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Abstract

Improved characterization techniques, which address knowledge gaps related to the interfacial
processes that govern solute-solute selectivity and the performance of membranes in complex multi-
component feed streams, are necessary to advance membrane processes. In this study, guided by
the tools of data science, a diafiltration apparatus is developed to inform material and process
design by rapidly characterizing membrane performance over a broad range of feed solution compo-
sitions. The apparatus doses a fixed-concentration diafiltrate solution into a stirred cell to achieve
a predetermined change in the retentate concentration. Here, using an 80 mM potassium chlo-
ride (KCl) diafiltrate solution, it was shown that membrane performance, within a 5 mM to 80
mM KCI phase space, could be probed five times more quickly with one diafiltration experiment
(8 hours) than with an experimental campaign using traditional filtration processes (47 hours).
Additionally, the synergy between data analytics and instrumentation led to the incorporation of
an inline conductivity probe that monitored the real-time retentate concentration. This additional
information provided key insights to distinguish between the mechanisms that govern membrane
separations (e.g., discriminating between adsorption or rejection based separations) and allowed
for the membrane transport coefficients to be determined accurately. Ultimately, incorporating the
appropriate governing phenomena identified a single set of self consistent parameters for commercial
NF90 membranes.

Highlights:

e Synergy between data analytics and instrumentation enables innovative device design.
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DATA allows for the evaluation of membrane performance over a wide concentration range.

e Diafiltration experiments run five times faster than traditional experiments.

e An inline conductivity probe directly measures the retentate concentration.

Modeling the appropriate physics identifies a single set of self-consistent parameters.

Keywords: diafiltration, nanofiltration, parameter estimation, high throughput experimentation,

model calibration
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1. Introduction

Membrane processes have advanced separations that are critical to modern society (e.g., supple-
menting freshwater resources through seawater desalination [1], isolating and purifying therapeutic
medicines [2, 3], and enriching nitrogen from air [4, 5]). These demonstrated successes, in con-

s junction with the continued demand for energy-efficient and sustainable unit operations, drives the
development of higher performance membranes. A promising area for growth resides in the ability to
tailor the solute-solute selectivity of membranes such that they are capable of separating molecules
of similar sizes and chemistries [6, 7, 8]. The development of membranes with solute-tailored se-
lectivity will require studying model systems to understand the fundamental thermodynamic and

10 transport phenomena that govern their separation mechanisms as well as examining the capabili-



20

25

30

35

40

ties of these mechanisms in the complex multicomponent feed streams that will be encountered in
practice [9].

Recent materials advances toward the development of membranes with solute-tailored selec-
tivities have been directed at precisely controlling nanostructure (e.g., using self-assembled block
copolymers [10, 11], lyotropic liquid crystals [12, 13], metal organic frameworks (MOFs) [14], and
covalent-organic frameworks (COFs) [15, 16]) and manipulating chemistry to facilitate separations
based on molecular identity rather than steric hindrance. For instance, COF membranes have ex-
emplified the molecular control that can be exerted over the porosity and crystallinity of materials
by carefully selecting polymeric precursors [16]. On the other hand, charge patterned mosaic mem-
branes have been shown to preferentially permeate symmetric monovalent salts due to electrostatic
interactions between the membrane and dissolved ions [17]. Similarly, Sadeghi et al. demonstrated
that ligand binding effects can be used to tune the selective transport of similarly sized species
through nanopores [18]. More recently, several efforts have focused on mimicking the highly selec-
tive and highly permeable nature of biological channels [19, 20, 21, 22]. In one instance, the growth
of a zirconium based metal organic framework (MOF) within a polyethylene terephthalate mem-
brane nanochannel modulated monovalent and divalent ion mobilities and consequently imparted
the membrane with high monovalent:divalent ion selectivities [20].

The phenomena underlying the mechanisms of chemically-selective membranes are often based
on multibody interactions and exhibit concentration dependencies [23, 24, 25]. As such, probing
these dependencies can help to elucidate the molecular interactions and mechanisms that affect
macroscopic transport properties. In turn, this knowledge can inform the design of higher perfor-
mance membranes. As one example, there exists a trade-off between the magnitude of the solute-
membrane affinity and the efficacy of the desired separation mechanism [24, 8]. When attractive
forces are large, the membrane functions like an adsorbent binding the target solute molecules
tightly, which provides minimal flux enhancements. Weak interactions lead to transport properties
that are similar to those of size-selective filtration membranes. At an optimal, intermediate affinity,
the flux of the target solute can be enhanced dramatically. On the other end of the spectrum, strong
repulsive interactions increase the activation energy at the entrance of the pore and lead to solute
rejection [26, 27]. Distinguishing between this array of potential transport mechanisms requires
new methods that are better able to quantify membrane performance as a function of changing

feed conditions. Developing these techniques will challenge preconceived hypotheses and dismiss
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skewed results such as the notion that the high separation efficiency of some COF membranes were
governed by rejection rather than adsorptive processes [15].

Improved characterization techniques would also benefit instances where the interaction between
solutes in complex feed streams impact transport mechanisms. In one example, it has been shown
that the negative rejection of potassium chloride within mixed salt systems increases as a function
of the ionic strength [28]. Additionally, in separations where the pores and solutes are similar in
size, the solutes may compete for entry into the pore [29]. This can lead to a decrease in the
permeation of one species in the presence of a competing solute which possesses a higher affinity
towards the membrane [18]. Intermolecular binding between solutes can also effect the efficiency
of separations. For example, strong attractive interactions between albumin and a contaminating
D-tryptophan impurity lead to a significant increase in the volume of diafiltrate required to obtain
a product with the desired purity [30]. These examples illustrate how the advances in characteri-
zation of membranes deployed in complex multi-component feed streams, where solute-solute and
solute-membrane interactions convolute the performance otherwise observed within single solute
experiments, can benefit material and process development. For instance, Ghosh et al. [31, 32]
demonstrated that pulsed sample injection techniques can systematically scan experimental pa-
rameters to identify optimal operating conditions for solute fractionation. This advanced scanning
technique was used to create a complete profile of the observed sieving coefficient as a function of
pH. The trends observed highlighted the dependence of protein conformation and protein dimeri-
sation on transport phenomena. In turn, this insight reduced the time and resources necessary to
determine process parameters.

The tools of data science can guide the design and optimization of the membrane-based separa-
tion processes [33]. For example, nonlinear parameter estimation is becoming increasingly important
to validate mathematical models and characterize membrane performance in complex environments
(e.g., mixed electrolyte solutions) [34, 35, 36]. Additionally, the emergence of techniques including
model based design of experiments (MBDoE) enables the design of instruments to better character-
ize the performance of separation devices as a function of solute concentration and in complex feed
streams. As such, these techniques can calculate the optimal conditions under which experiments
must be run [37]. These results can be used to discriminate between alternative models [38, 39, 40]
and provide key insight into how molecular level changes impact macroscopic system performance.

In recent applications, MBDoE was used to propose a sequence of experiments that minimized the
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experimental time and the resources required while improving the precision of parameter estimates
for electrodialysis model identification [41]. Similarly, it has been shown that MBDoE can design
one set of experiments to simultaneously improve parameter estimation as well as discrimiante be-
tween competing kinetic models [42]. In order to use these tools to their full potential, we require
models, based on first principles, and the ability to produce large amounts of data in an energy and
time efficient way.

Traditional experimental campaigns with dead end filtration cells and cross flow devices are
time consuming when used to elucidate membrane performance as a function of concentration.
Furthermore, they typically infer the retentate concentration from the permeate concentration,
implicitly assuming that solutes do not adsorb onto the membrane. Additionally, by running at near
zero percent recoveries, they fail to capture the finite recoveries that commercial processes operate
under. As a result, many experiments are necessary in order to capture membrane performance as
the feed concentration changes over the course of an experiment. To exacerbate these limitations,
traditional analyses, ones in which the local slope is linearly regressed from limited data sets, are
unable to capture nonlinear trends well. These dynamic systems and corresponding time-series data
must be modeled and analyzed with more advanced methods (e.g., differential algebraic equations,
nonlinear parameter estimation, dynamic optimization) [43, 44].

In this study, guided by the tools of data science, limitations of current membrane characteriza-
tion methods are addressed through the design of a diafiltration apparatus. A dead end stirred cell
is modified to receive a high concentration diafiltrate such that high-throughput membrane char-
acterization can be conducted over a broad range of concentrations. To begin, the rate at which
an expanded range of concentrations can be explored by diafiltration when compared to traditional
filtration techniques is examined. Then, data analytics are utilized to identify the experiments that
are necessary to accurately regress characteristic membrane parameters in a lumped parameter
model. This analysis is followed by a discussion on how data analytics can provide insight to guide
the design of the experimental apparatus. Specifically, the addition of an inline conductivity probe
that can monitor the real time trajectory of the solute concentration from the initial feed solution
to the final retentate solution is detailed. The discussion finishes by evaluating how the proposed
statistical frameworks can be used to distinguish between competing models and suggests that the
diafiltration device can serve as a foundation to probe the concentration dependencies of chemically

selective membranes, closing the knowledge gaps that exists between filtration experiments.
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Fig. 1: A schematic of the experimental apparatus. The diafiltrate reservoir and stirred cell are loaded with solutions
of known initial concentrations (i.e., cf(0) for the feed and ¢4 in the diafiltrate). After the apparatus is initialized, an
applied pressure, P, feeds the diafiltrate into the stirred cell at a flow rate equal to the flow rate of permeate into the
scintillation vial. The apparatus continuously monitors permeate mass (m,) by using a scintillation vial resting on
top of a balance. The concentrations of dissolved ions in the permeate are determined through inductively coupled
plasma optical emission spectroscopy while the retentate concentration is monitored through an inline conductivity

probe. The pressure is recorded using a digital pressure transducer attached to a gas reservoir.

The diafiltration apparatus presented in Fig. 1 allows for membrane characterization under
changing retentate concentrations. In this study, a steady ramp in the retentate concentration is
examined but a steady decrease in concentration is equally feasible. At the start of the experiment,
the concentration in the stirred cell is low, =5 mM, and increases as the diafiltrate tank doses a high
concentration salt solution into the cell at a rate equal to the volumetric flow rate of the permeate
leaving. The volume under the membrane, where the permeate is collected, is termed the hold up
volume and is modeled as a perfectly mixed reservoir. The tube connecting the stirred cell to the
scintillation vial is assumed to act as a plug flow element where the salt solution is well mixed in
the radial direction. An inline conductivity probe measures the retentate concentration within the
stirred cell and a balance records the time dependent weight of the scintillation vial. The permeate
within the scintillation vials are assumed to be well mixed and their concentration can be measured

after the experiment.
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A lumped parameter approach [45] is used to develop a physics-based mathematical model
that captures the transport of solute and solvent within the experimental apparatus and through
the membrane. The lumped parameter model used here assumes that diffusion is the dominant
transport mechanism resulting in the solute flux being proportional to its concentration difference
across the membrane. Additionally, it further assumes the feed side concentration is well mixed and
changes more slowly than the rate the membrane responds (i.e., a pseudo steady state approximation
is made when describing the solute flux). In previous works, this lumped parameter approach was
combined with steady-state or time difference algebraic models for membrane parameter estimation
[46, 47]. In contrast, this work develops a dynamic (e.g., differential algebraic equation) modeling
framework that fully exploits the information contained in the collected time-series data.

The volumetric flux of water, J,,, and the molar flux of the solute, Js, across the membrane can

be expressed by Egs. (1) and (2), respectively.

Juw = Ly(AP — g Am) (1)
= Lp[AP — onRT (cin — cn)]

Js = B(cin — cn) (2)

Here, we seek to estimate three model parameters, the hydraulic permeability, L,, the solute
permeability coefficient, B, and the thermodynamic reflection coefficient, o, from experimental
data. Mathematically, Eq. (1) makes it clear that to deconvolute L, and o, experiments at
different applied pressures, AP, or experiments with different concentrations across the membrane,
Cin — Cp, are necessary. Diafiltration easily satisfies the latter requirement. Within the above
equations, Am = nRT(c¢;, — cp,) is the osmotic pressure, which, assuming the van’t Hoff equation, is
expressed in terms of n the number of dissolved species formed by the solute(s), R the gas constant,
T the temperature, c¢;, the feed-side concentration at the solution-membrane interface, and ¢, the
concentration in the holdup volume, v,. The difference in concentration across the membrane is
represented by ¢;, —cp, where ¢;y, is related to the bulk feed concentration, c¢, by a thin film model

that accounts for concentration polarization, Eqs. (3) and (4) [48].

n T Jw Ju)
Cin —Ch _ exp (k) & cip = (cf —cp)exp (k) + e, (3)

Cf — Ch
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where k is the mass transfer coefficient, b is the stirred cell diameter, D is the diffusion coefficient
of the solute in water, v is the kinematic viscosity of water, and v° is the average velocity within
the system (i.e., the product between the stir bar angular velocity and radius).

In order to infer the three governing parameters in equation (1) and (2), we conduct mass and
solute balances around three control volumes within Fig. 1, the diafiltrate reservoir, the stirred
cell, and the permeate. Consequently, it is shown in the supporting information that the following

ordinary differential equations (ODEs) describe the state of the system, equations (5)-(8).

= L e = 7. )
ddith _ Ami”f(lg —end) (6)
dzzv _ _% — AppTa (7)
M - drm. ch = AmpJuch (8)

dt dt
where A, is the membrane area, p is the density of the solution, m, is the mass of the filtration
cell, cq4 is the diafiltrate concentration, my, is the mass of solution in holdup, m,is the mass of the
sample vial, mgy is the mass of the diafiltrate reservoir and ¢, is the concentration in the sample
vial.

Adding concentration polarization, which is modeled with the algebraic Eq. (3), to the ODEs
above, forms a system of differential algebraic equations (DAEs) to describe the dynamic process.
Both the ODE and DAE models are numerically integrated in MATLAB using odel5s to simulate
the diafiltration experiments. Specially, ¢, - m, is selected as a combined state variable for better
initialization and to avoid division by zero. For the initial conditions of the first vial, cs is set as
the retentate concentration measurement at the beginning of the experiment, ¢, is approximated at
80% of the first vial concentration, m, is approximated as the mass of one drop of solution (~0.05

g), and ¢, - m, is set as zero. To simulate vial swaps, the integrator is stopped and the initial
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conditions are updated: cy, ¢; and ¢, - m, are set as the final condition of the previous vial and m,,
is reset to the mass of one drop. Equation (8) is integrated instead of Eq. (S9) because ¢, is not

defined when m, =~ 0 (empty vial).

3. Materials and Methods

3.1. Materials and Equipment

An Amicon 8010 stirred cell (Amicon, Burlington, Massachusetts) was used in all experiments.
NF90 membranes supplied by DuPont (DuPont, Wilmington, Delaware) were used for all of the
experiments. Pressure data was monitored using an Omega PX409 USBH pressure transducer
(Omega, Norwalk, Connecticut). Mass data was measured by an OHAUS Adventure Series Balance
(OHAUS, Parsippany, New Jersey). Conductivity data was gathered from an LFS 1107 conductivity
sensor (Innovative Sensor Technology, Las Vegas, Nevada). A Keithly 6221 DC and AC current
source function generator (Keithly, Cleveland, Ohio) was used to generate a 1 mA peak to peak
sinusoidal AC current. The voltage drop across the conductivity sensor electrodes was measured
with a GwInStek GDS 1054B oscilloscope (GwInStek, Montclair, California). The information was
converted to a conductivity measurement and used in further analyses. An in-house MATLAB
code was used to synchronize and record mass, conductivity and pressure data. All salt solutions
were prepared using deionized water (DI water) that was supplied by a Millipore water purification
system (Milli Q Advantage A10, Milli Q, MA). Potassium chloride (KCl), and nitric acid (HNO3)
were purchased from Sigma Aldrich (Aldrich, St. Louis, Missouri) and had purities greater than
99.0% and 70% respectively.

3.2. Hydraulic Permeability Measurements

The hydraulic permeabilities of the NF90 membranes were determined by placing the flat sheet
membrane into an Amicon stirred cell. The stirred cell volume above the membrane was filled with
10 mL of DI water. Nitrogen gas was used to apply pressures between 30 psi and 60 psi. The
water permeated through the membrane was collected in scintillation vials that rested on top of the
OHAUS balance. A computer logged the mass and pressure data over time. This data was used to

calculate the hydraulic permeability of the membrane.

10
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3.3. Filtration Experiments

Filtration experiments were carried out in a 10 mL Amicon stirred cell. The stirred cell was
loaded with 12 mL of feed solution at predetermined salt concentration. The stirred cell was placed
on a stir plate and stirred (at atmospheric pressure) for 10 minutes to allow ion adsorption onto
the membrane and exposed surfaces of the stirred cell to take place. 1 mL of the feed solution
was subsequently removed from the stirred cell and stored in a scintillation vial to be analyzed by
Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). The conductivity probe
was turned on and nitrogen gas was used to apply a pressure of 60 psi to the stirred cell. A pressure
transducer, in series with the cell, was used to monitor the applied pressure and a balance recorded
the mass of permeate in the scintillation vials. At each 0.5 mL of permeate, the scintillation vials
were replaced, sealed and stored for further analysis. The mass, pressure, and conductivity readings
of the three instruments were synchronized by a MATLAB code that recorded the time dependent
data. At the end of the experiment, the retentate and the solution left within the tube between the
stirred cell and the scintillation vial were collected. All closed sample vials were stored until they
were prepared for analysis by ICP-OES. After each experiment, the conductivity probe was cleaned

with DI water and subsequently stored in DI water until the next experiment was conducted.

8.4. Diafiltration FExperiments

Diafiltration experiments were conducted within a modified stirred cell apparatus (Fig. 1). The
diafiltrate tank was filled with a high concentration salt solution. A portion of this solution was
collected and stored within a scintillation vial for further analysis by ICP-OES. A 10 mL Amicon
stirred cell was prepared with 11 mL of a salt solution. The solution was stirred for 10 minutes
to allow any ion adsorption onto the membrane to occur. 1 mL of the resulting feed solution was
collected and stored.

The mathematical analysis of the data was conducted under the assumption that the flow rate
of diafiltrate into the stirred cell was equal to the flow rate of permeate out of the stirred cell.
To achieve this condition experimentally, the volume of air between the diafiltrate tank and the
stirred cell needs to compress into the headspace of the stirred cell. We cannot start the experiment
from atmospheric pressure because, once increased to the operating pressure, there are not enough
gas molecules within the tubing to occupy the headspace of the stirred cell (i.e., the diafiltrate

would flood the stirred cell in an uncontrolled manner). For the current experimental system,

11
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the volume of air between the tank and stirred cell is 35 mL and the headspace volume is 7 mL.
Assuming an ideal gas, the pressure of the system immediately before starting the experiment,
must be 1/6 of the operating pressure to minimize overflow of diafiltrate into the stirred cell. To
pressurize the system , valve 1 (V1) was opened, valve 2 (V2) was opened, and valve 3 (V3) was
closed. The tank and stirred cell were pressurized to 1/6 of the operating pressure. Valve 1 was left
open, valve 2 was closed and valve 3 was opened. The system was then subject to the operating
pressure of 60 psi. This pressure pushed the diafiltrate solution up into the tubing and towards
the stirred cell. The small bolus of diafiltrate that enters the stirred cell, termed the overflow, is
measured to be the difference in mass between the initial feed solution (before start-up) and the
retentate (end of experiment after shut-down). With known feed and diafiltrate concentrations,
this information is used to calculate the concentration of the feed at the start of the experiment.
The initial concentration is also corroborated by the measurement taken by the inline conductivity
probe.

Immediately after increasing the pressure to the operating pressure, the mass, retentate con-
ductivity and pressure are synchronized and recorded at five second intervals. Scintillation vials
that rest on top of a balance are used to collect permeate samples at 1 mL intervals. A total of 10
scintillation vials are collected throughout the course of the experiment. After the collection of the
last permeate vial, valve 1 is closed and the pressure relief valve is opened, releasing the pressure of
the diafiltrate tank and causing the compressed air in the headspace of the stirred cell to expand,
pushing the diafiltrate solution back into the diafiltrate reservoir. The retentate and the solution in
the tubing between the stirred cell and the scintillation vial were collected in separate scintillation
vials. The scintillation vials were closed and stored until they could be analyzed on ICP-OES.
The conductivity probe was turned off, rinsed with DI water and stored in DI water until the next

experiment was conducted.

3.5. ICP-OES Sample Preparation

The concentration of the salt within all collected samples was analyzed by ICP-OES (Perkin
Elmer Optima 8000). All experimental samples were prepared with calibrated micropipettes. Fil-
tration experiment samples were prepared by diluting 0.100 mL of sample with 5.00 mL of 3%
nitric acid. The samples were labeled and stored in falcon tubes. The feed and permeate samples of

diafiltration experiments were prepared analogously to filtration experiments samples. Due to their

12
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higher concentrations, the diafiltrate and retentate samples from diafiltration experiments were
prepared by diluting 0.025 mL of sample with 5.00 mL of 3% nitric acid. We note that all samples
were interpolated within calibration curves in which the correlation coefficients were greater than

0.995.

8.6. Design and Retrofitting of Inline Conductivity Probe

The stirred cell was retrofit with an LFS 1107 Conductivity Sensor. The six leads were soldered
and connected to 28-gauge space saver wire (McMaster Carr, Elmhurst, Illinois). The bare metal
leads were potted with DP420 Scoth-Weld Epoxy Adhesive (3M, Saint Paul, Minnesota). The leads
of the conductivity probe were threaded through the inlet of the Amicon stirred cell. The wires
were then maneuvered through one end of a 1/4 inch Swagelok compression union tee (Swagelok,
Solon, Ohio). The current wires were connected to the Keithly 6221 DC and AC current source
which generated a 1 mA peak to peak sine wave. The voltage wires of the conductivity probe were
connected to the GwInStek GDS 1054B oscilloscope. Time dependent voltage measurements were
recorded throughout the course of the experiment. The conductivity of the retentate solution was

determined from the current, voltage and cell constant data.

8.7. Calibration of Inline Conductivity Probe

The LFS 1107 conductivity sensor was calibrated with 7 KCI stock solutions spaced between 0
mM and 100 mM. The probe was submerged into the stock solution, given 5 seconds to stabilize and
the amplitude of the voltage drop was recorded from the GwInStek GDS 1054B oscilloscope. The
probe was rinsed with DI water after each measurement. The resulting data were linearly regressed
to produce a calibration curve that has a correlation coefficients greater than 0.99 (Fig. S1). The
calibration curve was used to relate the conductivity readings to the internal concentration of the

stirred cell.

4. Results and Discussion

4.1. Experimental filtration data sets

A representative set of filtration data is presented in Fig. 2. The mass of the permeate is plotted
versus time in Fig. 2A. Samples are collected in scintillation vials at 0.5 mL intervals. As such,

the sudden drops in mass correspond to a switch of the collection vial. The solution within these

13
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vials is then prepared for analysis by ICP-OES. As highlighted within Fig. 2B, the concentration
of salt within the permeate samples changes slightly. Provided that the initial feed concentration
is known and assuming no salt adsorbs to the membrane, a mass balance can be used to infer the
internal concentration of the stirred cell. The measurements from the conductivity sensor, purple
squares in Fig. 2B, corroborate the concentration of dissolved salt from these calculations (Fig.
S2A). The agreement between the measured data points and calculations confirm that the mass
balance on potassium chloride closes. Using the retentate and permeate concentrations from each
vial a percent rejection of 70% is calculated from the experimental results, which is consistent with
the value reported in the literature [49].

Although this approach is more useful than operating at zero percent recovery, filtration experi-
ments are still limited because they rely on the rejection of solutes to drive changes in the retentate
concentration. Even for solutes that are highly rejected, this approach leads to modest variations
in the solute concentration. As solvent permeates through the membrane, the concentration of the
rejected species within the feed begins to increase. Assuming 100% percent rejection, the concen-
tration of the solute will double when the solvent volume is reduced by half (i.e., 50% recovery).
Within Fig. 2A, the experiment is run at approximately 40% recovery and the retentate concen-
tration changes 2-3 mM. Fig. S2B presents that data for an experiment, run at 60% recovery. A
similar change in concentration is observed in this experimental data but it highlights an additional
issue with filtration, the high recovery experiments are incompatible with the inline conductivity
sensor, which must be submerged to be utilized. Consequently, many filtration experiments are

necessary in order to characterize membrane properties over large concentration ranges.

4.2. One diafiltration experiment generates knowledge five times faster than filtration experiments

The diafiltration apparatus addresses the drawbacks of filtration experiments by dosing a con-
centrated diafiltrate solution into the stirred cell in a controlled manner, instead of relying on the
rejection of solutes to drive an increase in the retentate concentration. During the operation of the
apparatus, the volumetric flux of diafiltrate into the stirred cell is equal to the volumetric flux of
permeate out. As such, the maximum retentate concentration that can be achieved may be esti-
mated as the concentration of the diafiltrate divided by the sieving coefficient (¢, maz = cp - S71).
Assuming that the osmotic pressure of the feed solution and concentration polarization are negligi-

ble, the sieving coefficient can be related to the model parameters through a series of substitutions,

14
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Fig. 2: Mass versus time data points from filtration (A) and diafiltration (C) experiments are compared to compu-
tational predictions, represented by the solid lines. Mass predictions are obtained from Eqs. (1) and (S9) utilizing
the membrane A model A parameters from Tables 1 and 2. Experimental retentate concentrations, measured by a
conductivity probe, and permeate vial concentrations, measured using inductively coupled plasma optical emission
spectroscopy, for filtration (B) and diafiltration (D) experiments are plotted against computational predictions from
equations (5) and (6), respectively. The red triangles within panels B and D, calculated using Eq. (S9), correspond

to discrete predicted vial concentrations while the red line represents the continuous holdup concentration.
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In practice, the experiment may be limited by the solubility of the solute or the osmotic pressure
of the feed solution. Nevertheless, the estimate is useful as it allows the experimental operations to
be tailored such that the retentate concentration data are spaced evenly over a specified region of
interest.

The purple squares within Fig. 2D correspond to the concentration of the retentate over the
course of a diafiltration experiment. By starting at a low feed concentration (i.e., 10 mM) and
dosing in a high concentration diafiltrate (i.e., 80 mM) the data points are spaced evenly over a 60
mM range. An effect of this wider range of retentate concentrations manifests in Fig. 2C, which
presents the experimental permeate mass vs time data. In particular, the slope of the mass vs
time data decreases throughout the experiment due to the increase in the osmotic pressure of the
retentate. The sudden drops in the mass data correspond to a vial switch where permeate samples
are collected for further analysis by ICP-OES. The permeate concentrations are presented in Fig.
2D as blue squares. Over the wider range of concentrations examined, the percent rejection for
each vial is still consistent with the reported rejection of 70% [49].

A critical benefit of the diafiltration apparatus is captured graphically in Fig. 3. One diafiltration
experiment can provide an equal or greater amount of information five times more quickly than
several filtration experiments. Table S1 presents a full comparison of the time requirements for
a representative set of filtration and diafiltration experiments. By combining high-throughput
data collection and robust computational analytics, DATA is well suited to help address critical
knowledge gaps related to the interfacial phenomena and multi-component interactions that govern

membrane separation processes [9].

4.3. Computational modeling regresses governing membrane parameters

4.3.1. Computational predictions match experimental results

The experimental mass, permeate concentration, and retentate concentration data were used
to characterize membrane performance in terms of a model based on lumped parameters, i.e., the
hydraulic permeability, the reflection coefficient, and the solute permeability coefficient. These

parameters are estimated using weighted nonlinear regression shown in Eq. (10). Here each set of
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Fig. 3: The phase space of retentate concentrations and permeate concentrations explored by filtration and diafil-
tration experiments. Every color corresponds to a unique experiment. Filtration experiments are represented by
triangular data points and diafiltration experiments are represented by square data points. Diafiltration experiments
were conducted at an initial feed concentration of 15 mM KCl and a diafiltrate concentration of 80 mM KCl. The grey
squares present diafiltration experiments for Membrane A. The brown and pink squares correspond to diafiltration
experiments for Membrane D. Five filtration experiments were run at varying feed concentration ranging from 1 mM
KCI to 75 mM KCl. The low concentration filtration experiments conducted at 1 mM (green triangles) and 5 mM
(purple triangles) KCl each include 6 data points.

data (i.e., mass, permeate, retentate) were normalized by the measurement precision (i.e., s,,, =
0.01 g, s¢,.i =3.0% - ¢y, Scpi = 0.3% - cf,i) squared and the total number of measurements in the
vial (i.e., Ny, s is 70 to 500, N, ; is 1, N, ; is 0 (omitted) to 3, depending on the experiment).

For example, the mass measurement m,, ; was normalized by the weight wp,, ; = (s2, Ny, i)'

A . N
0 = arg min g Winy i (Mg — My i)

K3

~ 2
) we,j (Cog = ) (10)

J

+chf,k (et —Crn)”
k

The best fit parameters for filtration and diafiltration experiments are reported in Table 1 and 2,

respectively. As discussed below, these values were identified from experimental designs that were
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informed by an iterative feedback loop between data analytics and instrumentation capabilities.
The solid lines within Fig. 2 represent computational predictions from the fully calibrated model.
The strong agreement between model and experiment in conjunction with the self-consistent nature

of the transport coefficients demonstrate the utility of integrating statistical analyses and DATA.
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4.8.2. High concentration experiments elucidate the reflection coefficient

Filtration experiments enable the estimation of the solute permeability and hydraulic perme-
ability coefficients yet are incapable of identifying the reflection coefficient. Although the model
predictions in Figs. 2A, 2B match the experimental data well, this is driven entirely by the esti-
mates of L, and B. Table 1 shows that while the reflection coefficient estimate is widely dependent
on the data set, the value of the reflection coefficient utilized does not affect the quality of the
computational fit.

The sensitivity analyses in Fig. 4A further demonstrates that the model predictions for the
mass, permeate concentration, and retentate concentration are invariant to large perturbations
in the reflection coefficient. Computational predictions assuming reflection coefficient values of
0.1, 0.5 and 0.9 resulted in indistinguishable, overlapping curves. Specifically, Fig. 4A displays
the final permeate concentration is 1.1 mM KCI for any reflection coefficient value between 0.1
and 0.9. Likewise, the final retentate concentration only varies by 0.1 mM KCI when the reflection
coefficient is adjusted from 0.1 to 0.9. The log transformed residual squared contours of the hydraulic
permeability against the reflection coefficient presented in Fig. S5 (i.e., L, vs. o) also confirm that
the model is insensitive to the reflection coefficient. These contours were generated using a 2-D grid
search in which predictions are generated for all combinations of the two parameters. For example,
Fig. S5A searches over the Lp and o parameters while keeping the solute permeability coefficient
constant. Likewise, Fig. S5B searches over Lp and B while keeping o constant. Subsequently,
comparing the predictions and experimental data allows for the residual squared error (e.g., for
mass: Z (M — ﬁzv,i)z) to be calculated. The log transformed residual values are then plotted to
Visualizjs the sensitivity as a function of the parameter estimates. These grid searches are conducted
for each type of data collected (i.e., mass, permeate concentration, and retentate concentration).
The sections of the contour that display a minima correspond to the optimal parameter combination
that best fits the experimental data. Consequently, the horizontal iso-residual contours in Fig. S5
indicate that, at the optimal hydraulic permeability, any value of the reflection coefficient will
provide an equivalent model fit. This confirms that the filtration experiments are insensitive to
the reflection coefficient. This insensitivity, which makes the reflection coefficient unidentifiable, is
due to the low retentate concentrations within the filtration experiments which produce negligible
osmotic pressures in Eq. (1). Although no information can be gathered on the reflection coefficient,

filtration experiments are capable of identifying membrane specific solute permeability coefficients
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and hydraulic permeability coefficients as highlighted by the L, vs. B contours presented in Fig.
56. The mass residual squared contour predicts the data can be best fit with an L, value of 4.37 L
-m~2 - h™! . bar~! and a solute permeability coefficient value of 0.67 pum - s~!. This information
is reinforced by the permeate and retentate contours which also display minimum squared residual
values at the aforementioned L, and B values(Fig. S6).

Diafiltration experiments overcome this limitation related to the osmotic pressure by exploring a
broader concentration range. A sensitivity analysis (Fig. 4B) shows that dynamic model predictions
are sensitive to perturbations in the reflection coefficient. At low retentate concentrations, three
unique reflection coefficient values provide similar model predictions. Yet, the predictions diverge
from one another once retentate concentrations greater than 40 mM are reached. Ultimately, after
a four hour experiment, if the reflection coeflicient of the membrane was equal to 0.1, the retentate
concentration would be 163.5 mM KCI. Conversely, if the membrane reflection coefficient is equal to
0.5 or 0.9, the retentate concentration will be 112.9 mM KCI and 86.5 mM KCI, respectively. These
differences are best highlighted within the retentate data, yet they are also apparent within the
mass and permeate predictions. The threshold, where the predictions at varied reflection coefficient
values diverge, is determined by the value of the osmotic pressure relative to the applied pressure.

The threshold can be reached by modulating the retentate concentration and applied pressure.
Within filtration experiments, the retentate concentration is controlled by the initial feed concen-
tration. For diafiltration experiments, the retentate concentration is modulated by the diafiltrate
concentration. The contour maps in Fig. S7 highlight the experimental conditions necessary for
filtration and diafiltration experiments to differentiate among reflection coefficient values that ex-
hibit a 0.1 difference from one another. Specifically, Fig. STA examines filtration experiment data
while Figs. S7B, S7C, and S7D examine data presented at the end of the 1%, 5! and 10*" vial
of a diafiltration experiment, respectively. The lower right portion of the graphs shaded in grey
corresponds to systems in which the water flux is equal to or less than zero (i.e., the osmotic
pressure is equal to or greater than the applied pressure). Measurements are not plausible in this
region. The contour lines show the difference in model predictions normalized by the equipment’s
precision. Notably, experimental conditions that generate contour values greater than two generate
data capable of distinguishing the reflection coefficient differences of 0.1 or greater. The sensitivity
analysis in Fig. STA highlights the importance of capturing the retentate concentration accurately

as the mass and permeate concentration measurements provide a limited amount of information

22



405

410

when identifying the true value of the reflection coefficient in filtration experiments. This is not the
case for diafiltration experiments. After collecting the 5 permeate vial, any experiment with a
feed concentration of 5 mM KCI conducted with a diafiltrate concentration greater than 20 mM KCI
and operating at an applied pressure greater than 30 psi is capable of identifying reflection coeffi-
cients that are 0.1 different. Consequently, diafiltration experiments allow the reflection coefficient
to be captured more rapidly and under a wider number of operating conditions when compared to

filtration experiments.
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Fig. 4: Computational predictions display how different values of the reflection coefficient (i.e., o = 0.1, 0.5, 0.9) affect
the time evoluation of mass, retentate and permeate data. Physically, the reflection coefficient can take any value
between zero and one. The predictions for were generated using equations (7) (left), (6) (middle) and (5) (right)
with Lp & B values Membrane A, model M1 from Tables 1 and 2. At low concentrations, filtration predictions
(A) cannot distinguish between different values of the reflection coefficients. While diafiltration predictions (B) for
different reflection coefficients are indistinguishable at low concentrations, they diverge from one another at high

concentrations.
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4.8.8. Model parameters converge with the inclusion of an inline conductivity probe

Data analytics suggested the addition of an inline conductivity probe to the diafiltration ap-
paratus to measure the concentration of the solution within the stirred cell. The measurements
elucidate the path taken from the initial feed concentration to the final retentate concentration,
therefore, providing two key benefits. First, as shown above and in Fig. 5A and 5B, it aids sub-
stantially in identifying a unique value of the reflection coefficient. Specifically, Fig. 5B presents
regression contours in which only the initial feed and final retentate concentrations are used (i.e.,
no data from the inline conductivity probe). The local minima within the residual squared contours
for the retentate concentration suggests that multiple combinations of the reflection coefficient and
hydraulic permeability can fit the data set. This discrepancy is eliminated in Fig. 5A with the
inclusion of the additional retentate concentration measurements. The three contours of Fig. 5A
now converge to a unique value for the reflection coefficient (i.e., 1 [dimensionless]). When all data
types converge to the same set of parameters, this suggests an accurate model. These findings
show an inline conductivity sensor is needed in order to remove the local solutions and accurately
elucidate the reflection coefficient of the membrane. Similar converging trends can be observed for
the solute permeability coefficient and hydraulic permeability coefficient (Fig. 6). Fig. 5A and Fig.
6 suggest that the optimal value for the hydraulic permeability is 3.89 L - m~2 - h=! - bar~!. At
this L, value, all three contours of Fig. 6A, provide an optimal solute permeability coefficient of
0.20 pm - s~

Continuous monitoring of the retentate concentration is also beneficial because it provides ev-
idence that the solute is rejected by the membrane and not removed by adsorptive processes.
Distinguishing between rejection and adsorption provides critical knowledge for the development
and application of new materials and membranes. Rejection-based and adsorption-based separation
mechanisms can both result in low permeate concentrations. For membranes that reject dissolved
species, the solute is retained in the solution above the membrane leading the retentate concentra-
tion to increase throughout the course of the experiment. In contrast, materials that act as sorbents
reduce the retentate concentration while maintaining low permeate concentrations. As such, it is
the distinct behavior of the retentate concentration that allows the underlying mechanism to be
identified. In the experiments reported here, the retentate concentration measured using the inline
probe increases. Moreover, the retentate concentration calculated from the permeate concentration

measurements and a mass balance, shown as the green circles in Fig. S2B, agree well with the
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inline measurements. This observation affirms that the NF90 membranes remove KCI through a
rejection-based mechanism. While, based on prior knowledge, this outcome was expected for the
NF90 membranes such distinctions are not as readily obvious for emerging materials that target

solute-tailored selectivity [15, 8].
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Fig. 5: Residual squared contours comparing the reflection coefficient and hydraulic permeability for diafiltration
experiments. Two different models (with concentration polarization & without concentration polarization) and two
data set variations (data with an inline conductivity sensor & data encompassing only the initial and final in-situ
retentate measurements) are evaluated. The model used to generate the contours of panel A includes concentration
polarization phenomena with the inline conductivity probe measurements. The residual squared contours of panel
B were generated using a reduced data set which excludes the semi-continuous retentate data. Panel C contours

evaluate a separate model in which the inline conductivity measurements are used yet concentration polarization is
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4.3.4. Incorporating concentration polarization improves model predictions

Dynamic diafiltration experiments in tandem with data analytics facilitate the direct comparison
of various model complexities and physical assumptions. For example, Fig. 5A and 5C explores
how the residual squared contours change when concentration polarization effects are knowingly
withheld from the modeling framework. As anticipated, the inclusion of concentration polarization
provides improved estimates for all three model parameters. Moving from Fig. 5C to 5A, one
notices the value of permeate contour lines decreases, this implies the mathematical model more
accurately fits experimental results. In turn, permeate concentration contours increase the value
of the optimal hydraulic permeability prediction. As a result, the L, predicted from the mass,
permeate, and retentate contours converge on a unique value and the residual squared objectives
(displayed in Table 2) decrease. Additionally, within Fig. 5C, if o is less than 0.4, the contour lines
of Fig. 5C stretch vertically (This is exemplified by following the 0.6 contour line). This subtle
change in the contours indicate that, by including concentration polarization, the model predictions
become sensitive to the reflection coefficient.

Deployed more broadly, statistical learning frameworks including model-based design of ex-
periments [50, 51, 52, 53] can guide the development of structure-function relationships that are
critical to chemically selective transport mechanisms [33]. Given a model hierarchy [54], described
by physics-based models, statistical learning can distinguish between unknown transport mecha-
nisms that describe the interfacial phenomena. Furthermore, sensitivity analysis (e.g., contours),
as demonstrated above, help visualize the inherent trade-off that exists within model parameters
and determine whether the data supports the inclusion of additional transport and thermodynamic

phenomena.
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Fig. 6: Residual squared contours comparing the hydraulic permeability and solute permeability coefficient for diafil-
tration experiments. Two different models (with concentration polarization & without concentration polarization)
and two data set variations (data with an inline conductivity sensor & data encompassing only the initial and final
in-situ retentate measurements) are evaluated. The model used to generate the contours of panel A includes concen-
tration polarization with the inline conductivity probe measurements. The residual squared contours of panel B were
calculated using a reduced data set which excludes the semi-continuous retentate data. Panel C contours evaluate

model in which the inline conductivity measurements were used yet concentration polarization is not accounted for.
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5. Conclusions

Within this study, we demonstrate that a diafiltration apparatus, designed to modulate the
stirred cell concentration over the course of an experiment, can overcome many of the limitations
that are inherent to filtration experiments. The incorporation of an inline conductivity probe pro-
vides key information on the path taken by the retentate concentration, in turn identifying a unique
reflection coefficient and differentiating between rejection-based and adsorption-based removal pro-
cesses. Moreover, the coupling of data analytics and instrumentation led to the identification of
governing membrane parameters five times more quickly than traditional techniques. The frame-
work presented within this study will help differentiate the transport mechanisms that govern
membrane separations, ultimately providing fundamental insight on how molecular level changes
impact macroscopic system properties. The current framework uses transport coefficients that are
not concentration dependent. However, future extensions of the apparatus will seek to study trans-
port through membranes that exhibit explicit concentration dependent properties. As the device
detailed in this effort is extended to study other membrane systems, two situations may arise. First,
several candidate models capable of detailing transport and interfacial phenomena through a partic-
ular membrane may exist but there is ambiguity regarding which model best describes the system.
In this instance, a set of experiments can be designed by applying model discrimination criteria from
MBDoE. By being able to discriminate between the series of candidate models, researchers can gain
insights into which molecular characteristics should be modified to enhance membrane performance.
Alternatively, models that capture the concentration-dependent behavior of a system may not exist.
In this case, the framework would need to be modified. For example, transport parameters could
be regressed for the individual permeate vials. These vial-specific parameters can be presented as a
function of the average solute concentration within the stirred cell, which is measured during sam-
ple collection using the inline conductivity probe. This analysis provides concentration dependent
parameters that can be fit to complex relationships and related to specific membrane properties
(e.g., surface charge). When functionalized with specific ligands (e.g., diamines), membranes have
been shown to exhibit concentration dependent transport properties [55, 56]. Future developments
will focus on studying ligand solute interactions within molecularly engineered membranes, thereby
elucidating the relationship between the solute-membrane interaction strength and corresponding

transport mechanism.
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Notation

Am

AP

Cd

Cd

cf

Ch

Cy

Cy

Cin,

osmotic pressure

applied pressure

kinematic viscosity of the solvent
density of the solution

density of the solution

thermodynamic reflection coefficient

area of the membrane

area of the membrane

solute permeability coefficient

diameter of the stirred cell

concentration in the feed solution
concentration in the feed solution

dynamic concentration in the feed solution
dynamic concentration within hold-up volume
dynamic concentration in the sample vial
dynamic concentration in the sample vial

dynamic concentration at the feed-side solution-membrane interface

diffusion coefficient of the solute in the solvent
solute flux across the membrane

water flux across the membrane
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bar

bar

cm? - 571
g-cm™3
g-cm3
dimensionless
cm?

cm?

cm - st

cm

pmol - cm ™3, mM
pmol - cm ™3, mM
pmol - cm ™3, mM
pmol - cm ™3, mM
pmol - cm ™3, mM
pmol - cm™2, mM
pmol - cm~3, mM
cm? - g71

pmol - cm™2. 571
cm - s7!
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k mass transfer coefficient of interest
L, hydraulic permeability coefficient
my mass of the diafiltrate reservoir

my mass of the diafiltrate reservoir

my mass of the filtration cell

my mass of the filtration cell

mp mass of solution in holdup

mp mass of solution in holdup

My mass of the sample vial

My mass of the sample vial

N number of measurements for a vial
n number of dissolved species

R gas constant

s precision for different measurements
T temperature

v average velocity within the stirred cell
w weight for residual squared
Acknowledgments

cm - S

cm - bar~! - g7!

g

dimensionless
dimensionless

cm?- bar -pmol - K1
g or mM

K

—1

cme- S

g~ 2 or mM 2
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S1. Model Derivation

Note that Fig. 1, Eq. (1), etc. refer to elements of the main text. Fig. S1, Eq. (S1), etc. are unique to
the supplementary information.

In order to infer the three governing parameters in Eqgs. (1) and (2), we conduct mass and solute
balances around three control volumes within Fig. 1, the diafiltrate reservoir, the stirred cell, and the
permeate. By assuming Fig. 1 represents a closed system, where the solution density is invariant to the
salt concentration, the mass exiting the diafiltrate reservoir must be equal to the mass of water permeating
through the membrane, Eq. (S1).

dmy

5 = Amp (S1)

where mg is the mass of the diafiltrate reservoir, A,, is the membrane area and p is the density of the
solution. As the diafiltrate concentration is defined before the experiment begins and nothing enters the
diafiltrate reservoir, the diafiltrate concentration remains constant during each experiment, Eq. (S2).
dc
d—td =0 (S2)
Within our second control volume, the stirred cell, we enforce a constant volume system, i.e., Eq. (S3),
by experimentally ensuring the volumetric flow rate of diafiltrate into the stirred cell is equal to the flow

rate of the permeate across the membrane.

dm f
dt

The solute within the stirred cell is modeled by finding the difference between the solute entering (i.e.,

=0 (S3)

from the diafiltrate) and the solute transported across the membrane, Eq. (S4). The left hand side of Eq.
(S4) can be simplified by applying the product rule and substituting in Eq. (S3). This provides Eq. (5)

which describes the changing concentration within the stirred cell.

d(cymy)

= Amp(Juca = J) (S4)

Lcorresponding author: wphillip@nd.edu
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d(cfmf) o dCf dmf
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dey — Amp
TR

(S5)

()

The final control volume encompasses the hold up volume, the transfer tube, and the scintillation vial.

Equation (S6) states the permeate mass in this control volume remains constant during each experiment.

dmh

=0
dt

(S6)

The amount of solute in the hold-up volume is provided by the difference of the solute transported

through the membrane and the solute collected within the scintillation vial, Eq. (S7). Substituting Eq. (7)

into Eq. (S7) yields Eq. (6).

d(chmh) dm,
= — Aapds —

dt Pls = =g cn

dmy, dmy

= —— = A

dt dt mpJu

dey, o Amp

& g )

(S7)

(7)

(6)

The time dependent concentration of the scintillation vial is expressed by Eq. (8). As described previously,

the product rule, Eq. (S8) is used to derive Eq. (S9) which captures the changing vial concentration.

d(com,)  dm,

= :A
i o Ch mPJwCh
d(cymy) o d& ‘e dm,,
ac U dt Yodt
dey d -
o _dmaleo=cn) _ 5 (e

dt — dt My
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S2. Supplementary Figures
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Fig. S1: The calibration curve used to convert conductivity measurements into the corresponding KCI concentration. The
conductivity was calculated using, C = GAV 1, the relationship between the conductivity probe cell constant (G = 0.42
cm™1), the peak to peak applied current, (A = 1 mA), and the peak to peak differential voltage drop, V.
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Fig. S2: Panel A presents a filtration experiment run at 40% recovery. The lower recovery allows the semi-continuous monitoring
of the retentate with the inline conductivity probe (purple squares). Mass balance calculations (green circles) corroborate the
conductivity measurements. Panel B presents the retentate concentration data, predicted by mass calculations (green circles), of
a filtration experiment run at 60% recovery. The inline conductivity probe was not used as the high percent recovery decreased
the volume of solution in the stirred cell below the sensor. Panel C presents information for a diafiltration experiment. The
retentate concentration (purple squares) measured by the inline conductivity probe agrees with the the retentate concentration
predicted from mass balance calculations (green circles). For filtration experiments, the calculated retentate concentration
values were obtained by subtracting the total moles of solute in the permeate from the initial feed value and adjusting the
stirred cell volume to account for the mass of solution in the permeate. Within diafiltration experiments, the stirred cell volume
was kept constant. The change in solute within the stirred cell is calculated as the difference from the entering diafiltrate solute
and exiting permeate solute. To calculate the new retentate concentration, the adjusted stirred cell solute amount is divided

by the total volume.
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Table S1: The time required to characterize a membrane over the phase space of interest (i.e., 5 mM - 80 mM) for filtration
and diafiltration experiments are compared. Approximately 5 mL of DI water were run through the membranes before each
experiment. Filtration experiments were run at 30% - 40% recovery with the inline conductivity probe; a total of 9 samples
were collected from each experiment. Within the diafiltration experiments, an 80 mM diafiltrate concentration was used and a
total of 13 samples were collected. The ICP-OES preparation and run time calculations were determined from the number of
samples collected within the experiment. The analysis conducted consists of mass balances to ensure that all the solute entering
the stirred cell was accounted for within the final retentate and permeate samples. While one diafiltration experiment covers
the entire concentration range of interest, it would require approximately 10 filtration experiments to obtain an equal amount

of information.

Filtration and Diafiltration Time Comparison

Filtration Diafiltration

Avg. Samples Collected: - 9 13
Avg. Permeated Mass: gram 3.8 10.8
Experimental Set-up Time: minute 20 20
Avg. Experiment Run Time: minute 40 213
Membrane Rinse/Wash: minute 60 60
Data Analysis (ICP) Prep. Time: minute 36 52
ICP Run Time: minute 67 79
Long Hand Analysis/Balances: minute 60 60
Experimental Time: minute 283 484
Phase Space Consideration: experiment 10 1
Total Time: minute 2830 484
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Fig. S3: Residual squared contours comparing the reflection coefficient and hydraulic permeability for diafiltration experiments.
Two different models (with concentration polarization & without concentration polarization) and two data set variations (data
with an inline conductivity sensor & data encompassing only the initial and final in-situ retentate measurements) are evaluated.
The model used to generate the contours of panel A includes concentration polarization phenomena with the inline conductivity
probe measurements. The residual squared contours of panel B uses a reduced data set which excludes the semi-continuous
retentate data. Panel C contours evaluate a separate model in which the inline conductivity measurements are used yet
concentration polarization is not accounted for. The contours generated in panel D use the reduced data set and neglect

concentration polarization.
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Fig. S4: Residual squared contours comparing the hydraulic permeability and solute permeability coefficient for diafiltration
experiments. Two different models (with concentration polarization & without concentration polarization) and two data set
variations (data with an inline conductivity sensor & data encompassing only the initial and final in-situ retentate measurements)
are evaluated. The model used to generate the contours of panel A includes concentration polarization phenomena with the
inline conductivity probe measurements. The residual squared contours of panel B uses a reduced data set which excludes the
semi-continuous retentate data. Panel C contours evaluate a separate model in which the inline conductivity measurements are

used yet concentration polarization is not accounted for. The contours generated in panel D use the reduced data set and do

not incorporate concentration polarization.
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Fig. S5: Residual squared contours comparing the hydraulic permeability and reflection coefficient for of filtration experiments.
Two different models (with concentration polarization & without concentration polarization) and two data set variations (data
with an inline conductivity sensor & data encompassing only the initial and final in-situ retentate measurements) are evaluated.
The model used to generate the contours of panel A includes concentration polarization phenomena with the inline conductivity
probe measurements. The residual squared contours of panel B uses a reduced data set which excludes the semi-continuous
retentate data. Panel C contours evaluate a separate model in which the inline conductivity measurements are used yet
concentration polarization is not accounted for. The contours generated in panel D use the reduced data set and ignore

concentration polarization.
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Fig. S6: Residual squared contours comparing the hydraulic permeability and solute permeability coefficient for of filtration
experiments. Two different models (with concentration polarization & without concentration polarization) and two data set
variations (data with an inline conductivity sensor & data encompassing only the initial and final in-situ retentate measurements)
are evaluated. The model used to generate the contours of panel A includes concentration polarization phenomena with the
inline conductivity probe measurements. The residual squared contours of panel B uses a reduced data set which excludes the
semi-continuous retentate data. Panel C contours evaluate a separate model in which the inline conductivity measurements
are used yet concentration polarization is not accounted for. The contours generated in panel D use the reduced data set and

neglect concentration polarization.
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Fig. S7: Filtration and diafiltration experiments were modeled under varying initial feed or diafiltrate concentrations and
applied pressures to determine the conditions necessary to differentiate reflection coefficients with a precision equal to 0.1.
Panel A models a filtration experiment where the initial feed concentration and applied pressure are varied. Panels B, C, and
D vary the applied pressure and diafiltrate concentration of a diafiltration experiment run with an initial feed concentration of
5mM. Panels B, C, and D correspond to the data gathered after the 15¢, 5" and 10*" vials, respectively. The contours are
generated using the Ly, B, o values from Membrane A & M1 presented in Table 2. The contours represent the difference in
model predictions via equations (7),(5), and (S9) from two different sigma values (i.e., o = 0.9 and o = 1) normalized by the
precision of the measuring instruments. Thus the contour lines are dimensionless. The shaded area in the bottom right of the
graphs correspond to non-physical systems in which the flux is equal to or less than zero (i.e., the osmotic pressure is equal to

or greater than the applied pressure.)
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