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Abstract

Improved characterization techniques, which address knowledge gaps related to the interfacial

processes that govern solute-solute selectivity and the performance of membranes in complex multi-

component feed streams, are necessary to advance membrane processes. In this study, guided by

the tools of data science, a diafiltration apparatus is developed to inform material and process

design by rapidly characterizing membrane performance over a broad range of feed solution compo-

sitions. The apparatus doses a fixed-concentration diafiltrate solution into a stirred cell to achieve

a predetermined change in the retentate concentration. Here, using an 80 mM potassium chlo-

ride (KCl) diafiltrate solution, it was shown that membrane performance, within a 5 mM to 80

mM KCl phase space, could be probed five times more quickly with one diafiltration experiment

(8 hours) than with an experimental campaign using traditional filtration processes (47 hours).

Additionally, the synergy between data analytics and instrumentation led to the incorporation of

an inline conductivity probe that monitored the real-time retentate concentration. This additional

information provided key insights to distinguish between the mechanisms that govern membrane

separations (e.g., discriminating between adsorption or rejection based separations) and allowed

for the membrane transport coefficients to be determined accurately. Ultimately, incorporating the

appropriate governing phenomena identified a single set of self consistent parameters for commercial

NF90 membranes.

Highlights:

• Synergy between data analytics and instrumentation enables innovative device design.
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• DATA allows for the evaluation of membrane performance over a wide concentration range.

• Diafiltration experiments run five times faster than traditional experiments.

• An inline conductivity probe directly measures the retentate concentration.

• Modeling the appropriate physics identifies a single set of self-consistent parameters.

Keywords: diafiltration, nanofiltration, parameter estimation, high throughput experimentation,

model calibration
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Graphical Abstract

1. Introduction

Membrane processes have advanced separations that are critical to modern society (e.g., supple-

menting freshwater resources through seawater desalination [1], isolating and purifying therapeutic

medicines [2, 3], and enriching nitrogen from air [4, 5]). These demonstrated successes, in con-

junction with the continued demand for energy-efficient and sustainable unit operations, drives the5

development of higher performance membranes. A promising area for growth resides in the ability to

tailor the solute-solute selectivity of membranes such that they are capable of separating molecules

of similar sizes and chemistries [6, 7, 8]. The development of membranes with solute-tailored se-

lectivity will require studying model systems to understand the fundamental thermodynamic and

transport phenomena that govern their separation mechanisms as well as examining the capabili-10
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ties of these mechanisms in the complex multicomponent feed streams that will be encountered in

practice [9].

Recent materials advances toward the development of membranes with solute-tailored selec-

tivities have been directed at precisely controlling nanostructure (e.g., using self-assembled block

copolymers [10, 11], lyotropic liquid crystals [12, 13], metal organic frameworks (MOFs) [14], and15

covalent-organic frameworks (COFs) [15, 16]) and manipulating chemistry to facilitate separations

based on molecular identity rather than steric hindrance. For instance, COF membranes have ex-

emplified the molecular control that can be exerted over the porosity and crystallinity of materials

by carefully selecting polymeric precursors [16]. On the other hand, charge patterned mosaic mem-

branes have been shown to preferentially permeate symmetric monovalent salts due to electrostatic20

interactions between the membrane and dissolved ions [17]. Similarly, Sadeghi et al. demonstrated

that ligand binding effects can be used to tune the selective transport of similarly sized species

through nanopores [18]. More recently, several efforts have focused on mimicking the highly selec-

tive and highly permeable nature of biological channels [19, 20, 21, 22]. In one instance, the growth

of a zirconium based metal organic framework (MOF) within a polyethylene terephthalate mem-25

brane nanochannel modulated monovalent and divalent ion mobilities and consequently imparted

the membrane with high monovalent:divalent ion selectivities [20].

The phenomena underlying the mechanisms of chemically-selective membranes are often based

on multibody interactions and exhibit concentration dependencies [23, 24, 25]. As such, probing

these dependencies can help to elucidate the molecular interactions and mechanisms that affect30

macroscopic transport properties. In turn, this knowledge can inform the design of higher perfor-

mance membranes. As one example, there exists a trade-off between the magnitude of the solute-

membrane affinity and the efficacy of the desired separation mechanism [24, 8]. When attractive

forces are large, the membrane functions like an adsorbent binding the target solute molecules

tightly, which provides minimal flux enhancements. Weak interactions lead to transport properties35

that are similar to those of size-selective filtration membranes. At an optimal, intermediate affinity,

the flux of the target solute can be enhanced dramatically. On the other end of the spectrum, strong

repulsive interactions increase the activation energy at the entrance of the pore and lead to solute

rejection [26, 27]. Distinguishing between this array of potential transport mechanisms requires

new methods that are better able to quantify membrane performance as a function of changing40

feed conditions. Developing these techniques will challenge preconceived hypotheses and dismiss
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skewed results such as the notion that the high separation efficiency of some COF membranes were

governed by rejection rather than adsorptive processes [15].

Improved characterization techniques would also benefit instances where the interaction between

solutes in complex feed streams impact transport mechanisms. In one example, it has been shown45

that the negative rejection of potassium chloride within mixed salt systems increases as a function

of the ionic strength [28]. Additionally, in separations where the pores and solutes are similar in

size, the solutes may compete for entry into the pore [29]. This can lead to a decrease in the

permeation of one species in the presence of a competing solute which possesses a higher affinity

towards the membrane [18]. Intermolecular binding between solutes can also effect the efficiency50

of separations. For example, strong attractive interactions between albumin and a contaminating

D-tryptophan impurity lead to a significant increase in the volume of diafiltrate required to obtain

a product with the desired purity [30]. These examples illustrate how the advances in characteri-

zation of membranes deployed in complex multi-component feed streams, where solute-solute and

solute-membrane interactions convolute the performance otherwise observed within single solute55

experiments, can benefit material and process development. For instance, Ghosh et al. [31, 32]

demonstrated that pulsed sample injection techniques can systematically scan experimental pa-

rameters to identify optimal operating conditions for solute fractionation. This advanced scanning

technique was used to create a complete profile of the observed sieving coefficient as a function of

pH. The trends observed highlighted the dependence of protein conformation and protein dimeri-60

sation on transport phenomena. In turn, this insight reduced the time and resources necessary to

determine process parameters.

The tools of data science can guide the design and optimization of the membrane-based separa-

tion processes [33]. For example, nonlinear parameter estimation is becoming increasingly important

to validate mathematical models and characterize membrane performance in complex environments65

(e.g., mixed electrolyte solutions) [34, 35, 36]. Additionally, the emergence of techniques including

model based design of experiments (MBDoE) enables the design of instruments to better character-

ize the performance of separation devices as a function of solute concentration and in complex feed

streams. As such, these techniques can calculate the optimal conditions under which experiments

must be run [37]. These results can be used to discriminate between alternative models [38, 39, 40]70

and provide key insight into how molecular level changes impact macroscopic system performance.

In recent applications, MBDoE was used to propose a sequence of experiments that minimized the
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experimental time and the resources required while improving the precision of parameter estimates

for electrodialysis model identification [41]. Similarly, it has been shown that MBDoE can design

one set of experiments to simultaneously improve parameter estimation as well as discrimiante be-75

tween competing kinetic models [42]. In order to use these tools to their full potential, we require

models, based on first principles, and the ability to produce large amounts of data in an energy and

time efficient way.

Traditional experimental campaigns with dead end filtration cells and cross flow devices are

time consuming when used to elucidate membrane performance as a function of concentration.80

Furthermore, they typically infer the retentate concentration from the permeate concentration,

implicitly assuming that solutes do not adsorb onto the membrane. Additionally, by running at near

zero percent recoveries, they fail to capture the finite recoveries that commercial processes operate

under. As a result, many experiments are necessary in order to capture membrane performance as

the feed concentration changes over the course of an experiment. To exacerbate these limitations,85

traditional analyses, ones in which the local slope is linearly regressed from limited data sets, are

unable to capture nonlinear trends well. These dynamic systems and corresponding time-series data

must be modeled and analyzed with more advanced methods (e.g., differential algebraic equations,

nonlinear parameter estimation, dynamic optimization) [43, 44].

In this study, guided by the tools of data science, limitations of current membrane characteriza-90

tion methods are addressed through the design of a diafiltration apparatus. A dead end stirred cell

is modified to receive a high concentration diafiltrate such that high-throughput membrane char-

acterization can be conducted over a broad range of concentrations. To begin, the rate at which

an expanded range of concentrations can be explored by diafiltration when compared to traditional

filtration techniques is examined. Then, data analytics are utilized to identify the experiments that95

are necessary to accurately regress characteristic membrane parameters in a lumped parameter

model. This analysis is followed by a discussion on how data analytics can provide insight to guide

the design of the experimental apparatus. Specifically, the addition of an inline conductivity probe

that can monitor the real time trajectory of the solute concentration from the initial feed solution

to the final retentate solution is detailed. The discussion finishes by evaluating how the proposed100

statistical frameworks can be used to distinguish between competing models and suggests that the

diafiltration device can serve as a foundation to probe the concentration dependencies of chemically

selective membranes, closing the knowledge gaps that exists between filtration experiments.
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2. Mathematical Model

Fig. 1: A schematic of the experimental apparatus. The diafiltrate reservoir and stirred cell are loaded with solutions

of known initial concentrations (i.e., cf (0) for the feed and cd in the diafiltrate). After the apparatus is initialized, an

applied pressure, P, feeds the diafiltrate into the stirred cell at a flow rate equal to the flow rate of permeate into the

scintillation vial. The apparatus continuously monitors permeate mass (mv) by using a scintillation vial resting on

top of a balance. The concentrations of dissolved ions in the permeate are determined through inductively coupled

plasma optical emission spectroscopy while the retentate concentration is monitored through an inline conductivity

probe. The pressure is recorded using a digital pressure transducer attached to a gas reservoir.

The diafiltration apparatus presented in Fig. 1 allows for membrane characterization under105

changing retentate concentrations. In this study, a steady ramp in the retentate concentration is

examined but a steady decrease in concentration is equally feasible. At the start of the experiment,

the concentration in the stirred cell is low, ≈5 mM, and increases as the diafiltrate tank doses a high

concentration salt solution into the cell at a rate equal to the volumetric flow rate of the permeate

leaving. The volume under the membrane, where the permeate is collected, is termed the hold up110

volume and is modeled as a perfectly mixed reservoir. The tube connecting the stirred cell to the

scintillation vial is assumed to act as a plug flow element where the salt solution is well mixed in

the radial direction. An inline conductivity probe measures the retentate concentration within the

stirred cell and a balance records the time dependent weight of the scintillation vial. The permeate

within the scintillation vials are assumed to be well mixed and their concentration can be measured115

after the experiment.
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A lumped parameter approach [45] is used to develop a physics-based mathematical model

that captures the transport of solute and solvent within the experimental apparatus and through

the membrane. The lumped parameter model used here assumes that diffusion is the dominant

transport mechanism resulting in the solute flux being proportional to its concentration difference120

across the membrane. Additionally, it further assumes the feed side concentration is well mixed and

changes more slowly than the rate the membrane responds (i.e., a pseudo steady state approximation

is made when describing the solute flux). In previous works, this lumped parameter approach was

combined with steady-state or time difference algebraic models for membrane parameter estimation

[46, 47]. In contrast, this work develops a dynamic (e.g., differential algebraic equation) modeling125

framework that fully exploits the information contained in the collected time-series data.

The volumetric flux of water, Jw, and the molar flux of the solute, Js, across the membrane can

be expressed by Eqs. (1) and (2), respectively.

Jw = Lp(∆P − σ∆π)

= Lp[∆P − σnRT (cin − ch)]
(1)

Js = B(cin − ch) (2)

Here, we seek to estimate three model parameters, the hydraulic permeability, Lp, the solute

permeability coefficient, B, and the thermodynamic reflection coefficient, σ, from experimental130

data. Mathematically, Eq. (1) makes it clear that to deconvolute Lp and σ, experiments at

different applied pressures, ∆P , or experiments with different concentrations across the membrane,

cin − ch, are necessary. Diafiltration easily satisfies the latter requirement. Within the above

equations, ∆π = nRT (cin− ch) is the osmotic pressure, which, assuming the van’t Hoff equation, is

expressed in terms of n the number of dissolved species formed by the solute(s), R the gas constant,135

T the temperature, cin the feed-side concentration at the solution-membrane interface, and ch the

concentration in the holdup volume, vh. The difference in concentration across the membrane is

represented by cin− ch, where cin is related to the bulk feed concentration, cf , by a thin film model

that accounts for concentration polarization, Eqs. (3) and (4) [48].

cin − ch
cf − ch

= exp

(
Jw
k

)
⇔ cin = (cf − ch) exp

(
Jw
k

)
+ ch (3)
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ν
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D
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⇔ k = 0.23
(v0)0.57D0.67

ν0.24b0.43
(4)

where k is the mass transfer coefficient, b is the stirred cell diameter, D is the diffusion coefficient140

of the solute in water, ν is the kinematic viscosity of water, and v0 is the average velocity within

the system (i.e., the product between the stir bar angular velocity and radius).

In order to infer the three governing parameters in equation (1) and (2), we conduct mass and

solute balances around three control volumes within Fig. 1, the diafiltrate reservoir, the stirred

cell, and the permeate. Consequently, it is shown in the supporting information that the following145

ordinary differential equations (ODEs) describe the state of the system, equations (5)-(8).

dcf
dt

=
Amρ

mf
(Jwcd − Js) (5)

dch
dt

=
Amρ

mh
(Js − chJw) (6)

dmv

dt
= −dmd

dt
= AmρJw (7)

d(cvmv)

dt
=
dmv

dt
ch = AmρJwch (8)

where Am is the membrane area, ρ is the density of the solution, mf is the mass of the filtration

cell, cd is the diafiltrate concentration, mh is the mass of solution in holdup, mvis the mass of the

sample vial, md is the mass of the diafiltrate reservoir and cv is the concentration in the sample

vial.150

Adding concentration polarization, which is modeled with the algebraic Eq. (3), to the ODEs

above, forms a system of differential algebraic equations (DAEs) to describe the dynamic process.

Both the ODE and DAE models are numerically integrated in MATLAB using ode15s to simulate

the diafiltration experiments. Specially, cv ·mv is selected as a combined state variable for better

initialization and to avoid division by zero. For the initial conditions of the first vial, cf is set as155

the retentate concentration measurement at the beginning of the experiment, ch is approximated at

80% of the first vial concentration, mv is approximated as the mass of one drop of solution (≈0.05

g), and cv · mv is set as zero. To simulate vial swaps, the integrator is stopped and the initial
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conditions are updated: cf , ch and cv ·mv are set as the final condition of the previous vial and mv

is reset to the mass of one drop. Equation (8) is integrated instead of Eq. (S9) because cv is not160

defined when mv ≈ 0 (empty vial).

3. Materials and Methods

3.1. Materials and Equipment

An Amicon 8010 stirred cell (Amicon, Burlington, Massachusetts) was used in all experiments.

NF90 membranes supplied by DuPont (DuPont, Wilmington, Delaware) were used for all of the165

experiments. Pressure data was monitored using an Omega PX409 USBH pressure transducer

(Omega, Norwalk, Connecticut). Mass data was measured by an OHAUS Adventure Series Balance

(OHAUS, Parsippany, New Jersey). Conductivity data was gathered from an LFS 1107 conductivity

sensor (Innovative Sensor Technology, Las Vegas, Nevada). A Keithly 6221 DC and AC current

source function generator (Keithly, Cleveland, Ohio) was used to generate a 1 mA peak to peak170

sinusoidal AC current. The voltage drop across the conductivity sensor electrodes was measured

with a GwInStek GDS 1054B oscilloscope (GwInStek, Montclair, California). The information was

converted to a conductivity measurement and used in further analyses. An in-house MATLAB

code was used to synchronize and record mass, conductivity and pressure data. All salt solutions

were prepared using deionized water (DI water) that was supplied by a Millipore water purification175

system (Milli Q Advantage A10, Milli Q, MA). Potassium chloride (KCl), and nitric acid (HNO3)

were purchased from Sigma Aldrich (Aldrich, St. Louis, Missouri) and had purities greater than

99.0% and 70% respectively.

3.2. Hydraulic Permeability Measurements

The hydraulic permeabilities of the NF90 membranes were determined by placing the flat sheet180

membrane into an Amicon stirred cell. The stirred cell volume above the membrane was filled with

10 mL of DI water. Nitrogen gas was used to apply pressures between 30 psi and 60 psi. The

water permeated through the membrane was collected in scintillation vials that rested on top of the

OHAUS balance. A computer logged the mass and pressure data over time. This data was used to

calculate the hydraulic permeability of the membrane.185
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3.3. Filtration Experiments

Filtration experiments were carried out in a 10 mL Amicon stirred cell. The stirred cell was

loaded with 12 mL of feed solution at predetermined salt concentration. The stirred cell was placed

on a stir plate and stirred (at atmospheric pressure) for 10 minutes to allow ion adsorption onto

the membrane and exposed surfaces of the stirred cell to take place. 1 mL of the feed solution190

was subsequently removed from the stirred cell and stored in a scintillation vial to be analyzed by

Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). The conductivity probe

was turned on and nitrogen gas was used to apply a pressure of 60 psi to the stirred cell. A pressure

transducer, in series with the cell, was used to monitor the applied pressure and a balance recorded

the mass of permeate in the scintillation vials. At each 0.5 mL of permeate, the scintillation vials195

were replaced, sealed and stored for further analysis. The mass, pressure, and conductivity readings

of the three instruments were synchronized by a MATLAB code that recorded the time dependent

data. At the end of the experiment, the retentate and the solution left within the tube between the

stirred cell and the scintillation vial were collected. All closed sample vials were stored until they

were prepared for analysis by ICP-OES. After each experiment, the conductivity probe was cleaned200

with DI water and subsequently stored in DI water until the next experiment was conducted.

3.4. Diafiltration Experiments

Diafiltration experiments were conducted within a modified stirred cell apparatus (Fig. 1). The

diafiltrate tank was filled with a high concentration salt solution. A portion of this solution was

collected and stored within a scintillation vial for further analysis by ICP-OES. A 10 mL Amicon205

stirred cell was prepared with 11 mL of a salt solution. The solution was stirred for 10 minutes

to allow any ion adsorption onto the membrane to occur. 1 mL of the resulting feed solution was

collected and stored.

The mathematical analysis of the data was conducted under the assumption that the flow rate

of diafiltrate into the stirred cell was equal to the flow rate of permeate out of the stirred cell.210

To achieve this condition experimentally, the volume of air between the diafiltrate tank and the

stirred cell needs to compress into the headspace of the stirred cell. We cannot start the experiment

from atmospheric pressure because, once increased to the operating pressure, there are not enough

gas molecules within the tubing to occupy the headspace of the stirred cell (i.e., the diafiltrate

would flood the stirred cell in an uncontrolled manner). For the current experimental system,215
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the volume of air between the tank and stirred cell is 35 mL and the headspace volume is 7 mL.

Assuming an ideal gas, the pressure of the system immediately before starting the experiment,

must be 1/6 of the operating pressure to minimize overflow of diafiltrate into the stirred cell. To

pressurize the system , valve 1 (V1) was opened, valve 2 (V2) was opened, and valve 3 (V3) was

closed. The tank and stirred cell were pressurized to 1/6 of the operating pressure. Valve 1 was left220

open, valve 2 was closed and valve 3 was opened. The system was then subject to the operating

pressure of 60 psi. This pressure pushed the diafiltrate solution up into the tubing and towards

the stirred cell. The small bolus of diafiltrate that enters the stirred cell, termed the overflow, is

measured to be the difference in mass between the initial feed solution (before start-up) and the

retentate (end of experiment after shut-down). With known feed and diafiltrate concentrations,225

this information is used to calculate the concentration of the feed at the start of the experiment.

The initial concentration is also corroborated by the measurement taken by the inline conductivity

probe.

Immediately after increasing the pressure to the operating pressure, the mass, retentate con-

ductivity and pressure are synchronized and recorded at five second intervals. Scintillation vials230

that rest on top of a balance are used to collect permeate samples at 1 mL intervals. A total of 10

scintillation vials are collected throughout the course of the experiment. After the collection of the

last permeate vial, valve 1 is closed and the pressure relief valve is opened, releasing the pressure of

the diafiltrate tank and causing the compressed air in the headspace of the stirred cell to expand,

pushing the diafiltrate solution back into the diafiltrate reservoir. The retentate and the solution in235

the tubing between the stirred cell and the scintillation vial were collected in separate scintillation

vials. The scintillation vials were closed and stored until they could be analyzed on ICP-OES.

The conductivity probe was turned off, rinsed with DI water and stored in DI water until the next

experiment was conducted.

3.5. ICP-OES Sample Preparation240

The concentration of the salt within all collected samples was analyzed by ICP-OES (Perkin

Elmer Optima 8000). All experimental samples were prepared with calibrated micropipettes. Fil-

tration experiment samples were prepared by diluting 0.100 mL of sample with 5.00 mL of 3%

nitric acid. The samples were labeled and stored in falcon tubes. The feed and permeate samples of

diafiltration experiments were prepared analogously to filtration experiments samples. Due to their245
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higher concentrations, the diafiltrate and retentate samples from diafiltration experiments were

prepared by diluting 0.025 mL of sample with 5.00 mL of 3% nitric acid. We note that all samples

were interpolated within calibration curves in which the correlation coefficients were greater than

0.995.

3.6. Design and Retrofitting of Inline Conductivity Probe250

The stirred cell was retrofit with an LFS 1107 Conductivity Sensor. The six leads were soldered

and connected to 28-gauge space saver wire (McMaster Carr, Elmhurst, Illinois). The bare metal

leads were potted with DP420 Scoth-Weld Epoxy Adhesive (3M, Saint Paul, Minnesota). The leads

of the conductivity probe were threaded through the inlet of the Amicon stirred cell. The wires

were then maneuvered through one end of a 1/4 inch Swagelok compression union tee (Swagelok,255

Solon, Ohio). The current wires were connected to the Keithly 6221 DC and AC current source

which generated a 1 mA peak to peak sine wave. The voltage wires of the conductivity probe were

connected to the GwInStek GDS 1054B oscilloscope. Time dependent voltage measurements were

recorded throughout the course of the experiment. The conductivity of the retentate solution was

determined from the current, voltage and cell constant data.260

3.7. Calibration of Inline Conductivity Probe

The LFS 1107 conductivity sensor was calibrated with 7 KCl stock solutions spaced between 0

mM and 100 mM. The probe was submerged into the stock solution, given 5 seconds to stabilize and

the amplitude of the voltage drop was recorded from the GwInStek GDS 1054B oscilloscope. The

probe was rinsed with DI water after each measurement. The resulting data were linearly regressed265

to produce a calibration curve that has a correlation coefficients greater than 0.99 (Fig. S1). The

calibration curve was used to relate the conductivity readings to the internal concentration of the

stirred cell.

4. Results and Discussion

4.1. Experimental filtration data sets270

A representative set of filtration data is presented in Fig. 2. The mass of the permeate is plotted

versus time in Fig. 2A. Samples are collected in scintillation vials at 0.5 mL intervals. As such,

the sudden drops in mass correspond to a switch of the collection vial. The solution within these
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vials is then prepared for analysis by ICP-OES. As highlighted within Fig. 2B, the concentration

of salt within the permeate samples changes slightly. Provided that the initial feed concentration275

is known and assuming no salt adsorbs to the membrane, a mass balance can be used to infer the

internal concentration of the stirred cell. The measurements from the conductivity sensor, purple

squares in Fig. 2B, corroborate the concentration of dissolved salt from these calculations (Fig.

S2A). The agreement between the measured data points and calculations confirm that the mass

balance on potassium chloride closes. Using the retentate and permeate concentrations from each280

vial a percent rejection of 70% is calculated from the experimental results, which is consistent with

the value reported in the literature [49].

Although this approach is more useful than operating at zero percent recovery, filtration experi-

ments are still limited because they rely on the rejection of solutes to drive changes in the retentate

concentration. Even for solutes that are highly rejected, this approach leads to modest variations285

in the solute concentration. As solvent permeates through the membrane, the concentration of the

rejected species within the feed begins to increase. Assuming 100% percent rejection, the concen-

tration of the solute will double when the solvent volume is reduced by half (i.e., 50% recovery).

Within Fig. 2A, the experiment is run at approximately 40% recovery and the retentate concen-

tration changes 2-3 mM. Fig. S2B presents that data for an experiment, run at 60% recovery. A290

similar change in concentration is observed in this experimental data but it highlights an additional

issue with filtration, the high recovery experiments are incompatible with the inline conductivity

sensor, which must be submerged to be utilized. Consequently, many filtration experiments are

necessary in order to characterize membrane properties over large concentration ranges.

4.2. One diafiltration experiment generates knowledge five times faster than filtration experiments295

The diafiltration apparatus addresses the drawbacks of filtration experiments by dosing a con-

centrated diafiltrate solution into the stirred cell in a controlled manner, instead of relying on the

rejection of solutes to drive an increase in the retentate concentration. During the operation of the

apparatus, the volumetric flux of diafiltrate into the stirred cell is equal to the volumetric flux of

permeate out. As such, the maximum retentate concentration that can be achieved may be esti-300

mated as the concentration of the diafiltrate divided by the sieving coefficient (cr,max = cD · S−1).

Assuming that the osmotic pressure of the feed solution and concentration polarization are negligi-

ble, the sieving coefficient can be related to the model parameters through a series of substitutions,
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Fig. 2: Mass versus time data points from filtration (A) and diafiltration (C) experiments are compared to compu-

tational predictions, represented by the solid lines. Mass predictions are obtained from Eqs. (1) and (S9) utilizing

the membrane A model A parameters from Tables 1 and 2. Experimental retentate concentrations, measured by a

conductivity probe, and permeate vial concentrations, measured using inductively coupled plasma optical emission

spectroscopy, for filtration (B) and diafiltration (D) experiments are plotted against computational predictions from

equations (5) and (6), respectively. The red triangles within panels B and D, calculated using Eq. (S9), correspond

to discrete predicted vial concentrations while the red line represents the continuous holdup concentration.
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Eq. (9).

S =
cp
cf

=
Js
Jwcf

=
B

Lp∆P
(1− S) ⇔ S =

B
Lp∆P

1 + B
Lp∆P

(9)

In practice, the experiment may be limited by the solubility of the solute or the osmotic pressure305

of the feed solution. Nevertheless, the estimate is useful as it allows the experimental operations to

be tailored such that the retentate concentration data are spaced evenly over a specified region of

interest.

The purple squares within Fig. 2D correspond to the concentration of the retentate over the

course of a diafiltration experiment. By starting at a low feed concentration (i.e., 10 mM) and310

dosing in a high concentration diafiltrate (i.e., 80 mM) the data points are spaced evenly over a 60

mM range. An effect of this wider range of retentate concentrations manifests in Fig. 2C, which

presents the experimental permeate mass vs time data. In particular, the slope of the mass vs

time data decreases throughout the experiment due to the increase in the osmotic pressure of the

retentate. The sudden drops in the mass data correspond to a vial switch where permeate samples315

are collected for further analysis by ICP-OES. The permeate concentrations are presented in Fig.

2D as blue squares. Over the wider range of concentrations examined, the percent rejection for

each vial is still consistent with the reported rejection of 70% [49].

A critical benefit of the diafiltration apparatus is captured graphically in Fig. 3. One diafiltration

experiment can provide an equal or greater amount of information five times more quickly than320

several filtration experiments. Table S1 presents a full comparison of the time requirements for

a representative set of filtration and diafiltration experiments. By combining high-throughput

data collection and robust computational analytics, DATA is well suited to help address critical

knowledge gaps related to the interfacial phenomena and multi-component interactions that govern

membrane separation processes [9].325

4.3. Computational modeling regresses governing membrane parameters

4.3.1. Computational predictions match experimental results

The experimental mass, permeate concentration, and retentate concentration data were used

to characterize membrane performance in terms of a model based on lumped parameters, i.e., the

hydraulic permeability, the reflection coefficient, and the solute permeability coefficient. These330

parameters are estimated using weighted nonlinear regression shown in Eq. (10). Here each set of
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Fig. 3: The phase space of retentate concentrations and permeate concentrations explored by filtration and diafil-

tration experiments. Every color corresponds to a unique experiment. Filtration experiments are represented by

triangular data points and diafiltration experiments are represented by square data points. Diafiltration experiments

were conducted at an initial feed concentration of 15 mM KCl and a diafiltrate concentration of 80 mM KCl. The grey

squares present diafiltration experiments for Membrane A. The brown and pink squares correspond to diafiltration

experiments for Membrane D. Five filtration experiments were run at varying feed concentration ranging from 1 mM

KCl to 75 mM KCl. The low concentration filtration experiments conducted at 1 mM (green triangles) and 5 mM

(purple triangles) KCl each include 6 data points.

data (i.e., mass, permeate, retentate) were normalized by the measurement precision (i.e., smv =

0.01 g, scv,i = 3.0% · cv,i, scf ,i = 0.3% · cf,i) squared and the total number of measurements in the

vial (i.e., Nmv,i is 70 to 500, Ncv,i is 1, Ncf ,i is 0 (omitted) to 3, depending on the experiment).

For example, the mass measurement mv,i was normalized by the weight wmv,i = (s2
mv
Nmv,i)

−1.335

θ̂ = arg min
θ

∑
i

wmv,i (mv,i − m̂v,i)
2

+
∑
j

wcv,j (cv,j − ĉv,j)2

+
∑
k

wcf ,k (cf,k − ĉf,k)
2

(10)

The best fit parameters for filtration and diafiltration experiments are reported in Table 1 and 2,

respectively. As discussed below, these values were identified from experimental designs that were

17



informed by an iterative feedback loop between data analytics and instrumentation capabilities.

The solid lines within Fig. 2 represent computational predictions from the fully calibrated model.

The strong agreement between model and experiment in conjunction with the self-consistent nature340

of the transport coefficients demonstrate the utility of integrating statistical analyses and DATA.
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4.3.2. High concentration experiments elucidate the reflection coefficient

Filtration experiments enable the estimation of the solute permeability and hydraulic perme-

ability coefficients yet are incapable of identifying the reflection coefficient. Although the model

predictions in Figs. 2A, 2B match the experimental data well, this is driven entirely by the esti-345

mates of Lp and B. Table 1 shows that while the reflection coefficient estimate is widely dependent

on the data set, the value of the reflection coefficient utilized does not affect the quality of the

computational fit.

The sensitivity analyses in Fig. 4A further demonstrates that the model predictions for the

mass, permeate concentration, and retentate concentration are invariant to large perturbations350

in the reflection coefficient. Computational predictions assuming reflection coefficient values of

0.1, 0.5 and 0.9 resulted in indistinguishable, overlapping curves. Specifically, Fig. 4A displays

the final permeate concentration is 1.1 mM KCl for any reflection coefficient value between 0.1

and 0.9. Likewise, the final retentate concentration only varies by 0.1 mM KCl when the reflection

coefficient is adjusted from 0.1 to 0.9. The log transformed residual squared contours of the hydraulic355

permeability against the reflection coefficient presented in Fig. S5 (i.e., Lp vs. σ) also confirm that

the model is insensitive to the reflection coefficient. These contours were generated using a 2-D grid

search in which predictions are generated for all combinations of the two parameters. For example,

Fig. S5A searches over the Lp and σ parameters while keeping the solute permeability coefficient

constant. Likewise, Fig. S5B searches over Lp and B while keeping σ constant. Subsequently,360

comparing the predictions and experimental data allows for the residual squared error (e.g., for

mass:
∑
i

(mv,i − m̂v,i)
2
) to be calculated. The log transformed residual values are then plotted to

visualize the sensitivity as a function of the parameter estimates. These grid searches are conducted

for each type of data collected (i.e., mass, permeate concentration, and retentate concentration).

The sections of the contour that display a minima correspond to the optimal parameter combination365

that best fits the experimental data. Consequently, the horizontal iso-residual contours in Fig. S5

indicate that, at the optimal hydraulic permeability, any value of the reflection coefficient will

provide an equivalent model fit. This confirms that the filtration experiments are insensitive to

the reflection coefficient. This insensitivity, which makes the reflection coefficient unidentifiable, is

due to the low retentate concentrations within the filtration experiments which produce negligible370

osmotic pressures in Eq. (1). Although no information can be gathered on the reflection coefficient,

filtration experiments are capable of identifying membrane specific solute permeability coefficients
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and hydraulic permeability coefficients as highlighted by the Lp vs. B contours presented in Fig.

S6. The mass residual squared contour predicts the data can be best fit with an Lp value of 4.37 L

· m−2 · h−1 · bar−1 and a solute permeability coefficient value of 0.67 µm · s−1. This information375

is reinforced by the permeate and retentate contours which also display minimum squared residual

values at the aforementioned Lp and B values(Fig. S6).

Diafiltration experiments overcome this limitation related to the osmotic pressure by exploring a

broader concentration range. A sensitivity analysis (Fig. 4B) shows that dynamic model predictions

are sensitive to perturbations in the reflection coefficient. At low retentate concentrations, three380

unique reflection coefficient values provide similar model predictions. Yet, the predictions diverge

from one another once retentate concentrations greater than 40 mM are reached. Ultimately, after

a four hour experiment, if the reflection coefficient of the membrane was equal to 0.1, the retentate

concentration would be 163.5 mM KCl. Conversely, if the membrane reflection coefficient is equal to

0.5 or 0.9, the retentate concentration will be 112.9 mM KCl and 86.5 mM KCl, respectively. These385

differences are best highlighted within the retentate data, yet they are also apparent within the

mass and permeate predictions. The threshold, where the predictions at varied reflection coefficient

values diverge, is determined by the value of the osmotic pressure relative to the applied pressure.

The threshold can be reached by modulating the retentate concentration and applied pressure.

Within filtration experiments, the retentate concentration is controlled by the initial feed concen-390

tration. For diafiltration experiments, the retentate concentration is modulated by the diafiltrate

concentration. The contour maps in Fig. S7 highlight the experimental conditions necessary for

filtration and diafiltration experiments to differentiate among reflection coefficient values that ex-

hibit a 0.1 difference from one another. Specifically, Fig. S7A examines filtration experiment data

while Figs. S7B, S7C, and S7D examine data presented at the end of the 1st, 5th, and 10th vial395

of a diafiltration experiment, respectively. The lower right portion of the graphs shaded in grey

corresponds to systems in which the water flux is equal to or less than zero (i.e., the osmotic

pressure is equal to or greater than the applied pressure). Measurements are not plausible in this

region. The contour lines show the difference in model predictions normalized by the equipment’s

precision. Notably, experimental conditions that generate contour values greater than two generate400

data capable of distinguishing the reflection coefficient differences of 0.1 or greater. The sensitivity

analysis in Fig. S7A highlights the importance of capturing the retentate concentration accurately

as the mass and permeate concentration measurements provide a limited amount of information
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when identifying the true value of the reflection coefficient in filtration experiments. This is not the

case for diafiltration experiments. After collecting the 5th permeate vial, any experiment with a405

feed concentration of 5 mM KCl conducted with a diafiltrate concentration greater than 20 mM KCl

and operating at an applied pressure greater than 30 psi is capable of identifying reflection coeffi-

cients that are 0.1 different. Consequently, diafiltration experiments allow the reflection coefficient

to be captured more rapidly and under a wider number of operating conditions when compared to

filtration experiments.410

Fig. 4: Computational predictions display how different values of the reflection coefficient (i.e., σ = 0.1, 0.5, 0.9) affect

the time evoluation of mass, retentate and permeate data. Physically, the reflection coefficient can take any value

between zero and one. The predictions for were generated using equations (7) (left), (6) (middle) and (5) (right)

with Lp & B values Membrane A, model M1 from Tables 1 and 2. At low concentrations, filtration predictions

(A) cannot distinguish between different values of the reflection coefficients. While diafiltration predictions (B) for

different reflection coefficients are indistinguishable at low concentrations, they diverge from one another at high

concentrations.
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4.3.3. Model parameters converge with the inclusion of an inline conductivity probe

Data analytics suggested the addition of an inline conductivity probe to the diafiltration ap-

paratus to measure the concentration of the solution within the stirred cell. The measurements

elucidate the path taken from the initial feed concentration to the final retentate concentration,

therefore, providing two key benefits. First, as shown above and in Fig. 5A and 5B, it aids sub-415

stantially in identifying a unique value of the reflection coefficient. Specifically, Fig. 5B presents

regression contours in which only the initial feed and final retentate concentrations are used (i.e.,

no data from the inline conductivity probe). The local minima within the residual squared contours

for the retentate concentration suggests that multiple combinations of the reflection coefficient and

hydraulic permeability can fit the data set. This discrepancy is eliminated in Fig. 5A with the420

inclusion of the additional retentate concentration measurements. The three contours of Fig. 5A

now converge to a unique value for the reflection coefficient (i.e., 1 [dimensionless]). When all data

types converge to the same set of parameters, this suggests an accurate model. These findings

show an inline conductivity sensor is needed in order to remove the local solutions and accurately

elucidate the reflection coefficient of the membrane. Similar converging trends can be observed for425

the solute permeability coefficient and hydraulic permeability coefficient (Fig. 6). Fig. 5A and Fig.

6 suggest that the optimal value for the hydraulic permeability is 3.89 L · m−2 · h−1 · bar−1. At

this Lp value, all three contours of Fig. 6A, provide an optimal solute permeability coefficient of

0.20 µm · s−1.

Continuous monitoring of the retentate concentration is also beneficial because it provides ev-430

idence that the solute is rejected by the membrane and not removed by adsorptive processes.

Distinguishing between rejection and adsorption provides critical knowledge for the development

and application of new materials and membranes. Rejection-based and adsorption-based separation

mechanisms can both result in low permeate concentrations. For membranes that reject dissolved

species, the solute is retained in the solution above the membrane leading the retentate concentra-435

tion to increase throughout the course of the experiment. In contrast, materials that act as sorbents

reduce the retentate concentration while maintaining low permeate concentrations. As such, it is

the distinct behavior of the retentate concentration that allows the underlying mechanism to be

identified. In the experiments reported here, the retentate concentration measured using the inline

probe increases. Moreover, the retentate concentration calculated from the permeate concentration440

measurements and a mass balance, shown as the green circles in Fig. S2B, agree well with the

24



inline measurements. This observation affirms that the NF90 membranes remove KCl through a

rejection-based mechanism. While, based on prior knowledge, this outcome was expected for the

NF90 membranes such distinctions are not as readily obvious for emerging materials that target

solute-tailored selectivity [15, 8].445
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Fig. 5: Residual squared contours comparing the reflection coefficient and hydraulic permeability for diafiltration

experiments. Two different models (with concentration polarization & without concentration polarization) and two

data set variations (data with an inline conductivity sensor & data encompassing only the initial and final in-situ

retentate measurements) are evaluated. The model used to generate the contours of panel A includes concentration

polarization phenomena with the inline conductivity probe measurements. The residual squared contours of panel

B were generated using a reduced data set which excludes the semi-continuous retentate data. Panel C contours

evaluate a separate model in which the inline conductivity measurements are used yet concentration polarization is

not accounted for.
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4.3.4. Incorporating concentration polarization improves model predictions

Dynamic diafiltration experiments in tandem with data analytics facilitate the direct comparison

of various model complexities and physical assumptions. For example, Fig. 5A and 5C explores

how the residual squared contours change when concentration polarization effects are knowingly

withheld from the modeling framework. As anticipated, the inclusion of concentration polarization450

provides improved estimates for all three model parameters. Moving from Fig. 5C to 5A, one

notices the value of permeate contour lines decreases, this implies the mathematical model more

accurately fits experimental results. In turn, permeate concentration contours increase the value

of the optimal hydraulic permeability prediction. As a result, the Lp predicted from the mass,

permeate, and retentate contours converge on a unique value and the residual squared objectives455

(displayed in Table 2) decrease. Additionally, within Fig. 5C, if σ is less than 0.4, the contour lines

of Fig. 5C stretch vertically (This is exemplified by following the 0.6 contour line). This subtle

change in the contours indicate that, by including concentration polarization, the model predictions

become sensitive to the reflection coefficient.

Deployed more broadly, statistical learning frameworks including model-based design of ex-460

periments [50, 51, 52, 53] can guide the development of structure-function relationships that are

critical to chemically selective transport mechanisms [33]. Given a model hierarchy [54], described

by physics-based models, statistical learning can distinguish between unknown transport mecha-

nisms that describe the interfacial phenomena. Furthermore, sensitivity analysis (e.g., contours),

as demonstrated above, help visualize the inherent trade-off that exists within model parameters465

and determine whether the data supports the inclusion of additional transport and thermodynamic

phenomena.
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Fig. 6: Residual squared contours comparing the hydraulic permeability and solute permeability coefficient for diafil-

tration experiments. Two different models (with concentration polarization & without concentration polarization)

and two data set variations (data with an inline conductivity sensor & data encompassing only the initial and final

in-situ retentate measurements) are evaluated. The model used to generate the contours of panel A includes concen-

tration polarization with the inline conductivity probe measurements. The residual squared contours of panel B were

calculated using a reduced data set which excludes the semi-continuous retentate data. Panel C contours evaluate

model in which the inline conductivity measurements were used yet concentration polarization is not accounted for.
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5. Conclusions

Within this study, we demonstrate that a diafiltration apparatus, designed to modulate the

stirred cell concentration over the course of an experiment, can overcome many of the limitations470

that are inherent to filtration experiments. The incorporation of an inline conductivity probe pro-

vides key information on the path taken by the retentate concentration, in turn identifying a unique

reflection coefficient and differentiating between rejection-based and adsorption-based removal pro-

cesses. Moreover, the coupling of data analytics and instrumentation led to the identification of

governing membrane parameters five times more quickly than traditional techniques. The frame-475

work presented within this study will help differentiate the transport mechanisms that govern

membrane separations, ultimately providing fundamental insight on how molecular level changes

impact macroscopic system properties. The current framework uses transport coefficients that are

not concentration dependent. However, future extensions of the apparatus will seek to study trans-

port through membranes that exhibit explicit concentration dependent properties. As the device480

detailed in this effort is extended to study other membrane systems, two situations may arise. First,

several candidate models capable of detailing transport and interfacial phenomena through a partic-

ular membrane may exist but there is ambiguity regarding which model best describes the system.

In this instance, a set of experiments can be designed by applying model discrimination criteria from

MBDoE. By being able to discriminate between the series of candidate models, researchers can gain485

insights into which molecular characteristics should be modified to enhance membrane performance.

Alternatively, models that capture the concentration-dependent behavior of a system may not exist.

In this case, the framework would need to be modified. For example, transport parameters could

be regressed for the individual permeate vials. These vial-specific parameters can be presented as a

function of the average solute concentration within the stirred cell, which is measured during sam-490

ple collection using the inline conductivity probe. This analysis provides concentration dependent

parameters that can be fit to complex relationships and related to specific membrane properties

(e.g., surface charge). When functionalized with specific ligands (e.g., diamines), membranes have

been shown to exhibit concentration dependent transport properties [55, 56]. Future developments

will focus on studying ligand solute interactions within molecularly engineered membranes, thereby495

elucidating the relationship between the solute-membrane interaction strength and corresponding

transport mechanism.
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Notation

∆π osmotic pressure bar

∆P applied pressure bar500

ν kinematic viscosity of the solvent cm2 · s−1

ρ density of the solution g · cm−3

ρ density of the solution g · cm−3

σ thermodynamic reflection coefficient dimensionless

Am area of the membrane cm2
505

Am area of the membrane cm2

B solute permeability coefficient cm · s−1

b diameter of the stirred cell cm

cd concentration in the feed solution µmol · cm−3, mM

cd concentration in the feed solution µmol · cm−3, mM510

cf dynamic concentration in the feed solution µmol · cm−3, mM

ch dynamic concentration within hold-up volume µmol · cm−3, mM

cv dynamic concentration in the sample vial µmol · cm−3, mM

cv dynamic concentration in the sample vial µmol · cm−3, mM

cin dynamic concentration at the feed-side solution-membrane interface515

µmol · cm−3, mM

D diffusion coefficient of the solute in the solvent cm2 · s−1

Js solute flux across the membrane µmol · cm−2· s−1

Jw water flux across the membrane cm · s−1
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k mass transfer coefficient of interest cm · s−1
520

Lp hydraulic permeability coefficient cm · bar−1 · s−1

md mass of the diafiltrate reservoir g

md mass of the diafiltrate reservoir g

mf mass of the filtration cell g

mf mass of the filtration cell g525

mh mass of solution in holdup g

mh mass of solution in holdup g

mv mass of the sample vial g

mv mass of the sample vial g

N number of measurements for a vial dimensionless530

n number of dissolved species dimensionless

R gas constant cm3· bar ·µmol−1· K−1

s precision for different measurements g or mM

T temperature K

v0 average velocity within the stirred cell cm· s−1
535

w weight for residual squared g−2 or mM−2
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S1. Model Derivation

Note that Fig. 1, Eq. (1), etc. refer to elements of the main text. Fig. S1, Eq. (S1), etc. are unique to

the supplementary information.

In order to infer the three governing parameters in Eqs. (1) and (2), we conduct mass and solute

balances around three control volumes within Fig. 1, the diafiltrate reservoir, the stirred cell, and the

permeate. By assuming Fig. 1 represents a closed system, where the solution density is invariant to the

salt concentration, the mass exiting the diafiltrate reservoir must be equal to the mass of water permeating

through the membrane, Eq. (S1).

dmd

dt
= −AmρJw (S1)

where md is the mass of the diafiltrate reservoir, Am is the membrane area and ρ is the density of the

solution. As the diafiltrate concentration is defined before the experiment begins and nothing enters the

diafiltrate reservoir, the diafiltrate concentration remains constant during each experiment, Eq. (S2).

dcd
dt

= 0 (S2)

Within our second control volume, the stirred cell, we enforce a constant volume system, i.e., Eq. (S3),

by experimentally ensuring the volumetric flow rate of diafiltrate into the stirred cell is equal to the flow

rate of the permeate across the membrane.

dmf

dt
= 0 (S3)

The solute within the stirred cell is modeled by finding the difference between the solute entering (i.e.,

from the diafiltrate) and the solute transported across the membrane, Eq. (S4). The left hand side of Eq.

(S4) can be simplified by applying the product rule and substituting in Eq. (S3). This provides Eq. (5)

which describes the changing concentration within the stirred cell.

d(cfmf )

dt
= Amρ(Jwcd − Js) (S4)

1corresponding author: wphillip@nd.edu
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d(cfmf )

dt
= mf

dcf
dt

+ cf
dmf

dt
(S5)

dcf
dt

=
Amρ

mf
(Jwcd − Js) (5)

The final control volume encompasses the hold up volume, the transfer tube, and the scintillation vial.

Equation (S6) states the permeate mass in this control volume remains constant during each experiment.

dmh

dt
= 0 (S6)

The amount of solute in the hold-up volume is provided by the difference of the solute transported

through the membrane and the solute collected within the scintillation vial, Eq. (S7). Substituting Eq. (7)

into Eq. (S7) yields Eq. (6).

d(chmh)

dt
= AmρJs −

dmv

dt
ch (S7)

dmv

dt
= −dmd

dt
= AmρJw (7)

dch
dt

=
Amρ

mh
(Js − chJw) (6)

The time dependent concentration of the scintillation vial is expressed by Eq. (8). As described previously,

the product rule, Eq. (S8) is used to derive Eq. (S9) which captures the changing vial concentration.

d(cvmv)

dt
=
dmv

dt
ch = AmρJwch (8)

d(cvmv)

dt
= mv

dcv
dt

+ cv
dmv

dt
(S8)

dcv
dt

=
dmd

dt

(cv − ch)

mv
= −AmρJw

(cv − ch)

mv
(S9)
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S2. Supplementary Figures

Fig. S1: The calibration curve used to convert conductivity measurements into the corresponding KCl concentration. The

conductivity was calculated using, C = GAV −1, the relationship between the conductivity probe cell constant (G = 0.42

cm−1), the peak to peak applied current, (A = 1 mA), and the peak to peak differential voltage drop, V .
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Fig. S2: Panel A presents a filtration experiment run at 40% recovery. The lower recovery allows the semi-continuous monitoring

of the retentate with the inline conductivity probe (purple squares). Mass balance calculations (green circles) corroborate the

conductivity measurements. Panel B presents the retentate concentration data, predicted by mass calculations (green circles), of

a filtration experiment run at 60% recovery. The inline conductivity probe was not used as the high percent recovery decreased

the volume of solution in the stirred cell below the sensor. Panel C presents information for a diafiltration experiment. The

retentate concentration (purple squares) measured by the inline conductivity probe agrees with the the retentate concentration

predicted from mass balance calculations (green circles). For filtration experiments, the calculated retentate concentration

values were obtained by subtracting the total moles of solute in the permeate from the initial feed value and adjusting the

stirred cell volume to account for the mass of solution in the permeate. Within diafiltration experiments, the stirred cell volume

was kept constant. The change in solute within the stirred cell is calculated as the difference from the entering diafiltrate solute

and exiting permeate solute. To calculate the new retentate concentration, the adjusted stirred cell solute amount is divided

by the total volume.
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Table S1: The time required to characterize a membrane over the phase space of interest (i.e., 5 mM - 80 mM) for filtration

and diafiltration experiments are compared. Approximately 5 mL of DI water were run through the membranes before each

experiment. Filtration experiments were run at 30% - 40% recovery with the inline conductivity probe; a total of 9 samples

were collected from each experiment. Within the diafiltration experiments, an 80 mM diafiltrate concentration was used and a

total of 13 samples were collected. The ICP-OES preparation and run time calculations were determined from the number of

samples collected within the experiment. The analysis conducted consists of mass balances to ensure that all the solute entering

the stirred cell was accounted for within the final retentate and permeate samples. While one diafiltration experiment covers

the entire concentration range of interest, it would require approximately 10 filtration experiments to obtain an equal amount

of information.

Filtration and Diafiltration Time Comparison

Filtration Diafiltration

Avg. Samples Collected: - 9 13

Avg. Permeated Mass: gram 3.8 10.8

Experimental Set-up Time: minute 20 20

Avg. Experiment Run Time: minute 40 213

Membrane Rinse/Wash: minute 60 60

Data Analysis (ICP) Prep. Time: minute 36 52

ICP Run Time: minute 67 79

Long Hand Analysis/Balances: minute 60 60

Experimental Time: minute 283 484

Phase Space Consideration: experiment 10 1

Total Time: minute 2830 484
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Fig. S3: Residual squared contours comparing the reflection coefficient and hydraulic permeability for diafiltration experiments.

Two different models (with concentration polarization & without concentration polarization) and two data set variations (data

with an inline conductivity sensor & data encompassing only the initial and final in-situ retentate measurements) are evaluated.

The model used to generate the contours of panel A includes concentration polarization phenomena with the inline conductivity

probe measurements. The residual squared contours of panel B uses a reduced data set which excludes the semi-continuous

retentate data. Panel C contours evaluate a separate model in which the inline conductivity measurements are used yet

concentration polarization is not accounted for. The contours generated in panel D use the reduced data set and neglect

concentration polarization.
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Fig. S4: Residual squared contours comparing the hydraulic permeability and solute permeability coefficient for diafiltration

experiments. Two different models (with concentration polarization & without concentration polarization) and two data set

variations (data with an inline conductivity sensor & data encompassing only the initial and final in-situ retentate measurements)

are evaluated. The model used to generate the contours of panel A includes concentration polarization phenomena with the

inline conductivity probe measurements. The residual squared contours of panel B uses a reduced data set which excludes the

semi-continuous retentate data. Panel C contours evaluate a separate model in which the inline conductivity measurements are

used yet concentration polarization is not accounted for. The contours generated in panel D use the reduced data set and do

not incorporate concentration polarization.
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Fig. S5: Residual squared contours comparing the hydraulic permeability and reflection coefficient for of filtration experiments.

Two different models (with concentration polarization & without concentration polarization) and two data set variations (data

with an inline conductivity sensor & data encompassing only the initial and final in-situ retentate measurements) are evaluated.

The model used to generate the contours of panel A includes concentration polarization phenomena with the inline conductivity

probe measurements. The residual squared contours of panel B uses a reduced data set which excludes the semi-continuous

retentate data. Panel C contours evaluate a separate model in which the inline conductivity measurements are used yet

concentration polarization is not accounted for. The contours generated in panel D use the reduced data set and ignore

concentration polarization.
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Fig. S6: Residual squared contours comparing the hydraulic permeability and solute permeability coefficient for of filtration

experiments. Two different models (with concentration polarization & without concentration polarization) and two data set

variations (data with an inline conductivity sensor & data encompassing only the initial and final in-situ retentate measurements)

are evaluated. The model used to generate the contours of panel A includes concentration polarization phenomena with the

inline conductivity probe measurements. The residual squared contours of panel B uses a reduced data set which excludes the

semi-continuous retentate data. Panel C contours evaluate a separate model in which the inline conductivity measurements

are used yet concentration polarization is not accounted for. The contours generated in panel D use the reduced data set and

neglect concentration polarization.
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Fig. S7: Filtration and diafiltration experiments were modeled under varying initial feed or diafiltrate concentrations and

applied pressures to determine the conditions necessary to differentiate reflection coefficients with a precision equal to 0.1.

Panel A models a filtration experiment where the initial feed concentration and applied pressure are varied. Panels B, C, and

D vary the applied pressure and diafiltrate concentration of a diafiltration experiment run with an initial feed concentration of

5mM. Panels B, C, and D correspond to the data gathered after the 1st, 5th, and 10th vials, respectively. The contours are

generated using the Lp, B, σ values from Membrane A & M1 presented in Table 2. The contours represent the difference in

model predictions via equations (7),(5), and (S9) from two different sigma values (i.e., σ = 0.9 and σ = 1) normalized by the

precision of the measuring instruments. Thus the contour lines are dimensionless. The shaded area in the bottom right of the

graphs correspond to non-physical systems in which the flux is equal to or less than zero (i.e., the osmotic pressure is equal to

or greater than the applied pressure.)
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