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The large number of possible structures of metal-organic frameworks (MOFs) and their limitless

potential applications has motivated molecular modelers and researchers to develop methods and
models to efficiently assess MOF performance. Some of the techniques include large-scale high-
throughput molecular simulations and machine learning models. Despite those advances, the number
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of possible materials and the potential conditions that could be used still pose a formidable challenge
for model development requiring large data sets. Therefore, there is a clear need for algorithms that
can efficiently explore the spaces while balancing the number of simulations with prediction accuracy.
Here, we present how active learning can sequentially select simulation conditions for gas adsorption,
ultimately resulting in accurate adsorption predictions with an order of magnitude less number of
simulations. We model adsorption of pure components methane and carbon dioxide in Cu-BTC. We
employ Gaussian process regression (GPR) and use the resulting uncertainties in the predictions to
guide the next sampling point for molecular simulation. We outline the procedure and demonstrate
how this model can emulate adsorption isotherms at 300 K from 10°® to 300 bar (methane)/100
bar (carbon dioxide). We also show how this procedure can be used for predicting adsorption on a
temperature-pressure phase space for a temperature range of 100 to 300 K, and pressure range of
1079 to 300 bar (methane)/100 bar (carbon dioxide).

1 Introduction , _ )
clude those for crystal generation and enumeration, characteriza-

Metal-organic frameworks (MOFs) are crystalline nanoporous
materials comprised of inorganic nodes connected by organic
linkers.! The chemical versatility of the building blocks provides
a unique opportunity to tailor and design these materials with
desired textural and chemical properties. The design flexibility of
MOFs has resulted in their deployment for energy storage, catal-
ysis, drug delivery, photonics, sensors, etc.2710 Despite the po-
tential of these materials and their increasing numbers in exper-
imental and synthetic studies, there is a challenge to determine
which are the best materials and what are the conditions (e.g.,
temperature, pressure) that maximize their performance.
Molecular simulations have played an important role in the de-
sign and discovery of MOFs in a variety of applications. 11 Molec-
ular models that describe the interactions between the materials
and adsorbents of interest have been used to provide important
physical insights and guide experiments towards promising candi-
dates. The number of MOFs has kept increasing and so new algo-
rithms and techniques have been introduced to enhance compu-
tational screening capabilities. 12715 Some of these algorithms in-
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tion of porous structures, and performance evaluation. 1618 The
use of these large-scale, high-throughput computational screen-
ing techniques on databases of MOF structures (experimental or
computationally generated) has revealed structure-property rela-
tionships and identified top performing materials for many ap-
plications. 19-22 These studies can produce large amounts of data
relating the physical and textural properties of MOFs (void frac-
tion, surface area, pore volume, etc.) to their performance.

The deluge of data has allowed researchers to employ machine
learning (ML) algorithms in a multitude of settings, with em-
phasis on gas adsorption and separations.23-27 Some examples
include hydrogen storage, methane storage, and Xe/Kr separa-
tions. 28-32 These ML models have resulted in important physical
insight through the development of new descriptors capable of
capturing important factors for applications of interest.33-36 ML
studies have also resulted in surrogate models capable of calcula-
tions that are orders of magnitude faster than the molecular sim-
ulations they rely upon for data.3” Therein lies a challenge and
bottleneck for workflows that rely on ML for predictions: large
datasets are needed for the proper training and use of many ML
algorithms. In cases where obtaining data is difficult or time con-
suming, the potential of ML algorithms and workflows is severely
limited. As such, recent efforts have focused on using data that is
already available in the literature or can be easily obtained using
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simulations to make predictions for new systems. We recently
demonstrated this type of approach using transfer learning.38
Transfer learning leverages information used to train a model to
produce a new model applied in a novel context using signifi-
cantly less data. We trained deep neural networks (DNNs) for
hydrogen adsorption at 243 K and 100 bar. We then used it as
a source task where all the layers of the DNN remain fixed and
only the last layer is fit for a new target task. New target tasks
included hydrogen and methane adsorption at different tempera-
tures. Interestingly, although the transfer learning model used an
order of magnitude less data, we found higher accuracy compared
with direct training. However, transferring the learning from pure
component adsorption of hydrogen or methane to separations of
Xe/Kr proved challenging because the underlying features that
account for the behaviors are different.

Another approach involves training a multilayer perceptron
(MLP) on alchemical species; these are modeled using arbitrary
forcefield parameters that do not necessarily correspond to real
molecules. With enough sampling in the alchemical space, the
parameters that correspond to the real molecules will be in-
cluded. Anderson and coworkers successfully demonstrated this
type of approach, training an MLP using isotherms of alchemical
species and making accurate isotherm predictions of real and sim-
ple molecules.3? Extrapolations to other molecules not included
in the training set showed reasonable accuracy. Most recently,
Sturluson and coworkers implemented an algorithm to complete
missing adsorption and physical property data in covalent organic
frameworks (COFs) based on available data. 4° They trained a low
rank model of adsorption-property matrices which makes “recom-
mendations” in places where there is missing data. Through this
the researchers were able to make predictions of missing values
and group materials by their adsorption performance.

Alternative approaches employ an active learning (AL) ap-
proach — also known as sequential design — to help balance the
accuracy of the predictive models with the number of data points
to be acquired. This can be particularly attractive in situations
where the feature space is very large (adsorption while varying
temperature and pressure conditions) and/or time-consuming or
resource-intensive experiments or simulations are needed. These
approaches are increasing in popularity in the molecular simu-
lation space. Uteva and coworkers recently implemented AL for
intermolecular potential energy surfaces, showing improvement
over grid-based approaches.4! Similarly, Vandermause used AL
to balance the use of quantum mechanical calculations to pro-
duce force fields.#*? In the context of porous materials, Santos
and coworkers present a recent example where they seek to con-
nect different length and time scales.*3 To do so, they require
expensive molecular dynamics (MD) simulations. They used AL
where the simulations were chosen based on model uncertainty
through a query-by-committee approach. They show they require
an order of magnitude less simulations to build their data set.

Herein we present an AL approach to balance model prediction
accuracy with the number of simulations required to build a rea-
sonable data set. The method relies on Gaussian process regres-
sion (GPR) where a data prior is fit.#* The GPR model returns
a prediction mean and prediction standard derivation (uncer-
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tainty), the later of which is used to determine the next individual
simulation to be performed. We demonstrate this approach mod-
eling adsorption of pure components methane and carbon diox-
ide in Cu-BTC for single isotherms and the temperature-pressure
space. We outline the algorithm and show an order of magnitude
saving on the number of simulations required to accurately assess
the adsorption landscape.

2 Methods

2.1 Active Learning

The procedure outlined in this work intelligently selects the next
adsorption simulation to be performed to facilitate training an
accurate Gaussian process (GP) surrogate model. A GP is a non-
parametric ML model that describes a real process f(x) with a
distribution over functions which have a joint Gaussian distribu-
tion, shown as N in equation below, described by a mean p(x)
and covariance K (x,x ) function#4:

Fx) ~ N(R(x),K (x,x)). D

There are many potential choices for K(x,x). We chose the
rational quadratic kernel as it has been used before to describe
adsorption loading in MOFs*°:

2

2ai?

K(x,x/) = <l + d(x,x,)z) _ )

where d(x,x) is the Euclidean distance between x and x, I is the
length scale of the kernel, and « is the scale mixture parameter.
The hyperparameters of the kernel, / and o, are found by max-
imizing the log-marginal-likelihood; the L-BGFS-B optimization
algorithm implemented in scikit-learn was used in this work. 46:47
Importantly, to ensure the GP is fit appropriately, we take the log
(base 10) of all the data (pressure, temperature, adsorption load-
ing) and standardize the input variables (pressure and tempera-
ture), before it is run through the GP workflow.

Another important aspect of AL procedures is the acquisition
function: how to choose the next simulation. For this pur-
pose, there are many available choices of acquisition functions
such as expected improvement (EI), upper confidence bound
(UCB), probability of improvement (PI) etc.*® Each of these func-
tions have been developed for either more exploitative purposes
(searching close to the prior input) or exploratory (far from prior
data input). The purpose of this study is to explore the pressure
and temperature conditions quickly and accurately for a given
adsorption process. To achieve this, we settled on a “greedy” ap-
proach or one that simply “explores” the space. So, for iteration
n+ 1, we choose conditions (pressure or temperature and pres-

sure) x,, that maximizes the GPR prediction variance 62 con-
strained by bounds represented as the set 2:
Xy41 =argmax o2 (x). (3)

xex

This is known as active learning MacKay, which was originally
proposed in the context of neural networks. 4’ Seo and cowork-
ers implemented the idea for GPs.%0 After the new simulation at



x; — log10(x;),
y — log10(y),
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Fig. 1 A simple AL workflow for predicting adsorption isotherm in MOFs.
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The first step is generating prior data, as shown in the top left table with

input variables, x;, x, as pressure and temperature, and adsorption (output) as y. In the next step, data pre-processing is done by taking the log
(base 10) for all the x; and y, followed by standardizing the input variables x;. Also, the input variables are standardized with respect to the mean and
standard deviation of the test set X;.i. This is followed by training the pre-processed data with a Gaussian process (GP) regression. After training is
complete, adsorption predictions are made for the test set. The GP predicted relative error is then calculated for all the test points on the isotherm,
and then maximum GP relative error is extracted. If the value of this error is less than 2 % (our convergence limit for the AL, except section 3.4
where it is set to 3 %) then learning is complete. If not, then the point with maximum relative error is sampled using another GCMC simulation,
and the prior is updated with this data. After prior updating, next cycle of AL begins and it goes on until the maximum GP relative error goes below

threshold.

X,+1 is performed and the data is gathered, the GP is refit and the
procedure is repeated until 62 (x) is below some threshold. We
picked this threshold as 2 % for our methane and carbon diox-
ide adsorption (section 3.1, 3.2, and 3.3) while a 3 % limit was
chosen for carbon dioxide adsorption with two features (section
3.4). This limit is user defined and can be chosen as per the level
of accuracy desired for an application. For adsorption, 2% to 3%
prediction accuracy of a surrogate model is acceptable for most
purposes. After this step, at the beginning of the procedure a GP
prior is usually fit using data spread in x. Figure 1 summarizes
the AL procedure in this work. Also, irrespective of the perfor-
mance of the AL at the first iteration, we forced the algorithm
to complete the first cycle. This was done because for some spe-
cific choice of priors, the GP can become overconfident and the
GP predicted relative error might be too low. The test set for AL
was linearly spaced between the pressure limits. For methane this
range was 10" to 300 bar, while for carbon dioxide the limit was
set to 100 to 100 bar. We used this as a test set, denoted by X;eqr,
which was an array consisting of 50 grid points. The next point
Xu+1 for AL was determined from this set only. For the case of two
features (section 3.3 and 3.4), we added a temperature grid as
well. The temperature test set was also linearly spaced from 100
to 300 K for both methane and carbon dioxide, and it consisted of
40 points. While we used this linearly spaced grid criteria for test-
ing and building the AL model, we also did an interpolation test
at the low pressure region (10 to 1 bar) for both methane and
carbon dioxide. For this test, we had 50 grid points spaced in the

natural log-scale to test the performance of the final GP regression
after AL has finished. We only did this interpolation test for low
pressure region and we kept the temperature range same as the
X;est- Also for the interpolation test, the input variables were stan-
dardized against X;.i;. This was done to create an environment in
which a user can test the power of a final AL fit model which is
completely blind to the interpolation test information. The AL
performance for both the AL initial test set (i.e. on X;.) and low
pressure interpolation test are reported in results section. Also, a
set of GCMC simulation were done for both tests to generate the
ground truth data. The details of GCMC simulation uncertainty
(o6cumc) for both the X 5 and low pressure interpolation test are
given in the respective tables in the next sections.

2.2 Molecular Simulations

Adsorption loading at various temperatures (100 to 300 K) and
pressures (10 to 300 bar) were calculated using grand canoni-
cal Monte Carlo (GCMC) simulations in RASPA.>1-53 MC moves
employed were insertions, deletions, reinsertions at a random
point in the space, rotations, and translations with equal prob-
ability; 2,000 initialization and 20,000 production cycles were
used for methane and 2,000 initialization cycles and 20,000 pro-
duction cycles for carbon dioxide. Methane and carbon diox-
ide were modeled using TraPPE.>* Nonbonded interactions for
methane and carbon dioxide were modeled as a Lennard-Jones
(L)) or LT + Coulomb, respectively with a cutoff for van der
Waals interactions of 12.5 A.55 MOF Cu-BTC (BTC stands for
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benzene-1,3,5-tricarboxylate) was chosen for this study. 56 The
charge for Cu-BTC was taken from Castillo et. al from 2008,
where they obtained the partial charges from fitting different set
of charges to reproduce water adsorption isotherms.>’ Cu-BTC
is chosen in this work since it is a popular MOF in the domain
for separating hydrocarbons and has been studied extensively for
molecules such as Oy, Ny, CH4 and CO,. In this work, Cu-BTC
was modeled as rigid and parameters for nonbonded interac-
tions were taken from the Universal Force Field (UFF).>® Lorentz-
Berthelot mixing rules were used for cross-term interactions. >”
This methodology for modeling adsorption in Cu-BTC has been
validated against experiments. For example, Yang and cowork-
ers used GCMC simulation approach (using UFF parameters for
Cu-BTC and TraPPE for adsorbates) to predict mixture adsorp-
tion of CO,, CHy4, and Hy as well as CO, separation from flue
gases.®0-01 Their predictions matched very closely with experi-
mental isotherms at the same operating conditions. The GCMC
methodology has also been adopted by Wang and team for simu-
lating adsorption for hydrocarbon mixtures in Cu-BTC (CO,/CO,
C0O,/CoHy, and CyoHy/CoHg) and they found close agreement
with experiments. 62

2.3 Prior Generation Strategy

We selected 3 schemes for generating the prior dataset for ad-
sorption isotherms. The first two were based of Latin hypercube
sampling (LHS) in the input feature space.®® LHS sampling
scheme was chosen since it’s a ‘space-filling’ method which
utilizes the entire range of model input. Since we do not have
a prior knowledge of how input probabilities are distributed
(pressure/temperature or both), a ‘space-filling’ design is a better
choice since it distributes the input equally in the design space. In
this work, we adopted two different implementations of the LHS
scheme. For the first LHS-based sampling, pressure was sampled
linearly from the pressure range. For the second LHS-based prior,
pressure was sampled in a log (base 10) scale in the respective
pressure range. Temperature was fixed at 300 K for section 3.1
and 3.2. For performing AL with 2 features (section 3.3 and 3.4),
temperature was sampled linearly for both the LHS-based priors.
In the third prior, named ’boundary-informed prior’, samples
were hand-picked at the limits of the test range (for two features,
this would be a meshgrid of pressure and temperature points).
For example, in case of methane adsorption with two features
(section 3.3) we choose the pressure and temperature points
as shown in table 1. The boundary-informed prior thus has 50
points for this section (five temperature points for each of the
ten pressure mark). For section 3.4 (carbon dioxide adsorption
with two features), boundary-informed prior had 40 points (8
pressure points with five temperature for each pressure mark).
The pressure points of 200 and 300 bar (from table 1) were
missing for carbon dioxide since the high pressure limit is 100 bar.

2.4 Error Calculation

Three error metrics are used in the AL framework:
1. GP-predicted Relative Error — This is the ratio of GP-predicted
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Table 1 Boundary-informed prior grid points for CH4 adsorption in Cu-
BTC MOF for two features

Pressure (in bar) Temperature (in K)

10°
10 100
104
103 150
102
101 200
1
10 250
100
200 300
300

uncertainty at a point by the GP-predicted adsorption. Please note
the aim of the AL procedure is to constrain the GP-predicted rela-
tive error within a threshold limit (refer to figure 1 and 2).

OGP-predict (%)

x 100  (4)
Y GP-predict (x)

GP relative Error in % (at a point) =
2. Relative Error — This is ratio of the difference between GP-
predicted adsorption and the ground truth adsorption calculated
by GCMC simulation.

YGP predict (x) —Ygeme (x)

x 100
Yeeme (x)

&)
3. Mean Relative Error (MRE) — This is calculated as a mean of
the relative error for an entire AL iteration. We compare this error
with the maximum GP relative error to check for speed of conver-
gence of the AL protocol. Also, since MRE compares GP-predicted
adsorption and ground truth based off of GCMC simulations, it
serves as a parameter to gauge the performance of the AL model.

Relative Error in % (at a point) =

n

MRE in % — ( }° Yep.predict (i) — Yaeme (i)
= Yoemce (i)

)XIOO (6)

n

3 Results and Discussions

3.1 Methane Isotherms

Methane adsorption is Type I and is relatively simple to model
as a single sphere without electrostatic interactions. Figure 2
shows the evolution of the GP fit through all the iterations of the
AL procedure for a methane isotherm at 300 K. Starting from 8
data points selected using boundary-informed prior scheme, only
2 iterations are needed to decrease the relative error of the GP
fit (equation 4) to under 2 %. For the LHS-based priors, four
points were chosen for building the prior dataset. For boundary-
informed prior, we find a good agreement between the GP predic-
tions and the simulation results, and we show this case in figure
2. Panel a (in figure 2) shows the GP fit using the simulation data
selected through boundary-informed prior. The first GP fit clearly
struggles at high pressures where it under predicts methane load-
ing and this is also reflected in high GP relative error (shown as
grey bars in the plot). The highest relative standard deviation was
at 300 bar and panel b shows the resulting GP fit with the new



simulation result added to the data (blue marker). The GP fit now
resembles more of what is expected of an adsorption isotherm.

Qualitatively the fit does not change very much after the first
iteration. Panel c shows the final GP fit compared to a full simu-
lated isotherm with a good agreement between the GP fit and the
GCMC simulation results. The last panel d shows the comparison
of GP fit with GCMC simulations at low pressure range (10 to 1
bar). The final adsorption isotherm GP fits along with the GCMC
simulations for both linear-spaced and log-spaced LHS have been
included in the Supporting Information (figure S1).

The performance of other priors, linear-LHS and log-LHS, along
with boundary-informed are tabulated in table 2. As we can
observe, the overall MRE (for (X;.s)) is only 1.15 % for linear-
spaced prior while it is slightly higher for boundary-informed
prior at 2.14 %. The log-spaced prior has a very high MRE of
7.80 % for X,y compared to the other priors. For the low pres-
sure interpolation test, the log-spaced LHS finished after one it-
eration and performed the best among all the prior with an MRE
of 13.61 %. However, the MRE of the log-based prior was high
for the X;., range. Overall the GP fits obtained using the previ-
ous protocols shows poor performance in the low pressure regime
(10°° to 1 bar) for all the priors, especially for linear-spaced one.
In some cases the predicted adsorption can differ by an order of
magnitude. Hence, despite the perceived agreement of the GP fit,
the errors in the low pressure region are high when comparing
with simulation results. This can present significant challenges
in analysis for separations where ideal adsorbed solution theory
(IAST) is used and it is particularly sensitive to the results in the
low pressure regime. %4

Table 2 Performance of different priors for predicting CH4 uptake in
Cu-BTC MOF (all errors are expressed in %)

Prior type Iterations MRE (Xiesr) MRE (Low Pressure)
Boundary-informed 2 2.14 15.79
Linear-spaced LHS 1 1.15 37.84

Log-spaced LHS 1 7.80 13.61
GCMC ogemc Kiest)  0Geme (Low Pressure)
Ground truth 0.74 73.97

These three AL approaches for adsorption isotherms show good
agreement with the GCMC simulations despite not having to
physically simulate all the points in the test set. The first ap-
proach only used eight data points for the prior, including one
at each boundary of the isotherm in pressure, and the AL proce-
dure converges with only two additional iterations. For the linear-
spaced LHS approach, the low pressure regimes of the isotherm
are problematic and resulted in a high MRE. The log-spaced
prior, shows a better MRE at low pressure than the boundary-
informed approach, but its performance was poor for pressure
range in the X,.y. The code for the AL along with the data
are publicly available and can be accessed through this link:
https://github.com/mukherjee07/Sequential Design of
Adsorption_simulations_in_MOFs.

3.2 Carbon Dioxide Isotherms

Carbon dioxide adsorption isotherms present an interesting con-
trast to methane adsorption. Namely, the electrostatic interac-
tions of the molecule induce a much sharper transition in the
isotherm. Despite this, we see very similar behavior and re-
sults for the AL procedures for carbon dioxide when compared
to methane. We carried out AL with three priors, as was done for
methane. The first difference in this study was the total pressure
range, which was 10°® to 100 bar. Another difference is 9 points
were chosen for the boundary-informed prior since the transition
is sharper for carbon dioxide adsorption. For each of the log-
spaced and linear-spaced priors, four points in the isotherm were
generated in an automated fashion similar to methane adsorp-
tion.

The AL converged to a 2 % GP relative error in a similar number
of iterations as for methane, except for log-spaced prior where it
took 6 iterations. Table 3 shows the final GP fit results compared
to the simulated isotherm. Boundary-informed prior GP fit had
the best MRE at both high pressure (X;.5;) and low pressure range.

Table 3 Performance of different priors for predicting CO2 uptake in
Cu-BTC MOF (all errors are expressed in %)

Prior type Iterations MRE (Xjey) MRE (Low Pressure)
Boundary-informed 3 1.52 20.39
Linear-spaced LHS 1 3.66 1011.21

Log-spaced LHS 6 2.07 73.37
GCMC - ogeme Xrest)  0geme (Low Pressure)
Ground truth - 1.04 51.95

The GP fit carbon dioxide isotherm are shown in the Support-
ing Information figure S2. We find the final GP fit for boundary-
informed prior performs excellently in the X;.; pressure range as
well in the low pressure region. The log-spaced one performs well
at the high pressure region (X;.s;) while the linear-spaced one has
high error at low pressure as well as at the tail of the pressure
range. This also becomes evident from the MRE for both the LHS-
based prior schemes in table 3. The linear-spaced prior based GP
fit has a MRE of 3.66 % for the X,y isotherm with a very high
MRE of 1011.21 % for the low pressure range. The log-spaced GP
fit performs better than the linear one but still has a higher MRE
compared to boundary-informed for both the pressure ranges.
Through this comparison, it is evident that boundary-informed
prior outperforms both LHS schemes when using pressure as a
single feature.

3.3 Temperature-Pressure diagrams for methane adsorption
We performed adsorption simulation in the temperature and pres-
sure phase-space (two features for AL) with priors based on
boundary-informed and LHS sampling schemes. The pressure and
temperature range for this study was 10°® bar to 300 bar, and 100
K to 300 K respectively. The boundary-informed one, similar to
the previous methane and carbon dioxide isotherms, was curated
to bias the training data with hand-picked pressure and temper-
ature points. For each pressure point as reported in table 1 five
temperature points (100 K, 150 K, 200 K, 250 K, and 300 K) were
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chosen to form a 50 point prior. The other priors were LHS based,
linear and log-spaced, sampled along the temperature and pres-
sure phase space. Both the LHS and log-based prior had also 50
points for a fair comparison with the boundary-informed prior.

The ground truth dataset was created using GCMC simulations
for two separate tests as explained previously. Like, adsorption
for a single feature, X;.;; was linearly spaced with 50 points be-
tween 10 to 300 bar, which was biased for the high pressure
region. This same dataset had 40 temperature points divided lin-
early from 100 K to 300 K for each pressure. Thus X;.;; had 2000
points. For the low-pressure interpolation ground truth, the pres-
sure range was from 107 to 1 bar, with 50 pressure points linearly
distributed in the log-space of this range. The temperature points
was distributed linearly as X;.y, with 40 points in temperature
for each pressure. Thus the low-pressure ground truth also had
2000 points. The AL fit was done with X;.s, and so the AL proto-
col had zero knowledge of the adsorption in low-pressure region.
This was purposefully done to test the power of the method for
interpolating to low-pressure region similar to the one for single
feature in section 3.1 and 3.2.
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Fig. 3 Comparison of GP-predicted CH4 uptake with GCMC simulation
predicted for pressure range from 107 to 300 bar, at temperature of 100
K, 202 K and 300 K for boundary-informed prior.

The best performing prior for this study was boundary-
informed and the final GP fit with GCMC simulation is shown
in figure 3. The GP fit predicts the uptake very close to the GCMC
and the MRE is only 0.86 % for X,. as reported in table 4. With
only a total of 33 iterations, it can predict the uptake for a phase
space of 2000 points with a very low MRE (less than 1 %). The
log-spaced prior based GP fit had a slightly higher MRE of 7.99
% followed by linearly-spaced GP fit with 8.62 %. The number
of iterations for the log-spaced was 19, comparable with that of
boundary-informed while for the linear-spaced it was only 6.

Though each of these priors performed reasonably well in the
X;.ss range, the low-pressure test set revealed appreciable differ-
ences in their performance. Observing the MRE for low pressure
interpolation, we find that log-spaced prior is at 13.43 %, which
is the best among the three. This was followed by boundary-
informed at 18.30 %, and then we had the linear-spaced LHS

with a very poor MRE of 85.74 %. The methane uptake at low
pressure indicates that the performance of these models are com-
parable. However observing the methane uptake at this range, as
shown in figure 4, we find a substantial difference in their pre-
dictions especially at the lowest temperature of 100 K. In figure
4a, the boundary-informed prior based uptake performs reason-
ably well at 100 K while in 4b and 4c, the GP fits from linear and
log-spaced LHS prior are very far off from ground truth. The log-
spaced prior first over predicts then returns to the GCMC simula-
tion range while the linear-based prior under predicts the GCMC
ground truth. The situation improves for both the LHS schemes
at higher temperature of 202 K and 300 K since here the GP fit
starts to match the ground truth.

Now, as we observe in the low-pressure interpolation test, we
find the pressure range (10 to 107 bar) and temperature (100
K) where GP is failing for certain priors. A simple explanation
would be that the GP was ‘not’ built or trained on this interpola-
tion test set (please note the AL model was built on X, which
was biased towards high pressure region). Hence, it didn’t have
the knowledge that so many pressure points exists from 10 to
10! bar. In another scenario, if we had used the interpolation
test set for building the AL model, then all the priors had per-
formed quite well (since during training, AL model would run
as long as the GP predicted uncertainties in all the points at the
low-pressure interpolation set goes below the threshold). This
also explains why boundary-informed prior is so good in these
low-pressure regions which is because boundary-informed was
seeded with points in the low pressure as well as points in the
high-pressure zone. Hence, boundary-informed has balance of
both the low- and high-pressure points, thus it is a better choice
of prior than the LHS ones. This phenomenon becomes very im-
portant for prior selection, especially at low temperature regions
since the adsorption isotherm shifts to the left and hence a lack
of low-pressure points can make the model fail at lower tempera-
tures.

This behaviour is also reflected in relative error isotherm plot at
the low pressure range in figure 5. We see for boundary-informed
prior, the highest relative error is 140 % at a single point and the
rest of the errors are less than 100 % at these temperatures. The
relative errors, when compared to boundary-informed, are very
high for linear-spaced and log-spaced prior schemes. Though it
can be pointed out that error range of 50 % for the boundary-
informed prior is still high for predictions, we should observe that
the uncertainty of the GCMC simulations is also very high in this
range (table 4). In figure S10 in the Supporting Information, we
have shown the ratio of standard deviation to methane uptake at
low pressure for the GCMC simulation, and we can find that this
ratio is well above 1.0 (more than 100 % error) for a major por-
tion of this space and in the extremely low-pressure region it is as
high as 4.0 (this is true for pressure range 10 to 10 bar). The
uncertainty is large here due to the reason that methane adsorp-
tion at many pressure points at this range is 0 or ~0, which also
explains why the relative errors are so high as they have the ad-
sorption term in the denominator (a value close to 0 in uptake can
shoot this error easily). Thus, given the high uncertainty in GCMC
simulation in this region as well as near zero methane uptake lev-
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els, the boundary-informed prior uptake results can be accepted.
Also, in figure 5 and 4, we find that boundary-informed prior has
low relative error than log-spaced prior but in table 4, we see the
MRE of log-spaced prior is lower than boundary-informed. This
can be explained from our choice of temperature, which were
100 K, 202 K and 300 K, for figures 4, and 5, points which cor-
responded to the prior points in boundary-informed. The log-
spaced prior was sampled in LHS and hence the temperature had
a wide distribution and hence log-spaced prior would overall out-
perform boundary-informed prior if we take the complete tem-
perature range into consideration. However, at the temperature
boundaries (figures 4, and 5), the boundary-informed prior would
have lower errors than log-spaced ones.

Table 4 Performance of different priors for predicting CHs uptake in
Cu-BTC MOF with two features (all errors are expressed in %)

Prior type Iterations MRE (Xjesr) MRE (Low Pressure)
Boundary-informed 33 0.86 18.30
Linear-spaced LHS 6 8.62 85.74

Log-spaced LHS 19 7.99 13.43
GCMC - ogeme Kiest)  0Geme (Low Pressure)
Ground truth - 3.18 23.53

Another aspect of this study is the convergence of AL with it-
erations. Figure 6 presents AL based on boundary-informed prior
convergence in terms of maximum GP-predicted relative error and
MRE. Since the AL continues until the maximum GP relative error
is less than 2 %, it takes a number of iterations before the protocol
converges. In figure 6 we can observe that the GP maximum error
quickly goes to a very low point (say 3 %). However to reach 2 %
maximum error for the GP, it takes a large number of iterations.
For boundary-informed prior it took 33 iterations to converge.
While 33 iterations of AL was quite fast for methane adsorption,
a molecule which doesn’t have electrostatic interactions, this as-
pect can play an important role for more complex molecules. We
will address this issue further for carbon dioxide adsorption in the
next section and examine how fast the boundary-informed prior
errors are converging with respect to iterations. Further, although
not covered in this study, features such as molecule flexibility,
chain length, and different configurations can also influence the
AL convergence rate.

8 | Journal Name, [year], [vol], 1-12

3.4 Temperature-Pressure diagrams for carbon dioxide ad-
sorption

As mentioned earlier, carbon dioxide adsorption on Cu-BTC is
more complex than methane adsorption due to electrostatic in-
teractions. For carbon dioxide adsorption, the boundary-informed
prior performs the best. However, AL converges very slowly for
carbon dioxide and hence for this case, we changed the limit of
maximum GP relative error (which was 2 % for all cases before)
convergence limit to 3 %. In table 5, the MRE reported were
based on prior convergence of maximum GP relative error of 3
%. One interesting observation is that boundary-informed MRE
at low pressure for carbon dioxide adsorption with a 3 % cut-off
is closer to that of methane at the threshold of 2 %. This might be
due to a high value of maximum uncertainty in the low pressure
region for the case of carbon dioxide adsorption, and so to obtain
a flat GP relative error, AL needs more iterations. However, since
MRE presents a mean property of the relative error, the majority
of the points for carbon dioxide adsorption had a lower error for
this low pressure region and hence the MRE was also smaller. We
also observed that the linear and log-LHS priors took more iter-
ations, 10 and 50 respectively, in case of carbon dioxide to get
a maximum GP relative error of 3 %, than methane, which was
only 6 and 19 to a achieve a 2 % maximum GP relative error.

In figure 7, we have shown the final GP fit based on boundary-
informed prior compared with GCMC simulations (ground truth).
We find a very close agreement between the GP fit and GCMC
calculations. The uncertainty (shown as ogcuyc), however, is very
high for temperature of 100 K and here the GP under predicts
the carbon dioxide uptake in the mid-pressure range. However
this error is very small and is close to the 2 % relative error limit.
In figure S8 and S9 of Supporting Information, we have the car-
bon dioxide uptake and relative error plots for the low-pressure
interpolation test region, for all the three priors. Here, similar
to figures 4 and 5, we find boundary-informed prior performs
the best compared to the LHS-based schemes. The reasons for
this performance are the same as discussed in the section 3.3 for
methane, that boundary-informed prior had the most informa-
tion in the prior corresponding to the low-pressure region and
thus, performs the best compared to other schemes. The failures
in case of boundary-informed priors (which happens at adsorp-
tion rise at 100 K) and LHS-based schemes (10 to 103 bar for
low temperatures) can be explained by the lack of knowledge by
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the AL model, or due to extremely high uncertainties in GCMC
simulations due to the near zero adsorption of carbon dioxide at
these pressure points.

As discussed before, convergence of maximum GP relative error
with iterations is very slow for carbon dioxide (shown in figure 8
for the boundary-informed prior). It took 33 iterations for the
maximum GP relative error to reach 3 %, however it takes 129
iterations to reach the limit of 2 %. Still, the performance of a 3 %
convergence is very good and comparable to methane adsorption
at the 2 % threshold. The MRE, as shown in table 5 at both
the full pressure and low pressure ranges are comparable, if not
lower, than that of methane.

Apart from the slow convergence and encountering higher un-
certainties at low temperature, AL does manage to predict carbon
dioxide uptake with comparable accuracy with that of methane
for two features. This further proves that the method is transfer-
able to complex molecules and we can also effectively explore the
adsorption conditions of temperature and pressure (including the
low pressure region) for these complex molecules with a limited
number of simulations dictated by AL.

4 Conclusions

Based on the methane and carbon dioxide adsorption proof-of-
concept case studies, we can conclude that the AL framework is a
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Fig. 7 Comparison of GP-predicted CO2 uptake with GCMC simulation
predicted for pressure range from 1076 to 100 bar, at temperature of 100
K, 202 K and 300 K for boundary-informed prior.

Table 5 Performance of different priors for predicting CO» uptake in
Cu-BTC MOF with two features (all errors are expressed in %)

Prior type Iterations MRE (Xjesr) MRE (Low Pressure)
Boundary-informed 33 2.43 18.10
Linear-spaced LHS 9 2.79 43.11

Log-spaced LHS 49 2.64 18.07
GCMC - ogemc Xiest)  0Geme (Low Pressure)
Ground truth - 3.47 15.64

promising method to efficiently collect data from molecular simu-
lations, and the trained GPR surrogate models can replace GCMC
simulation for emulating adsorption isotherm. For the case of
pressure and temperature adsorption space for methane and car-
bon dioxide (section 3.3 and 3.4), we showed that with only 33
iterations of AL iterations, the algorithm can predict 4000 data
points in temperature and the pressure range. This includes the
low pressure region which is important for separation predictions
(IAST). We can recognize here that with less than 2 % of the data
AL can accurately estimate the full isotherms for a large temper-
ature and pressure range. Having a protocol like AL to sequen-
tially select adsorption simulations for surrogate models can save
orders of magnitude in terms of computational cost in designing
cheap and reliable surrogate model for adsorption prediction.

AL is also much faster than GCMC simulations and a GPR sur-
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rogate model only takes a few seconds to a few minutes to predict
the whole isotherm. If we take the complete pressure and temper-
ature space, the computational cost of the GPR remains very low,
and the prediction is finished within minutes. However a single
GCMC adsorption simulation at a fixed pressure and temperature
can take from a few minutes to a few hours (can also go beyond
a day depending on molecule complexity and number of produc-
tion runs). Thus, predicting a full isotherm (with 50 points) can
take a day or longer for complex molecules, while performing a
pressure-temperature phase space simulation can take between a
week to a month in terms of computational cost. In essence, AL is
order of magnitudes faster than conventional GCMC simulation
for predicting adsorption simulation in MOFs. These features
of AL carry immense potential for material discovery especially
for high-throughput simulations. An example would be material
discovery for adsorption/regeneration in a pressure/temperature
swing fashion. Discovery of an ideal material for such applica-
tions would require adsorption isotherm predictions throughout
the pressure-temperature phase space and would be very expen-
sive with conventional GCMC. However, with the AL approach
this material discovery time would be much shorter. This would
assist the search immensely as one can potentially test an order of
magnitude more candidate material with the same computational
resource.

Among the priors we tested, the boundary-informed one per-
formed best considering both the X;., and low pressure inter-
polation dataset. We also found the log-spaced LHS prior can
outperform boundary-informed prior in the low pressure range
but has large relative errors at the high pressure region. Simi-
larly, the linear-spaced LHS prior generally performs well at high
pressures but is very poor in the low pressure range. In contrast,
the boundary-informed prior has a good balance of both the low
and high pressure points, and thus comes across as a better choice
for building priors for AL. Moreover, the boundary-informed prior
has points that are distributed in orders of magnitude at the low-
pressure region which is essential for capturing the adsorption
rise (the area with the highest uncertainty). This becomes evi-
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dent as we compare the prior performance in the low-pressure
region for methane and carbon dioxide, we observe boundary-
informed prior captures the trend very closely. However, it must
be clarified that there are many ways to construct a prior and we
have only tested and compared three strategies in this work. In
this context more novel prior models can be explored including
schemes like orthogonal arrays and composite designs. ®°

Alternative AL approaches can also be explored, including the
addition of multiple sampling points in a parallel fashion during
the building of the GP model. In each iteration, we can select mul-
tiple points for sampling which have a GP predicted relative errors
above a set uncertainty threshold. While, this study presents a
simple application of AL for relatively simple molecules (methane
and carbon dioxide), further studies on the number of features
and other aspects of AL are needed to comprehensively under-
stand the usefulness of AL for adsorption in MOFs.
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