xt:t+m, fe2e(x, h)) =

(
1, P(xt:t+m| fe2e(x, h)) < t

0, otherwise

with t a threshold tuned based on the training data.
For predictors that only output trajectories, we can
use a proxy distribution based on distance, P(x|x̂t) µ

exp{� 1
m

L2(x̂t:t+m, xt:t+m)}.

t+mt

� = 0

t+mt

� = 1 ��t:t+m

��t:t+m

Fig. 4. An illustrative example of the Bayesian failure estimation
approach: gray bands are two different predicted distributions at time
t and the blue one is the new observed trajectory at time t + m.

III. Experiments

To analyze how promising these switching approaches
are for detecting that we should plug in the planning-
based predictor instead of using the default end-to-end
one, we need data where tail events and distribution shift
occur. While tail events will happen for most training
distributions we would encounter, distribution shift is
something we decided to purposefully introduce in a
controlled way. We use a real driving data set (the
INTERACTION data [25]), and design three experiments
that use different train and test sets to probe at different
types of shift – from introducing noise to the input, to
testing on a new exit from a roundabout where we didn’t
have data (new reference paths), all the way to switching
to an entirely new map.

Note these shifts sound more drastic than they are. We
chose them not because autonomous cars might navigate
new maps – since the predictors only focus on 30-step
snippets of the overall trajectory and have access to the
geometric reference that the vehicle is following, this is
more akin to changing the configurations of the road
and other agents than putting the robot in an entirely
new region. But as experiment designers, it frees us
from having to slice the data by what are common
configurations vs. new ones – if we had a metric for this,
that would be our switching method in the first place!

A. Experiment Design
Independent Variables. We manipulate which switching
method s is used, from our four methods in section II,
and adding always 0 (use fe2e only) and always 1 (use
fplan only). We also manipulate whether shift is present
or not, and the type of shift: new reference paths (new
exit), new map, and noise.
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Fig. 5. The training and test domains for experiment I, where
we introduce new exits. The predictors only deal with local 30-step
snippets and have access to the ground truth reference path.

Fig. 6. The training and testing domain for experiment III, where we
introduce noise (blue circle: real observations; black star: observations
with added noise; blue curve: ground truth future trajectories).

In Experiment I, as shown in Fig. 5, all the training
data includes trajectories that exit only through one
selected lane (left), but in the test domain, trajectories fol-
lowing all possible reference paths are included (right).
In the training domain, 1948 examples were included.

In Experiment II, we train on the map for Experiment
I (all exits, 39764 examples), but test on different maps
(still providing the reference as an input).

In Experiment III, we train on all maps, and add
Gaussian noise to the history of observations at test time.
We set the Gaussian parameters as µ = 0.5, s = 0.1, and
the effect this has is visualized in Fig. 6.

The switching methods have access to the same train-
ing data as the predictors. For each experiment, we
also have a validation set from the same distribution
on the training data, and evaluate the methods on both
validation and test.
Metrics. We have two measures: accuracy and perfor-
mance. Accuracy refers to the switching method’s ability
to predict whether the end-to-end predictor will have
high error. Performance refers to the resulting hybrid
predictor (which uses planning-based when s = 1) error,
measured as average distance error (ADE) between the
predicted trajectories and the ground-truth ones, which
is standard in motion prediction [1, 2, 26, 24, 16].
Hypotheses. We hypothesize that H1) fe2e has lower
validation set ADE than fplan, but higher test set ADE;
and H2) fs (the hybrid predictor) has lower ADE than
both in both validation and test by using fplan on tail
events and out of distribution inputs where fe2e strug-
gles. However, the goal of the analysis is to compare the

Val acc. Test acc. Val
ADE (m)

Test
ADE (m)

fe2e only (LSTM) 0.527 2.9648
fplan only (IRL) 0.721 0.80
ensemble 81.78% 83.05% 0.5464 1.2699
GAN 75.13% 84.53% 0.5191 0.9118
classifier 85% 85% 0.5377 0.6804

30-step online Bayesian 100% 100% 0.4177 0.6162

5-step online Bayesian 68.3% 89% 0.4892 0.8235

TABLE I
Results of experiment I

different approaches for s and establish their potential
strengths and weaknesses.

B. Experiment I - Generalizability across different references

Performance of the predictors. Fig. 7 shows the perfor-
mance of the two predictors in the validation and test
sets. In validation, fe2e (LSTM) has lower error than fplan
(IRL) – .527 vs .721 (see Table I). There are some tail
events with high error though. On test, the opposite is
true. This is in line with H1. Note that fplan has relatively
steady performance in the face of the shift, whereas fe2e
goes from much better to drastically worse.
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Fig. 7. The performance of the two predictors in validation and test
domains in Experiment I. Note the difference in scale.

Failure modes of the predictors. Training domain: Many
of the fe2e failures were in cases where the vehicle is
stopped or moving slowly due to stop signs or traffic
congestion. These are relatively rare events. Fig. 8 shows
two such cases where the predictor assumes progress
when the ground truth stays put.

fplan has no issue predicting the stop because it mod-
els people as following rules and avoiding collisions.
However, it struggles on cases where its structure is
wrong. Unlike fe2e, it uses the reference path as a hard
constraint, and some of our data has the wrong reference
(Fig. 9, left). This is akin to what might happen in
the real world where the map annotations are wrong,
and a planning-based predictor will stick to them. It
also sometimes creates unnatural motion (Fig. 9, right)



because it is missing important aspects of what people
want or converging to bad local optima.

Fig. 8. A failure mode of fe2e on the training domain, where the
predictions (gray) make progress when the ground truth (blue, see
the zoomed-in details) almost stays put. The black dotted lines in the
center are observations for surrounding vehicles.

Fig. 9. Failure modes of fplan on the training domain, where it has the
wrong reference path (left) or missing features / converging to poor
optima (right). The fplan predictions are in orange, fe2e in gray, ground
truth in blue (similar to fplan).

Testing domain: fe2e fails at test time either by failing to
pursue the correct reference (e.g. predicting drastic turns
to go to the exit it was trained on), or by ignoring road
geometry and moving through obstacles. Both are likely
to be due to the shift in distribution. Fig. 10 shows some
examples.

Fig. 10. Failures of fe2e in the test domain for Experiment I. The
predictions in gray aggressively pursue the wrong exit and/or ignore
road obstacles. fplan predictions are in orange, similar to ground truth
(blue).

Performance of switching approaches. Fig. 11 - Fig. 14
show the four approaches ability to pick up on high error

for fe2e in validation and test. Right off the bat, we see
that the ensemble struggles – sometimes it agrees on
data it shouldn’t (high error on x axis), and disagrees
on data it should agree on (low error on x axis). It
does catch the biggest outliers in validation, but fails
to catch some high error points in test. This could be
explained by the bias in SGD – despite the fact that there
are many hypotheses explaining the data that the class
can represent, and ideally the ensemble members would
converge to different ones, in reality the bias in SGD
itself might lead to converging to similar hypotheses.

The GAN has mixed performance, though better.
Many of the test cases look similar enough to the training
data that the discriminator misses them.

On the other hand, the classifier works remarkably
well (Fig. 13, picking up on many issues in validation
and test, with some false positives. This is interesting,
because the classifier is only trained in-domain, so how
can it give the correct label off-distribution? The answer
is that there are enough failures in the training domain
(on those tail events) that the classifier learns the ”tell-
tale signals” that the prediction has gone wrong. Instead
of focusing on the input domain itself (like the GAN),
it focuses on the prediction, and picks on patterns like
”whenever the prediction goes off the road, we get
high error”, or ”whenever there is a stop sign and the
prediction is not stopping, we get high error”. While this
will not catch more subtle wrong predictions, it seems
to be an effecting way of automatically learning metrics
for sanity checking predictions (without having to think
ahead of time of what these metrics need to be and craft
them by hand).

When given enough time steps of observation (Fig.
14), the online failure detector works perfectly. Unfortu-
nately, this is not very practical because it causes a long
delay between the predictions being poor and switching
to fplan. When we try to make the call with only 5 steps
(Fig. 15), results are much worse.

Table I shows what effects this accuracy end up having
for the fs error. On validation, all methods maintain the
good performance of fe2e, with the online failure detector
improving it. We see here a discrepancy between accu-
racy and error, where even if the 5-step online detector
has lower accuracy than other methods, it ends up better
error. This is perhaps because the yes/no metric does
not capture the magnitude of the error. On the test set,
all methods drastically improve performance, with the
classifier and online failure detector performing the best.

C. Experiment II - Generalizability across different maps
Performance of the predictors. The performance of the
two predictors matches Exp I: fplan is stable, fe2e is much
better in validation and much worse in test, as shown in
Table II, as well as in Fig. 20 in the Appendix C.
Failure modes of the predictors. We see that with
this testing domain, fe2e sometimes fails to follow the
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Fig. 11. The ADE scatter with ensembling as a performance detector
(black: good cases for the lstm model; red: good cases for the irl model)
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Fig. 12. The ADE scatter with GAN as a scenario detector (black:
good cases for the lstm model; red: good cases for the irl model)
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Fig. 13. The ADE scatter with a trained classification model as a
performance detector (black: good cases for the lstm model; red: good
cases for the irl model)
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Fig. 14. The ADE scatter with online bayesian based on 30-step
trajectories (black: good cases for the lstm model; red: good cases for
the irl model)
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Fig. 15. The ADE scatter with online bayesian based on 5-step
trajectories (black: good cases for the lstm model; red: good cases for
the irl model)

Val acc. Test acc. Val
ADE (m)

Test
ADE (m)

fe2e only (LSTM) 0.367 1.691
fplan only (IRL) 0.8224 1.0634
ensemble 80.3% 82.4% 0.3888 0.9369
classifier 93% 93% 0.372 0.742

30-step online Bayesian 100% 100 0.3280 0.6435

5-step online Bayesian 52.3% 85% 0.3475 0.8461

TABLE II
Results of experiment II

reference, or produces trajectories that stray off the road
(Fig. 16), while fplan’s structure enables it to seamlessly
produce reasonable trajectories despite the difference in
domain. The Appendix C provides further examples in
Fig. 25 from another test map.

Fig. 16. Failures of fe2e when tested on a new map. Its predictions in
gray, fplan predictions in orange, and ground truth in blue.

Performance of switching approaches. Table II summa-
rizes the findings, mirroring Exp I.

D. Experiment III - Robustness to added noise
Performance of the predictors. The performance of the
two predictors is analogous, although a bit more extreme
than in the previous two experiments (see Table III): here,
the end-to-end predictor really struggles under Gaussian
noise so its test domain error is drastically higher. fplan



Val acc. Test acc. Val
ADE (m)

Test
ADE (m)

fe2e only (LSTM) 0.3561 7.0858
fplan only (IRL) 0.8194 1.0434

ensemble 79.24% 82% 0.3900 2.2693
GAN hybrid 71.68% 87.44% 0.3561 1.4649
classifier 92.8% 99.21% 0.349 1.0588
30-step online Bayesian 100% 100% 0.2946 0.9016

5-step online Bayesian 75.34% 94.61% 0.3192 1.5211

TABLE III
Results of experiment III

remains relatively stable, but takes a bit of a hit as well
compared previous settings.
Failure modes of the predictors. Fig. 17 shows some
failure cases due to the added noise for the fe2e predictor
(qualitatively similar to the failures we saw in the pre-
vious experiments – not following the reference and/or
going off the road). fplan is also affected by the noise via
wrong speed and orientation estimation for the vehicle,
leading to less drastic errors but e.g. going much slower
than the ground truth – see Fig. 18.

Fig. 17. Failures of fe2e due to noise in the input (predictions in gray,
compared to ground truth in blue and fplan in orange).

Fig. 18. A failure of fplan due to noise in the input (predictions in
orange, ground truth in blue speeds up more).

Performance of switching approaches. Table III shows
the accuracy and resulting error for the different s
approaches. Again, these reproduce what we see before
in Experiments I and II. The Appendix C contains the
analogous scatter plots for the error.

IV. Discussion
Summary of idea and approaches. We put forward the
hypothesis that high capacity end-to-end predictors will
struggle with tail events and distribution shift, while
planning-based predictors will be more robust but will
not perform as well on common cases. We therefore want
to get the best of both worlds, and we investigate one
way to attempt this: detect when we’re in one of those
non-common cases, and switch to the planning-based
method. We study natural approaches for this switch: 1)
detecting that we are in a new area because multiple hy-
potheses that were consistent with training are disagree-
ing (”ensemble”), 2) discriminating that we’re not in the
training distribution by training a generative model of
our data (”GAN”), 3) classifying whether the end-to-
end model has high error by looking at the prediction it
is outputting (”classifier”), and 4) detecting online that
the model keep assigning low probability to what the
current human is actually doing (”online Bayesian failure
detector”).
Summary of findings. Our first empirical contribution is
to test our hypothesis above. By purposefully inducing
distribution shift, we show just how robust planning-
based predictors can be. This is important in and of itself,
because in the era of end-to-end high capacity models we
tend to forget the strengths of these high inductive bias
methods – it is intuitive that this robustness property
would hold, but we quantify it in 3 experiments, and find
in 2 of them a quite remarkable stability despite strong
shift in the distribution. To the best of our knowledge,
such a comparison between end-to-end models and
planning-based approaches had not been performed.

Our second empirical contribution is a first analysis of
these switching methods, which gives us some intuition
about what to expect as they get further developed. We
see that ensembles, while promising in theory, might
not by default disagree when they should, perhaps
because of the bias in SGD-like optimizers to converge
to somewhat similar hypotheses despite stochasticity in
initialization and sampling data. Also, we found that
the ensembling performance relies on the metrics that
we use. In contrast, we see that a classifier based on
the predictor’s performance in training data, which fires
when the predictor is wrong, might actually be more
powerful than it sounds: while it does not build a notion
of being ”out of distribution”, it can learn to pick up on
and recognize eggregious prediction mistakes (like going
off-road). Of course, predictions that are subtly wrong
(i.e. plausible) could escape such a method. It also seems
like an online detector that figures out the predictor is



mis-behaving and keeps attributing low probability to
the human’s actual actions is by far the most reliable –
of course, this would come at a delay, so it should be
seen as a must-have fallback switching mechanism (our
findings suggest everyone should use it, but also have
other ways to detect a switch is needed that have less
delay).
Limitations and future work. Our work is limited in
many ways. First, we do not study the prediction’s
impact on the robot’s planning or behavior generation –
just improving prediction accuracy does not necessarily
lead to robot behavior improvements (unless the robot
itself works via imitation learning and we think of this
method in that domain instead of the human modeling
domain). Second, we studied very basic predictors (for
both end to end as well as planning) and eliminated the
need for intent prediction. Note however that the goal of
our work is not to improve upon the latest state of the art
predictors – the point of our paper is that one can always
improve the end to end learners with better architec-
tures, data augmentation, better training, but the issues
of domain shift and tail events are unlikely to go away.
Finally, we operated under the hypothesis that we want
to use the end-to-end predictor primarily (and indeed,
in our results it superior to the planning-based approach
for the common cases), but switching techniques based
on treating the two predictors as experts and obtaining
a mixture are also possible.

Going further in this research, we are excited to pursue
the switch idea as a data augmentation mechanism:
switch to the planning-based predictor, but use the data
generated this way to augment the real training data
and therefore improve the robustness of the end-to-end
model.
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V. Appendix
A. The planning-based predictor

1) Learning the cost functions: We assume that the cost
function of human drivers is a linear combination of a
set of predefined features. Thus, given a tuple (x, h, x)
in the training set D, the cost function associated with
it can be described as C(x, x̂O; qqq) = qqqT

f(x, x̂O). Note
that x̂O represents the estimated trajectories of all other
surrounding agents, and f is the feature vector and qqq
represents driver’s preference over different elements in
f. With that, based on the principle of maximum entropy,
we have

P(x|x̂O; qqq) µ exp{�bC(x, x̂O; qqq)}, (1)

where b is a hyper-parameter that controls to what levels
the human behaves as a rational optimizer. Hence, the
log-likelihood of the training set D (with N tuples) can
be given by

log P(D|qqq) =
N

Â
i=1

log
exp{�bC(xi, x̂O,i; qqq)}R
exp{�bC(x̃, x̂O; qqq)}dx̃

. (2)

By maximizing the log-likelihood, we can find the op-
timal parameter qqq⇤ that represents humans’ preferences
in real driving.

2) The feature set: The features we selected to
parametrize the trajectories in the planner-based predic-
tors can be grouped as follows:

• Speed - The incentive of the human driver to reach
a certain speed limit vlim is captured by the feature

fv(x) =
L

Â
t=0

(vt � vlim)2 (3)

vt is the speed at time t along trajectory x̂ and L is
the length of the trajectory in time.

• Traffic - In dense traffic environment, human drivers
tend to follow the traffic. Hence, we introduce a
feature based on the intelligent driver model (IDM)
[9]

fIDM(x) =
L

Â
t=0

(st � sIDM
t )2 (4)


	I Introduction
	II Methods
	II-A Problem Statement
	II-B Preliminaries: Example Predictors
	II-C Ensemble Disagreement
	II-D Generative Modeling of the Training Distribution
	II-E Classifying Poor Predictions
	II-F Online (Bayesian) Failure Estimation

	III Experiments
	III-A Experiment Design
	III-B Experiment I - Generalizability across different references
	III-C Experiment II - Generalizability across different maps
	III-D Experiment III - Robustness to added noise

	IV Discussion
	V Appendix
	V-A The planning-based predictor
	V-A1 Learning the cost functions
	V-A2 The feature set
	V-A3 Iterative Predictions

	V-B The end-to-end predictor
	V-C Further Results / Details
	V-C1 Experiment II
	V-C2 Experiment III



