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We study a direct-current-driven maser device enabled by spin-photon coupling, where coherent mag-
netic self-oscillation can be realized in a large-area ferromagnetic thin film under the excitation of
spin-orbit torques. We show via both micromagnetic simulation and analytical derivation that above a
critical value of the coupling strength between the spin-torque oscillator and the microwave resonator,
magnetic oscillation develops macroscopic phase coherence, a narrow linewidth, and becomes phase-
locked with the photon mode. The threshold coupling strength for synchronizing individual spins reduces
as the sample dimension increases, suggesting that the spin-torque-oscillator maser can be readily realized
using large-area thin-film ferromagnets without relying on dimension confinement. Moreover, the photon
mode can directly provide microwave emission, which exhibits enhanced power and a reduced linewidth
with an increasing number of spins, leading to a useful approach for developing highly coherent on-chip
microwave sources.
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I. INTRODUCTION

Spin-torque oscillators (STOs) [1,2] have been exten-
sively studied for realizing on-chip microwave sources [3–
5], detectors [6], and components for neuromorphic appli-
cations [7,8]. STOs have first been realized with the spin-
transfer torque effect in quasi-zero-dimensional magnetic
systems, such as magnetic tunnel junctions [9], nanopil-
lar spin valves [3,10,11], and nanocontacts [4]. Nanoscale
quasi-single-domain structures are generally required in
these experiments, since the needed excitation current
scales quickly with the magnetic area. The discovery of
the spin-orbit torque effect opened up the possibility of
exciting magnetic oscillations on a larger area, as a charge
current flowing across a very small cross section can now
inject spins into a magnetic film with a much larger area
[12–15]. However, coherent magnetic self-oscillation over
an extended ferromagnetic thin film has proven to be hard
due to the existence of a continuous magnon band, under
which magnon excitations are quickly scattered into dif-
ferent modes, losing the global phase coherence [16,17].
To restrain this decoherence process, dimension confine-
ment has been introduced to discretize magnon bands and
to enforce coherent oscillation of spins at different regions
of the oscillator [15,18]. Under the size limit imposed by
the coherence requirement, various methods have been
utilized to overcome the power bottleneck from a single
nanoscale STO, including synchronizing different STOs
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through electrical connections [19,20], spin wave inter-
actions [21–24], and dipolar interactions [25,26], which
introduce complexities in circuit design and device fabrica-
tion. On the other hand, the small volume of STOs renders
them susceptible to thermal fluctuations [1,27]. Therefore,
different approaches have been pursued to achieve line-
width reduction with the aid of external circuits and signals
[28–32].

In this paper, we propose an approach for realizing
magnetic self-oscillation in a large-area ferromagnetic thin
film with high emission power and narrow linewidth, by
exploiting spin-photon coupling. Hybrid magnon-photon
systems have recently attracted great attention for reaching
coherent information processing and transduction [33–40].
On-chip architecture with a large magnon-photon coupling
strength has been demonstrated for potentially scalable
device applications [41,42]. The integration of an active
spintronic device with the photon mode in a microwave
cavity is therefore highly attractive for bringing new func-
tions to these hybrid systems. Here, with micromagnetic
simulations and analytical derivation, we study the mag-
netic dynamics of an STO located within a microwave
cavity, driven by antidamping spin-orbit torque from a
direct current (dc). We find that under a strong enough
coupling between an STO and a cavity, spontaneous mag-
netic oscillations with macroscopic phase coherence can
be achieved without any externally applied locking sig-
nals, even in large-size ferromagnetic thin films. Moreover,
with the increase of the number of spins in the magnetic
film Ns, the coupling strength needed for overcoming the
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synchronization threshold decreases, the microwave out-
put power increases, and the oscillation linewidth becomes
narrower. The idea of using a cavity to realize highly
coherent emission is rooted in the design principles of the
laser or maser [43–45], where the phase coherence in dif-
ferent regions of the nonlinear gain medium is enforced
by a global coupling mechanism—cavity photons—rather
than short-range forces such as dipolar or exchange inter-
actions in conventional STOs.

II. RESULTS

A. Micromagnetic equations

Figure 1(a) shows a schematic of our proposed device. A
spin-current density Js for generating dampinglike torque
is injected into a ferromagnetic thin film, the dynamics
of which are coupled with the cavity photon mode. This
microwave cavity can be experimentally realized with the
usage of on-chip two-dimensional resonators for the small
mode volume and the high spin-photon coupling strength
[41,42]. The system can be represented as the circuit dia-
gram shown in Fig. 1(b). We assume that the frequencies of
the higher-order modes of the resonator are far away from
its fundamental mode and that the dimension of the ferro-
magnetic device is small compared with the wavelength of
this fundamental mode. Therefore, for the spectrum region
of interest, the microwave resonator can be modeled as a
serial LCR circuit. In the presence of a resonator current,
each spin experiences an oscillating magnetic field Brf gen-
erated by the inductor. For an on-chip resonator design,
Brf is uniformly polarized across the magnetic device
in one specific direction. For the configuration shown in
Fig. 1(b), to induce maximal spin-photon coupling, we set
Brf = brfI x̂ along the x direction, which is perpendicu-
lar to external biasing field B0 = B0ŷ. Here, brf is the rf
field generated per unit inductor current I . For the circuit

shown in Fig. 1(b), Brf generated by the inductor loop at
the magnet location �r′ can be written as Brf(�r′) = brf(�r′)I ,
where brf(�r′) = ∮

L(μ0/4π)[(�r − �r′) × îl(�r)/|�r − �r′|3]dl =
brfx̂, with the integral taken along �r on the inductor loop.
Here, îl(�r) is the unit vector along the current flowing
direction in the inductor. The dynamics of the hybrid
system can be modeled as follows:

dm̂i

dt
= τ i − γ m̂i × brfI , (1)

dI
dt

= V
L

− R
L

I − brfMsVc

L

∑

i

dm̂xi

dt
+ fI (t), (2)

dV
dt

= − I
C

+ fV(t). (3)

Here, we employ a micromagnetic approach by
considering a magnetic free layer in an STO consisting
of Nc cells. γ is the gyromagnetic ratio. m̂i is the unit
vector representing the magnetic moment direction of cell
i. τ i is the total torque acting on m̂i considered in stan-
dard micromagnetic simulations, including contributions
from the Zeeman field, the anisotropy field, the exchange
field, and the dipolar field, as well as from Gilbert damp-
ing and spin torque [46]. The second torque term on the
right-hand side of Eq. (1) originates from the Oersted field
from the LCR resonator. On the other hand, because of
Faraday’s law, the oscillating magnetic moment leads to
an electromotive force onto the inductor, which is propor-
tional to the time change of the magnetic flux λ through
the inductor loop: λ = ∑

i

∮
L

�Ai(�r) · îl(�r)dl, where �Ai(�r) =
(μ0/4π)[MsVcm̂i × (�r − �r′)/|�r − �r′|3] is the vector poten-
tial at position �r generated by the magnetic moment
MsVcm̂i of cell i at location �r′, with Vc being the cell
volume and Ms being the saturation magnetization. Using
the previous expression of brf(�r′), we can rewrite λ =
MsVc

∑
i m̂i · brf(�r′). Therefore, the electromotive force is

(a) (b)

FIG. 1. (a) A schematic of the considered device structure. A magnetic oscillator driven by spin-orbit torque is placed inside a
microwave cavity and inductively coupled to the cavity photon mode. (b) The effective circuit diagram. The microwave cavity is
modeled as a serial LCR circuit. The magnetic thin film is coupled with the LCR circuit through the rf magnetic field Brf generated by
the inductor current. No external signals are used to drive the LCR circuit.
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given by −brfMsVc
∑

i(dm̂xi/dt) in Eq. (2), with m̂xi being
the projection of the m̂i vector along the x direction. Equa-
tions (2) and (3) therefore describe the dynamics of the cur-
rent I and voltage V of the LCR resonator in the presence of
magnetic oscillations. The only external drive of the whole
system is the dc spin torque included in τi. To account for
the thermal fluctuation at finite temperature T, we include
the torque from the thermal magnetic field in the dynamics
of m̂i in Eq. (1) [46], as well as white Gaussian ther-
mal noise fI (t) and fV(t) in Eqs. (2) and (3). The latter
two noise terms satisfy the fluctuation-dissipation rela-
tion of the LCR circuit, with 〈fI (t)fI (t′)〉 = RkBT/L2δ(t −
t′) and 〈fV(t)fV(t′)〉 = RkBT/LCδ(t − t′), respectively [1,
27] (for a derivation, see Appendix A). Here, kB is the
Boltzmann constant. To numerically solve the Nc + 2
coupled dynamical equations, we augment the ordinary
differential equation solver for Landau-Lifshitz-Gilbert
(LLG) equations with an additional torque term in Eq.
(1) and introduce new time-dependent quantities I and
V by modifying the micromagnetic package MUMAX3
[46]. fI and fV are implemented according to fI (tn) =
ηI (tn)

√
RkBT/(L2�t) and fV(tn) = ηV(tn)

√
RkBT/(LC�t),

where ηI (tn) and ηV(tn) are random numbers from the stan-
dard normal distribution, the values of which are changed
after every time step with step size �t = tn − tn−1 [46].
Our modified simulation codes are available online [47].

B. Micromagnetic simulation results

We compare the magnetic dynamics of an STO with
and without being coupled onto a microwave resonator.
For micromagnetic simulation, we set the ferromagnetic
film to be a circular disk with diameter D for simplic-
ity. We verify that the observations in the following apply
to other geometries such as rectangles or long wires. The
film thickness is 5 nm and each magnetic cell is a cuboid
with size 2.5 nm × 2.5 nm × 5 nm. We set the saturation
magnetization Ms = 5.5 × 105A/m, the exchange stiffness
Aex = 9 pJ/m, and the Gilbert damping coefficient α =
0.04. To reduce the threshold current and minimize nonlin-
ear damping [48], we introduce a perpendicular anisotropy
field of Ba = 0.66 T to partially cancel the demagneti-
zation field. The ferromagnet is biased with a dc field
along the y axis, B0 = 0.18 T, and a dc spin current
Js = 1.0 × 1011 A/m2, which is larger than the oscillation
threshold current for all of the cases considered below.
Except for the spin current, no external dc or ac drives
are assumed on the STO-resonator system. The parame-
ters of the serial LCR resonator are chosen as L = 1.56 nH,
C = 0.637 pF, and R = 0.05 
, which lead to characteris-
tic impedance Z = √

L/C = 50 
, a quality factor of Q =
Z/R = 1000, and the resonant frequency ωr = 1/

√
LC =

2π × 5 GHz, close to the uniform ferromagnetic resonance
(FMR) frequency ω0 = γ

√
B0(B0 + μ0Meff) ≈ 2π × 5.44

GHz of the ferromagnetic film. Figure 2(a) shows the
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FIG. 2. Micromagnetic simulation results of STOs without
[(a),(b)] and with [(c),(d)] coupling onto a microwave resonator.
(a),(c) The Fourier transform of 〈m̂x〉. (b),(d) The real-space dis-
tribution of the magnetization azimuthal angle φm in the x-z plane
with D = 1280 nm. The histograms in the insets show the num-
ber of cells as a function of φm, with the bins chosen to be 1◦. T
is set to be 0 K in the simulations of this figure.

simulation results in the absence of an LCR resonator
(brf = 0 T/A), where the Fourier transform of the x com-
ponent of the magnetic oscillation 〈m̂x〉 is illustrated for
D = 320, 640, and 1280 nm at T = 0 K. With the increase
of the device size, the current-induced magnetic oscilla-
tion loses coherence, where the peak power decreases and
the linewidth increases, consistent with previous experi-
mental observations [16,17]. An inspection on the real-
space distribution of the magnetization azimuthal angle
φm [see Fig. 1(a) for a definition] shows that the lack of
phase coherence of magnetic dynamics in different cells
accounts for the small signal and the broad linewidth
[Fig. 2(b)]. The simulation results with finite spin-photon
coupling (brf = 25 T/A) are shown in Fig. 2(c) for the
D = 1280 nm sample. In contrast to the uncoupled case,
〈m̂x〉 exhibits a much larger oscillation amplitude and a
much narrower linewidth. Moreover, the real-space dis-
tribution of φm shows that inhomogeneities are greatly
suppressed, indicating the realization of macroscopically
coherent magnetic self-oscillation [Fig. 2(d)].

To understand the required condition for reaching coher-
ent magnetic oscillations, we carry out simulations for the
D = 1280 nm sample under different external fields B0. As
shown in Fig. 3(a), when the detuning between the STO
free-running frequency ωS and the resonator frequency ωr
is small (0.176T < B0 < 0.208T), ωS is locked onto ωr.
We further verify that within the frequency-locking region,
the relative phase difference between the resonator and the
STO remains nearly constant as a function of time, indi-
cating phase locking. Next, we fix B0 = 0.18 T and study
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the STO dynamics as a function of the coupling coefficient
brf [Fig. 3(b)]. We note that below a critical value brf,c, the
oscillation amplitude on the x-z plane 〈m̂xz〉 remains almost
zero, while above brf,c it jumps to a much higher value,
indicating a transition from incoherent to coherent oscilla-
tion. In Fig. 3(c), we plot the dependence of brf,c on the spin
number Ns by carrying out simulations on samples with
different sizes. We find that the threshold coupling coeffi-
cient decreases as Ns increases, satisfying a relationship of
brf,c ∝ 1/

√
Ns, a result that can be further verified through

analytical derivation (see Sec. C). The scaling relation of
brf,c ∝ 1/

√
Ns implies that it is easier to achieve coherent

oscillations in samples with large Ns, e.g., with an extended
thin film. brf is a factor that depends on the LCR resonator
geometry and the proximity of the magnetic material to the
inductor. For a two-dimensional on-chip resonator design
with a simple inductive wire [42], one has the relation of
brf = μ0/2w, where w is the inductive wire width. Previ-
ously, it has been shown that with lithographically defined
superconducting resonators, brf on the order of 0.1 T/A can
be achieved [42]. By extrapolating the results in Fig. 3(c),
we see that with this brf, synchronized oscillations can
be reached in samples with Ns > 1013, corresponding to
a lateral dimension of approximately 200 μm. Besides
allowing easier synchronization with the resonator mode,
a larger magnetic volume is also beneficial for increas-
ing the emission power. In Fig. 3(d), we study the energy
stored in the resonator Er as a function of the sample
size, which shows a linear increase with Ns, providing
a promising approach to overcoming the power bottle-
neck encountered in classical STOs. Moreover, different
from previous STO designs where the magnetic oscillation
needs to be converted to an output signal through certain
magnetoresistance effects [2], the resonator can directly
provide microwave emission to the external circuit, the
strength of which depends on the stored energy as well as
the coupling with the external circuit [49].

C. Analytical theory for oscillator synchronization

The cavity-assisted coherent magnetic self-oscillation
can be further verified and extended with analytical stud-
ies. We rewrite Eqs. (1)–(3) in complex oscillator repre-
sentation, following Slavin et al. [1,50] (see Appendices B
and C):

dci

dt
+ iωi(pi)ci + 
i(pi)ci = Fmi(cr) +

∑

i
=j

Gji(ci, cj ),

(4)

dcr

dt
+ iωrcr + ωr

2Q
cr =

∑

i

Fri(ci). (5)

Here, ci, defined as a superposition of m̂xi and m̂zi by tak-
ing into account the elliptical oscillation orbit [1,50], is the

(a) (b)

(c) (d)

FIG. 3. (a) The Fourier transform of 〈m̂x〉 as a function of
B0. In this simulation, brf = 25 T/A and D = 1280 nm. (b)
The average magnetization projected onto the x-z plane, 〈m̂xz〉,
as a function of the spin-photon coupling coefficient brf. The
incoherence-to-coherence transition happens at brf,c ≈ 11.3 T/A.
(c) brf,c as a function of the ferromagnetic disk diameter D. The
red curve shows the result from analytical modeling. Ns is the
number of spins in the disks. (d) The energy stored in the res-
onator Er as a function of diameter D. brfD is kept constant in
simulations with different sample sizes, with brf = 15 T/A for
D = 1280 nm. The red curve represents the analytical results.
The simulation cell size is 2.5 nm × 2.5 nm × 5 nm for (a) and
(b) and 10 nm × 10 nm × 5 nm for (c) and (d). T is set to be 0 K
in simulations of this figure. In (c) and (d), B0 and Js are fixed in
simulations with different diameters.

dimensionless complex oscillation amplitude for magnetic
cell i with power pi = |ci|2 and phase φi = arg(ci). In our
simulations with nearly compensated magnetic anisotropy,
we have ci ≈ (m̂zi − j m̂xi)/

√
2(1 + m̂yi), where j = √−1.

ωi(pi) is the power-dependent self-oscillation frequency,
which is related to the effective field experienced by each
cell. Under a first-order approximation, ωi(pi) = ω0i +
Kipi, with Ki = (dωi/dpi). 
i(pi) = 
i,+(pi) − 
i,−(pi) is
the nonlinear damping coefficient, which includes both
positive Gilbert damping 
i,+(pi) and negative effec-
tive damping 
i,−(pi) from spin torque. cr = I + iV/Z =√

preiφr is the complex amplitude of the LCR resonator
with intrinsic frequency ωr and dissipation rate ωr/2Q.
Fri(ci) = −grici and Fmi(cr) = gmcr reflect the mutual cou-
pling between the ith magnetic cell and the LCR resonator,
with gri = ω0ibrfMsVc/L and gm = γ brf/4 in the case of
nearly compensated magnetic anisotropy. Meanwhile, the
magnetic cells are also coupled with each other through
Gji, which includes exchange and dynamic dipolar inter-
actions between cell i and cell j . Without Gji and Fmi,
the magnetization in each cell i self-oscillates indepen-
dently at frequency ωgi = ωi(pi0), with the equilibrium
power pi0 satisfying 
i(pi0) = 0, and no global coherence
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is expected. The existence of short-range interaction Gji,
on the other hand, allows coherent oscillations from small
quasi-single-domain samples, as shown in previous exper-
iments [2]. However, it has been demonstrated that the
short-range interactions become less efficient and that they
cannot lead to global phase synchronization when the size
of the sample goes to infinity [51,52]. For this reason and
also to obtain a closed mathematical form, we only con-
sider the interactions between the magnetic cells and the
LCR resonator, Fmi and Fri, in the following analytical
derivation and rely on the full micromagnetic solution to
check the extra influences resulting from the short-range
interactions Gji.

Isolating ci into its phase and power parts, the coupled
dynamics of the system are captured by the equations on
the magnetic cell phase φi and the resonator amplitude cr:

dφi

dt
+ ωgi = gm

√
1 + ν2

i

√
pr

pi0
sin(φr − φi − βi), (6)

dcr

dt
+ iωrcr + ωr

2Q
cr =

∑

i

−gri
√

pi0eiφi , (7)

where νi = Ki/(G+,i − G−,i) is a parameter quantify-
ing the frequency nonlinearity of the STO [1], with
G+,i = (d
+,i/dpi)|pi0 , G−,i = (d
−,i/dpi)|pi0 , and βi =
arctan(νi). To capture the main physics of the coupled
phase oscillators, we set all parameters except ωgi to their
average values νi = ν, pi0 = p0, βi = βm, and gri = gr.
In the limit of large Nc, we assume that the frequency
and phase distribution of magnetic cells satisfy a prob-
ability density function f (φ, ω, t), where f (φ, ω, t)dφdω

describes the fraction of cells in phase (φ, φ + dφ) and fre-
quency (ω, ω + dω) [53]. To describe the coherence of the
STO, we define the phase order parameter,

� = 1
Nc

∑

i

eiφi =
∫ ∞

−∞
dω

∫ 2π

0
f (φ, ω, t)eiφdφ, (8)

and we can rewrite Eqs. (6) and (7) as

dφ

dt
+ ω = gm

√
1 + ν2

√
pr

p0
sin(φr − φ − βm), (9)

dcr

dt
+ iωrcr + ωr

2Q
cr = −gr

√
p0Nc�. (10)

According to probability conservation, the probability
function f (φ, ω, t) satisfies a continuity equation:

∂f
∂t

+ ∂

∂φ

(

f
dφ

dt

)

= 0, (11)

where (dφ/dt) is given by Eq. (9).
Equations (9)–(11) give a description on the time evolu-

tion of the phase distribution of the coupled magnetic cells.

To solve this equation set, we follow the Ott-Antonsen
ansatz [53,54] and have a tentative solution f (φ, ω, t)
expressed in a Fourier series:

f (φ, ω, t) = h(ω)

2π

[

1 +
∞∑

n=1

[α(ω, t)]neinφ + c.c.

]

, (12)

where the Fourier coefficients take the functional form
of [α(ω, t)]n. This type of solution has been proven to
be useful for describing systems with a large number of
oscillators. In Eq. (12), h(ω) = ∫ 2π

0 f (φ, ω, t)dφ is the dis-
tribution of the generation frequency of magnetic cells.
The coupled Eq. (9)–(11) are solvable when the form
of the frequency distribution h(ω) is specified. Here, to
obtain a closed-form analytical solution, we assume that
the frequency distribution follows the Lorentzian distri-
bution h(ω) = (�m/π)[(ω − ω̄)2 + �2

m]−1, with a central
frequency of ω̄ and linewidth �m. Under this choice of fre-
quency distribution, the phase order parameter has a simple
expression � = [α(ω̄ + i�m, t)]∗. Substituting Eqs. (12)
and (9) into Eq. (11), we find that the order parameter
obeys the following dynamical equation:

d�

dt
+ i(ω̄ − i�m)� = gm

√
1 + ν2

2
√

p0

[
cre−iβm − �2c∗

r eiβm
]
,

(13)

which, together with Eq. (10), describes the dynamics of
the system.

Equations (10) and (13) are two coupled differential
equations with respect to � and cr. The bifurcation point
of the dynamical system described by these two equations
can be obtained via linear stability analysis. By assum-
ing solutions of � = �0e(λ−i
)t and cr = cr0e(λ−i
)t and
substituting them into Eqs. (10) and (13), we find that
the nontrivial solution of |�| 
= 0 becomes the stable one
when the coupling coefficient brf exceeds a threshold value
of brf,c, which has the following simple expression:

brf,c =
√

4Z�m

γω0QMsVcNc
∝ 1√

Ns
, (14)

when there is zero frequency nonlinearity in the auto-
oscillators (ν = βm = 0) and zero detuning between the
central frequency of the magnetic cells and the LCR res-
onator (ω̄ = ωr). In Appendix C, we further verify that
brf,c ∝ 1/

√
Ns holds for the more general case where the

nonlinear frequency shift of the magnetic cells and a finite
detuning are taken into account (dωi/dpi 
= 0, ω̄ 
= ωr).
Choosing parameters (�m, δω = ω̄ − ωr, and βm) that are
consistent with our simulated materials (Appendix D), we
calculate brf,c using the full analytical model and obtain
the red curve in Fig. 3(c), which agrees well with the
micromagnetic simulation results (solid dots).
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Besides the threshold coupling strength, the amplitude
of the LCR resonator cr in the synchronized state can
also be derived analytically (Appendix C). With the same
parameter set that determines brf,c, we calculate the stored
energy in the LCR resonator Er = L|cr|2/2, as represented
by the red curve in Fig. 3(d), consistent with the numerical
simulation results, where Er scales with Ns.

D. Simulation results on oscillation linewidth

One of the key benefits of coupling auto-oscillators
with a cavity is to obtain very narrow linewidths. To
evaluate the generation linewidth of our proposed device
at finite temperature, we carry out micromagnetic sim-
ulation at T = 300 K. We note that compared with the
T = 0 K case shown in Fig. 3(c), the required coupling
coefficient brf,c increases by 20% but the synchroniza-
tion and phase-locking behaviors remain. The resolution
of the oscillation linewidth is determined by the simu-
lated evolution time for magnetization, which is further
limited by the hardware and software efficiency. For a
sample with D = 5120 nm, an upper bound of 4 kHz
is determined for the linewidth of voltage (full width at
half maximum, or FWHM) after 35 days of simulation, as
shown in Fig. 4(a). The quality of the generation signal
(Qg > 106) is much higher than the intrinsic quality fac-
tor of the LCR resonator (Q = 103), which suggests that
the narrow linewidth does not originate from the simple
filtering effect of the resonator. To gain a better understand-
ing on the generation linewidth as a function of the device
size, we perform simulations on a series of samples and the
results are summarized in Fig. 4(b). It can be seen that the
linewidth �f reduces as Ns increases, satisfying a rela-
tionship �f ∝ 1/Ns (red curve), which suggests that an
even narrower linewidth than shown in Fig. 4 can poten-
tially be achieved in real samples with larger dimensions.

(a) (b)

FIG. 4. (a) The Fourier transform of resonator voltage V for
samples with D = 640, 1280, and 5120 nm. The red curves for
the D = 640 and 1280 nm samples illustrate Lorentzian fittings.
(b) The voltage FWHM linewidth as a function of the diameter
D. To ensure fair comparisons, brfD is kept constant in simulat-
ing samples with different sizes, with brf = 15 T/A for D = 1280
nm. In this simulation, T = 300 K and the lateral size of cells is
chosen to be 10 nm.

This scaling trend is consistent with the theory on thermal-
phase-noise-induced auto-oscillator linewidth broadening
[26,27], where it has been shown that �f ∝ kBT/E, where
E is the oscillation energy of the system. In our system,
the total energy contains both the resonator energy and
the energy of the magnetization oscillation [26,27], both of
which are proportional to Ns. The analytical understanding
of the linewidth and the simulations beyond white noise,
such as the 1/f noise in the coupled system [26,55], are
important future research directions.

III. DISCUSSION AND CONCLUSIONS

The proposed device structure can not only be used
as a general-purpose on-chip microwave source but also
provides important functionalities in emerging fields such
as quantum electronics. In the field of quantum engi-
neering, a scalable approach for interconnecting quantum
bits with high-quality microwave sources is required for
realizing large-scale quantum processors [56]. The STO
maser discussed in this paper is a compact highly coher-
ent microwave source that can be realized using a scal-
able photolithography process [41,42]. The oscillator is
already coupled with photon mode of the cavity, which
can provide direct output to other parts of the quan-
tum circuits. Moreover, with a modulated dc spin cur-
rent, the STO maser can generate high-quality microwave
pulses with controlled envelopes, which holds potential
for applications in scalable quantum information process-
ing.

In summary, we study the dynamics of a multidomain
STO located within a microwave resonator. We find that,
different from free STOs, a STO coupled with a microwave
resonator can exhibit coherent oscillations even in large
extended ferromagnetic thin films. In the coherent region,
the microwave emission power increases with the dimen-
sion of the magnetic film, while the generation linewidth
reduces. The requirement for reaching the coherent region
can be satisfied by increasing the volume of the magnetic
films and using a two-dimensional resonator design that
can be achieved with existing technologies. The operation
mechanism of this device is reminiscent of a maser, with
a large-area STO serving as the nonlinear gain medium.
Although the system is described by classical dynami-
cal equations without referring to quantized energy levels,
we note that essential laser physics can be understood
in classical physics [44], with examples of free-electron
lasers [57,58] and Josephson-junction lasers [59,60]. By
harnessing spin-photon coupling and spin-orbit torque, we
expect that the demonstrated results can enable compact
highly coherent on-chip microwave sources that are bene-
ficial for applications in both the classical and the quantum
electronics domain.
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APPENDIX A: THERMAL NOISE FOR
MICROMAGNETIC SIMULATIONS WITH A

MICROWAVE RESONATOR

In this appendix, we provide derivations of the thermal-
noise terms in Eqs. (1)–(3). In the main text, we show that
the dynamical equations for each magnetic cell i within a
magnetic film and the serial LCR circuit with the mutual
coupling terms can be written as

dm̂i

dt
= τ i − γ m̂i × brfI , (A1)

dI
dt

= V
L

− R
L

I − brfMsVc

L

∑

i

dm̂xi

dt
, (A2)

dV
dt

= − I
C

. (A3)

To consider the finite-temperature effect, the agitation
from thermal noise should be included in the dynamics
of the magnet and the LCR resonator. For the mag-
netic dynamics, we use the torque from the thermal effect
that is included in the standard MUMAX3 package [46].
For the LCR resonator, we define a complex amplitude
cr = √

preiφr = I + iV/Z, where Z = √
L/C is the char-

acteristic impedance. Equations (A2) and (A3) without
the coupling term can then be combined into a sin-
gle equation (dcr/dt) = −iωrcr − (R/2L)cr + fr(t), with
a complex thermal-noise term fr(t), where ωr = 1/

√
LC

is the resonance frequency (nonresonant terms propor-
tional to c∗

r are dropped). Following Slavin et al. [1], we
consider Gaussian white noise such that 〈fr(t)fr(t′)〉 = 0
and 〈fr(t)f ∗

r (t′)〉 = 2Drδ(t − t′), where Dr is the diffusion
coefficient. Under the Fokker-Planck equation, the sta-
tionary probability density function Pr(pr, φr, t) satisfies
(d/dpr) [2pr(R/2L)Pr + 2prDr(∂Pr/∂pr)] = 0 [1]. In the
meantime, Pr needs to satisfy the Boltzmann distribution
under thermal equilibrium at temperature T, Pr ∝ e−Er/kBT,
where Er = CV2/2 + LI 2/2 = Lpr/2 is the energy stored
in the resonator. This sets Dr = RkBT/L2. Rewriting the
thermal-noise terms for cr into equations in terms of I and

V, we obtain

dm̂i

dt
= τ i − γ m̂i × brfI , (A4)

dI
dt

= V
L

− R
L

I − brfMsVc

L

∑

i

dm̂xi

dt
+ fI (t), (A5)

dV
dt

= − I
C

+ fV(t), (A6)

where 〈fI (t)fI (t′)〉 = RkBT/L2δ(t − t′) and 〈fV(t)fV(t′)〉 =
RkBT/LCδ(t − t′), respectively.

APPENDIX B: THEORY OF NONLINEAR
AUTO-OSCILLATOR COUPLED WITH LINEAR

RESONATOR

For this appendix, we consider a STO modeled as a
macrospin, which is coupled to an LCR resonator at T = 0
K as described by Eqs. (A1)–(A3). The results from this
appendix are used as a basis for the derivation of the
synchronization condition for coupling multidomain oscil-
lators with a resonator. Here, we first recap some of the
key results for a STO without spin-photon coupling given
by Slavin et al. [50] and consider the effects of coupling
terms later. For a macrospin with magnetic moment M
per unit volume (magnetization), the LLG equation with
a spin-transfer term can be written as

dM
dt

= γ

(

M × δW0

δM

)

+ Tε . (B1)

Here, W0 = ∫
[−H0 · M + 2π(M · ẑ)2 − (Ha/2Ms)(M ·

ẑ)2]dr is the free energy, with Ha being the anisotropy
field, and Tε = Th + Td + Ts includes contributions from
the external microwave field Th = −γ (M × h), Gilbert
damping Td = (α/Ms)[M × (∂M/∂t)], and spin torque
Ts = (βJs/Ms)[M × (M × p̂)], where β = (gμB/2eMst),
with t being the thickness of the magnetic film and
Js being the spin-current density. Here, we consider
H0 = H0ŷ, h = hxx̂, and that the injected spin moments
are oriented along the −y axis. Due to the fixed-
length constraint |M| = Ms, there are two indepen-
dent degrees of freedom, which can be conveniently
described by a complex circular precession ampli-
tude am given by the Holstein-Primakoff transformation
am = (Mz − iMx)/

√
2Ms(Ms + My). The inverse trans-

formation is M = Ms(1 − 2|am|2)ŷ + Ms
√

1 − |am|2[(ẑ +
ix̂)am + (ẑ − ix̂)a∗

m]. Clearly, only am values satisfying
|am| ≤ 1 have physical meaning. The equation of motion
(EOM) can be written as

dam

dt
= −i

δH0

δa∗
m

+ Fa, (B2)

where H0 = γ W0/2Ms is the macrospin Hamiltonian and
Fa = (∂am/∂M) · Tε . Because of the elliptical orbit of
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magnetization precession, the Hamiltonian will take a
simpler form in elliptical precession amplitudes, called
bm. The relation between the am and bm amplitudes
is am = ubm − vb∗

m with u = √
(ωH + ω0)/2ω0 and v =√

(ωH − ω0)/2ω0, where ωH = γ (H0 + 2πMeff) and ω0 =
γ
√

H0(H0 + 4πMeff) with 4πMeff = 4πMs − Ha. This is a
canonical transformation analogous to Bogoliubov trans-
formation. In terms of bm, the EOM is

dbm

dt
= −i

δH0

δb∗
m

+ Fb, (B3)

where Fb = uFa + vF∗
a . Following the convention utilized

in Slavin et al. [50], a new complex amplitude cm =√
ωH/ω0bm is defined, where subscript m denotes mag-

netic dynamics, to distinguish this from the resonator
dynamics introduced later. By neglecting nonresonant
terms and keeping leading-order terms, we finally write the
EOM in terms of cm:

dcm

dt
= −i

δHc

δc∗
m

− 
+(|cm|2)cm + 
−(|cm|2)cm + Fch.

(B4)

Here, Hc = ωHH0/ω0 = ω0|cm|2 + (K/2)|cm|4, with
ω0|cm|2 being the linear term and (K/2)|cm|4 cor-
responding to the nonlinear frequency shift, K = γ

(2ω0/ωH ){−[3(u2 + v2)2 − 1] + 6uv(u2 + v2)}πMeff. The
second and third terms on the right-hand side of Eq. (B4)
represent the positive nonlinear damping 
+(|cm|2) =

0(1 + Q1|cm|2 + Q2|cm|4) due to Gilbert damping and
negative nonlinear damping 
−(|cm|2) = 
J (1 − |cm|2)
due to the spin-torque effect, with 
0 = αωH , 
J =
βJs, Q1 = 2 − 3(ω0/ωH )2 − 2ωH

′/ωH , and Q2 = [2 −
3(ωH

′/ωH ) + (ωH
′/ωH )2](ωH

′/ωH ), with ωH
′ = γ 2πMeff.

In the following discussions, we consider the case with

J > 
0, corresponding to the operation regime of STOs.
The external microwave field effect contributes to an addi-
tional driving term Fch = γ

√
ωH/ω0(u + v)hx/2, up to

leading order. These results are adapted from Slavin et al.
[50] after considering our proposed device geometry.

In the following, we consider the coupling between the
macrospin STO and the LCR circuit, which is a coupling
scheme raised in the current work and has not been vis-
ited in previous publications. We first note that the effect
of the LCR circuit on macrospin is to produce an effec-
tive magnetic field h = hxx̂ = brfI x̂, resulting in Fch =
γ
√

ωH/ω0(u + v)(cr + c∗
r )brf/4, where cr = I + iV/Z is

the complex resonator amplitude defined in the previous
appendix. To consider the effect of STO dynamics on the
LCR resonator, we rewrite Eqs. (A2) and (A3) using cr:

dcr

dt
= −iωrcr − R

2L
cr − brf

L
dmx

dt
, (B5)

where ωr = 1/
√

LC (terms proportional to c∗
r are dropped).

Since mx is correlated with cm through the transformations
introduced above, we can rewrite (dmx/dt) = iMsVc(u +
v)

√
ω0
ωH

[(dcm/dt) − (dc∗
m/dt)] up to leading order, where

Vc is the volume of the macrospin cell. Substituting the
expressions for Fch and (dmx/dt) into Eqs. (B4) and (B5)
and only keeping leading-order terms, we obtain equations
that describe the dynamics of the coupled system regarding
the two complex amplitudes cm and cr:

dcm

dt
+ iω(|cm|2)cm + 
(|cm|2)cm = Fm(cr), (B6)

dcr

dt
+ iωrcr + ωr

2Q
cr = Fr(cm), (B7)

where 
(|cm|2) = 
+(|cm|2) − 
−(|cm|2), ω(|cm|2) = ω0
+ K |cm|2, Fm(cr) = gmcr, Fr(cm) = −grcm, and Q =√

L/C/R is the quality factor of the LCR resonator. The
parameters for the coupling terms are gm = γ brf/4 and
gr = ω0brfMsVc/L. In Eqs. (B6) and (B7), we drop terms
proportional to c∗

m and c∗
r under the rotating-wave approx-

imation [50]. In the main text, we consider the case where
the demagnetization field is nearly compensated with the
perpendicular anisotropy, therefore, we set ωH ≈ ω0 and
u + v = 1 in the equations above. We note that gm ∝ brf
and gr ∝ brfNs, where Ns is the number of spins. Equa-
tions (B6) and (B7) represent coupling between a nonlinear
auto-oscillator and a linear passive resonator, different
from mutual synchronization between two STOs (non-
linear auto-oscillators) in the previous literature [1]. To
proceed, by expressing cm = √

pmeiφm and cr = √
preiφr ,

we separate Eqs. (B6) and (B7) into equations about the
magnitude and about the phase:

dpm

dt
+ 2
(pm)pm = 2gm

√
prpm cos(φr − φm), (B8)

dφm

dt
+ ω(pm) = gm

√
pr

pm
sin(φr − φm), (B9)

dpr

dt
+ ωr

Q
pr = −2gr

√
prpm cos(φr − φm), (B10)

dφr

dt
+ ωr = gr

√
pm

pr
sin(φr − φm). (B11)

Without the coupling term, which is proportional to gm,
the relevant solution to Eqs. (B8) and (B9) is the persistent
macrospin precession with stationary power p0 satisfying

+(p0) = 
−(p0) and generation frequency ωg = ω(p0).
In the limit of weak coupling, we can expand Eqs. (B8)
and (B9) around the stationary point by treating power
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deviation δpm = pm − p0 as a small signal [1]:

dδpm

dt
+ 2
pδpm = 2gm

√
prp0 cos(φr − φm), (B12)

dφm

dt
+ ωg + Kδpm = gm

√
pr

p0
sin(φr − φm), (B13)

where 
p = (G+ − G−)p0 with G+ = (d
+/dp)|p0 and
G− = (d
−/dp)|p0 . Defining ν = K/(G+ − G−) and
keeping leading-order terms, the dynamics of Eqs.
(B8)–(B11) can be captured by the following equations:

dφm

dt
+ ωg = gm

√
1 + ν2

√
pr

p0
sin(φr − φm − βm),

(B14)

dφr

dt
+ ωr = gr

√
p0

pr
sin(φr − φm), (B15)

dpr

dt
+ ωr

Q
pr = −2gr

√
prp0 cos(φr − φm), (B16)

where βm = arctan(ν) is a phase due to nonlinear fre-
quency shift. Equations (B14)–(B16) serve as a basis
for deriving the synchronization condition in a resonator-
coupled multidomain STO in Appendix C. Moreover, this
macrospin theory also describes the STO maser in the
synchronized region with brf ≥ brf,c, as discussed below.

We seek a stationary solution where dpr/dt = 0, which
suggests that cos(φr − φm) < 0 and � = φr − φm is a
constant in time, indicating phase locking. Then we have

pr = 4p0

[

gr
Q
ωr

cos �

]2

, (B17)

ωr − ωg = − ωr

2Q
tan � + 2G

Q
ωr

cos � sin(� − βm),

(B18)

where G = gmgr
√

1 + ν2. Equation (B18) determines the
stationary locked phase �, which then determines res-
onator power pr in Eq. (B17). Note that gm ∝ brf and gr ∝
brfNs. Therefore, the locked phase � depends on brf and Ns
through G ∝ b2

rfNs. In our simulations, am ≈ cm due to the
nearly compensated magnetic anisotropy and we approxi-
mate φm = arctan(−〈m̂x〉/〈m̂z〉). The locked phases � as a
function of the diameter D and brf are extracted from the
simulation and plotted in Fig. 5. We note that cos � < 0
and that � depends on brf and Ns through the combination
brfD ∝ brfN 2

s , as illustrated in Fig. 5(b), consistent with the
macrospin theory.

Besides, we can obtain the microwave emission fre-
quency by inserting Eq. (B17) into Eq. (B15), obtaining
(dφr/dt) = −ωr[1 + tan(�)/2Q]. This indicates a relation

(a) (b)

FIG. 5. The locked phase � = φr − φm as a function of (a) brf
and (b) brfD for different diameters D, with brf ≥ brf,c. In this
simulation, T = 0 K and the lateral size of cells is chosen to be
2.5 nm.

between the phase-locked frequency and the phase:

ωPL = ωr

(

1 + 1
2Q

tan �

)

. (B19)

In Fig. 6, the theoretical phase-locked frequencies calcu-
lated using Eq. (B19) and phases in Fig. 5 are shown as
solid curves, which agree well with the peak frequencies
obtained from simulation, represented by pentagram dots.

APPENDIX C: SYNCHRONIZATION CONDITION
FOR MULTIDOMAIN SPIN-TORQUE

OSCILLATOR WITH MICROWAVE RESONATOR

We model the multidomain STO as consisting of Nc
magnetic cells with volume Vc. As shown in the earlier
literature, in the limit of large Nc, short-range interac-
tions such as nearest-neighbor interaction from exchange
and power-law interaction from the dipolar field are insuf-
ficient to achieve the synchronization of different cells.
Moreover, it is mathematically challenging to derive an
analytical solution for the synchronization in the presence

FIG. 6. The phase-locked frequency fPL with brf ≥ brf,c. The
pentagram dots represent the peak frequencies extracted from
simulation. The solid curves represent calculations using
macrospin theory and the locked phases presented in Fig. 5.
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of these short-range coupling terms. Here, we only con-
sider the interaction between the magnetic cells and the
LCR resonator. We show below that this model captures
the features of our simulation results semiquantitatively.
The dynamical equations of the system at T = 0 K are the
generalization of Eqs. (B6) and (B7):

dci

dt
+ iωi(|ci|2)ci + 
+i(|ci|2)ci − 
−i(|ci|2)ci = Fmi(cr),

(C1)

dcr

dt
+ iωrcr + ωr

2Q
cr =

∑

i

Fri(ci), (C2)

where i is the cell index. In general, the functions ωi, 
+i,

−i, Fmi, and Fri have i-dependent functional forms due on
spatial variation of the equilibrium effective field. For each
unit cell with complex amplitude ci = √

pieiφi , one can
expand the equation around the stationary working point
with corresponding stationary power pi0 and generation
frequency ωgi, as we do in Eq. (B14):

dφi

dt
+ ωgi = gm

√
1 + ν2

i

√
pr

pi0
sin(φr − φi −βi), (C3)

dcr

dt
+ iωrcr + ωr

2Q
cr =

∑

i

−gri
√

pi0eiφi , (C4)

where the definitions of gmi, νi, and βi are in line with the
corresponding definitions of gm, ν, and βm in Appendix B.
These equations describe a complicated dynamical system
with dimension Nc + 2. To obtain the qualitative features
of the system, we set all parameters except ωgi to their
average values νi = ν, pi0 = p0, βi = βm, and gri = gr. In
the limit of large Nc, we assume that the frequency and
phase distribution of the magnetic cells satisfy a proba-
bility function f (φ, ω, t), where f (φ, ω, t)dφdω describes
the fraction of cells in phase (φ, φ + dφ) and frequency
(ω, ω + dω) [53]. We define the phase order parameter,

� = 1
Nc

∑

i

eiφi =
∫ ∞

−∞
dω

∫ 2π

0
f (φ, ω, t)eiφdφ, (C5)

and we can rewrite Eqs. (C3) and (C4) as

dφ

dt
+ ω = gm

√
1 + ν2

√
pr

p0
sin(φr −φ − βm), (C6)

dcr

dt
+ iωrcr + ωr

2Q
cr = −gr

√
p0Nc�. (C7)

The function f (φ, ω, t) satisfies the continuity equation
(∂f /∂t) + ∂φ(f φ̇) = 0, where φ̇ is given by Eq. (C6).

Following the Ott-Antonsen ansatz [53,54], we have a
tentative solution f (φ, ω, t) expressed in a Fourier series:

f (φ, ω, t) = h(ω)

2π

[

1 +
∞∑

n=1

[α(ω, t)]neinφ + c.c.

]

, (C8)

where the Fourier coefficients take the functional form
of [α(ω, t)]n, which is used to describe systems with
a large number of oscillators. We note that h(ω) =∫ 2π

0 f (φ, ω, t)dφ is the distribution of the generation fre-
quency of magnetic cells. Substituting Eqs. (C8) and (C6)
into the continuity equation, we have

∂α

∂t
− iωα

= gm
√

(1 + ν2)pr

2
√

p0

[
e−i(φr−βm) − α2ei(φr−βm)

]
. (C9)

Moreover, within the Ott-Antonsen ansatz, we note
that the phase order parameter can be written as
� = ∫ ∞

−∞ dωh(ω)α∗(ω, t). In order to obtain qualitative
results, we assume that the frequency distribution follows
the Lorentzian distribution h(ω) = (�m/π)[(ω − ω̄)2 +
�2

m]−1, which would simplify the expression of the phase
order parameter to � = [α(ω̄ + i�m, t)]∗, using contour
integration in the upper half complex plane [53]. As a
result, Eq. (C9) governs the time evolution of �, which,
together with Eq. (C7), specifies the dynamics of the
system:

∂�

∂t
+ i(ω̄ − i�m)� = gm

√
1 + ν2

2
√

p0

[
cre−iβm − �2c∗

r eiβm
]

.

(C10)

To proceed, we write � = �0eiφ0 , where the phase φ0
denotes the phase of the order parameter for magnetic
dynamics. We separate Eqs. (C10) and (C7) into phase and
amplitude parts:

d�0

dt
= −�m�0 + Gm

(
1 − �2

0

2

)

cos(φr − φ0 − βm),

(C11)

dφ0

dt
+ ω̄ = Gm

(
1 + �2

0

2

)

sin(φr − φ0 − βm), (C12)

dpr

dt
+ ωr

Q
pr = −2gr

√
prp0Nc�0 cos(φr − φ0), (C13)

dφr

dt
+ ωr = gr

√
p0

pr
Nc�0 sin(φr − φ0), (C14)
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where Gm = gm
√

1 + ν2
√

(pr/p0). We note that Eqs.
(C12)–(C14) generalize Eqs. (B14)–(B16), and that they
become identical in the case of �0 = 1, consistent with the
macrospin picture. The parameter gr in Eqs. (C13)–(C14)
represents coupling from a single magnetic cell, which is
accompanied by the number of cells Nc accounting for
proper size scaling. Equation (C11) is a new equation
that quantifies the coherence of magnetic dynamics. In
the absence of coupling to the resonator (gm = 0), one
can verify that �0 = 0 is a stable solution, correspond-
ing to complete incoherence. However, as described below,
when the mutual coupling strength represented by gmgrNc
reaches a critical value, this incoherence solution will lose
its stability and the alternative phase-locked solution will
describe the long-term dynamics of the hybrid system.
To find this phase boundary, we linearize Eq. (C10) near
�0 = 0 by discarding the �2 term. Assuming that � =
�0e(λ−i
)t and cr = cr0e(λ−i
)t in the linearized Eqs. (C7)
and (C10), we have

[λ + �r − i(
 − ωr)] [λ + �m − i(
 − ω̄)]

= 1
2

gmgrNc

√
1 + ν2e−iβm , (C15)

where �r = ωr/2Q corresponds to the linewidth of the res-
onator. The phase boundary for the growth of coherence
from the �0 = 0 state is given by the condition λ = 0+ in
Eq. (C15), which can be reached by a certain critical value
of gmgrNc. We define the corresponding threshold brf value
as brf,c. Under λ = 0+, by letting the real and imaginary
parts on both sides of Eq. (C15) equal each other, we arrive
at the following equation for brf,c:

[
δω�r − 1

2 G(brf,c) sin βm
] [

δω�m + 1
2 G(brf,c) sin βm

]

(�m + �r)2

= −1
2

G(brf,c) cos βm − �r�m, (C16)

where δω = ω̄ − ωr, G(brf,c) = gm,cgr,cNc
√

1 + ν2 ∝ b2
rf,c

Ns, with Ns being the number of total spins. Note that
the threshold equation Eq. (C16) depends on brf,c and Ns
only through G(brf,c) ∝ b2

rf,cNs, which leads to the con-
clusion that brf,c ∝ 1/

√
Ns, consistent with the simulation

results presented in the main text. Equation (C16) is a
generalized result of the famous Millennium Bridge prob-
lem by extending it to oscillators with a nonlinear fre-
quency shift, e.g., STOs [1,54,61]. Above the threshold
coupling brf ≥ brf,c, the stationary solution is described by
the phase-locked solution with nonzero �0 given in Eqs.
(C11)–(C14). Combining Eqs. (C12) and (C14) by defin-
ing � = φr − φ0, the phase-locked stationary solution is

described by

�m = −G(brf)
Q
ωr

(1 − �2
0 ) cos � cos(� − βm), (C17)

ωr − ω̄ = − ωr

2Q
tan � + Z0G(brf)

Q
ωr

cos � sin(� − βm),

(C18)

pr = 4p0

[

�0grNc
Q
ωr

cos �

]2

, (C19)

where Z0 = (1 + �2
0 )�0. The unknowns in Eqs. (C17)–

(C19) are �0, �, and pr, with �m, ω̄, g, and βm being
material- and biasing-dependent parameters. Equations
(C17)–(C18) depend on brf through the function G(brf) ∝
b2

rfNs. As a consequence, �0 and � can be determined
from those two equations as functions of b2

rfNs when the
other parameters are fixed. Therefore, for samples with
different dimensions, if we pick brf slightly above the cor-
responding threshold value of brf,c, as we do in Fig. 3(d)
of the main text, we will obtain the same �0 and �,
since b2

rfNs remains a constant. From Eq. (C19), we then
obtain pr ∝ (grNc)

2 ∝ (brfNs)
2 ∝ Ns, which describes the

simulation results presented in the main text.

APPENDIX D: PARAMETER SET IN
ANALYTICAL MODEL

With Eqs. (C16)–(C19), the theoretical model explains
the simulation results of brf,c and Er = Lpr/2 in the main
text. With L = 1.56 nH, Ms = 5.5 × 105 A/m, and ω0 ≈
2π × 5.44 GHz utilized in the simulations, the values of
gm = γ brf/4 and grNc = ω0brfMsVcNc/L for different brf
and D can be determined. Moreover, we estimate the value
of p0 ≈ 0.3167 from simulation of the uncoupled case.
Under the chosen optimal parameters of �m = 2π × 0.326
GHz, ωr − ω̄ = 2π × 0.28 GHz, and βm = 2.43, the ana-
lytical model gives the red curves in Figs. 3(c) and 3(d) in
the main text. For a self-consistency check, ν = tan βm <

0 gives K < 0, which is consistent with the fact that
ω̄ < ω0.
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