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Abstract— UAVs are deployed in various applications including
disaster search-and-rescue, precision agriculture, law enforce-
ment and first response. As UAV software systems grow
more complex, the drawbacks of developing them in low-
level languages become more pronounced. For example, the
lack of memory safety in C implies poor isolation between
the UAV autopilot and other concurrent tasks. As a result,
the most crucial aspect of UAV reliability–timely control of
the flight–could be adversely impacted by other tasks such as
perception or planning. We introduce JCopter, an autopilot
framework for UAVs developed in a managed language, i.e.,
a high-level language with built-in safe memory and timing
management. Through detailed simulation as well as flight
testing, we demonstrate how JCopter retains the timeliness of C-
based autopilots while also providing the reliability of managed
languages.

I. INTRODUCTION

UAVs are witnessing an explosive growth in commercial and

public-interest applications, such as search-and-rescue, first

response, merchandise and medicine delivery, and precision

agriculture. Software reliability is critical on UAVs, and any

failure in UAV autopilot software could have catastrophic

real-world consequences. According to a recent empirical

study on UAV failures [1], navigation-related failures have

one of the shortest Mean Time Between Failures (MTBF)

and one of the highest incidence (over 30%) for commercial

UAVs. In a recent survey with commercial UAV operators in

the UK [2], the top 4 forms of failures are communication

failures, navigation failures, power failures, and firmware

failures; together, they are shown to be significantly more

common than hardware failures e.g., in blades and motors.

All except power failures are directly related to the autopilot

software. More broadly, software reliability is well known

to be a crucial component in maintaining the reliability of

robotic and autonomous systems [3], [4], [5].

A. Software Failures in UAVs

For UAV systems, software reliability is a challenging goal as

onboard software becomes increasingly complex. In practice,

most UAV systems run several tasks concurrently and collab-

oratively to achieve desired behavior. Examples of such tasks

include perception (e.g., identifying objects in field of view

as seen by an onboard camera), planning (e.g., planning the

*This project is sponsored by NSF Awards CNS-1823260, CNS-1823230,
CNS-1846320 and SHF-1749539.

trajectory in 3-D avoiding previously detected objects) and

control (e.g., closed-loop flight autopilot).

Take the most important dimension of UAV software reliabil-

ity, timeliness, for example. An algorithmically correct robot

will not function if components, either software or hardware,

do not meet timing deadlines and run at a specific rate

consistently. In modern UAV software frameworks, achieving

timeliness is complicated by the complexity of co-running

tasks. Some are time-critical: autopilot software may need

to run at 100 Hz (i.e., every 10 ms) to determine a set of

roll, pitch, yaw and thrust values to command the UAV,

and a timing failure may result in a crash. Other tasks

such as perception are not time-critical and can be executed

on a best-effort basis - if one frame was skipped in the

processing, the overall goal of object identification may not

be affected. In existing frameworks, a non-critical task can

easily corrupt the critical task, leading to a timing failure

for both. In addition to timeliness, other dimensions of

UAV reliability, such as fail-safe support, ease of debugging,

and memory availability, all become challenging goals as

software becomes increasingly complex.

A root cause behind the spectrum of reliability challenges

in UAV software systems is the lower-level languages in

which they are written, such as C or C++. First, applications

written in low-level languages have the potential to corrupt

the memory space of another task and as such provide weaker

memory safety, which translates to poor isolation among

UAV tasks. A simple buffer overflow within a secondary

payload may immediately corrupt the autopilot’s data with

catastrophic consequences. Second, the lack of type safety

and high-level language features such as checked exceptions

makes programs written in low-level languages error-prone,

and these errors are often challenging to debug. Third,

manual memory management may lead to memory leaks.

This is detrimental for memory availability, especially on

UAV systems with limited resources. C++ does provide a

means for automatically freeing no-longer needed resources

through the use of smart pointers. The burden to use this

functionality is placed on the developer to ensure correct

use throughout the code base.
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B. JCopter

In this paper, we introduce JCopter, a demonstration of the

UAV autopilot software system in a high-level language with

a managed runtime. We are motivated by the hypothesis

that higher reliability can be achieved by developing UAV

software systems in high-level languages, such as Java, for

several reasons. (a) high-level languages enjoy type safety

and support robust exception handling, making individual

UAV tasks more robust, with fail-safe support by design; (b)

they are endowed with memory safety, making it less likely

for errors to propagate from one task to another. (c) they

support automatic memory management, so that memory

availability is enhanced without manual developer efforts. (d)

Furthermore, real-time variants of high-level languages such

as Real-Time Specification of Java (RTSJ) [6] and Safety

Critical Java (SCJ) [7] allow the use of Java in real-time

applications providing rigorous timing support [8], [9], [10].

One novel feature of the JCopter deployment is that the

language we use is “Java with a twist”: it syntactically and

semantically conforms to Java language specification, but its

managed runtime support is a low-overhead real-time variant

of Java Virtual Machine (JVM) called Fiji [11]. Fiji provides

the ability to execute multiple Java applications, providing

strict time and space isolation between them [12], effectively

allowing applications to execute in the same memory space

but not be able to access each other’s memory nor interfere

with each other’s timeliness. It compiles Java to C code with

a minimal language runtime to produce fast executables.

Most importantly, it provides a real-time garbage collec-

tor, allowing for automatic memory management with pre-

dictable timing [13]. The conformance to Java specification

allows JCopter to achieve all the aforementioned benefits

that come with a high-level language. The choice of a low-

overhead variant of JVM offers JCopter with principled

timing support and competitive performance. In a nutshell,

this design integrates the best of both worlds.

To the best of our knowledge, JCopter is the first open-

source autopilot for Java that flies on commodity UAVs. It is

our reimplementation of the popular ArduPilot. In addition

to the technical benefits of adopting a managed language,

JCopter has the software engineering benefit of bringing Java

developers into UAV software development, and bridging

Java-based payload applications with UAV platforms. At

the inception of UAVs decades ago, C perhaps was an

appropriate choice considering the root of UAVs as resource-

constrained embedded systems. However, the computing

hardware support of this embedded system has gone a long

way, and much progress has also been made on managed

programming languages for embedded systems [12], [14],

[15], [16], [17]. Our evaluation demonstrates that a Java-

based autopilot can satisfy the performance and real-time

requirements of UAVs in both simulation and real flights.

Overall, JCopter is the first step toward a direction to build

a Java ecosystem for UAVs, hitherto focusing on the most

intricate part of UAV software, the autopilot.

Overall, this paper makes the following contributions:

• The implementation and demonstration of a Java-based

autopilot for UAVs, with a novel combination of fron-

tend Java syntactic and semantic support, and the back-

end real-time runtime support.

• The evaluation of JCopter through systematic simulation

and real-flight tests, demonstrating its feasibility and

runtime characteristics.

• Our Java-based autopilot software is available for down-

load [18], facilitating Java-based UAV software devel-

opment and experimentation by others.

II. RELATED WORK

ArduPilot, Paparazzi UAV [19], [20] and PX4 [21] are

the most popular autopilot frameworks for UAVs, but none

is developed in a managed language. ROS [22] is widely

used for robotic applications, written primarily in C++ with

additional Python support. While ROS can work with UAVs,

this middleware system in itself does not contain autopilot

software modules, and still relies on a native autopilot.

From our survey, we believe ScanEagle [23] is the first

autopilot written in Java that is RTSJ compliant. However

its implementation is not publicly available. JAviator [24]

includes multiple implementations for the flight control logic,

including Java, but requires custom hardware. JUAV [25],

[26] demonstrated the principles of Java-based autopilot

support, but their proof-of-concept system does not compose

with existing autopilot frameworks, and cannot be deployed

to UAVs for flights.

Real-time Java has also been proven in other areas of robotics

including industrial robot control [27]. IHMC investigated

the use of real-time Java for humanoid robot control during

the 2013 DARPA Robotics Challenge Trials [28], but found

that the implementations available to them were too slow for

their application.

More broadly, Java’s use in embedded systems is ubiqui-

tous with Oracle offering Java ME and Java SE, allowing

developers to customize their JVM and deploy libraries to

fit the footprint of their targeted embedded device. On the

embedded and real-time side there are numerous real-time

JVMs [14], [12] and two hardware-based JVMs, HVM and

JOP. HVM [15], [16] provides a small footprint JVM capable

of executing with only a few KB of RAM on bare metal.

JOP [17] provides a custom processor able to execute Java

bytecode with real-time extensions. None of these efforts is

applicable to UAVs, but together, they offer evidence that

Java can run efficiently on embedded systems.

Numerous empirical studies exist for failures in aviation

or general robotic systems. As early as in 1996, NASA

performed a comprehensive study in flight software com-

plexity [29] and recommended complexity management in-

cluding the use of higher-level languages to improve safety.

A study of faults that occurred during RobotCup [3] shows

a number of various errors including memory leaks, race
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Autopilot Issue # Date Type Description

PX4 17908 7/13/2021 Multiple Memory Issues Memory Leak, Write Out of Bounds, and Dereference Null Pointer

PX4 16140 9/6/2020 Process Isolation Critical tasks being interrupted by non-critical tasks

ArduPilot 13917 03/28/20 Memory Leak One-time memory leak for Lua scripting tool

ArduPilot 13820 03/16/20 Allocation Error Memory reallocation method ”realloc” was left undefined

ArduPilot 13792 03/12/20 Memory Leak Memory leaks that cost too much flash memory to fix. Issue was left unresolved

ArduPilot 12146 08/26/19 Memory Leak Memory leaks in the ”heap realloc” memory allocation method

PX4 12537 07/22/19 Memory Leak Memory leak in uORB teardown

ArduPilot 11862 07/22/19 Write Out of Bounds ”readlink” method can return out-of-bounds memory region

ArduPilot 9137 08/8/18 Write Out of Bounds User induced out of bounds write in RC channel

ArduPilot 8644 06/14/18 Memory Leak Memory Leak in posix fprintf function

ArduPilot 8642 06/14/18 Memory Leak Memory Leak in video bench marking

TABLE I: Relevant ArduPilot and PX4 GIT issues

conditions, and overflows. Sotiropoulos et al. [4] analyzed

commits in libraries for navigation algorithms and ”.. added

a separate memory class to emphasize the high number

of such bugs”. More recently, Garcia et al. [5] present a

comprehensive study of bugs found in autonomous vehicles.

The authors classify the root cause for a given bug into one

of 13 classes, including memory mismanagement, misuse of

pointers, and concurrency-related problems.

III. MOTIVATION

In this section, we summarize the benefits of high-level

languages in enhancing the reliability of UAV systems. In

general application domains, these benefits are well docu-

mented [30], [31]. The motivation of JCopter is to bring

these benefits into the domain of UAV software. To set these

benefits in perspective, Table I lists recent issues [32], [33]

from popular C++-based UAV frameworks, ArduPilot [34]

and PX4 [21]. Despite the large user base and many years of

development, memory bugs still exist. If this was developed

in a managed language such as Java, such errors could be

eliminated by the guarantees provided by the language.

A. Memory Safety

A key benefit of a high-level language such as Java is that

its program runtimes are guaranteed to stay within their al-

located memory space. This becomes increasingly important

when deploying multiple applications on the same hardware.

For UAVs, this means that auxiliary payload written in Java

will not be able to break the bounds of their approved mem-

ory space, ensuring critical system memory would remain

safe from serious errors such as buffer overflows, found in

lower-level languages like C/C++. Git issues 13820, 11862,

and 9137 presented in Table I highlight issues maintaining

memory safety with lower-level languages.

B. Type Safety

Java’s strong typing allows many program errors to be

found during compilation. Type safety further strengthens the

ability of program reasoning, leading to powerful debugging

tools with static and dynamic analysis. For weakly-typed

languages such as C/C++, unsafe features such as pointers,

casting, unions, and function pointers may lead to subtle bugs

challenging for developers when software becomes complex.

C. Exception Handling

High-level languages such as Java provide comprehensive

support for failure semantics. In Java for example, checked

exceptions embody program errors, and the compiler will

ensure they are explicitly handled by the program. Checked

exceptions represent the majority of semantic errors in Java,

such as null pointer dereferences, and array out of bounds.

The exception handler offers principled support to gracefully

recover from errors, e.g., disable a non-critical component,

reinitialize resource, or provide suitable feedback to user.

This could be useful in UAVs to mediate between critical

tasks and non-critical tasks, allowing for correct recovery

(e.g., skip the non-critical task).

In contrast, C does not provide exceptions, so errors may

lead to undefined behavior. C++ provides exception handling,

but all exceptions are unchecked, i.e., the compiler is not

responsible for guaranteeing any exception to be handled.

Some errors indicated in Table I occurred due to unhandled

errors (e.g., null pointers, failure to open a resource).

D. Automatic Memory Management

Memory management in resource-constrained settings is

challenging and requires programmers to be judicious in

the memory usage, re-use resources (e.g. object pools), and

for safety-critical applications, eschew dynamic allocation

altogether (all memory is allocated up front prior to the

mission phase). Automatic memory management such as

garbage collection (GC) eliminates the need for the program-

mer to reason about memory, resulting in simpler application

code. In C/C++, manual memory management may cause

memory leaks (an availability threat) or dangling pointers

(a correctness threat). The git issues 13917, 13792, 12146,

8644, and 8642 show the difficulties of memory management

in a low-level language, as shown in Table I.

E. Timeliness and Prioritization

Real-time variants of Java provide a mechanism to execute

Java applications both efficiently and predictably. This pre-

dictability is rooted in its underlying implementation of a

real-time scheduler which facilitates GC to run at a lower

priority, ensuring it does not induce unexpected pauses to

the system that would be detrimental to overall execution.

Prioritization is also accessible to developers, allowing for

the creation of prioritized tasks where they can prioritize
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(2) type safety, (3) exception handling, and (4) automatic

memory management. These benefits ensure the reliability of

applications and decreased development time. Our Fiji-based

JVM further ensures predictable execution of applications in

real-time deployments. Together, we show that JCopter offers

a practical solution to improve the reliability of UAVs. We

believe that JCopter provides a means for the community to

assess and gain confidence in the applicability of managed

languages in time-sensitive robotic platforms, with current

real-time Java implementations.
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