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A Robust Control Framework for
Human Motion Prediction
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Abstract—Designing human motion predictors which pre-
serve safety while maintaining robot efficiency is an increasingly
important challenge for robots operating in close physical
proximity to people. One approach is to use robust control
predictors that safeguard against every possible future human
state, leading to safe but often too conservative robot plans.
Alternatively, intent-driven predictors explicitly model how
humans make decisions given their intent, leading to efficient
robot plans. However, when the intent model is misspecified, the
robot might confidently plan unsafe maneuvers. In this work
we combine ideas from robust control and intent-driven human
modelling to formulate a novel human motion predictor which
provides robustness against misspecified human models, but
reduces the conservatism of traditional worst-case predictors.
Our approach predicts the human states by trusting the
intent-driven model to decide only which human actions are
completely unlikely. We then safeguard against all likely enough
actions, much like a robust control predictor. We demonstrate in
simulation and hardware how our approach safeguards against
misspecified human intent models while not leading to overly
conservative robot plans.

Index Terms—Safety in HRI, Human-Aware Motion Planning

I. INTRODUCTION

Robots such as autonomous vehicles and assistive manip-
ulators are increasingly operating in dynamic environments
and close physical proximity to people. In such scenarios, it
is important that robots not only account for the current state
of the humans nearby, but also predict their future state to
plan safe and efficient trajectories.

To maximally preserve safety, a robust optimal control per-
spective models the human as taking any action (with equal
likelihood) from a set of controls. The predictor combines
this control set with a conservative human dynamics model
to compute a full forward reachable set, or the set of all states
that the human could reach from their current state [2, 3].
This approach allows the robot to produce safe predictions
when very little is understood about human decision-making.
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Fig. 1: When intent-driven human models are misspecified in Bayesian
predictors, robots confidently plan unsafe motions (top). Our approach
(bottom) trusts the intent-driven model only to remove completely unlikely
human actions, resulting in safer robot plans despite a misspecified model.
(not depicted here) When planning using the worst-case predictor, the robot
has to leave the environment entirely to avoid the predicted human state.

A complementary perspective is that there is structure to
human decision-making: humans have intentions, and make
decisions in pursuit of these intentions. For example, consider
an indoor home environment where people often move
towards chairs, tables, or doorways. Predictors synthesized
from this perspective, called intent-driven predictors, build
data-driven models of human actions given intent [4–8],
and have been successful in a variety of domains including
manipulation [9–11], autonomous driving [12], and naviga-
tion [13, 14] (see [15] for a survey). Since human behavior
varies between people and over time, these decision-making
models are often parameterized and predictors maintain a
belief distribution over the model parameters [16, 17]. This
provides a direct and succinct way for the robot to use online
data to update its human model [4, 6, 18, 19].

However, a key challenge remains with such intent-driven
predictors. To update the belief over model parameters and to
generate predictions, intent-driven predictors rely on priors
and on likelihood models which describe the probability of
observing a data point as a function of the model parameters.
Although these two components enable data and prior knowl-
edge to improve the human model online, likelihood models
are difficult to specify and the priors may be incorrect.

In this work we seek an approach which bridges robust
control and intent-driven predictors: a predictor which is
more robust to misspecified models and priors, but still able
to leverage human data online to safely reduce conservatism.
Our key idea is to compute a restricted forward reachable
set by trusting the intent-driven model to tell us only what is
completely unlikely. However, unlike intent-driven predictors,
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we will not rely on the exact probability of each action under
our model during prediction. Rather, we use the decision-
making model and the belief to divide the set of human
actions in two disjoint sets of likely and unlikely actions.
We then predict human motion by treating all sufficiently
likely actions as equally probable, much like in the full
forward reachable set. Using this restricted control set results
in a prediction problem which can be readily formalized
and solved through existing robust control methods and
tools [20, 21]. We utilize Hamilton-Jacobi (HJ) reachability
analysis [2, 22] which is a method for guaranteeing safety
for continuous-time, nonlinear dynamical systems. Finally,
to properly restrict the set of human controls based on the
intent-driven model and belief over model parameters, we
augment the state space with the belief. Since the belief
encodes the likelihood of human actions given the history
of human actions, this explicit belief tracking allows us to
compute the likely actions at any future state.

To summarize, our key contributions are:
• a robust control framework for human motion prediction

which provides robustness against misspecified models
and model parameter priors;

• a comparison of our approach to forward reachable
set and stochastic predictors for static and time-varying
human intent models and in three pedestrian scenarios
where the belief over the human intent changes online;

• a demonstration of our prediction approach in hardware.

II. PROBLEM SETUP

We consider a robot operating in a shared workspace with
a human. The robot needs to predict the human’s motion1

and plan a collision-free path around the human to reach
the goal as efficiently and safely as possible. To describe
the motion of the robot and the human, we model both
as dynamical systems. Let the state of the human and the
robot be xH ∈ RnH and xR ∈ RnR respectively. The
time-evolution of these states can be described by ẋH =
fH(xH , uH), ẋR = fR(xR, uR) where the human and
robot’s controls are uH ∈ RmH and uR ∈ RmR respectively.

The robot’s goal is to plan a control trajectory uR(t), t ∈
[0, T̄ ] such that it does not collide with the human or any
(known) static obstacles, and reaches its goal gR by T̄ . In
this work, we will solve this planning problem in a receding
horizon fashion. However, the future states of the human are
not known a priori, and thus the robot must predict future
human motion in order to plan collision-free trajectories.

Throughout this paper, we will focus on contrasting the
intent-driven and full forward reachable set predictor with
our novel predictor. However, all prediction schemes ulti-
mately produce a set of sufficiently likely states (forward in
time until the prediction horizon, N ) that the robot uses for
collision checking. We define the set of likely human states
at some future time, t+ τ as: Kt(τ), ∀τ ∈ [0, N ].

Running example: We now introduce a running example
for illustration purposes throughout the paper. Consider a

1We assume that the robot and human states can be accurately sensed.

mobile robot that needs to navigate to a goal position
gR ∈ R2 in a room where a person is walking. Since the
human is a pedestrian in this scenario, we use a planar
human model with state xH = [hx, hy] and dynamics
ẋH = [vHcos(uH), vHsin(uH)]. We model the human as
moving at a fixed speed vH ≈ 0.6m/s and controlling their
heading angle uH ∈ [−π, π]. Our mobile robot is modeled
as a 3D system with state given by its position and heading
xR = [sx, sy, φ], and speed and angular speed as the control
uR = [vR, ω], and dynamics ẋR = [vR cosφ, vR sinφ, ω].
The robot control inputs are constrained between [0, 0.6]m/s
and [−1.1, 1.1]rad/s respectively.

III. BACKGROUND: ROBUST VS. INTENT PREDICTION

In this work, we aim to unify ideas from the robust control
with the intent-driven prediction so we start with a brief
background on both. In each section, we refer interested
readers to more comprehensive resources on each approach.

A. Robust Control Prediction
The most conservative prediction of human motion is the

set of all states the human could reach in a time horizon. Let
t be the current real time and τ ∈ [0, N ] be a future time used
by the predictor. Also, let ξ(x0

H , τ, uH(·)) := xτH denote the
human state starting from the current state x0

H := xtH at
time 0 and applying control uH for a duration of τ . The full
Forward Reachable Set (FRS) is defined as:

KtFRS(τ) := {xτH : ∃uH(·), xτH = ξ(x0
H , τ, uH(·))} (1)

In other words, if the human is in state x0
H , then they are

predicted to reach any state xτH in τ time if that state is
reachable through some control signal uH(·).

In general there are many techniques for computing these
sets [3, 20, 21], but in this work we use Hamilton-Jacobi
(HJ) reachability analysis [2, 22]. In HJ reachability, the
computation of the FRS is formulated as a dynamic program-
ming problem which ultimately requires solving for the value
function V (τ, xH) in the following initial value Hamilton
Jacobi-Bellman PDE (HJB-PDE):
∂V (τ, xH)

∂τ
+ max
uH∈U

∇xHV (τ, xH) · f(xH , uH) = 0

V (0, xH) = l(xH),

(2)

where τ ≥ 0. The function l(xH) is the implicit surface
function representing the initial set of states that the human
occupies L = {xH : l(xH) ≤ 0}. Note that this equation is
the continuous-time analogue of the discrete-time Bellman
equation. The maximization over the human’s control, uH ∈
U , encodes the effect of the human dynamics and control
on the value, which lies in the set of all possible controls.
Note that since this optimization considers all controls, the
predictions will include all possible states the human could
reach, thereby resulting in the safe but oftentimes overly
conservative predictions. Once the value function V (τ, xH)
is computed, the FRS predictions are given by the sub-zero
level set KtFRS(τ) = {xH : V (τ, xH) ≤ 0}. For more details
on the HJB-PDE, please refer to [2].
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B. Intent-driven Bayesian Prediction

Unlike the robust predictor, the intent-driven Bayesian
predictor couples a structured model of how the human
chooses their actions with the dynamics model. In general,
constructing a human decision-making model for a robotic
application is a particularly difficult modeling challenge
and many approaches exist in the literature (see [15]). In
this work, we consider stochastic control policies that are
parameterized by a discrete random variable λt where Λ
is the set of all values that λt can take. The human’s
control policy can be described by the probability density
function utH ∼ p(utH | xtH ;λt). Here, λt can represent many
different aspects of human decision-making, including what
goal locations they are moving towards [6] or even the kind
of visual cues they pay attention to in a scene [7]. We refer
to these aspects of human decision-making as the human’s
intent. Furthermore, we use the superscript t on the parameter
to denote that the value of the human parameter can be time-
varying. This allows the human model to encode how the
human’s intent changes over time; for example, if a person
changes the goal they are moving towards in a room.

In general, the specific choice of parameterization is often
highly problem specific and can be hand-designed or learned
from prior data [6, 23]. Regardless of the specific param-
eterization, in practice, the true value of λt is frequently
unknown beforehand and instead can be estimated from the
measurements of the true human behavior. Thus, at any time
t, the robot additionally maintains a belief distribution bt(λt)
over the model parameters, which allows it to estimate the
human’s intent online via a Bayesian update:

bt+(λt | utH , xtH) =
P (utH | xtH ;λt)bt(λt)∑
λ̄∈Λ P (utH | xtH ; λ̄)bt(λ̄)

(3)

Running example: The robot has uncertainty about the
human’s goal location. Let the human parameter λt ∈ Λ =
{g1, g2} take two values which indicates which goal location
the human moving towards. The human decision-making
model at any state and for a particular goal is given by
a Gaussian distribution over the heading angle with mean
pointing in the goal direction and a variance representing
uncertainty in the human action:

p(utH | xtH ;λt) =

{
N (µ1, σ

2
1), if λt = g1

N (µ2, σ
2
2), if λt = g2

,

where µi = tan−1
( gi(y)−hty
gi(x)−htx

)
and σi = π/4 for i ∈ {1, 2}.

Here, (gi(x), gi(y)) represents the position of goal gi.
At prediction time, the stochastic nature of the human

decision-making model and the belief over the parameters
is naturally converted into state distributions (instead of
deterministic sets) forward in time. Note that typically, these
predictors use a temporally and spatially discretized form of
the dynamics by integrating fH over a fixed time interval δt.
Controls are often discretized too and assumed to be held
fixed during δt. This results in the predictor maintaining and
updating discrete distributions over the human state space.
Given the current real time t, we will denote a future time
discrete timestep by k ∈ {0, 1, . . . , Hδt}.

Suppose the current state of the human at the start of
the prediction horizon is x0

H := xtH and the current belief
is b0(λ0) := bt(λt). Assume the human is at xkH at some
future time k. Combining the dynamics and human policy,
the human’s state distribution at the next timestep k + 1 is

P (xk+1
H | xkH ;λk) =

∑
uk
H

P (xk+1
H | xkH , ukH)P (ukH | xkH ;λk).

This equation can be applied recursively to compute
P (xk+1

H | x0
H ;λ0:k) starting from k = 0. Marginalizing over

all sequences of values that the human parameter λ could
take, Sk, where |Sk| = |λ|k, we get the overall distribution
over the human state at future time step k+1: P (xk+1

H | x0
H).

Here, the probability of the parameter sequence has to be set
in the model and is generally defined by 2 P (λ0:k | x0

H) =(∏k
m=1 P (λm | λm−1)

)
b0(λ0).

Importantly, at planning time, the robot must decide which
predicted states are sufficiently likely to warrant avoiding. A
strict notion of safety requires the robot to avoid all states
whose probability is > 0. While safe (and equivalent to the
full FRS), this choice of states does not leverage the data
encoded through the belief or the human decision-making
model. To reduce the volume of this set in a way com-
mensurate with human decision-making, choosing a nonzero
probability threshold is desirable and reveals a significantly
smaller set of states that aligns with the model. Thus, the
ultimate predicted set of human states that the robot must
avoid at planning time is:

Ktε(k) = {xkH : P (xkH | x0
H) > ε},∀k ∈ {0, . . . , N

δt
} (4)

where ε ≥ 0 is a safety threshold and a design parameter.

IV. A ROBUST-CONTROL FRAMEWORK FOR
INTENT-DRIVEN HUMAN PREDICTION

Our key idea in this paper is to compute a restricted
forward reachable set by trusting the intent-driven model to
infer only what is completely unlikely. After using the intent-
driven model to prune away sufficiently unlikely actions, our
robust predictor will safeguard against all sufficiently likely
actions equally, much like in the full forward reachable set.
The main question becomes how to perform this control-set
pruning in a principled way over the prediction horizon.

One simple way of choosing this set is as follows. At
the beginning of the prediction horizon, let the human state
be x0

H := xtH and the current belief be b0 := bt. We can
form a new distribution over the human’s controls at the first
time step by marginalizing out the latent model parameters,
given the initial belief we have over those parameters:
p(uH | xH) =

∑
λ∈Λ p(uH | xH ;λ)b0(λ). Then, we can

choose the set of human actions to be those for which
this marginalized initial likelihood is above a threshold:
U(xH) = {uH : p(uH | xH) ≥ δ}. This leads to a set of

2In the case of static latent parameters, the summation simplifies to
P (xk+1

H | x0
H) =

∑
λ∈Λ P (xk+1

H | x0
H ;λ)b0(λ).
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reachable states for t = 1. To obtain the set of states at t = 2,
it is tempting to follow the same process, restricting the
set of future actions based on b0. Unfortunately, this would
(accidentally) model that the human is “resampling” their
intent from this initial distribution independently at every
step. It would disregard that a human’s second action will
be consistent with their first, with the intent only changing
according to the dynamics of λ. Thus, we must enforce that
the human control from a state xH at t = 2 is not only
consistent with the initial belief, but also with the control
that took them to state xH .

To properly restrict the set of feasible controls over
the prediction horizon, we need to take into account how
the likelihood of any future control depends on the past
sequence of human controls. The belief precisely encodes
this likelihood given the past sequence of human controls
through the Bayesian update from Eq. 3. Thus, our predictor
explicitly tracks the updated belief as it makes predictions,
rather than just the updated state, and restricts future actions
based on future beliefs (see left of Fig. 3 for intuitive
depiction). Let this joint state space be denoted by zt :=[
xtH bt(λt = λ1) . . . bt(λt = λ|Λ|)

]
.

When predicting using this state space, to simultaneously
predict the possible future beliefs over λt and corresponding
likely human states, we consider the joint dynamics:

żt =
[
ẋtH ḃt(λt = λ1) . . . ḃt(λt = λ|Λ|)

]
, (5)

where żt := f(zt, utH). The continuous evolution of the
belief bt(λt) can be described by:

ḃt(λt) = γ
(
bt+(λt | utH , xtH)− bt(λt)

)
+ k
(
bt(λt)

)
(6)

for any specific value of λt. Here, the function k(·) represents
the intrinsic changes in the human intent, whereas the other
component captures the Bayesian change in bt(λt) due to
the observation utH . Note that the time derivative in (6) is
pointwise in the space of all λ’s. Typically, the Bayesian up-
date is performed in discrete time when the new observations
are received. However, to unify this with continuous-time
robust controls tools, in this work, we reason about contin-
uous changes in bt(λt). Intuitively, to relate the continuous-
time Bayesian update to the discrete-time version, γ in (6)
can be thought of as the observation frequency. Indeed, as
γ ↑ ∞, i.e., observations are received continuously, bt(λt)
instantaneously changes to bt+(λt | utH , xtH). On the other
hand, as γ ↓ 0, i.e., no observation are received, the Bayesian
update does not play a role in the dynamics of bt(λt). For
a detailed derivation of continuous dynamics, we refer the
interested readers to Appendix A.

Now that we are able to track the evolution of the robot’s
belief and the human’s physical states, we can prune unlikely
human actions by combining the intent-driven model and
the predicted belief over the human model parameters. For
some future time τ ∈ [0, N ], the marginalized human action
distribution at joint state zτ is given by

p(uτH | zτ ) =
∑
λ∈Λ

p(uτH | xτH ;λ)bτ (λ). (7)

Fig. 2: Effect of the belief and the δ-threshold on the admissible set of
controls (shown in upper-left inset) and the overall predictions (shown in
pink) for 3 seconds into the future.

Fig. 3: (left) Initial set in z-space (in grey). Likely control distribution for
δ = 0.01 shown projected in hx − hy plane. Comparisons of the resulting
joint state if the human moves directly towards g1 (in red) versus towards
g2 (in blue). (right) 4 seconds BA-FRS and its projection into xH -space.

Very importantly, note that this set is joint state dependent,
and therefore belief -dependent. This allows us to prune
away the sufficiently unlikely actions by removing actions
which are not assigned sufficient probability under the future
predicted belief (and not just the initial belief):

uτH ∈ U(zτ ), U(zτ ) = {uτH : p(uτH | zτ ) ≥ δ} (8)

where p(uH | z) is computed as in Eq. (7) and δ is a
threshold that partitions the actions into likely and unlikely.

Running example: Consider the case when the intrinsic
behavior of the human does not change over time, i.e.,
k(bt(λt)) = 0, meaning the human has a fixed goal they
are moving to. Since λ takes only two possible values,
the joint state space is three dimensional. In particular,
z =

[
hx hy p1

]
, where p1 := bt(λt = g1) and bt(λt =

g2) is given by (1− bt(λt = g1)) so we do not need to
explicitly maintain it as a state. The state-dependent control
distribution is p(uH | z) = p1N (µ1, σ

2
1)+(1−p1)N (µ2, σ

2
2)

and can be used to compute the set of allowable controls
U for different values of δ via Eq. (8). Note Fig. 2 where
the top-left inset figures show the allowable controls for
x = (0, 0) and two different belief states b0(λ = g1) = 0.5
and b0(λ = g1) = 0.9 for three different δ thresholds.

A. Using HJ-Reachability for Prediction

Using a control set rather than a distribution results in a
prediction problem which can be readily solved using the
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HJB-PDE formulation in Section III-A. At any real time t,
given the current state of the human and the current belief
over the model parameters, we can construct the joint state
at the beginning of the prediction horizon z0 := zt. Using
this initial state and the thresholded control policy from (7),
we are interested in computing the following set:

V(τ) := {zτ : ∃uH(·) ∈ U(z), zτ = ξ(z0, τ, uH(·))}, (9)

where τ ∈ [0, N ]. Intuitively, V(τ) represents all possible
states of the joint system, i.e., all possible human states and
beliefs over λ, that are reachable under the dynamics in (5)
for some sequence of human actions. We refer to this set
as the Belief Augmented Forward Reachable Set (BA-FRS)
from here on. Much like the computation of the full forward
reachable set from Sec. III-A, we can leverage the same tools
from HJ-Reachability to compute the BA-FRS where xH is
replaced with z and instead of optimizing over all controls
U , we use the restricted set of controls U(z) instead.

After solving the dynamic programming problem to obtain
the BA-FRS from (9), our predictions include not only the
physical locations of the human but also the corresponding
future beliefs. However, for motion planning, the robot needs
to collision-check against a set of physical states the human
could occupy. We obtain this set by projecting V(τ) on the
human state space via Ktδ(τ) =

⋃
zτ∈V(τ) Π(zτ ), ∀τ ∈

[0, N ] where Π(z) is the physical state component of z.
Running example: Our starting set of states, L, is a

small ball at the joint starting state z0 = [0, 0, 0.5], shown
in grey in Fig. 3. Consider how the state and belief can
change in a small (δt = 0.4668) timestep after observing
the person moving towards goal 1 via uH = π/4. Since
this action is highly likely under the model where λ = g1,
then the next joint state will have the person not only
moved physically in that direction, but the posterior will
have increased probability mass on b(λ = g1). Similarly,
this probability decreases if the human moves to g2. After
solving for V (τ, z) via (2), we take the sub-zero level set
to retrieve the joint state predictions (Fig. 3, right), and the
predictions Ktδ after projecting onto the human’s state space.

In summary, to predict the human’s motion, our predictor
optimizes the initial value HJB-PDE from (2) but instead of
optimizing over all controls, our formulation modifies Eq.
(2) to maximize over the restricted set uH ∈ U(z) which
changes based on human state, time, and belief. Ultimately,
the proposed prediction framework is a less conservative
FRS, but a more conservative intent-driven predictor. This
has two advantages: (1) when the intent-driven model is
correct, it computes an under-approximation of the full FRS
to reduce conservatism in a principled way, and (2) when
the model is incorrect, we can be more robust to such
inaccuracies since the predictions no longer rely on the exact
action probabilities. We discuss this further in Sec. V.

V. PREDICTION COMPARISONS

We now compare our predictor with the intent-driven
Bayesian predictor and the full FRS when (1) the human

Fig. 4: Comparisons of Bayesian and BA-FRS predictions for static vs. time-
varying human intent. Dashed lines are the full FRS. Predictions are for 2
seconds for the static parameter and 1.8 seconds for time-varying. For the
Bayesian predictor, we choose ε to capture the (1− δ) most likely states.

intent is static, (2) the human intent is time-varying, and (3)
the human moves in unmodelled ways over time.

A. Static parameter

One simple but common predictive model of human
behavior assumes that the human’s intent (and thus model
parameter λ) is static. In our running example, this means
the person has a fixed goal location they are moving towards
and they will not change their mind. Mathematically, in the
intent-driven Bayesian predictor, this is represented via the
λ transition distribution P (λk+1 | λk) = 1{λk+1=λk} where
1 represents the indicator function. In the BA-FRS predictor
it means k(bt(λt)) = 0 in the distribution dynamics.

In the left block images in Fig. 4, we see a snapshot of
predictions generated by the intent-driven predictor and the
BA-FRS forward in time for 2 seconds (N = 18). The full
forward reachable set is visualized as a series of concentric
dashed grey circles. The top row represents a uniform belief
over the two goals, while the bottom row represents a high
belief on goal 1 (g1). As expected, both the intent-driven
predictor and the BA-FRS are far less conservative than the
full FRS. Furthermore, the set of sufficiently likely states
predicted by the intent-driven Bayesian predictor is always
contained within the BA-FRS. Consequently, when the belief
over λ is confident that the human is moving towards g1 (see
bottom row of Fig. 4), then the BA-FRS allows us to compute
an approximation of the stochastic predictor.

B. Time-varying parameter

A more complex model of human intent allows it to vary
over time. To encode this time-varying intent in the predictor,
we need a model of how the human chooses the next value
of λt. In our running example, let a simple model for how
the person changes their behavior to be:

P (λk+1 | λk) =

{
α+ (1− α) ·∆(λk) if λk+1 = λk

(1− α) ·∆(λk+1) if λk+1 6= λk
(10)

where α is a known model parameterwhich governs how
likely the person is to change their intent and ∆ is a known
discrete distribution over the model parameters. This model
encodes that if the person was moving towards λk = g1 at the
previous timestep k, they are likely to continue to walk to g1
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at the next timestep with probability α+(1−α)·∆(λk = g1),
or they can switch to λk+1 = g2 at the next timestep with
probability (1−α)·∆(λk+1 = g2). In the BA-FRS predictor,
this time-varying intent model is encoded via the distribution
dynamics: k(bt(λt)) = αbt(λt) + (1− α) ·∆(λt)− bt(λt).

In the right block of images in Fig. 4, we see a snapshot
of predictions when the latent parameter is time-varying
forward in time for 1.8 seconds (H = 11). Note that when the
parameter is time-varying, the computational complexity of
the intent-driven Bayes predictor exponentially increases in
the size of the prediction horizon, |Λ|N , due to the necessity
of tracking all sequences of values that λ can take over time.
In practice, prediction was computationally prohibitive for
horizons greater than 1.8 seconds. In contrast, the BA-FRS
computation grows linearly in the length of the prediction
horizon, but exponentially in the number of parameter values
due to the addition of the belief in the state. Thus, for
time-varying parameters which take a few values and for
longer prediction horizons, our prediction method can be
particularly suitable for getting an approximation of Bayes
predictor at a lower computational complexity.

When λ is static, then the intent-driven predictor with a
high belief over g1 deems moving directly towards g2 to be
highly unlikely. However, when λ is time-varying, the human
can “switch” which goal they are moving towards, thereby
making states in the direction of g2 somewhat likely as well.
For the BA-FRS, even though directly moving towards g2

is unlikely under the intent-driven model and belief, the
BA-FRS realizes that moving away from g1 is still likely
enough. Consequently, the predicted BA-FRS mass moves
in the direction of g2 over time, in the case of both static
and time-varying λ, allowing us to be robust to suboptimal
human trajectories as discussed in the next section.

C. Online updates & robustness to misspecified models

Ultimately, both the intent-driven Bayesian predictor and
the BA-FRS will update the belief over the human parameters
online based on how the person moves. Here we simulate
three scenarios–one where the person takes a path well-
modelled by the intent-driven model and two where the
person behaves in an unmodelled way–and discuss how our
framework ensures robustness in situations like these.

In all examples, the predictors begin with a uniform prior
over the two goals, use a static model of human intent, and
the BA-FRS uses a δ = 0.02. In the top row of Fig. 5
the human has a fixed intent to move towards the upper
goal 1 (g1). In this scenario, the intent-driven model is
correctly specified and as the person moves towards g1, the
belief over g1 increases and the Bayesian predictions focus
towards this goal. Our BA-FRS performs similarly since it
too performs the belief update over time. However, since the
BA-FRS explicitly tracks the evolution of the belief in the
future during prediction, the sets include more states even
in the direction of g2. This is because the predictions are
safeguarding against slightly suboptimal actions which are
still likely enough under the model and would lead to the

Fig. 5: Comparison of the intent-driven Bayesian, our BA-FRS, and the
full FRS predictions for three scenarios. In the first row the human moves
towards one of the modelled goals. In the middle the human moves towards
an unmodelled goal. In the last row the human is moving towards a modelled
goal (g2) but they take a suboptimal path under our model because they are
avoiding an unmodelled obstacle on the ground (shown in grey circle). The
belief over g1 is visualized over time in the lower-left inset plot.

belief over g1 decreasing in the future. Nevertheless, the
BA-FRS takes up significantly less volume than the full FRS,
thereby reducing overall conservativism.

The second and third rows demonstrate two human be-
haviors that are unmodelled – a scenario where the human
is actually walking towards a third unmodelled goal in
between g1 and g2 and a scenario where the human takes
a seemingly suboptimal path to g2 due to an unmodelled
obstacle. In the later scenario, the belief over g1 sharply
increases as the person moves around the unknown obstacle.
This results in the Bayesian predictor being overly optimistic,
and it places most probability mass on states that are in the
direction of g1. In contrast, our predictor remains cautiously
conservative because (1) it is safeguarding against the slightly
suboptimal but still sufficiently likely actions and (2) it is
evolving the belief during the prediction horizon. In fact,
the true sequence of human states and actions lies within
the predictions of the BA-FRS, ensuring that a robot which
relies on these predictions will in fact avoid the states that the
human eventually occupies. We discuss the middle scenario
in greater detail in Sec. VI.

We conducted a series of additional experiments with
simulated human trajectories to systematically analyze the
three misspecification types: (1) accurate goal but inaccurate
optimality level, (2) unmodelled goal, (3) accurate goal but
unmodelled obstacle. We compare different predictors for
prediction accuracy and conservatism. A predictor is consid-
ered accurate at a particular time step if the true future human
states lies within the predictions for the entire prediction
horizon. Conservatism is measured by computing the percent
volume of the full FRS that the predicted states occupy.
Both the accuracy and conservatism metrics are computed
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Fig. 6: Simulated human moves to modelled g1 but with varied optimality
from σ = 0 (optimal) to π (random). Both predictors use a fixed σ = π/4.

Fig. 7: (top) Simulated human moves to one of 7 unmodelled goals in
an optimal trajectory. Results are in increasing misspecification of the goal.
(bottom) Simulated human moves to modelled goal g2 but has their straight-
line path obstructed by an unmodelled obstacle. Results from 7 unmodelled
obstacles are shown in increasing deviation from the straight trajectory.

at each time step and averaged over the horizon [0, T̄ ]. Note
that the full FRS always achieves 100% accuracy but also
100% conservatism. These metrics provide us a proxy for
the prediction’s effect on the safety and efficiency of the
robot’s plan; ideally, a predictor should have high accuracy
and low conservatism over the entire human trajectory. In all
experiments, the Bayesian and BA-FRS predictors modelled
two goals and used a fixed σ = π/4 in the action model
described in the running example from III-B and δ = 0.02.

For (1), the human was simulated as moving towards
modelled goal g1 by sampling an action u(x) ∼ N (µ1, σ

2).
To capture a range of human behavior from completely
optimal to completely random, we simulated five levels of
σ (depicted in Fig. 6). We sampled 7 random initial human
states for each σ and averaged results over these trials. Fig. 6
shows box plots of our metrics for Bayesian and BA-FRS.
Although the BA-FRS is about twice as conservative as
Bayesian, it maintains a high prediction accuracy across all
optimality levels, while still being far less conservative than
the full FRS (BA-FRS is ≈ 45% of the full FRS).

For (2) and (3) we fixed the human’s initial condition
but varied the unmodelled goal or unmodelled obstacle.
For unmodelled goals, we randomly sampled 7 unmodelled
goals which were diversely spread in the (x,y)-plane. The
true (unknown) human trajectory is a straight line to the
unmodelled goal starting from the initial position. Fig. 7
(top) shows plots of the accuracy and conservatism for each
of the unmodelled goals, sorted from the “most” modelled
(e.g. an unmodelled goal which is nearby a modelled goal)

to “least” modelled. For unmodelled obstacles, the simulated
human always moved towards g2, but their straight-line path
was always obstructed by an unmodelled obstacle, forcing
them to take a trajectory around the obstacle. We simulated 7
of these trajectories around various circular and rectangular-
shaped obstacles. Fig. 7 (bottom) shows the results sorted
from least deviation from straight-line trajectory to the goal
to most deviation. The more irrational the human “appears”
(either due to an unmodelled goal or taking a suboptimal path
to the goal), the more the drop in accuracy of the Bayesian
predictor, as it overrelies on the intent model to explain the
human’s behavior. In contrast, since BA-FRS only uses the
human model to filter likely and unlikely actions, it maintains
a relatively higher accuracy.

VI. IMPLICATIONS FOR SAFE MOTION PLANNING

Consider the scenario where the actual human goal is
midway between the modelled goals g1 and g2 (see g3

label in Fig. 1 and middle row of Fig. 5), but the true
human goal is not explicitly modelled in the intent-driven
model. We will use this example in simulation and in
hardware to demonstrate the challenges with over-relying
on a misspecified intent-driven model. Our hardware exper-
iments are performed on a TurtleBot 2 navigating around a
human pedestrian. We measured human positions at 200Hz
using a VICON motion capture system and used on-board
odometry sensors for the robot state measurement. The robot
is modelled via the dynamics in Sec. II, its goal gR is
behind the initial state of the human (green circle in Fig. 1)
and it uses a spline-based planner [24] to plan six-second
trajectories in a receding-horizon fashion.

When the robot uses the full FRS for human motion
prediction (see Fig. 5 for visualizations of the predictions
over time), the robot plans a trajectory which deviates
significantly from the ideal straight line path towards its
goal and in fact forces the robot to leave the testbed3. In
contrast, the Bayesian predictor consistently predicts that that
pedestrian will walk towards one of the goals and fails to
assign sufficient probability to the true human states because
of its over reliance on the model. Ultimately, this leads to a
collision between the human and the robot (top row Fig. 1).
Our proposed approach does not rely heavily on the exact
action probabilities, and infers that the straight line trajectory
is likely enough under the pedestrian model. As a result, the
robot makes a course correction early on to reach its goal
without colliding with the pedestrian (bottom row Fig. 1).

VII. CONCLUSION

When robots operate around humans, they often employ
intent-driven models to reason about human behavior. Even
though powerful, such predictors can make poor predictions
when the intent-driven model is misspecified. This in turn
will likely cause unsafe robot behavior. In this work, we
formulated human motion prediction as a robust control prob-
lem over the set of only sufficiently likely actions, offering

3Hardware demonstration videos: https://youtu.be/uZi-zIi1S6A

https://youtu.be/uZi-zIi1S6A
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a bridge between conservative full forward reachable set
predictors and intent-driven predictors. We demonstrated that
the proposed framework provides more robust predictions
when the prior is incorrect or human behavior model is
misspecified, and can perform these predictions in continuous
time and state using the tools developed for reachability
analysis. In the future, we will scale it to higher dimensions
with multiple humans, perform a user study to gauge the
impact of our predictor on a humans’ comfort in close
navigation scenarios, and integrate it with online model
confidence estimation approaches.

APPENDIX A
CONTINUOUS-TIME DISTRIBUTION DYNAMICS

Assume that every T seconds4 we are guaranteed to
receive a measurement, uH . Let the current time be denoted
by t and the current belief over the latent parameter λ be
bt(λ). During the time interval [t, t + T ] we will receive
a single measurement with probability 1. For simplicity,
we assume that the arrival time of the measurement is
uniformly distributed in the interval [t, t + T ]. However,
depending on the measurement model, a similar derivation
can be performed for other arrival time distributions as well.
We want to understand how the belief bt(λ) can change
in an arbitrarily small timestep, δt, along [t, t + T ]. As
this timestep goes to zero, we will be able to recover the
continuous-time dynamics of bt(λ). Let E be a discrete
random variable which takes values capturing the event that
we receive a measurement within the time interval [t, t+δt].
The probability distribution of E can be written out as:

E =

{
e1 = measurement, with probability δt

T

e2 = no measurement, with probability 1− δt
T

When a measurement is received, a Bayesian update on
the belief is performed as per (3). When a measurement is
not received, the only change in the belief is intrinsic. Let
the function k(bt(λ)) represent the intrinsic changes in the
human behavior. Using the law of total probability:

bt+δt(λ) = P (e1)P t+δt(λ | x, e1) + P (e2)P t+δt(λ | x, e2)

=

(
δt

T

)
bt+(λ | u, x) +

(
1− δt

T

)(
bt(λ) + δt · k(bt(λ))

)
.

Rearranging some terms, we get:

bt+δt(λ)− bt(λ) =

(
δt

T

)(
bt+(λ | u, x)− bt(λ)

)
+ δt · k(bt(λ)) + h.o.t,

where h.o.t includes all the terms with δt2 in them. Taking
the limit as δt → 0 we get the time-derivative of bt(λ):
ḃt(λ) = 1

T

(
bt+(λ | u, x) − bt(λ)

)
+ k(bt(λ)). Note that

the higher order terms disappear when we take the limit of
δt → 0. We now have a form for our dynamics when our
belief can change both because of a new measurement and

4Here, T can represent the publishing rate of the motion capture or
estimator which computes the current human state (and then observation).

because of the intrinsic dynamics of the human. If we let
γ = 1/T then we get the form in Equation (6):

ḃt(λ) = γ
(
bt+(λ | u, x)− bt(λ)

)
+ k(bt(λ)). (11)
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