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Abstract

Fluid–structure interactions are central to many biomolecular processes, and

they impose a great challenge for computational and modeling methods. In

this paper, we consider the immersed boundary method (IBM) for biofluid

systems, and to alleviate the computational cost, we apply reduced-order tech-

niques to eliminate the degrees of freedom associated with the large number of

fluid variables. We show how reduced models can be derived using Petrov–
Galerkin projection and subspaces that maintain the incompressibility condi-

tion. More importantly, the reduced-order model (ROM) is shown to preserve

the Lyapunov stability. We also address the practical issue of computing coeffi-

cient matrices in the ROM using an interpolation technique. The efficiency

and robustness of the proposed formulation are examined with test examples

from various applications.
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1 | INTRODUCTION

Biofluid dynamics, the study of cellular movement in biological fluid flow, is essential for understanding how the
cellular behavior changes within living tissues.1 With the rapid development of scientific computing algorithms, mathe-
matical modeling and numerical simulations have become an indispensable approach for studying biofluid dynamics.
Specifically, the interaction between cell structures and the surrounding fluid flow is of the utmost importance. Mathe-
matically speaking, this belongs to a large class of problems known as the fluid–structure interactions (FSI), often
described by coupling the incompressible Navier–Stokes equations with solid equations. A variety of computational and
modeling techniques has been developed for FSIs, and they have been successfully implemented in studying (among
many other applications) biology and biomedical diseases.2–9 In order to numerically solve FSI problems, several
numerical methods have been developed to represent/track the interface movement explicitly, such as the boundary
element method (BEM),10–12 the immersed boundary method (IBM),13–16 the immersed interface method (IIM),17 the
fictitious domain method (FDM),18,19 and the front tracking method (FTM).20,21 Another alternative approach to solve
the FSI problem is to capture the interface dynamics implicitly by evolving a scalar function defined on the whole
domain. The level-set method,22 the phase-field method,23 and the implicit boundary integral method24 are important
examples. However, direct simulations based on these methods tend to be time-consuming and computationally expen-
sive for the prediction and analysis of long-term dynamics (although the short-term prediction is certainly feasible).
Often of interest in biology, is the structure dynamics, which, due to its observability, is easy to validate either experi-
mentally or computationally.25 In addition, there are many important scenarios where the cell structure is immersed in
a large fluid environment, and simulating the entire system becomes computationally challenging.
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The purpose of this paper is to explore an alternative to reduce the computational cost using reduced-order tech-
niques, which have been applied to a wide variety of problems in science and engineering.26–29 Reduced-order modeling
is concerned with large-dimensional dynamical systems with low-dimensional input and output, and the main objective
is to construct reduced models that can approximate the mapping from the input directly to the output. The present FSI
problem will be formulated as a reduced-order problem, where the input is the force exerted from the structure and the
output is the local velocity of the structure. As a proof-of-concept, we utilize the conventional IBM model.13 Specifically,
incompressible unsteady Stokes flows are considered, together with the no-slip interface condition enforced on the
immersed structure. But it is also important to point out that there have been many extensions of the original IBM
framework with different treatments for the Lagrangian equations of motion or the fluid dynamics,30–32 and reduced-
order modeling can be considered in those settings as well. Our starting point is a semi-discrete representation of the
IBM model, so that the dynamics of fluid and structure motion can be expressed as coupled ODEs, which can then be
placed in the reduced-order modeling framework. Then we derive the effective mapping from the structure force to the
local velocity, which completely eliminates the fluid variables.

To construct specific reduced models that do not involve the fluid dynamics explicitly, we first construct subspaces
that preserve the incompressibility condition, followed by a Petrov–Galerkin projection. We show that the choice of the
subspaces ensures certain interpolation conditions on the underlying transfer function. An important departure from
standard reduced-order problems is that in IBM, the structure is also evolving continuously. As a result, the subspaces
are varying in time. This poses some challenges as the coefficient matrices of the reduced models need to be updated
frequently. To circumvent this issue, we observe the connection between the those matrices and the Green's function of
the Laplace equation. More specifically, the entries of those matrices are tied to the nodal points on the structure. When
the two points are far apart, the corresponding entry can be well approximated by the Green's function. On the other
hand, for points that are within some cut-off distance, the computation can be done in advance, and then in the simula-
tion, those entries can be computed by interpolation. We show that such a strategy avoids repetitive computation of
those coefficient matrices and it can speed up the computation considerably.

The remaining part of the paper is organized as follows: in Section 2, we introduce the full-order model (FOM) in
the IBM setup; in Section 3, we formulate the reduced-order model (ROM); several numerical examples are used to
compare both FOM and ROM in Section 4; then the conclusion is drawn in Section 5.

2 | FULL-ORDER MODEL

In this section, we briefly review the mathematical formulation of the IBM and derive its semi-discrete representation,
which will serve as the FOM.

2.1 | Mathematical formulation of the IBM

The IBM is intended for the computer simulation of FSI, especially in biological fluid dynamics. It is mathematically
defined by a set of differential equations involving a mixture of Eulerian and Lagrangian descriptions, linked by the
Dirac delta function. The dynamics of the fluid is described in terms of the velocity u x, tð Þ and the pressure p x, tð Þ on an
Eulerian coordinate for x ∈ Ω, where Ω�Rd, d¼ 2or3, represents the fluid domain. The immersed structures, on the
other hand, are handled in a Lagrangian coordinate as a parametric curve or surface X s, tð Þ. Specifically, X s, tð Þ repre-
sents the position at time t in Cartesian coordinates of the structure point labeled by s ∈ Γ, where Γ�Rd�1 is the
parameter space. In this work, we focus on two-dimensional flows where the structure is described as a parametric
curve. In this case x ∈ Ω�R2 and s is a scalar parameter. The formulation is mostly algebraic. Therefore, the extension
to high dimensional cases is straightforward. Assuming constant density, the time-dependent Stokes equation is used to
model the incompressible flow

ρ
∂u
∂t

¼�rpþμr2uþ f , ð1Þ

r �u¼ 0, ð2Þ
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where ρ and μ are the fluid density and viscosity, respectively. The body force f exerted by the structure on the fluid is
defined as

f x, tð Þ¼
Z
Γ

F s, tð Þδ x�X s, tð Þð Þds, ð3Þ

where δ xð Þ is the Dirac delta function. In addition, F s, tð Þ denotes the force density on the immersed structure,
defined as

F s, tð Þ¼F X s, tð Þ½ �, ð4Þ

where F is a functional of the IBM configuration. Spring forces, bending resistance or any other type of behavior (area
and volume conservation constraints) can be built into this functional to embody the physics of the immersed structure
under different circumstances.19,33 We give detailed description of the force density in Section 4 in the numerical exam-
ples for various systems.

Assuming an over-damped structure, the immersed boundary must move with the local fluid velocity:

∂X s, tð Þ
∂t

¼u X s, tð Þ, tð Þ¼
Z
Ω

u x, tð Þδ x�X s, tð Þð Þdx: ð5Þ

This last equation is nothing other than the no-slip condition written as a delta function convolution.

2.2 | The semi-discrete equations

To derive a semi-discrete representation of the IBM, we use the finite difference discretization.13 Other numerical
methods can also be applied to discretize the IBM, for example, the finite element method34 and the finite volume
method,35 in which the state space consists of nodal values.

In this work, fluid variables are discretized on a uniform staggered Eulerian grid, denoted Ωh; and the structures are
discretized on an independent Lagrangian grid, denoted by Γh (Figure 1). The Eulerian grid points are of the form
x¼ jh, where j¼ j1, j2ð Þ is a two-dimensional vector with integer components and h is the Eulerian grid size. The
Lagrangian grid is a set of s of the form kΔs, where k has integer components. The following restriction is imposed to
avoid leak,13

jX sþΔs, tð Þ�X s, tð Þ j < h
2
, ð6Þ

for all s. First, the semi-discrete equations for (1) and (2) form a system of linear differential-algebraic equations (DAEs)

ρ _uh tð Þ¼�Nph tð ÞþμGuh tð Þþ f h tð Þ, ð7Þ

0¼Muh tð Þ, ð8Þ

where

uh tð Þ¼
..
.

uh x, tð Þ
..
.

26664
37775 ∈ Rnu , ph tð Þ¼

..

.

ph x, tð Þ
..
.

26664
37775 ∈ Rnp , f h tð Þ¼

..

.

f h x, tð Þ
..
.

26664
37775 ∈ Rnu , 8x ∈ Ωh,
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are vectors of discrete velocity field, pressure and body force, respectively. G ∈ Rnu,nu is the discrete Laplace operator.
Matrices N ∈ Rnu ,np and M ∈ Rnp,nu are the discrete gradient and divergence operators, respectively.

Second, the integrals in (3) and (5) are replaced by the following sums over the appropriate grid points,

f h x, tð Þ¼
X
s ∈ Γh

Fh s, tð Þ δr x�Xh s, tð Þð Þ Δs 8x ∈ Ωh, ð9Þ

_Xh s, tð Þ¼
X

x ∈ Ωh

uh x, tð Þ δr x�Xh s, tð Þð Þ h2 8s ∈ Γh, ð10Þ

where Fh s, tð Þ is the discrete Lagrangian force density associated with the structure point labeled s, obtained by dis-
cretizing (4). In addition, a function δr xð Þ that is nonsingular for each r but approaches δ xð Þ as r! 0 is needed. There
are many ways to construct such δr . We choose a radially symmetric function with compact support as follows,36

δr xð Þ¼ Cr 1þ xj j2
r3

2jxj�3rð Þ
� �

j x j ≤ r,

0 j x j > r,

8><>: ð11Þ

where the normalizing constant Cr ¼ 10
3π r

�2 depends on r and the space dimension (Cr ¼ 15
4π r

�3 in 3D). For computa-
tional efficiency, we choose r¼ 2h in all our numerical experiments, as suggested for IBM.13

Meanwhile, Equations (9) and (10) can be put into matrix–vector form:

f h tð Þ¼BFh tð Þ, ð12Þ

_Xh tð Þ¼ h2BTuh tð Þ, ð13Þ

x-velocity component y-velocity component pressure Lagrangian grid points

FIGURE 1 The fluid field variables are defined on a regular staggered grid. The structure variables are defined on an Lagrangian grid
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where

Fh tð Þ¼
..
.

Fh s, tð Þ Δs
..
.

26664
37775 ∈ Rns , Xh tð Þ¼

..

.

Xh s, tð Þ
..
.

26664
37775 ∈ Rns , 8s ∈ Γh,

are the discrete representations of the structure position and the Lagrangian force density. Using natural arrangement
of the fluid variables, B ∈ Rnu ,ns can be constructed as a block matrix

B¼ B1 0

0 B2

� � B1 0 0

0 B2 0

0 0 B3

264
375 in3D

0B@
1CA: ð14Þ

A column of each Bk consists of evaluations of δr x�X s, tð Þð Þ for a fixed X s, tð Þ on grid points x that store one compo-
nent of the fluid velocity variables. For example, the i, j-entry of B1 is δr xi�X sj, t

� �� �
, where xi is the grid point that

stores the ith fluid velocity in the x-direction. Note that Bk
0s are not identical because they correspond to different

Eulerian grid points x. For example in Figure 1, x in B1 are the points marked by filled triangles, while x in B2 are mar-
ked by stars. We also point out that B is time dependent due to its dependence on Xh tð Þ.

Lastly, by substituting (12) into (7) for f h tð Þ, we get the following DAE system which we shall refer to as the FOM

ρ _uh tð Þ¼�Nph tð ÞþμGuh tð ÞþBFh tð Þ, ð15Þ

0¼Muh tð Þ, ð16Þ

_Xh tð Þ¼ h2BTuh tð Þ: ð17Þ

In general, the number of structure variables is much less than the number of fluid variables, that is, ns �nu.
In fact, δr having compact support means only a small fraction of the Eulerian grid points are directly interacting
with the structure. If one is only interested in the motion of the structure, that is, Xh tð Þ, solving the system (15)–(17)
becomes a reduced-order problem,37 where Fh tð Þ is the low-dimensional input and _Xh tð Þ is the low-dimensional
output.

3 | REDUCED-ORDER MODEL

To construct our ROM, we start by transforming the DAE system (15)–(17) to a coupled ODE system. Multiplying (15)
by M to the left and using (16), we rewrite (15) as:

0¼�MNph tð ÞþμMGuh tð ÞþMBFh tð Þ: ð18Þ

Assuming MN is nonsingular, it follows that

ph tð Þ¼ MNð Þ�1 μMGuh tð ÞþMBFh tð Þð Þ: ð19Þ

Substituting (19) into (15) for ph tð Þ, one gets
ρ _uh tð Þ¼ μQGuh tð ÞþQBFh tð Þ, ð20Þ
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where

Q¼ I�N MNð Þ�1M ð21Þ

is an oblique projection. It is worth emphasizing here that the discrete gradient operator N and the discrete divergence
operator M are adjoint of each other with different dimensions.

An ODE system is then obtained from (15),

_uh tð Þ¼ μ

ρ
QGuh tð Þþ1

ρ
QBFh tð Þ, ð22Þ

_Xh tð Þ¼ h2BTuh tð Þ: ð23Þ

We assume uh 0ð Þ¼ 0 in the rest of this section. Nonzero initial values can be handled by linear superposition

uh tð Þ¼u 0ð Þ
h tð Þþu 1ð Þ

h tð Þ, ð24Þ

in which u 0ð Þ
h 0ð Þ¼ 0 and u 1ð Þ

h 0ð Þ¼uh 0ð Þ. Then one can decompose (22) and (23) to

_u 0ð Þ
h tð Þ¼ μ

ρ
QGu 0ð Þ

h tð Þþ1
ρ
QBFh tð Þ, ð25Þ

_u 1ð Þ
h tð Þ¼ μ

ρ
QGu 1ð Þ

h tð Þ, ð26Þ

_Xh tð Þ¼ h2BT u 0ð Þ
h tð Þþu 1ð Þ

h tð Þ
� �

: ð27Þ

The dynamics of u 1ð Þ
h tð Þ, which has nonzero initial value, is described by a first-order linear ODE, without interactions

with the immersed structure. It can be solved separately in advance, or in some cases, it can be resolved analytically.
We consider a general Galerkin projection of (22), motivated by its success in reduced-order problems.26,37 More

specifically, we seek euh tð Þ in a subspace, spanned by the columns of a tall matrix V , as an approximation for uh tð Þ, such
that for any w tð Þ in a test space, spanned by the columns of a tall matrix W , we have

_euh tð Þ�μ

ρ
QGeuh tð Þ�1

ρ
QBFh tð Þ,w tð Þ

� 	
¼ 0: ð28Þ

Note that the subspaces are not necessarily fixed, which means that the matrices V and W are generally time-depen-
dent. This point will be addressed in Section 3.2.

In a matrix–vector form, the approximate solution is written as

euh tð Þ¼Vz tð Þ: ð29Þ

Then the Galerkin projection yields a reduced-order equation

WT _Vzð Þ tð Þ¼ μ

ρ
WTQGVz tð Þþ1

ρ
WTQBFh tð Þ: ð30Þ

Thus we obtain an ROM of (22) and (23):
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_z tð Þ¼M�1
0 M1z tð ÞþM�1

0 M2Fh tð Þ, ð31Þ

_Xh tð Þ≈ h2BTVz tð Þ, ð32Þ

where the matrices are given by,

M0 ¼WTV , M1 ¼ μ

ρ
WTQGV �WT _V , M2 ¼ 1

ρ
WTQB, ð33Þ

assuming M0 is nonsingular. The computation of the coefficient matrices M0, M1, and M2 depends on V and W . In the
rest of this section, we first discuss our choice for the subspaces V , W , and their properties. Then we demonstrate how
an interpolation procedure can help accelerate the computation of the coefficients by exploiting the connection between
the matrix entries and the Green's function.

3.1 | Subspace selection

We propose the following choice of V and W ,

V ¼QB, W ¼B: ð34Þ

For later reference, note that both subspaces vary in time. The resulting coefficient matrices are given by

M0 ¼BTQB, M1 ¼ μ

ρ
BTQGQB�BTQ _B, M2 ¼ 1

ρ
BTQB¼ 1

ρ
M0: ð35Þ

In principle, one can use higher dimensional Krylov subspaces (V and W with more columns), followed by Lanczos
orthogonalization algorithms,26,37,38 to improve the accuracy of the ROM. Specifically, we shall see in the following dis-
cussion that our choice satisfies two interpolation conditions. Higher dimensional Krylov subspaces are able to interpo-
late the transfer function more accurately by enforcing more interpolation conditions, but at the expense of a reduced
computational speedup. From the numerical tests, our observation is that the current subspaces achieve a good balance
between accuracy and efficiency.

3.1.1 | Transfer function approximation

We first show the accuracy property of our choice of subspaces. This can be understood by solving the linear ODE (22)
analytically for uh, which yields,

uh tð Þ¼ 1
ρ

Zt
0

exp
μ

ρ
t� τð ÞQG

� �
QBFh τð Þdτ: ð36Þ

Note that we assume zero initial condition as discussed before. Plugging (36) into (23) gives

_Xh tð Þ¼
Zt
0

ϕ t� τð ÞFh τð Þdτ, ð37Þ

where ϕ tð Þ denotes the transfer function,
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ϕ tð Þ¼ h2

ρ
BTexp

μ

ρ
tQG

� �
QB: ð38Þ

A similar calculation for the ROM (31) and (32) shows that:

_Xh tð Þ≈
Zt
0

ϕred t� τð ÞFh τð Þdτ, ð39Þ

where the transfer function ϕred tð Þ of the ROM is given by,

ϕred tð Þ¼ h2BTVexp tM�1
0 M1


 �
M�1

0 M2,

¼ h2

ρ
BTQBexp t BTQB

� ��1 μ

ρ
BTQGQB�BTQ _B

� 	� �
:

ð40Þ

ϕred tð Þ is expected to approximate ϕ tð Þ in the sense that,

ϕred 0ð Þ¼ϕ 0ð Þ, ð41Þ

_ϕred 0ð Þ¼ _ϕ 0ð Þ: ð42Þ

The equality (41) follows immediately from evaluating (38) and (40) at t¼ 0. Differentiating (38) and (40) at t¼ 0 yields

_ϕred 0ð Þ¼ μh2

ρ2
BTQB BTQB

� ��1
BTQGQB¼ μh2

ρ2
BTQGQB¼ _ϕ 0ð Þ: ð43Þ

In the above calculation, we have treated B as a constant matrix. The reason is that we are only concerned with a small
time interval 0, t½ �, typically with the size of one time step. In numerical simulations, the matrix B is usually treated as
constant when advancing one time step.

3.1.2 | Enforcing incompressibility

Another essential property of the full model is the incompressibility of the fluid. Recall that M is the discrete divergence
operator. The approximate fluid solution,

euh tð Þ¼Vz tð Þ, ð44Þ

is incompressible if

Meuh tð Þ¼MVz tð Þ¼ 0: ð45Þ

A quick calculation verifies that our choice of V ¼QB satisfies this constraint:

MV ¼MQB¼M I�N MNð Þ�1M
� �

B¼ M�MN MNð Þ�1M
� �

B¼ 0: ð46Þ

Therefore, the incompressibility property is preserved in the ROM.
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3.1.3 | Lyapunov stability

The ROM also preserves Lyapunov stability of the FOM with our choice of subspaces. We first show the stability of the
FOM. We assume the discrete Lagrangian force density Fh is given by an energy functional W Xhð Þ of the structure con-
figuration, that is,

Fh tð Þ¼�rXhW Xh tð Þð Þ: ð47Þ

We also assume the discrete gradient and divergence operators satisfy

M¼NT , ð48Þ

such that

Q¼ I�Σ¼ I�N NTN
� ��1

NT ð49Þ

is an orthogonal projection. We now define the following Lyapunov functional for the FOM consisting of the kinetic
and the elastic energy,

V uh tð Þ,Xh tð Þð Þ¼ 1
2
uh tð ÞTQuh tð Þþ 1

h3ρ
W Xh tð Þð Þ: ð50Þ

We have V uh tð Þ,Xh tð Þð Þ≥ 0 because Q, as a projection, is positive semidefinite with eigenvalues 0 or 1. In particular,
notice that Q2 ¼Q and QT ¼Q. In addition, the divergence-free condition implies that Quh tð Þ¼uh tð Þ. A direct calcula-
tion shows that

_V uh tð Þ,Xh tð Þð Þ¼uh tð ÞTQ2 μ

ρ
Guh tð Þþ1

ρ
BFh tð Þ

� 	
�1
ρ
uh tð ÞTBFh tð ÞÞ

¼ μ

ρ
uh tð ÞTQGuh tð Þþ1

ρ
uh tð ÞTQBFh tð ÞÞ�1

ρ
uh tð ÞTBFh tð ÞÞ

¼ μ

ρ
uh tð ÞTGuh tð Þ≤ 0,

ð51Þ

since the discrete Laplace operator G is negative semidefinite. This implies the Lyapunov stability of the FOM.
The Lyapunov functional for the ROM is defined as follows

Vr Xh tð Þð Þ¼ h2

ρ
W Xh tð Þð Þþ1

2
_Xh tð ÞT BTQB

� ��1 _Xh tð Þ: ð52Þ

It is now clear that Vr Xh tð Þð Þ≥ 0 holds for all t since BTQB is positive semidefinite.
To prove _Vr Xh tð Þð Þ≤ 0, we start by rewriting the ROM (31) and (32) as a second-order ODE of Xh. Note that (32)

and (34) imply z tð Þ¼ h�2 BTQB
� ��1 _Xh tð Þ in the ROM. Using the symmetry of Q, one has,

€Xh ¼ h2½ _BTQB
� ÞzþBTQB _z tð Þ�¼ h2 BTQ _Bþμ

ρ
BTQGQB

� 	
zþh2

ρ
BTQBFh Xh tð Þð Þ

¼ BTQ _Bþμ

ρ
BTQGQB

� 	
BTQB
� ��1 _Xhþh2

ρ
BTQBFh Xh tð Þð Þ: ð53Þ

Then the following calculation shows that Vr is nonincreasing,
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_Vr Xh tð Þð Þ¼�h2

ρ
_X
T
hFhþ _Xh BTQB

� �
€Xhþ1

2
_Xh

_BTQB
� ��1 _Xh

¼ μ

ρ
_X
T
h BTQB
� ��1

BTQGQB
� �

BTQB
� ��1 _Xh�h2

ρ
_X
T
hFhþh2

ρ
_X
T
hFh

þ _X
T
h BTQB
� ��1

BTQ _B
� �

BTQB
� ��1 _Xh

� _X
T
h BTQB
� ��1

BTQ _B
� �

BTQB
� ��1 _Xh

¼ μ

ρ
_X
T
h BTQB
� ��1

BTQGQB
� �

BTQB
� ��1 _Xh

¼ μ

ρ
YTGY ≤ 0,

ð54Þ

where we have defined Y≔QB BTQB
� ��1 _Xh. The last inequality holds because G is negative semidefinite.

3.2 | Computing the coefficients using interpolation

Because the coefficient matrices in the ROM are in principle time dependent, they should be updated frequently during
simulation. Direct matrix multiplication for this purpose is time consuming since Q is a dense matrix in R2nu ,2nu . For
example, computing M1 in (35) has complexity O n2

u

� �
. In the rest of this section, we propose a computationally cheaper

approach using interpolation to approximate the coefficients.
We first approximate _B by

_B tð Þ≈ 1
Δt

B tð Þ�B t�Δtð Þð Þ: ð55Þ

One could consider a higher order discretizations for _B so that a method of order higher than one in time can be used
to solve the ROM. Ultimately, this is a trade-off between accuracy and the offline interpolation efficiency. From the
numerical tests, we will see such first order approximation of _B together with the forward Euler's method provides
acceptable accuracy for the numerical tests compared to the FOM.

The other observation is that the matrix M1 is then approximated by

M1 ≈
μ

ρ
B tð ÞTQGQB tð Þ� 1

Δt
B tð ÞTQB tð Þþ 1

Δt
B tð ÞTQB t�Δtð Þ: ð56Þ

Together with M0 ¼B tð ÞTQB tð Þ, the following three matrices are needed for building our ROM

B tð ÞTQB tð Þ, B tð ÞTQGQB tð Þ, B tð ÞTQB t�Δtð Þ: ð57Þ

Since Q and G are constant matrices, the i, j-entry of any of the above matrices at time t is determined by the ith row of
B tð ÞT and the jth column of B tð Þ (or B t�Δtð Þ). Recall that each column of B tð Þ (or row of B tð ÞT) represents a smoothed
delta function associated with a structure point. Suppose the ith column of B tð ÞT is associated with the Lagrangian grid
point Xl ∈ Rd (d¼ 2,3) and the jth column of B tð ÞT (or B t�dtð Þ) is associated with Xr ∈ Rd. Given the prescribed func-
tion δr and a fixed Eulerian grid, the i, j-entry of a coefficient matrix is uniquely determined by Xl and Xr , which can be
viewed as a function from R2d to R. It is then natural to sample such functions before the simulation starts. As the sim-
ulation runs, coefficient matrices are updated by interpolation using precomputed samples. In this work, linear interpo-
lation is used. Because each entry of the 2ns�by�2ns coefficient matrix is obtained by evaluating a precomputed
linear function, the complexity is typically O n2

s

� �
, which is much smaller than the complexity of direct matrix multipli-

cations O n2u
� �

, given ns �nu.
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Next, motivated by our numerical experiments illustrated in Figure 2, we show that the interpolated 2d-dimensional
functions of Xl and Xr can be well approximated by d-dimensional functions of Xl�Xr , that is, the relative position of
the two points. Such low-dimensional approximation significantly reduces the number of samples needed for more
accurate interpolations. Hence, the sampling process can also be accelerated.

Here, we provide justifications of this approach by making connections to the Green's functions. Recall that
Q¼ I�N MNð Þ�1M, where N and M are discrete gradient and divergence operators. Therefore, each entry of the matrix
B tð ÞTQB tð Þ or B tð ÞTQB t�Δtð Þ is a numerical approximation of the integral

I0 ¼
Z
Ω

δr x�Xlð Þ δij� ∂ iΔ�1∂ j
� �

δr x�Xrð Þdx

¼ δij

Z
Ω

δr x�Xlð Þδr x�Xrð Þdx
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I1

�
Z

Ω
δr x�Xlð Þ∂ iΔ�1∂ jδr x�Xrð Þdx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I2

, ð58Þ

where i, j¼ 1, � � �,d and d¼ 2 or 3. δij is the Kronecker delta function. I1 only depends on jXl�Xr j due to our choice of
δr . For I2, we assume Xl and Xr are far from the boundary of Ω so the Green's function G x,yð Þ can be applied. Consider-
ing the limiting case of r! 0, that is, δr ! δ, as r! 0, and we arrive at,

lim
r!0

I2 ¼�∂xi ∂yjG x,yð Þ





x¼Xl,y¼Xr

, ð59Þ

which depends only on Xl�Xr .

FIGURE 2 Surface plots of entries of (A) M0 and (B) M1 against Xl�Xr ¼ xl� xr ,yl�yrð Þ in 2D case. Both matrices are 2-by-2 block

matrices where each block corresponds to a function from R4 to R. Large numbers of Xl,Xrð Þ¼ xl,yl,xr ,yrð Þ pairs are sampled so that many

of them correspond to the same difference Xl�Xr . Then corresponding entries of M0 and M1 blocks are plotted against Xl�Xr . In each plot,

we observe a single surface, indicating no multiple values. Therefore, these R4 functions can be considered as functions in R2 of Xl�Xr
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Similarly, each entry of the matrix B tð ÞTQGQB tð Þ is a numerical approximation of the following integral

J0 ¼
Z
Ω

δr x�Xlð Þ δij� ∂ iΔ�1∂ j
� �

Δ 1� ∂ jΔ�1∂ j
� �

δr x�Xrð Þdx

¼
Z
Ω

δr x�Xlð Þ δij� ∂ iΔ�1∂ j
� �

Δδr x�Xrð Þdx
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

J1

�
Z
Ω

δr x�Xlð Þ δij� ∂ iΔ�1∂ j
� �

Δ∂ jΔ�1∂ jδr x�Xrð Þdx:
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

J2

¼ δij

Z
Ω

δr x�Xlð ÞΔδr x�Xrð Þdx
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

J11

�
Z
Ω

δr x�Xlð Þ∂ iΔ�1∂ jΔδr x�Xrð Þdx
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

J12

�δij

Z
Ω

δr x�Xlð Þ∂2j δr x�Xrð Þdx
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

J21

þ
Z
Ω

δr x�Xlð Þ∂ iΔ�1∂ jΔ∂ jΔ�1∂ jδr x�Xrð Þdx
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

J22

,

ð60Þ

where J11 and J21 depend on Xl�Xr due to our choice of δr . For J12 and J22 we make the same assumptions as for I2
and consider the limiting case. We obtain similar results

lim
r!0

J12 ¼�∂xi ∂
3
yj
G x,yð Þ






x¼Xl,y¼Xr

, ð61Þ

lim
r!0

J22 ¼�∂xiΔy∂yjG x,yð Þ





x¼Xl,y¼Xr

: ð62Þ

So both terms depend only on Xl�Xr . However, the integrals I0 and J0 may not be further reduced to functions of
jXl�Xr j, as suggested by our numerical experiments, see Figure 3.

3.3 | Summary

We have shown our ROM preserves important properties of the FOM. Although the subspaces vary in time, interpola-
tion technique can be applied to efficiently update coefficient matrices in the ROM.

4 | NUMERICAL RESULTS

In this section, we present three numerical examples to demonstrate the accuracy and speedup offered by our ROM. The
finite difference method is used for both FOM and ROM. For the temporal discretization, we use the forward Euler method.

4.1 | Oscillation of an elliptical membrane

We consider the oscillations of a pressurized fiber. Initially, the stretched elastic fiber resides in the center of a resting
fluid. The semi-major and semi-minor axes of the fiber are 0.4 and 0.2 μm, respectively. The fluid domain is 4μm�4μm
with periodic boundary conditions on all edges. Fluid density and viscosity are chosen so that the Reynolds number is
0:01. The body force in this example is generated by an elastic energy functional,13

E¼
Z

Γ
ε

∂X
∂s





 



� 	
ds, ð63Þ
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where ε is the local energy given by

ε xð Þ¼ σ

2
x�Lð Þ2, ð64Þ

which corresponds to an elastic fiber having a “spring constant” σ and an equilibrium state where the elastic strain
j ∂X=∂s j�L. The force in (4) is then expressed as

F¼�rXE¼ σ
∂

∂s
∂X
∂s

1� L
∂X
∂s



 


 ! !

: ð65Þ

Since the fluid in the interior of the membrane is confined, the membrane will oscillate and eventually settle into a cir-
cular state. Membrane configurations simulated by the FOM and ROM are compared at different times (Figure 4A,B).
The ROM simulation captures almost the same equilibrium state as the FOM. In addition, the membrane configura-
tions are approximated accurately during the oscillation. We demonstrate that the ROM preserves the incompressibility
by comparing the evolution of mass flux with that of the FOM. The mass flux is calculated by integrating the velocity
over the membrane surface using the trapezoidal rule. The mass flux of the ROM is in close agreement with the FOM.
Both are very close to zero up to a numerical error which keeps decreasing as the grid becomes finer, as shown in
Figure 4C,D.

The one-step computation time of our ROM simulations with various grid sizes is compared to the one-step FOM
simulation time in Table 1. There is a clear increase in the speedup factor as the grid spacing decreases. With 2D flow,
the time complexities are O h�2� �

and O h�1� �
for the FOM and ROM simulations, respectively. The effect of the addi-

tional sampling cost at the beginning of the simulation is reported in Table 2. This overhead is less than 20 time steps
of the FOM simulation. In this example, the total number of time steps is 1000. Therefore, the computational cost asso-
ciated with the sampling process is negligible compared to the speedup during the simulation.

FIGURE 3 Scatter plots of entries of (A) M0 and (B) M1 against jXl�Xr j in 2D case. Multiple values exist, indicating these R4

functions may not be considered as functions in R of jXl�Xr j

LUO ET AL. 13 of 20



FIGURE 4 (A) Comparison between FOM and ROM of the elliptical membrane profiles at different times. (B) Relative difference

between the x-coordinates of a reference structure point simulated by the FOM and ROM. (C) and (D) Evolution of mass flux across the

membrane with fluid grid size h¼ 1=8 (C) and h¼ 1=16 (D)

TABLE 1 Membrane oscillation: Speedup of full order model and reduced-order model

h

Model order CPU time

Speedup factorFull Reduced Full Reduced

1/6 1728 144 0.0118 0.0036 3.2778

1/8 3072 192 0.0309 0.0044 7.0227

1/12 6912 288 0.1391 0.007 19.871

1/16 12,288 384 0.3940 0.0166 24.735

1/20 19,200 480 0.9745 0.0275 35.436

TABLE 2 Membrane oscillation: Sampling cost and overall expected time saving (in seconds) for different numbers of total time steps

h Sampling time

NT ¼ 15 NT ¼ 30 NT ¼ 50

FOM ROM Saving FOM ROM Saving FOM ROM Saving

1/8 0.053 0.464 0.119 0.345 0.927 0.185 0.742 10.55 0.273 1.28

1/12 0.170 2.09 0.275 1.81 4.17 0.380 3.79 6.95 0.520 6.43

1/16 0.748 5.91 0.997 4.94 11.8 1.246 10.5 19.7 1.58 18.1
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We show the perimeter of the immersed structure at final time for various choices of the grid size (Figure 5). As
the grid spacing reduces, the perimeter approaches an asymptotic zero-grid spacing value. We determine the order of
convergence of the ROM based on these results,

ln
1:7759�1:7863
1:7718�1:7759

� 	
=ln 2ð Þ¼ 1:3429:

4.2 | Rotation of an elliptical particle in shear flow

We study the problem of the motion of a rigid elliptical particle freely suspended in a shear flow. The fluid
domain is 8μm�8μm. The semi-minor and semi-major axes of the ellipse are S1 ¼ 0:2μm and S2 ¼ 0:3μm, respectively.
Initially, the ellipse is immersed in the center of a shear flow with its semi-major axis positioned along the y-axis.
The maximum fluid velocity of the shear flow, fluid density, viscosity are chosen so that the Reynolds number is 0:01
(Figure 6).

It has been shown that the instantaneous inclination angle θ of the ellipse major axis with respect to the y-axis is

tan θð Þ¼ S2
S1

tan
S1S2

S21þS22
_γt

� 	
, ð66Þ

where t is the time variable.39
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FIGURE 5 Convergence plot of ROM measured by final perimeter with varying grid spacings

FIGURE 6 A rigid ellipse immersed in a shear flow
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To preserve the elliptic shape of the rigid structure, the body force in this example is generated by a discrete bending
energy.33 Let θ0i be the initial angle between the adjacent edges with the i-th Lagrangian grid point and θi be the current
angle. The bending energy is given by

Eb ¼ σb
Xns
i¼1

1� cos θi�θ0i
� �� �

, ð67Þ

where ns is the number of Lagrangian grid points and σb is the bending coefficient. In this example, we choose σb ¼ 2000
to increase the stiffness. The bending force generated on each structure point is given by,

Fi ¼ Fix ,Fiy
� �¼ � ∂Eb

∂xi
,� ∂Eb

∂yi

� 	
: ð68Þ

Figure 7 shows the simulated ellipse rotation rate and the analytical result (66). The rotation rate obtained by our
ROM simulation is in close agreement with both the FOM simulation and the analytical solution. Table 3 shows the
increase in the speedup factor as the grids become finer. Higher speedup factors are achieved for finer space grid.

4.3 | Motion of two particles in laminar flow

In the last numerical test, we simulate the motion of two membranes in a 6μm�15μm channel. The fluid is initially at
rest, with inlet velocity profile given by, as depicted in Figure 8,

FIGURE 7 Ellipse rotation angles simulated by the full model and the reduced-order model compared with Jeffery's orbit. The variation

in the angle θ relative to the ellipse major axis is plotted as a function of time t

TABLE 3 Particle rotation: Speedup of full order model and reduced-order model

h

Model order CPU time

Speedup factorFull Reduced Full Reduced

3/16 2048 32 0.0214 0.0017 12.5882

1/8 4608 48 0.1012 0.0029 34.8966

3/32 8192 64 0.3065 0.0057 53.7719

16 of 20 LUO ET AL.



U ¼U0 1� y
D

� �2� �
, �D≤ y≤D: ð69Þ

At the beginning, the two membranes of the same elliptic shape are placed with horizontal semi-major axes and the
same distance 0:6μm from its center to the x-axis. The initial semi-major axis and semi-minor axis are 0:3 and 0:2μm,
respectively. Fluid density, viscosity, U0 are chosen so that the Reynolds number is 0:01. Nonslip conditions are applied
to the top and bottom boundaries.

The same bending force as in the previous example is applied to both membranes to prevent significant deformation. In
addition, the two membranes interact with each other through a binding force and a repulsive force given respectively by,

Fbinding ¼ s d�λð Þ, ð70Þ

Frepulsion ¼ adþbd3, ð71Þ

where d is the distance between two Lagrangian nodes on different cells and a, b, s, λ are parameters. These forces are
developed to model the biochemical interactions between flowing melanoma tumor cells and substrate adherent polymor-
phonuclear neutrophils.40 The attraction and repulsion forces yield oscillatory trajectories for both membranes, shown in
Figure 9. Table 4 shows the increase in the speedup factor as the space grid becomes finer.

4.4 | Transport of circular capsule in a plain-Poiseuille flow

In this test case, the dynamics of a capsule within a plane-Poiseuille flow is considered. The setup of this example fol-
lows the test conducted by Coclite et al.41 Initially, the capsule has a diameter of 7 μm and is immersed in a 2D channel

FIGURE 8 Two membranes interacting in a laminar channel flow

FIGURE 9 The increase of the attraction and repulsion forces (from top to bottom) as the magnitude of a and s increases. The other

two parameter, b and λ, are fixed for ease of comparison. (A) Snapshots of two membranes at different times. (B) Trajectories of membrane

centers. (C) Relative error in x-coordinates of a reference structure point of the upper membrane, between the FOM and ROM
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with a height H¼ 15 μm and length equal 3H, centered at 7:5 μm away from the bottom of the lower wall. The fluid is
initially at rest, the plane-Poiseuille flow with umax ¼ 10 μm=s is then established by posing a linear pressure drop. Sim-
ulation is run at Re¼ 0:01, with ρ¼ 100 kgm�3, μ¼ 10�5Pas. The body force on the capsule is the same as in Section 4.1,
with three spring constant σ¼ 10�5, 10�4, and 10�3Nμm�1.

Following Coclite et al.,41 we compare the results between the FOM and the ROM in terms of the capsule perimeter
variation with respect to its original configuration, δp tð Þ¼ p tð Þ�p0

p0
(Figure 10A), and of the swelling ratio, Sw¼ A tð Þ

p2 tð Þ=4π,
where A tð Þ is the area associated with a circle of perimeter p tð Þ (Figure 10B). The snapshots of FOM and ROM are also
compared (Figure 10C–E).

For σ¼ 10�5, the ROM is a fair approximation of the FOM. As the force coefficient increases, the system becomes
more stiff. Consequently, the ROM simulation does not approximate the FOM well. We emphasize that our result is not
in full agreement with the data published in Coclite et al.41 for two reasons. First, the time-dependent Stokes equations
are considered in this work instead of Navier–Stokes equations. Secondly, the force we applied to the cell model is
different.

5 | CONCLUSION

In this paper, we develop a reduced-order modeling framework for FSI problems. Using the IBM as an example, we dis-
cussed the transfer function and its approximations. This proposed ROM formulation enforces the impressibility condi-
tion and also preserves the Lyapunov stability. An efficient interpolation technique is applied to efficiently update the

TABLE 4 Two cells interaction: Speedup of full order model and reduced-order model

h

Model order CPU time

Speedup factorFull Reduced Full Reduced

3/16 4096 64 0.0834 0.0080 10.425

1/8 9216 96 0.4272 0.0148 28.8649

3/32 16,384 128 1.2492 0.0378 33.0476

FIGURE 10 Transport of a circular capsule in plane-Poiseuille flow. (A) Variation of the capsule relative perimeter over time as

function of the spring constant σ. (B) Variation of the capsule swelling ratio over time as function of the spring constant σ. (C–E) Capsule
snapshots for σ¼ 10�5 (C), σ¼ 10�4 (D), and σ¼ 10�3 (E) (Solid curves for FOM and dashed curves for ROM)
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time-dependent coefficient matrices. The proposed model reduction technique is applied to several biological applica-
tions involving linear incompressible Stokes flows, as demonstrated by the examples. Compared to other traditional
methods, this new method has the following two advantages: (1) the fluid variables are the most time-consuming part
in the traditional methods, such as IBM, IIM, and FDM. But they are not explicitly involved in our ROM; (2) the struc-
ture equation is derived explicitly. It does not require special discretization techniques, for example, those for singular
integrals used in the BEM. Recently, there have been growing interest in combining the reduced-order technique and
data-driven methods. In this scenario, rather than the direct access to the FOM, one works with observations, for exam-
ple, structure conformations, in the form of time series. The problem is then reduced to inferring parameters in the
ROM. This work is underway.
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