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Abstract—As residential photovoltaic (PV) system installations
continue to increase rapidly, utilities need to identify the locations
of these new components to manage the unconventional two-way
power flow and maintain sustainable management of distribution
grids. But, historical records are unreliable and constant re-
assessment of active residential PV locations is resource intensive.
To resolve these issues, we propose to model the solar detection
problem in a machine learning set up based on labeled data, e.g.,
supervised learning. However, the challenge for most utilities is
limited labels or labels on only one type of users. Therefore, we
design new semi-supervised learning and one-class classification
methods based on autoencoders, which greatly improve the
nonlinear data representation of human behavior and solar
behavior. The proposed methods have been tested and validated
not only on synthetic data based on a publicly available data
set, but also on real-world data from utility partners. The
numerical results show robust detection accuracy, laying down
the foundation for managing distributed energy resources in
distribution grids.

Index Terms—solar panels, locations, detection, autoencoder,
semi-supervised learning, one-class classification

I. INTRODUCTION

ITH the increase in installations of residential photo-
W voltaic (PV) systems, it is important for utilities to gain
visibility of solar panels [1], [2]. Residential PV systems not
only create sustainable electricity for their owners, but also
build represent a new type of assets for utilities. To better
evaluate the benefits and potential revenues associated with
these new assets, utilities need to identify the locations of
these new components to manage the unconventional two-
way power flow and maintain sustainable management of
distribution grids. For example, detecting and monitoring
all active PV installations in a utility’s territory allows the
utility to perform accurate hosting capacity analysis (HCA).
HCA allows utilities to determine the amount of additional
distributed energy resources (DERs) that can be “hosted” on
the distribution system at a given time and location, without
threatening grid safety, reliability, or power quality [3].

Unfortunately, we cannot determine whether a customer has
solar panels with certainty as new installations will go up and
some may be retired as time passes by. Even worse, some
solar panel installations took place without utility permission
[4]. While a utility can manually update historical records on
active solar locations, it is cost intensive and difficult to ensure
the solar location data are accurate all the time. Without utility
visibility of residential PV electricity generation, the system
operation is prone to over-voltage and back-feeding through
substations. These events can damage system equipment such
as transformers, voltage regulators, and customers’ appliances.
Therefore, utilities are in urgent need of new methods for
providing real-time renewable location data to better plan
infrastructure and grid operation.

In the past, DER analyses required manual validation of
locational information of PV [1], [5]-[7]. As manual checks
are not scalable, automation of the localization process is an
active area of research. For example, [8]-[10] propose to use
an unmanned aerial vehicle (UAV) with different cameras,
such as HD cameras, thermal cameras, and infrared cameras
to localize different panels and their conditions for fault detec-
tion and maintenance. Although these methods are typically
successful for detecting large PV arrays (i.e. solar farms), it is
challenging to send UAV across different utility service areas,
which can be geographically large. Therefore, instead of the
UAV approach, [11] and [12] propose to use satellite images
to detect solar panels. However, satellite images include many
areas without PV systems and there are similar objects that
can be incorrectly identified as solar panels. Even worse, such
a satellite-based approach cannot distinguish active and non-
operational PV installations. The use of smart meter data for
solar detection may overcome the obstacles posed by UAV
and satellite-based methods. For example, [13] aims to detect
the solar panels behind the meter data. The paper proposes a
change-point detection algorithm to screen out abnormal usage
data. However, change-point detection can identify changes
that are not due to solar behaviors.

One key drawback of change-point detection is due to
its unsupervised nature and simplicity of using any change-
point. While we demonstrate in this paper that supervised
learning can achieve satisfactory performance, such learning
requires adequate labels of the inputs and outputs [14]. This is
insufficient because a utility may not be able to afford the cost
and time for obtaining and maintaining a lot of the labels for
solar and non-solar users [15], [16]. Therefore, we propose to
use semi-supervised learning (SSL) by only requiring a small
sample of the labeled data from both classes [17], [18]. When
the utility only has labels on one class, e.g., non-solar users,
we propose to use one-class classification (OCC) [19], [20].

During the implementation, the direct application of SSL
and OCC have relatively low accuracy, as the power system
has a high dimensionality in data. For example, each user
represents one point in the classification problem, but the user
data is the result of vectorizing a long time-series data that
can last several days for a clear pattern [21]-[23]. Besides, as
residential customers have diversified user behaviors, the data
of each class lives on a highly non-linear surface [17].

For resolving the issue of dimensionality, there are mainly
three types of methods available. The first type is linear
mapping methods, the most typical method of this type is
principal component analysis (PCA). The second type is
nonlinear mapping methods, the mainstream of this type of
method is based on manifold learning. The most basic method
among them is multidimensional scaling (MDS), which tries to
preserve the original relative distance between the data points



in the lower dimensions. Locally linear embedding (LLE) as
another main dimensional reduction method under manifold
learning, uses local linearity to reflect global nonlinearity and
preserves the data topology structure in the original space. The
last type is advanced methods based on neural networks. The
most well-known one is the autoencoder (AE).

Considering that PCA only looks for the principal com-
ponents and may lose the separability information in over-
looked projection directions. Also, MDS assumes an equal
contribution of all dimensions towards the dimension reduction
result and may overlook the fact that some dimensions may be
more important than others. Additionally, MDS suffers from
high computation cost O(n?) [24], where 7 is the number of
samples. The LLE method has a low computation cost but is
sensitive to the selected neighborhood. An autoencoder does
not have these limitations as it uses the data itself to supervise
the mapping to lower dimensions. Therefore, we propose to
solve the issue of dimensionality and nonlinear representation
together by designing new SLL and OCC methods based on
autoencoders. Constructed by the two deep neural networks
of an encoder and a decoder, an autoencoder is capable of
providing a universal approximation of nonlinear and low
dimensional space while de-noising [25]-[28].

Finally, we use the known public and utility solar data
arrays to validate the proposed methods. We use both accuracy
and F1 score to measure the performance against baseline
results. The baseline results were based on common SSL
and OCC methods as well as including common supervised
learning methods. Such an experiment shows enhanced solar
usage detection when compared to the traditional methods. In
summary, the contributions of the paper are:

1) The paper explains why solar detection is urgently
needed and why the problem is challenging and cost
intensive in reality based on our data mining of realistic
utility data.

2) The paper models the solar detection problem in super-
vised learning, semi-supervised learning (SSL), and one
class-classification (OCC) setups. Future researchers can
develop relevant tools based on our problem modeling.

3) The paper proposes new SSL and OCC methods based
on autoencoders, greatly boosting the power of data
representation and model learning.

4) The paper not only validates the methods based on the
publicly available synthetic data set, but also has great
success on real utility data.

The rest of the paper is structured as follows. Section II
shows the feasibility of solar detection via data mining. Section
IIT formulates the solar panel detection problem with limited
labels. Section IV and Section V show the enhanced SSL and
OCC via autoencoder. Section VI provides numerical results,
and Section VII concludes the paper.

II. DIFFERENCES BETWEEN SOLAR + NON-SOLAR USERS

The problem of determining whether there are solar panels
that are generating power in a residence via utility data is
not widely analyzed. The key concern is that solar users and
non-solar users are difficult to differentiate. For example, it is

difficult to determine whether solar exists behind a meter if
the solar generation is small relative to the household usage.

A. Proof of Feasibility with Realistic Data

To validate this difficulty and illustrate the the feasibility of
differentiation, we conduct data mining over realistic usage
data from our partner utility with 600,000 meters from a
major U.S. city. The one-hour interval usage data recorded
between June 1%, 2019 to June 30", 2019 by the billing
meters was used for this exercise. We examined the label for
the solar users by verifying that the net-metering data of the
customers shows power injection and the database shows that
the customer has passed the solar panel application. Similar
procedures are adapted to examine the label for the customers
without solar panels. From the data set with partial manually
verified labels, we randomly sample 2,000 usage data with
labels indicating functioning solar panels. We also sample
another 2,000 usage data with labels indicating no solar pan-
els. Combining them, we conduct supervised learning using
classifiers such as logistic regression, support vector machine,
k-nearest neighbor, and random forest. All the supervised
learning classifiers report above 90% accuracy, which means
that the data can be separable.

To motivate if the data are separable, we use principal
component analysis (PCA) tool to visualize the magnitude of
eigenvalues of our data in Fig. 1. As the y-axis is a logarithmic
scale, we can see that only the first few eigenvectors matter
and most of the eigenvectors are noises. To illustrate further,
we map the data into 2-D and 3-D space in Fig. 2. As we know
who are the solar users and who are not in this example, we
color the PCA results for visual inspection. The goal is to gain
more knowledge about the data density and the possible shape
of the boundary for separability. From the figure, we can see
that the data can be separated in this case.

og?2 (Eigenvalues)
[ ]

0gs
=

' n )
e = h

75

Fig. 1: Results from a popular principal component analysis
tool to visualize the magnitude of our data’s eigenvalues.

However, it is important to point out that this example is
only for the motivation purpose. In reality, there can be serious
overlap, calling for methods that can handle highly nonlinear
boundaries. We will discuss this later in the paper.

B. Proof of Feasibility with Synthetic Data

As the data is sourced from one specific utility, we also
conduct a constructive test to see how robust this differenti-
ation capability is seen by controlling the noise levels. The
motivation of controlling the noise is becasue real data shows
high variability during the days and during different days
with various weather conditions. For example, Fig. 3 comes
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Fig. 2: Visualizations of the principal components showing
a boundary between the two different behaviors allowing the
data to be separable.

from a utility for solar generation of residential customers.
From the data, we can see that solar panels always generate
power from sunrise to sunset regardless of cloud cover, but
the cloud coverage create intermittent patterns like noises,
changing signal shapes. Therefore, we use different noise
levels to mimic randomness in residential customers and the
environment.

colors represent different customers, different lines of the same
customers represent different days.

Specifically, we use square waves and sinusoidal waves
to represent two signal patterns. The motivation comes from
the appliances behavior in a home [29], [30] and also the
curved shape of solar generation in the day time. With the two
signals, we add noises. The data with different noise levels
will be directly fed into typical classifiers such as support
vector machine (SVM) and logistic regression to determine
if accuracy can be preserved with different noise levels. For
example, Fig. 4 presents an example of the data set with noise
levels increasing from top to bottom. The x-axis shows the
time indices, which are 29 days (to be consistent with the real
data that we will demonstrate later on) with a one-hour time
interval and the y-axis shows the normalized data. Although
it becomes more difficult for us to determine the class of the
data, Table I shows that the classification results are still high
when the noise level is much higher than the signal level.

Classification SVM Logistic Noise
(Linear Kernel) Regression Level
Training/Test Acc 100% 100% A4(0,1.0)
Training/Test Acc 100% 100% 4(0,4.0)
Training/Test Acc 100% 100% A4(0,7.0)
Training/Test Acc 100%, 99% 100%, 99.33% | #7(0,12.0)

TABLE I. Classification accuracy (acc) of different noise
levels, which is normalized with signal level.
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Fig. 4: Data set with different noise level increased from top
to the bottom.

III. PROBLEM DEFINITION

The last section shows the feasibility based on rough visual-
ization and supervised learning of abundant but synthetic data.
However, the reality at utilities is that the knowledge of highly
accurate labels, solar users and non-solar users can be quite
limited. In some utilities, there may be only one class of labels
with limited resources to manually label more. Therefore, we
define the following two problems based on the scarcity of
labels in a data set.

A. Semi-Supervised Learning (SSL) Problem

o Problem: Identify the customers who have functioning
solar panels out of a large group of customers using smart
meter data and a small amount of labels.

« Given:

— Labeled electricity usage data: (Xp,ym) =
{(xi,yi)},, where x; is the time series smart
meter data for a customer, y; is the label showing
whether the customer has solar panels or not, and m
is the number of the meter data with labels.

— Unlabeled electricity usage data: X, = {x]}’f:n’l‘ 1
where x; is the time series smart meter data for a
customer and »n is the number of meter data without
labels, usually n > m.

o Goal:

— Find the optimal mapping rule of fs;; so that
we can obtain an accurate prediction of whether a
customer has solar panels or not by using ys1; =

f;LL({(Xlayl)}t 17{XJ}/ m+1)

B. One-Class Classification (OCC) Problem

o Problem: Identify the customers who have functioning
solar panels out of a large group of customers using smart
meter data and one type of labels.

« Given:

— Electricity usage data from a known class: X, =
{x;}V_,, where x; is the time series smart meter
data for a customer. All the meter data belonging
to the same class are assigned with indicators y, =
{yi}f_, = +1, where p is the number of meter data
and 1 is a vector whose elements are all equal to 1.



— Electricity usage data from other unknown classes:
X, = {xi}l’.’jlf 1> where x; is the time series smart
meter data for a customer. All the meter data from
other unknown classes are assigned with indicators

Vo= {y,-}f;r;ﬂrl = —1, where g is the number of meter
data.
o Goal:

— Find the optimal mapping rule of fpcc so that
we can obtain an accurate prediction of whether a
customer has solar panels or not by using yocc =

Toce{(xi,i) f’:n{xz'}f’f,fﬂ)-

IV. DEEP SEMI-SUPERVISED LEARNING

One of the major issues of directly using SSL method from
the computer science domain is due to the high dimensionality
of power data and the need for nonlinear representation. There-
fore, we propose to integrate the autoencoder (AE) into the
proposed deep SSL method, where we show the expectation-
maximization (EM) algorithm below so that we can properly
illustrate the AE part afterwards.

A. Conventional Semi-Supervised Learning Method

EM algorithm relies on mixture models and is a popular way
to solve SSL problems and the methods have lots of successful
applications in different fields, such as image processing and
data classification tasks [31]-[33]. As defined in Section I1I-A,
(X, ¥m) = {(xi,yi)}1", denote the electricity usage data and
their correlated labels, X, = {x;}", | denote electricity usage
data without labels. In our model, labels are assigned binary
values (0 or 1), labels with a value of O represent the customers
who do not have solar panels and labels with a value of 1
represent the customers who have solar panels. Based on this
premise, we assume we know the labels §57, = {y; ’;‘In’: 41 and
we can compute the likelihood of all the data with respect to
the underlying parameters ®, to be shown in Equation (1).

m m+n
P(meymvxmySLd@) :HP(Xiayi|®) H P(X]ay]|®) (D
i=1 Jj=m+1

The EM algorithm iteratively fixes the value of ® and ¥s7;
to find a suboptimal solution of the maximization of the log-
likelihood function over all the data. Specifically, for the 7™
iteration and in the expectation (E) step, ®' is fixed and the
EM algorithm optimizes a lower bound given by the expected
log-likelihood Q(®|@") in Equation (2).

Q(®|®l) = EysLL\Xm,y,,,,X,,,@’ [IOgP(Xmay'anmySLL|®)] (2)

In the maximization (M) step, the algorithm maximizes
0(0|@") with respect to @ given in Equation (3). Although the
parameters ® may be highly correlated, the above procedure
faces high computational cost as ® has high dimensionalities

[21].
eI+l = argmax Q(6]6') 3)

B. Autoencoder (AE) in a SSL Setup

The electricity usage data in the high dimensional space
not only exhibit a high level of noise, but also have highly
nonlinear user behaviors. In order to reduce the dimension
of the data while preserving the nonlinear relationship of the
features, we propose to use AE. An AE [25]-[28] constitutes

an encoder that compresses the original data to a code and then
a decoder which reconstructs the data from the code, as shown
in Fig. 5. The encoder can be used to reduce the dimension of

Fig. 5: Block diagram of an AE which constitutes an encoder
that compresses the original data to a code and then a decoder
which reconstructs the data from the code.

We take the labeled data X, as an example to explain
how the AE is used in our problem setup. An AE uses data
themselves to supervise the learning. In our problem, we
employ the AE shown in Fig. 6. The input data X,, is the
time series smart meter data and will be nonlinearly mapped
to a lower dimensional space. The transformed meter data Z,,
is a nonlinear combination of the original meter data at each
time index. The transformed meter data Z,, will be mapped
back to the original space to reconstruct the input meter data.
The AE attempts to minimize the error between the input data
X,, and the reconstructed input X,,, defined in Equation (4), to
find the optimal representation Z,, of the input data in the low
dimensional space. The same procedure will be used to obtain
the hidden representation Z, of the smart meter data without
labels X,.

Zm = fe(WeXm +be);

L(szx\vm) = HXm _XmHz = ||Xm _fd(WdZm + bd)
where W, is the weight matrix between the input data X,,, and
the latent representation Z,,, W is the weights matrix between
the hidden representation Z,, and output X fe and f; are the

activation functions, b, is the bias vector of the encoder, and
b, is the bias vector of the decoder.

E “4)

Fig. 6: An example of AE for power data.

Z, with its associated labels y, is fed into a Gaussian
mixture model for EM. When EM iteratively finds the solution



of maximizing the log-likelihood function, the labels of the
unlabeled data are produced. The complete structure is shown
in Fig. 7.

Fig. 7: Block diagram of the proposed deep semi-supervised
EM approach.

C. Steps of the Proposed Algorithm

Let the representation Z,, = {z;}/" ; coming from the AE be
the hidden representations of the labeled data whose labels are
Ym = {yi}!",. Let the representation Z, = {zj};”:n’ll 41 coming
from the AE be the hidden representations of the unlabeled
data whose estimated labels are §ss7 = {y; ;”:’L,: L1- We will
assume that labels can only take binary values (0 or 1). Based
on this setting, suppose we know the labels ygs5;, we are able
to compute the likelihood of the whole data set with respect
to the underlying parameters ® given in Equation (5).

m+n

P(Zun,Ym, Zn,95L|®) HP z,y10) [] P(z;,y;®) (5)
Jj=m+1

For the ! iteration and in the expectation (E) step, @ is
fixed and the EM algorithm optimizes a lower bound given
by the expected log-likelihood given in Equation (6). In the
maximization (M) step, the algorithm maximizes Q(©®|@")
with respect to ©.

(®|®t) YSLL‘ZW YmZn,©! [IOgP( m7ym7Z"7ySLL|®)}
= ZPYSLL m7ymaZna®’)10gP( maYm> ny
Vsir
¥s1.|©)
m+n
_ZIOgP (vi:2i|®) + Z Z P(yjlz;,0")
j=mt1y;€{0,1}
logP(y;,2,|®)
m+n .
- Z]ogP (vi,2i|®) + Z Z r /logP(yj,
j=mtly;e{0,1}

In the last line of the equation, we define r(/) =P(y; =
0(z;,0"), r| = P(y; = 1]z;,0"), which are our current esti-
mates for the probabilities of each of the labels in the unlabeled
examples. Therefore, in the E step, we compute probabilities
ry and r{ for all the unlabeled data based on the current ©'.
In the M step, we maximize the expected log-likelihood (the
last term of Equation (6)) for all the data.

V. DEEP ONE-CLASS CLASSIFICATION

When the labeled data are so limited at a utility that only
one class of the labels can be obtained, e.g., only the labels of
some non-solar users. In such a case, it is impossible to create
a classification boundary between two classes like SSL.

A. Conventional One-Class Classification (OCC) Method

Therefore, one-class classification aims to regularize the de-
scriptive loss, popular in supervised learning and SSL, with an
additional loss on compactness. This method aims to evaluate
the compactness of data with known labels and with nearby
data to form a group, while looking for distinct boundaries
that can separate the data into two or more groups. Support
vector data description (SVDD) utilized in our paper is one of
the OCC solvers. SVDD attempts to define the compactness of
the targeted class by constructing a hypersphere with center
¢ and radius r > 0, wrapped in a compactness matrix. The
hypersphere gathers as many observations from one class as
possible in the feature space with the help of the kernel
function ¢ [34]. For example, if we have a group of smart
meter data which customers using their solar panels have been
verified by human effort, we can try to construct a hypersphere
that gathers as many data from the group as possible. By
minimizing the radius of the hypersphere, we obtain the
optimal boundary to separate this group of people from others.
The primal problem of SVDD is defined in Equation (7).

min

1
2 E— .
r,C,C,' e vn ;gl
s.t. H(])k(X,')—C”erZ—f—éi, giZOa VIv

where x; is the smart meter data from a known class, the
slack variable &; is introduced to allow a soft margin, and the
regularization parameter v controls the relative importance of
the volume of the sphere and the penalties &;.

The descriptiveness of the data is maintained in the con-
straints. Solving the minimization problem given in Equation
(7) by using Lagrange multipliers, we can derive that the
center ¢ of the sphere should be a linear combination of
some important input data. These input data have a significant
influence on the construction of the sphere by describing the
boundary of the sphere and are called support vectors.

)

B. Proposed Deep OCC Method

SVDD often has poor computational efficiency and scala-
bility due to the structure and manipulation of the matrices
and SVDD is prone to failure when the data set is extremely
large and the dimension of the data is extremely high. Thus,
substantial feature engineering is needed [35]. This makes it
challenging to capture diversified nonlinear user behavior and
remove noise from power data in high dimensions.

Therefore, we propose to use the hidden layers of au-
toencoder (AE) to extract the nonlinear features for one-
class classification. For example, Fig. 8 provides a visual
representation of AE’s ability to represent highly nonlinear
customer data in a low dimensional space for our utility data
set. The top left figure is the non-solar data plotted in a 3-D
plane, whereas the bottom left figure is the solar data. The
two middle plots, top and bottom, are the representation of



the solar and non-solar data, respectively, reconstructed using
principal component analysis (PCA). And the right top and
bottom figures are the data set reconstructed using an AE and
plotted in a 3-D plane. The figure is to provide clarity on the
ability of the AE to retain the information more accurately than
the PCA. As shown the PCA is not able to reconstruct the data
as well as the autoencoder (AE) therefore providing evidence
of the high accuracy and advantage of using an AE over a
PCA to reconstruct the high-dimensional data for purposes of
distinguishing solar and non-solar data. The AE can map the
original data to a denser area which helps to construct the
compactness description of the targeted class. This enhances
the design of the OCC. Hence, the AE will be used in the
design for the newly proposed method.

Fig. 8: Illustration comparing PCA reconstruction versus an
autoencoder for non-solar (blue) and solar (orange) data set.

The architecture is shown in Fig. 9, where the extracted
learned hidden features Z, for labeled data and Z, for unla-
beled data are fed into the SVDD. Combining the extracted
learned hidden features with their labels, the SVDD is able to
determine the labels of the unlabeled data. The objective of
the problem is to solve Equation (7) after replacing x; with z;.

Fig. 9: Block diagram of the proposed deep SVDD approach.

VI. NUMERICAL VALIDATION

With the proposed methods in the last two sections, we
will validate the performance in this section. The algorithms
used are the deep semi-supervised expectation-maximization
(Deep-EM) algorithm and deep support vector data description
(Deep-SVDD). We use both public data sets and the utility data
sets to conduct our experiments with traditional common semi-
supervised learning and one-class classification algorithms.
Principal component analysis is also used when necessary for
consistency. As a baseline to our result, we also include the
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results of supervised learning in our experiments with accurate
labeled data sets.

A. Data Preparation

The public UMass Smart* data set [360] used in this study
contains everyday electricity load profiles, extracted from the
dataset named “Apartment dataset”, from 114 single-family
apartments from June 1%, 2015 to June 30™, 2015 with a 15-
minute interval between each pair of readings. We take the
average of the data to scale the original data to a one-hour
interval. Therefore, the total number of time indices used in the
study is 696, corresponding to 29 days. The solar generation
data comes from another dataset named “Solar panel dataset”
in the same public data repository, which documents the solar
generation data for 50 rooftop solar panels with a one-minute
interval between each pair of readings. We select 39 solar
generation profiles as the other profiles contained bad data
such as near-zero values. Then, we combine them with the
aforementioned 114 load profiles to create the electricity usage
data set corresponding to solar users. To mimic the unbalanced
data set, we add a number of different noises to the 114
load profiles to create the profiles for non-solar customers for
diversity, when compared to 39 solar customers. For example,
as the results are similar, we show the case when we add
four different noises to the 114 load profiles, leading to 456
non-solar profiles.

The utility data set used in this study corresponds to a
set of everyday electricity usage readings from approximately
600,000 meters from a U.S. city from June 1%¢, 2019 to
June 30™, 2019 with a one-hour interval between each read-
ing. The total number of time indices used in the study
is 696, corresponding to 29 days. Around 1,973 customers
have installed solar panels. Their smart meter readings come
from the net meters, which record the household electricity
consumption and the PV generation as a whole. The rest of the
approximately 598,000 customers we assume never reported
their installations of the solar panels, and therefore, we label
them as non-solar. We then randomly select 20,000 from this
data set to conduct this study.

To eliminate the influence of different scales of the data, we
use min-max normalization methods to scale the data between
0 and 1 throughout the paper.

B. Performance Metrics

To evaluate binary classification several statistical rates are
available to measure performance (i.e., accuracy, F'1, recall, or
precision). For this work, we use the accuracy and F'1 score
as our performance measurements. Accuracy is used when
the true positives (7 P) and true negatives (7'N) are important
and the data set’s class distribution is similar. F'1 score is
used when the False Negatives (FN) and False Positives (FP)
are critical and the data set is unbalanced. These metrics are
defined as follows:

TP+TN
Accuracy = ,
TP+FN+TN+FP
.. TP TP
Precision = ——, Recall = ————, 8)
TP+FP TP+FN

- 2 X Precision X Recall

F1 —
Precision + Recall



We use the F'1 score since our data set will most likely have
an imbalanced class. This will take the precision and recall
rate into account which cares for both the majority class and
the minority class [37]. We include the accuracy performance
metric to observe considering that the synthetic data may not
always be imbalanced and therefore should be available to
observe any differences.

C. Performance Comparison of Autoencoder and Locally Lin-
ear Embedding

In the introduction, we claimed that the autoencoder (AE)
has its advantages over other nonlinear decomposition methods
such as multidimensional scaling (MDS) and locally linear
embedding (LLE) methods. Considering the large computation
time of MDS, and to confirm our claim, we provide the
results of the performance comparison of the AE and LLE
methods. We use the utility data set, which contains 1,973
customers with solar panels and 20,000 customers without
solar panels, to conduct the analysis. The results are shown in
Fig. 10. As can be seen from the figure, for semi-supervised
learning, the LLE has comparable performance with AE in
low dimensions, however, its performance suddenly crushes
down after projecting to dimensions higher than 12. In terms of
one class classification, the LLE has comparable performance
with AE in some dimensions, however, it also experience
tremendous performance deduction in some dimensions. We
interpret from the fact that the distribution of the data is not
uniform and LLE preserves the distance from a point to its
neighbors, the results will be inaccurate in the sparse area.
Therefore, when projecting to some lower dimensions, it is
hard to preserve the original geometric features, this results in
overlapping points. As AE is more stable and robust than the
LLE, we choose to use AE for the experiments.
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Fig. 10: The comparison of the AE and LLE.

D. Baseline of Supervised Learning for Deep SLL and OCC

As a reference for SLL and OCC, we conduct simulations
for different supervised learning methods [38]-[41]. As the
results are similar, we show the results of the support vector
machine (SVM) and logistic regression (LR) in Fig. 11. The
figure shows that when the provided information is little and
the data set is unbalanced, the supervised learning method
tends to classify all the data belonging to the minor class to
be the majority class. This results in a fake high accuracy
and the poor F1 score reveals the true performance. In Fig.

11, the x-coordinate is on hyper-parameter tuning. Therefore,
we will only choose the dimension with the highest F'1 score
though we project data to different dimensions. Knowing this,
we can conclude from the figure that middle to a relatively
high projection dimension, which is between 8 to 48, helps to
improve accuracy and F'1 score. The results further indicates
that more supervision, more information, but less noise ensures
better results. Finally, Fig. 11 also shows that the results of
the public data set and the utility data set are similar, which
is also the case for SSL and OCC. So, we will focus on the
utility dataset for the rest of the visualization work.

and the utility data set.

E. Feature Numbers for Linear and Nonlinear Representation

To understand how many features are needed in nonlinear
representation learning of autoencoder, we plot the results in
terms of the two performance metrics in Fig. 12, where we also
show results of linear representation of PCA for comparison.
In the sub-figures, we try to ensure the consistency in the
setups for all the learning processes. For the deep semi-
supervised learning (SSL) method, we choose to use the first
50 solar data and the first 50 non-solar data as the labeled data,
all the other 1,923 solar data and 19,950 non-solar data as the
unlabeled data. The proposed deep SSL method takes all the
labeled data and the unlabeled data and infers the labels for
the unlabeled data. For the deep one-class classification (OCC)
method, we keep the same structure by using the first 50 non-
solar data as the given class with remaining data representing
unknown classes. The proposed deep OCC method interprets
the labels for the rest of the 21,923 data based on the 50
non-solar data.

For the deep SSL method, as can be seen from Fig. 12a,
when we increase the dimension of the projected principal
components, the F1 score and the accuracy increase with
little fluctuation until reaching the optimal, after which they
decrease. The optimal value is reached when we choose 6 pro-
jected components. Also shown in Fig. 12b, when we increase
the dimension of the hidden representations we extracted,
the F'1 score and the accuracy reach the optimal with little
fluctuation, after which they finally decrease. The optimal
value is reached when a 9-dimensional hidden representation
is used. Although the accuracy of using PCA and AE is
always above 95%, the true performance of the classification
for the minor class may not be overly optimistic. For example,
suppose we have 100 data points, out of which 95 are from
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Fig. 12: The optimal dimension for each method.

nonsolar users and 5 are from solar users. If the first algorithm
reports that all the data points are from nonsolar users, the
accuracy is 95% and the F'1 score is 0. If the second algorithm
successfully determines one data point from a solar user and
predicts all the others as data from nonsolar users, the accuracy
is 96% and the F'1 score is 33%. We see that the F'1 score
successfully distinguishes the better performance of the second
algorithm. The same conclusion applies to our results, the
results of the autoencoder (AE) has a F1 score increase of
more than 10%, representing significant improvement.

For the deep OCC method, as shown in Fig. 12c, the
accuracy and the F1 score first increase to the peak and
then decrease. The optimal value is reached when an 8-
dimensional hidden representation is used. The deep OCC has
a reasonable performance reduction in both accuracy and F'1
score, it’s acceptable because less information is provided. All
aforementioned results indicate that a relatively low dimension
is sufficient for learning. Higher-dimensional components may
contain information that is harmful to the results, i.e., noises
and bad data, so the results guide us to experiment on a
dimension between 5 to 12 as the representations of the
original data. The results also indicate that as PCA is a linear
transformation of the input space aiming to find the directions
that have higher variances, the projected data have low or close
to zero correlation with each other. However, the electricity
usage data used in our simulation are highly nonlinear and

the features which are different timestamps are correlated with
each other.

F. Performance Improvements for Deep SSL and Deep OOC

To better visualize the performance benefits of the proposed
methods, we plot all the results together in Fig. 13. These
results include supervised learning, SSL, OCC, with and
without autoencoder components. The left graph illustrates
the comparison of accuracy where the right graph is the F1
score. The dashed green line shows the performance of the
supervised learning method based on support vector machine
with radial basis functional (RBF) kernel. The dashed orange
and navy line are the results of the classic SSL and classic
OCC methods when using the projected data based on princi-
pal component analysis (PCA), respectively. The solid orange
and navy lines are the performance of the proposed deep SSL
and deep OCC methods when using the hidden representations
extracted from the autoencoder (AE), respectively.

1g. 13: Ilustration providing the comparison
accuracy and F'1 score of the study results between the
baseline supervised learning, the proposed deep SSL and deep
OCC methods utilizing the projected data of the PCA and the
hidden representation extracted from the AE.

For the three dashed lines, we can observe that the accuracy
of supervised learning is always higher than the accuracy of
the SSL and the accuracy of SSL is always higher than that
of OCC, if we use the projected data after PCA. We also
obtain a similar conclusion for the F'1 score by ignoring the
projection to 2 principal components. The results confirm that
more information guarantees better performance.

Next, we focus on the performance of the proposed deep
SSL method, which is shown by the orange dash line and the
orange solid line in the figure. The performance curves first
increase and then decrease as we increase the dimensionality
of the projected data, either from PCA or AE. We conclude
that a relatively low dimension, from 5 to 12 is enough to
summarize the characteristics of electricity usage. The figure
also shows that the accuracy has a clear improvement and
the F'1 score increases by more than 10% with the help of
the AE, representing a significant improvement. The result
also indicates that supervised learning tends to overfit the
data when given limited information. The unlabeled data helps
to improve the performance by providing more complete
information on the distribution of the data.

Finally, we look at the performance of the regular OCC and
the proposed deep OCC, which are shown by the navy dash



line and the navy solid line in the figure. We can observe from
the figure that the AE can stabilize the accuracy and improve
the F'1 score, which is also an enhancement. The performance
curves first increase and then decrease as we increase the
dimensionality of the projected data, either from PCA or
AE. While the performance of using the projected principal
components has a sharp decline when the dimensionality of the
projected data increases, the performance of using the hidden
representations from the AE remains stable. This indicates
that the nonlinear transformation of the AE guarantees the
OCC method to find a good hypersphere regardless of the
dimensionality. The performance of the proposed OCC is
slightly worse than the supervised learning in terms of the
accuracy, which is acceptable as the provided information is
much less.

Overall, the proposed methods with the assistance of the AE
provide greater accuracy and F'1 scores than the supervised
learning and merely using the principal components from
PCA.

G. When to Choose SSL or OCC

Previously, we showed the outstanding performance of the
autoencoder (AE) in assisting semi-supervised learning (SSL)
and one-class classification (OCC). In this subsection, we
discuss the limitation of SSL and when OCC is required.
Specifically, we gradually reduce the number of the labeled
data and observe the minimum labeled data to hold the
performance of the AE. Learned from the previous results,
the best performance of AE is reached when we reduce the
dimensions of data to 8 or 12. Therefore, we present the
simulation results of using AE to reduce the dimension to
12 in Fig. 14. The x-axis shows the size of the labeled data,
for example, “5+5” represents the use of 5 labeled solar data
and 5 labeled nonsolar data as the training data to conduct
SSL. If we consider accuracy and F1 score below 90% as
unacceptable performance, we should choose no less than 40
labeled solar data and 40 labeled nonsolar data as the training
data to conduct the SSL. Otherwise, OCC is required.
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Fig. 14: The performance of SSL when we progressively
reduce the number of the labeled data.

H. Computational Time

Method Supervised SSL SSL oCcC ocCC
learning (PCA) (AE) (PCA) (AE)
Average 03s | 35405 | 21565 | 71665 | 8783 s
computation time

TABLE II: The average computation time for all the methods.

Table II shows the average computation time for each
method based on a CPU Intel(R) Xeon(R) CPU E5-2687W

v4 @ 3.00GHz and 64 GB memory. As illustrated in the
table, supervised learning is the fastest, however, the method
is infeasible when accurately labeled data cannot be accessed
or data are highly unbalanced. SSL method and OCC method
can relieve the above problems with a sacrifice of computation
time. Among the results of the SSL methods, the AE used
in the proposed method can accelerate the speed of the SSL
method because the AE maps the data to [—1, 1] and saves the
computation cost. Among the results of the OCC methods, the
AE used in the proposed method slows down the speed of the
OCC method, this may be because the OCC method must
compute the relative distance of the data, so the AE cannot
reduce the computation time. Nevertheless, note that the AE
improves the accuracy and F'1 score for both the SSL method
and OCC method. As the analysis of this work is offline, the
required computation time is feasible.

1. Generalization Ability of the Proposed Methods

We have shown that the proposed methods can improve the
accuracy of detecting active solar panel with a cost of time
complexity. Finally, we will discuss the generalization ability
of the proposed methods to different sizes of the data sets,
different durations of data, different months (especially non-
sunny months), and different grids.

1) Generalization ability to different sizes of the data sets:
Specifically, we further test different sizes of the data set to
determine method robustness, the results are shown in Fig.
15. As shown in the figure, for semi-supervised learning, the
performance of PCA declines as we increase the size data
set. Conversely, the AE maintains adequate performance. For
one-class classification, when we vary the size of the data
set, the AE experiences a slight performance decline, overall
performance remains superior to PCA.
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Fig. 15: The performance tendency when varying the size of
the data set.

2) Generalization ability to different duration of data:
As solar user detection is more for planning rather than for
operation, the proposed methods are for offline analysis. While
it is possible that a solar panel is installed in the middle of
the period leading to wrong identification, the identification
will be correct when the moving window covers more of the
days after installation. Using less days may help reduce the
wait, but will also reduce learning accuracy overall due to
information lose for other data points. To evaluate the results
with different data length, we test proposed methods on two



(a) The performance of the proposed methods on two weeks” worth
of data.

(b) The performance of the proposed methods on one week’s worth
of data.

Fig. 16: The performance of the proposed methods on different
duration of the data.

weeks’ worth of data and on one week’s worth of data. The
results are shown in Figure 16a and 16b.

As shown in the figures, the proposed method maintains
satisfactory performance when using a shorter duration of two
weeks’ worth of data. However, the proposed method becomes
ineffective when we reduce the duration of data to one week.
The results imply that when the data volume is less, the
accuracy or the F'1 score also deteriorates. Therefore, we need
a reasonable length of data for the autoencoder to capture the
nonlinear features that distinguish customers with active solar
panels from customers without solar panels.

3) Generalization ability to different months: We have
shown the simulation results of sunny months, next, we
will discuss the results of the proposed methods of non-
sunny months. Fig. 17 shows the separability difference be-
tween sunny month (June) and non-sunny month (Novem-
ber). Specifically, we project solar customers and non-solar
customers onto two dimensions using principal component
analysis. For summer, we plot the results on the left of Fig.
17, and there is little overlapping between the usage data
from customers with solar panels and the usage data from
customers without solar panels. This makes the detection
easier. For winter, we plot the results on the right of Fig. 17,
and the usage data from customers with solar panels are buried
under the usage data from customers without solar panels
in November. This makes the work more challenging for

learning algorithms. With such observation, we conduct same
simulation in November. The results show that the proposed
methods obtain similar accuracy with a some deterioration,
about 10%, in F'1 score.

Fig. 17: The separability difference between sunny months and
non-sunny months by projecting the data to two dimensions
using principal component analysis.

4) Generalization ability to different grids: In addition, we
test the methods with data from another grid provided by a
partner utility to see if the proposed methods adapt well to
other grids. This utility is in the southwest of the US, while
the utility for the original simulation is in the northeast of
the US. The data from the southwest utility contains around
350 users’ billing meter and solar meter readings from October
2018 to October 2019. We select the billing meter data in June
2019, which is the same time range selected for the northeast
utility, to conduct the simulation. For deep semi-supervised
learning, the accuracy is 90.00% and the F1 score is 90.91%.
For deep one-class classification, the accuracy is 80.77% and
the F1 score is 80.00%. Although the accuracy and the F'1
score decrease marginally, the results maintain acceptable
performance. We will focus on improving the generalization
ability in future work.

VII. CONCLUSION

In summary, solar detection is urgently needed as it is
challenging and cost intensive to maintain accurate utility
databases with current methods. Electric Distribution Com-
panies need to have visibility of these assets to avoid potential
risks of two-way power flow, e.g., outages and equipment
damages. In this paper, we proposed a deep semi-supervised
learning and a deep one-class classification approach to detect
residential PV systems under different scenarios. The proposed
methods use the extracted features from the autoencoder and
combine them with the original label information to predict
the labels for the rest of the data. The proposed methods have
been validated on a utility data set and a publicly available
data set and have shown their effectiveness and robustness for
solving the solar panel detection problem.
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