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Abstract— UAVs are deployed in various applications including
disaster search-and-rescue, precision agriculture, law enforce-
ment and first response. As UAV software systems grow
more complex, the drawbacks of developing them in low-
level languages become more pronounced. For example, the
lack of memory safety in C implies poor isolation between
the UAV autopilot and other concurrent tasks. As a result,
the most crucial aspect of UAV reliability—timely control of
the flight—could be adversely impacted by other tasks such as
perception or planning. We introduce JCopter, an autopilot
framework for UAVs developed in a managed language, i.e.,
a high-level language with built-in safe memory and timing
management. Through detailed simulation as well as flight
testing, we demonstrate how JCopter retains the timeliness of C-
based autopilots while also providing the reliability of managed
languages.

I. INTRODUCTION

UAVs are witnessing an explosive growth in commercial and
public-interest applications, such as search-and-rescue, first
response, merchandise and medicine delivery, and precision
agriculture. Software reliability is critical on UAVs, and any
failure in UAV autopilot software could have catastrophic
real-world consequences. According to a recent empirical
study on UAV failures [1], navigation-related failures have
one of the shortest Mean Time Between Failures (MTBF)
and one of the highest incidence (over 30%) for commercial
UAVs. In a recent survey with commercial UAV operators in
the UK [2], the top 4 forms of failures are communication
failures, navigation failures, power failures, and firmware
failures; together, they are shown to be significantly more
common than hardware failures e.g., in blades and motors.
All except power failures are directly related to the autopilot
software. More broadly, software reliability is well known
to be a crucial component in maintaining the reliability of
robotic and autonomous systems [3], [4], [5].

A. Software Failures in UAVs

For UAV systems, software reliability is a challenging goal as
onboard software becomes increasingly complex. In practice,
most UAV systems run several tasks concurrently and collab-
oratively to achieve desired behavior. Examples of such tasks
include perception (e.g., identifying objects in field of view
as seen by an onboard camera), planning (e.g., planning the
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trajectory in 3-D avoiding previously detected objects) and
control (e.g., closed-loop flight autopilot).

Take the most important dimension of UAV software reliabil-
ity, timeliness, for example. An algorithmically correct robot
will not function if components, either software or hardware,
do not meet timing deadlines and run at a specific rate
consistently. In modern UAV software frameworks, achieving
timeliness is complicated by the complexity of co-running
tasks. Some are time-critical: autopilot software may need
to run at 100 Hz (i.e., every 10 ms) to determine a set of
roll, pitch, yaw and thrust values to command the UAYV,
and a timing failure may result in a crash. Other tasks
such as perception are not time-critical and can be executed
on a best-effort basis - if one frame was skipped in the
processing, the overall goal of object identification may not
be affected. In existing frameworks, a non-critical task can
easily corrupt the critical task, leading to a timing failure
for both. In addition to timeliness, other dimensions of
UAV reliability, such as fail-safe support, ease of debugging,
and memory availability, all become challenging goals as
software becomes increasingly complex.

A root cause behind the spectrum of reliability challenges
in UAV software systems is the lower-level languages in
which they are written, such as C or C++. First, applications
written in low-level languages have the potential to corrupt
the memory space of another task and as such provide weaker
memory safety, which translates to poor isolation among
UAV tasks. A simple buffer overflow within a secondary
payload may immediately corrupt the autopilot’s data with
catastrophic consequences. Second, the lack of type safety
and high-level language features such as checked exceptions
makes programs written in low-level languages error-prone,
and these errors are often challenging to debug. Third,
manual memory management may lead to memory leaks.
This is detrimental for memory availability, especially on
UAV systems with limited resources. C++ does provide a
means for automatically freeing no-longer needed resources
through the use of smart pointers. The burden to use this
functionality is placed on the developer to ensure correct
use throughout the code base.
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B. JCopter

In this paper, we introduce JCopter, a demonstration of the
UAV autopilot software system in a high-level language with
a managed runtime. We are motivated by the hypothesis
that higher reliability can be achieved by developing UAV
software systems in high-level languages, such as Java, for
several reasons. (a) high-level languages enjoy type safety
and support robust exception handling, making individual
UAV tasks more robust, with fail-safe support by design; (b)
they are endowed with memory safety, making it less likely
for errors to propagate from one task to another. (c) they
support automatic memory management, so that memory
availability is enhanced without manual developer efforts. (d)
Furthermore, real-time variants of high-level languages such
as Real-Time Specification of Java (RTSJ) [6] and Safety
Critical Java (SCJ) [7] allow the use of Java in real-time
applications providing rigorous timing support [8], [9], [10].

One novel feature of the JCopter deployment is that the
language we use is “Java with a twist”: it syntactically and
semantically conforms to Java language specification, but its
managed runtime support is a low-overhead real-time variant
of Java Virtual Machine (JVM) called Fiji [11]. Fiji provides
the ability to execute multiple Java applications, providing
strict time and space isolation between them [12], effectively
allowing applications to execute in the same memory space
but not be able to access each other’s memory nor interfere
with each other’s timeliness. It compiles Java to C code with
a minimal language runtime to produce fast executables.
Most importantly, it provides a real-time garbage collec-
tor, allowing for automatic memory management with pre-
dictable timing [13]. The conformance to Java specification
allows JCopter to achieve all the aforementioned benefits
that come with a high-level language. The choice of a low-
overhead variant of JVM offers JCopter with principled
timing support and competitive performance. In a nutshell,
this design integrates the best of both worlds.

To the best of our knowledge, JCopter is the first open-
source autopilot for Java that flies on commodity UAVs. It is
our reimplementation of the popular ArduPilot. In addition
to the technical benefits of adopting a managed language,
JCopter has the software engineering benefit of bringing Java
developers into UAV software development, and bridging
Java-based payload applications with UAV platforms. At
the inception of UAVs decades ago, C perhaps was an
appropriate choice considering the root of UAVs as resource-
constrained embedded systems. However, the computing
hardware support of this embedded system has gone a long
way, and much progress has also been made on managed
programming languages for embedded systems [12], [14],
[15], [16], [17]. Our evaluation demonstrates that a Java-
based autopilot can satisfy the performance and real-time
requirements of UAVs in both simulation and real flights.
Overall, JCopter is the first step toward a direction to build
a Java ecosystem for UAVs, hitherto focusing on the most
intricate part of UAV software, the autopilot.

Overall, this paper makes the following contributions:

o The implementation and demonstration of a Java-based
autopilot for UAVs, with a novel combination of fron-
tend Java syntactic and semantic support, and the back-
end real-time runtime support.

o The evaluation of JCopter through systematic simulation
and real-flight tests, demonstrating its feasibility and
runtime characteristics.

o Our Java-based autopilot software is available for down-
load [18], facilitating Java-based UAV software devel-
opment and experimentation by others.

II. RELATED WORK

ArduPilot, Paparazzi UAV [19], [20] and PX4 [21] are
the most popular autopilot frameworks for UAVs, but none
is developed in a managed language. ROS [22] is widely
used for robotic applications, written primarily in C++ with
additional Python support. While ROS can work with UAVs,
this middleware system in itself does not contain autopilot
software modules, and still relies on a native autopilot.

From our survey, we believe ScanEagle [23] is the first
autopilot written in Java that is RTSJ compliant. However
its implementation is not publicly available. JAviator [24]
includes multiple implementations for the flight control logic,
including Java, but requires custom hardware. JUAV [25],
[26] demonstrated the principles of Java-based autopilot
support, but their proof-of-concept system does not compose
with existing autopilot frameworks, and cannot be deployed
to UAVs for flights.

Real-time Java has also been proven in other areas of robotics
including industrial robot control [27]. IHMC investigated
the use of real-time Java for humanoid robot control during
the 2013 DARPA Robotics Challenge Trials [28], but found
that the implementations available to them were too slow for
their application.

More broadly, Java’s use in embedded systems is ubiqui-
tous with Oracle offering Java ME and Java SE, allowing
developers to customize their JVM and deploy libraries to
fit the footprint of their targeted embedded device. On the
embedded and real-time side there are numerous real-time
JVMs [14], [12] and two hardware-based JVMs, HVM and
JOP. HVM [15], [16] provides a small footprint JVM capable
of executing with only a few KB of RAM on bare metal.
JOP [17] provides a custom processor able to execute Java
bytecode with real-time extensions. None of these efforts is
applicable to UAVs, but together, they offer evidence that
Java can run efficiently on embedded systems.

Numerous empirical studies exist for failures in aviation
or general robotic systems. As early as in 1996, NASA
performed a comprehensive study in flight software com-
plexity [29] and recommended complexity management in-
cluding the use of higher-level languages to improve safety.
A study of faults that occurred during RobotCup [3] shows
a number of various errors including memory leaks, race
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H Autopilot | Issue # Date Type Description H

pPX4 17908 | 7/13/2021 | Multiple Memory Issues Memory Leak, Write Out of Bounds, and Dereference Null Pointer
PX4 16140 9/6/2020 Process Isolation Critical tasks being interrupted by non-critical tasks

ArduPilot 13917 03/28/20 Memory Leak One-time memory leak for Lua scripting tool

ArduPilot 13820 03/16/20 Allocation Error Memory reallocation method realloc” was left undefined

ArduPilot | 13792 03/12/20 Memory Leak Memory leaks that cost too much flash memory to fix. Issue was left unresolved

ArduPilot 12146 08/26/19 Memory Leak Memory leaks in the “heap_realloc” memory allocation method
PX4 12537 07/22/19 Memory Leak Memory leak in uORB teardown

ArduPilot 11862 07/22/19 Write Out of Bounds “readlink” method can return out-of-bounds memory region

ArduPilot 9137 08/8/18 Write Out of Bounds User induced out of bounds write in RC channel

ArduPilot 8644 06/14/18 Memory Leak Memory Leak in posix fprintf function

ArduPilot 8642 06/14/18 Memory Leak Memory Leak in video bench marking

TABLE I: Relevant ArduPilot and PX4 GIT issues

conditions, and overflows. Sotiropoulos et al. [4] analyzed
commits in libraries for navigation algorithms and .. added
a separate memory class to emphasize the high number
of such bugs”. More recently, Garcia et al. [5] present a
comprehensive study of bugs found in autonomous vehicles.
The authors classify the root cause for a given bug into one
of 13 classes, including memory mismanagement, misuse of
pointers, and concurrency-related problems.

III. MOTIVATION

In this section, we summarize the benefits of high-level
languages in enhancing the reliability of UAV systems. In
general application domains, these benefits are well docu-
mented [30], [31]. The motivation of JCopter is to bring
these benefits into the domain of UAV software. To set these
benefits in perspective, Table I lists recent issues [32], [33]
from popular C++-based UAV frameworks, ArduPilot [34]
and PX4 [21]. Despite the large user base and many years of
development, memory bugs still exist. If this was developed
in a managed language such as Java, such errors could be
eliminated by the guarantees provided by the language.

A. Memory Safety

A key benefit of a high-level language such as Java is that
its program runtimes are guaranteed to stay within their al-
located memory space. This becomes increasingly important
when deploying multiple applications on the same hardware.
For UAVs, this means that auxiliary payload written in Java
will not be able to break the bounds of their approved mem-
ory space, ensuring critical system memory would remain
safe from serious errors such as buffer overflows, found in
lower-level languages like C/C++. Git issues 13820, 11862,
and 9137 presented in Table I highlight issues maintaining
memory safety with lower-level languages.

B. Type Safety

Java’s strong typing allows many program errors to be
found during compilation. Type safety further strengthens the
ability of program reasoning, leading to powerful debugging
tools with static and dynamic analysis. For weakly-typed
languages such as C/C++, unsafe features such as pointers,
casting, unions, and function pointers may lead to subtle bugs
challenging for developers when software becomes complex.

C. Exception Handling

High-level languages such as Java provide comprehensive
support for failure semantics. In Java for example, checked
exceptions embody program errors, and the compiler will
ensure they are explicitly handled by the program. Checked
exceptions represent the majority of semantic errors in Java,
such as null pointer dereferences, and array out of bounds.
The exception handler offers principled support to gracefully
recover from errors, e.g., disable a non-critical component,
reinitialize resource, or provide suitable feedback to user.
This could be useful in UAVs to mediate between critical
tasks and non-critical tasks, allowing for correct recovery
(e.g., skip the non-critical task).

In contrast, C does not provide exceptions, SO errors may
lead to undefined behavior. C++ provides exception handling,
but all exceptions are unchecked, i.e., the compiler is not
responsible for guaranteeing any exception to be handled.
Some errors indicated in Table I occurred due to unhandled
errors (e.g., null pointers, failure to open a resource).

D. Automatic Memory Management

Memory management in resource-constrained settings is
challenging and requires programmers to be judicious in
the memory usage, re-use resources (e.g. object pools), and
for safety-critical applications, eschew dynamic allocation
altogether (all memory is allocated up front prior to the
mission phase). Automatic memory management such as
garbage collection (GC) eliminates the need for the program-
mer to reason about memory, resulting in simpler application
code. In C/C++, manual memory management may cause
memory leaks (an availability threat) or dangling pointers
(a correctness threat). The git issues 13917, 13792, 12146,
8644, and 8642 show the difficulties of memory management
in a low-level language, as shown in Table L.

E. Timeliness and Prioritization

Real-time variants of Java provide a mechanism to execute
Java applications both efficiently and predictably. This pre-
dictability is rooted in its underlying implementation of a
real-time scheduler which facilitates GC to run at a lower
priority, ensuring it does not induce unexpected pauses to
the system that would be detrimental to overall execution.
Prioritization is also accessible to developers, allowing for
the creation of prioritized tasks where they can prioritize
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Fig. 1: The UAV Software Ecosystem

critical tasks such as flight control over less important tasks
like route planning.

Fiji as a real-time JVM allows for prioritized predictable exe-
cution of applications implemented in Java. In the remainder
of this paper, we discuss our implementation and demonstrate
how the unpredictability of commodity Java JVMs can lead
to failures of an application and how Fiji’s predictability
ensures that they do not occur.

IV. IMPLEMENTATION

Our JCopter framework is a UAV autopilot system written in
Java. In the UAV software ecosystem, the autopilot represents
the most safety-critical component where reliability matters
the most. To bridge gracefully with other components of
UAV software, we choose to develop JCopter as a module
that interacts with ArduPilot [34], one of the most popular
open-source autopilots currently available. Shown in Fig-
ure 1 is the interaction between JCopter and ArduPilot [35].
ArduPilot can be used to command several classes of UAVs,
UGVs and AUVs. As shown in the diagram, the autopilot
stack is divided into three main sections - (i) JCopter,
which represents the actual control for the copter, (ii) Shared
libraries, which are leveraged by JCopter to interface with
the various sensors as well as the estimation, and (iii)
a Hardware Abstraction Layer (HAL) which provides the
means for interaction with the actual hardware available to
the JCopter control code. The JCopter framework is a Java-
based implementation which consists of 3590 LoC across
26 classes and makes use of Java dependencies managed in
Maven Central. JCopter directly leverages the stack found
in ArduPilot and only aims to support quad rotor UAVs.
It focuses on bringing vehicle-specific flight code to Java
(JCopter), using the hardware interactions and communica-
tion mechanisms provided by ArduPilot.

Specifically, JCopter implements the components that con-
stitute the core autopilot computations - the attitude control
for a number of flight modes. The overall execution flow
for JCopter can be seen in Figure 2. The execution begins
with the initialization of any hardware (sensors, ESCs, etc.)
and internal data-structures. So long as the autopilot is not
told to cease executing, it enters the main control loop of

JCopter
« Mode Stabilize
« Mode Guided
Read sensors Update )
» Attitude rate control » Flight Wh'gh > Mode Loiter
Output to motors Mode mode
4+ Mode Auto

4 Other Modes
Check if crashed
Log sensor health
Camera mount update <«

Update home from EKF

Attitude Control Computations <«

Fig. 2: A Flow Chart with JCopter Components

the autopilot. The first step is to read any updated input
values, and send output values to the motors based on the
attitude control computations of the previous iteration of
the cycle. The next block ensures the flight mode is set
appropriately based on the new command received. Then
the set flight mode is executed. Each flight mode provides
different functionalities than the others (Loiter causes the
UAV to stabilize near a position based on GPS, Auto executes
a series of steps configured in a flight plan, Guided allows
for the dynamic setting of way-points, and Stabilize keeps
the frame level based on attitude readings), but in the end
they all determine a target attitude (Yaw, Pitch, and Roll) in
the common Attitude Control Computations block. Lastly a
series of checks are performed on the UAV and its position
estimation. For non-safety-critical components we leverage
the original ArduPilot code, communicating through Java
Native Interface (JNI). Further, a number of modifications
were made to the ArduPilot’s code base to add required
accessors and mutators. The result of any computations is
maintained in the normal native locations ensuring both Java-
based and C-based logic remain in sync throughout a given
flight. The compilation of JCopter is modified based on the
original ArduPilot’s build process to ensure all dependencies
(such as shared libraries) are correctly fulfilled.

With Fiji JVM, JCopter is capable of prioritizing threads in
a real-time setting. In our implementation, we prioritize the
autopilot’s execution over any additional payloads that may
be deployed. In a similar vein, the autopilot thread also has
a higher priority than GC threads. As a result, JCopter can
pause or delay the GC execution if the autopilot may risk
missing a deadline.

V. EVALUATION

In this section we demonstrate the benefits of JCopter and
its use of managed languages through three experiments.

o Timing of Real-time Tasks: We study the difference in
execution speed on real-time tasks, the JCopter autopilot
in this case, with the various implementations to study
the ability of the underlying language to incorporate
timing requirements.
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Fig. 3: CDF of Execution Time for Flight Mode Without
Payload. The dotted lines indicate the maximum amount of
time spent for completing a task. The lower graph shows the
overall trend, and the upper one time from O to 1.1 ms.

o Effects of Concurrency: As described in section I, mod-
ern UAV software is complex with multiple concurrent
tasks being run with varied timing requirements. To
study the effect of the language on such concurrent
tasks, we study the behavior of JCopter when run
alongside other software payloads.

e Real-world Deployment. While the first two studies are
conducted in simulation, we demonstrate the correspon-
dence of those results on real-world hardware in flight
that can be seen in video summarizing this work [36].

The simulation-based experiments (the first two above) allow
us to study the design space comprehensively and identify
configurations that might be unsafe to fly. Timely execution
in more resource-constrained environment (the third above)
demonstrates the real-world utility of JCopter. All simula-
tions were performed on a 4-core Intel i7 with 16GB of
RAM running Ubuntu 16.04. The flight testing was done on
the Erle-Copter [37] quad copter with Erle-Brain 3 as the
computing module. Every experiment involves running three
versions of the autopilot.

o ArduPilot (Ardu): The unmodified C++-based open-
source autopilot.

o JCopter-HotSpot Hybrid (HotSpot): The JCopter autopi-
lot running on Hotspot JVM.

o JCopter: The JCopter autopilot running on the Fiji real-
time JVM.

Among the 3 versions, Ardu serves as the baseline with an
unmanaged language implementation, representing the state
of the art. Hotspot forms another baseline to demonstrate
“what would have been” if a developer were on board with
a managed language, but naively chose a commodity JVM.
Together, these two baselines are selected for a comprehen-
sive comparative study of the benefits of JCopter.

In UAV systems, timing is critical to the operational safety
of the system, and thus fundamental to the reliability of the
underlying software. Unlike conventional computer systems
where the most effective design comes with the shortest

execution time, the key metric for UAVs is to ensure safety-
critical tasks are processed in a timely manner, i.e., always
meeting their deadlines. For the ArduPilot attitude control
the deadline is 10 ms as each of the flight modes is expected
to run at a rate of 100 Hz. All experiments are conducted
over a single flight and measure the absolute execution time
for every execution for the current flight mode through the
attitude control computations as seen in Figure 2.

A. Timing of Real-Time Tasks

We start with a simple experiment where the UAV autopilot
is running without any additional payload. This serves as
a sanity check on the UAV “flying but idle” behavior. Fig-
ure 3 shows cumulative distribution function (CDF) for the
execution time of the flight mode being used in simulation.
As seen here, the Ardu maximum (0.218 ms) is significantly
lower than the Hotspot and JCopter maximums (5.005 and
0.819 ms respectively). This is not surprising considering the
additional CPU cycles required for maintaining bookkeeping
services of the JVM. However, note that both Java versions
are able to finish their execution without missing any dead-
line. Indeed, the maximum execution time of JCopter is
more than one order of magnitude lower than the deadline.
Therefore, both Java-based solutions remain effective for the
autopilot task in this scenario.

From the zoomed-in figure, it may be noted that on average,
Hotspot appears to have a shorter execution time than
JCopter. This trend will recur in the rest of our evaluation.
UAV reliability however, is not about the average execution
time, but about whether the worse case execution time
exceeds the deadline. As we shall see, Hotspot is prone to
“wild swings” in execution time. In JCopter’s JVM choice
Fiji, additional support is added to improve the predictability
of scheduling and garbage collection behavior, resulting in
a mild overhead. As long as the deadline is met however, it
remains an effective solution.

B. Autopilot with Concurrent Payload

We next consider the more realistic scenario where the
autopilot is running concurrently with some payload ap-
plication. Our hypothesis is that, if the autopilot and the
payload application run on the same processor, not only do
the memory and computational requirements of the payload
affect the autopilot timing, but they may have the ability to
disrupt execution through improperly implemented code. In
order to test this hypothesis, we have created three payloads:

e CPU-Intensive Payload: a navigation application which
is typically run alongside the autopilot for high level
path planning.

o Memory-Intensive Payload: an application that stresses
the memory allocation and garbage collection.

e Memory-Corruption Payload: an application that trig-
gers a buffer overflow which may corrupt the memory
area of other applications.
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Fig. 4: CDF of Execution Time for Flight Mode with
Concurrent CPU-Intensive Payload. The lower graph shows
the overall trend, and the upper one time O to 2 ms.

Following, we elaborate on each of the payload applications
and our results.

1) CPU-Intensive Payload: Our navigation payload appli-
cation is based on the A* algorithm [38], and operates on
a NxN grid. For simulation we use a larger 900x900 grid
to stress the system highlighting potential deficiencies prior
to a real-world deployment. Like most real-world payload
applications, the execution of this algorithm is interruptible.
It operates on a 1000 ms period, with a 50% duty cycle where
it executes for 500 ms and is halted for the remaining 500 ms.
This downtime gives the Fiji and Java JVMs some time for
their own bookkeeping (such as garbage collection). When
testing our A* payload application in simulation, we found
that all three autopilots were able to meet the deadline of 10
ms. The results are shown in Figure 4. As expected, Ardu had
the lowest maximum execution time of 0.312 ms. Hotspot
and JCopter ended in 1.540 ms and 0.489 ms, respectively,
both significantly ahead of the deadline. Comparing these
results we notice that the longest executions for both Hotspot
and JCopter are shorter with the CPU intensive payload than
when run without a secondary payload. Increased contention
for compute time decreases memory usage between garbage
collections, allowing for only minor collections to be needed
by Hotspot, and shorter runs of the Fiji’s garbage collector
used by JCopter.

2) Memory-Intensive Payload: Our memory consuming pay-
load application repeatedly allocates 1.6 Megabytes of mem-
ory and halts (as to not consume processor time). This
places a stress test to the garbage collector in managed
languages. Figure 5 shows the CDF of execution times in
the presence of the memory payload. In this execution, Ardu
finishes all its runs within the deadline with the maximum
run finishing in 0.184 ms. This is not surprising given Ardu
has manual memory management and no garbage collection.
Hotspot missed one of its deadlines and had a maximum
execution time of 11.519 ms. JCopter finished its longest
execution in 0.388 ms, well below the specified deadline.
This experiment is interesting as it shows the importance of
Fiji, a JVM with efficient memory management and a small
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Fig. 5: CDF of Execution Time for Flight Mode with Con-
current Memory-Intensive Payload. The lower graph shows
the overall trend, and the upper one time 0 to 0.4 ms.

memory footprint, as opposed to Hotspot. It is a conscious
reminder that UAVs have distinct requirements in reliability
and resource management: Java can work well, but a careful
design in JVM is required.

3) Memory-Corruption Payload: Java provides runtime ar-
ray bounds checking, a feature C/C++ does not support.
In this experiment, we inject a buffer overflow error to
our navigation payload program, by writing to an array
until it exceeds its bound of 500 elements. In Ardu, the
application payload continued to write beyond the bound
of the array until crashing due to a segmentation fault,
leading to crashing the autopilot as well. When tested in
three consecutive runs, Ardu crashed at the 464th, 461th,
and 459th iterations after exceeding the array bound, causing
corruption in core autopilot data structures. In both Hotspot
and JCopter however, the payload application was able to
exit through exception handling upon the first write that
exceeded the array bound. As a result, the autopilot continues
to run. This experiment demonstrates the benefit of Java’s
support for memory safety in isolating failures. In a real-
world application, the autopilot program should by no means
crash if the navigation payload is faced with an error. With
JCopter, the payload application can be terminated gracefully
without interfering with other concurrent tasks such as the
safety-critical autopilot.

C. Real-world Deployment

While the simulation provides a controlled environment for
the relative comparison of the three autopilots, hardware
variations may still play a role in program behavior when
the autopilot is deployed in a real-world setting. For instance,
the Raspberry Pi 3 has the same number of physical cores
but can compute fewer floating point operations per second
and has only 1GB of RAM compared to the 16GB in our
simulation environment. In this section, we repeat our earlier
experiments on a real-world UAV hardware.

1) JCopter Experiments without Payload: Figure 6 shows
the CDF of execution times for the three autopilots while
flying the Erle-Copter with no additional payload. All three
of our autopilots missed no deadlines. Ardu finished its
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Payload While In-Flight. The lower graph shows the overall
trend, and the upper one time 0 to 9 ms.
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maximum execution time in 0.290 ms. Hotspot finished
in 1.516 ms. However, using Fiji’s real-time abstractions,
JCopter reduced the maximum execution time to 1.162 ms.

2) JCopter Experiments with Payload: Figure 7 shows the
result of the flight mode for the Ardu, Hotspot, and JCopter
autopilots running concurrently with the A* payload, on
a grid of 128x128. For safety reasons we executed the
autopilot along with the navigation application with the
propellers removed. The copter was manually kept in the
air so it did not auto-disarm while collecting the timing
measurements. As shown in the figure, Hotspot may miss
a deadline whereas both Ardu and JCopter do not. To gain
an in-depth understanding of the in-flight behavior, Figure 8
shows the absolute execution time per release. The red
bars indicate the absolute time for each execution of the
flight mode through the attitude control computations that
occurred during the active time of the A* payload, while
the executions indicated by the blue bars occurred during
the payload’s downtime. Ardu and JCopter, in Figure 8 (a)
and Figure 8 (b) respectively, missed no deadlines while
running the A* payload. However, Figure 8 (c) shows that
Hotspot missed two deadlines while the payload was halted.
The absolute execution time for these iterations were 58.470
ms. and 53.226 ms. A missed deadline may result from
the competition either from the navigation payload or the

garbage collector thread. The observed misses occurred due
to GC because as seen in the figure, our A* payload was
halted when they occurred. In JCopter, the Fiji support places
the autopilot at a higher priority with real-time deadline
support, and no deadline is missed as a result. As can be
seen in Figure 7 these features allow JCopter to decrease
its maximum execution time from Hotspot’s 58.470 ms, to
8.027 ms. Ardu had a maximum execution time of 0.213 ms,
thus both JCopter and Ardu met all their deadlines.

VI. CONCLUSIONS

With the utility of UAVs, it is not surprising their use-cases
are increasing. Compound that with the proliferation of UAV
hardware available to both industry and consumers and it
is understandable that new applications to further enhance
them will be created. When these new functionalities are co-
located with the flight controller, reliability is a key concern:
the payload applications should not negatively affect the
reliability of critical tasks. This is a non-trivial problem when
programs implemented in low-level languages may cause the
UAVs to fail due to software bugs (e.g., buffer overflow),
unhandled errors, and resource contention.

In this paper we presented JCopter, a Java-based autopilot
which makes use of managed languages, reducing the pos-
sibility of run-time errors by providing (1) memory safety,
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type safety, (3) exception handling, and (4) automatic

memory management. These benefits ensure the reliability of
applications and decreased development time. Our Fiji-based
JVM further ensures predictable execution of applications in
real-time deployments. Together, we show that JCopter offers
a practical solution to improve the reliability of UAVs. We
believe that JCopter provides a means for the community to
assess and gain confidence in the applicability of managed
languages in time-sensitive robotic platforms, with current
real-time Java implementations.
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