®

Check for
updates

Synchronous Message-Passing
with Priority

Cheng-En Chuang®), Grant Iraci, and Lukasz Ziarck

University at Buffalo, Buffalo, NY 14260, USA
{chengenc,grantira,lziarek}@buffalo.edu

Abstract. In this paper we introduce a tiered-priority mechanism for
a synchronous message-passing language with support for selective com-
munication and first-class communication protocols. Crucially our mech-
anism allows higher priority threads to communicate with lower prior-
ity threads, providing the ability to express programs that would be
rejected by classic priority mechanisms that disallow any (potentially)
blocking interactions between threads of differing priorities. We provide
a prototype implementation of our tiered-priority mechanism capable of
expressing Concurrent ML and built in the MLton SML compiler and
runtime. We evaluate the viability of our implementation by implement-
ing a safe and predictable shutdown mechanisms in the Swerve webserver
and eXene windowing toolkit. Our experiments show that priority can be
easily added to existing CML programs without degrading performance.
Our system exhibits negligible overheads on more modest workloads.
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1 Introduction

Message-passing is a common communication model for developing concurrent
and distributed systems where concurrent computations communicate through
the passing of messages via send and recv operations. With growing demand
for robust concurrent programming support at the language level, many pro-
gramming languages or frameworks, including Scala [12], Erlang [13], Go [11],
Rust [14], Racket [1], Android [2], and Concurrent ML [19] have adopted this
model, providing support for writing expressive (sometimes first-class) commu-
nication protocols.

In many applications, the desire to express priority over communication
arises. The traditional approach to this is to give priority to threads [17]. In
a shared memory model, where concurrent access is regulated by locks, this
approach works well. The trivial application of priority to message passing lan-
guages, however, fails when messages are not just simple primitive types but
communication protocols themselves (i.e. first-class representations of commu-
nication primitives and combinators). These first-class entities allow threads to
perform communication protocols on behalf of their communication partners —
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a common paradigm in Android applications. For example, consider a thread
receiving a message carrying a protocol from another thread. It is unclear with
what priority that passed protocol should be executed - should it be the pri-
ority of the sending thread, the priority of receiving thread, or a user specified
priority?

In message-passing models such as Concurrent ML (CML), threads com-
municate synchronously through protocols constructed from send and receive
primitives and combinators. In CML synchronizing on the communication pro-
tocol triggers the execution of the protocol. Importantly, CML provides selective
communication, allowing for computations to pick non-deterministically between
a set of available messages or block until a message arrives. As a result of non-
deterministic selection, the programmer is unable to impose preference over com-
munications. If the programmer wants to encode preference, more complicated
protocols must be introduced. Whereas adding priority to selective communi-
cation gives the programmer to ability to specify the order in which messages
should be picked.

Adding priority to such a model is challenging. Consider a selective com-
munication, where multiple potential messages are available and one must be
chosen. If the selective communication only looks at messages and not their
blocked senders, a choosing thread may inadvertently pick a low priority thread
to communicate with, when there is a thread with higher priority waiting to be
unblocked. Such a situation would lead to priority inversion. Since these commu-
nication primitives must therefore be priority-aware, a need arises for clear rules
about how priorities should compose and be compared. Such rules should not
put undue burden on the programmer or complicate the expression of already
complex communication protocols.

In this paper, we propose a tiered-priority scheme that defines prioritized
messages as first-class citizens in a CML-like message-passing language. Our
scheme introduces the core computation within a message, an action, as the
prioritized entity. We provide a concrete realization of our priority scheme called
PrioCML, as a modification to Concurrent ML. To demonstrate the practicality
of PrioCML, we evaluate its performance by extending an existing web server
and X-windowing toolkit. The main contributions of this paper are:

1. We define a meaning of priority in a message-passing model with a tiered-
priority scheme. To our knowledge, this is the first definition of priority in a
message-passing context. Crucially we allow the ability for threads of differ-
ing priorities to communicate and provide the ability to prioritize first-class
communication protocols.

2. We present a new language PrioCML, which provides this tiered-priority
scheme. PrioCML can express the semantics of polling, which cannot be mod-
eled correctly in CML due to non-deterministic communication.

3. We implement the language PrioCML and evaluate on the Swerve web server
and the eXene windowing toolkit.
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2 Background

We realize our priority-scheme in the context of Concurrent ML (CML), a lan-
guage extension of Standard ML [16]. CML enables programmers to express
first-class synchronous message-passing protocols with the primitives shown in
Fig. 1. The core building blocks of protocols in CML are events and event com-
binators. The two base events are sendEvt and recvEvt. Both are defined over
a channel, a conduit through which a message can be passed. Here sendEvt
specifies putting a value into the channel, and recvEvt specifies extracting a
value from the channel. It is important to note both sendEvt and recvEvt are
first-class protocols, and do not perform their specified actions until synchro-
nized on using the sync primitive. Thus the meaning of sending or receiving a
value is the composition of synchronization and an event — sync (sendEvt(c,
v)) will place the value v on channel ¢ and, sync (recvEvt(c)) will remove a
value v from channel c. In CML, both sending and receiving are synchronous,
and therefore the execution of the protocol will block unless there is a matching
action.

sendEvt: ‘a chan * ‘a -> unit event guard:(unit -> ‘a event) -> ‘a event
recvEvt: ‘a chan -> ‘a event wrap: ‘a event * (‘a -> ‘b) -> ‘b event
sync :‘a event -> ‘a choose: ‘a event list -> ‘a event

Fig.1. CML Primitives

The expressive power of CML is derived from the ability to compose events
using event combinators to construct first-class communication protocols. We
consider three such event combinators: wrap, guard, and choose. The wrap
combinator takes an event el and a post-synchronization function £ and creates
a new event e2. When the event e2 is synchronized on, the actions specified in
the original event el are executed, then the function f is applied to the result.
Thus the result of synchronizing on the event e2 is the result of the function
f. Much like wrap provides the ability to specify post-synchronization actions,
guard provides the ability to specify pre-synchronization actions.

To allow the expression of complex communication protocols, CML supports
selective communication. The event combinator choose takes a list of events
and picks an event from this list to be synchronized on. For example sync
(choose([recvEvt(cl), sendEvt(c2, v2)])) will pick between recvEvt (c1)
and sendEvt(c2, v2) and based on which event is chosen, will execute the
action specified by that event. The semantics of choice depends on whether any
of the events in the input event list have a matching communication partner
available. Simply put, choose picks an available event if only one is available,
or nondeterministically picks an event from the subset of available events out of
the input list. For example, if some other thread in our system performed sync
(sendEvt(cl, v1), then choose will pick recvEvt(c1). However, if a third
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thread has executed recvEvt(c2), then choose will pick nondeterministically
between recvEvt (c1) and sendEvt (c2, v2).

3 Motivation

To illustrate the desire for priority in communication, consider a server written in
CML. For such a server, it is important to handle external events gracefully and
without causing errors for clients. One such external event is a shutdown request.
We want the server to terminate, but only once it has reached a consistent state
and without prematurely breaking connections to clients. Conceptually, each
component needs to be notified of the shutdown request and act accordingly.

Leveraging the first-class events of CML, we can elegantly accomplish this. If
a server is encoded to accept new work via communication in its main processing
loop, we can add in shutdown behavior by using selective communication. Specif-
ically, we can pick between a shutdown notification and accepting new work. The
component can either continue or begin the termination process. However, by
introducing selective communication, we also introduce non-determinism into
our system. The consequence is we have no guarantee that the server will pro-
cess the shutdown event if it consistently has the option to accept new work. The
solution is to constrain the non-deterministic behavior through the introduction
of priority. If we attach a higher priority to the shutdown event, we express our
desire that given the option between accepting new work and termination, we
would prefer termination. Here priority allows the programmer to express intent
and guide the resolution of the non-deterministic behavior.

Where to added priority in the language, however, is not immediately clear.
In a message-passing system, we have two entities to consider: computations, as
represented by threads, and communications as represented by first-class events.
In our shutdown example, the prioritized element is a communication, not a com-
putation. If we directly applied a thread-based model of priority to the system,
the priority of that communication would be tied to the thread that created it.
We could isolate a communication into a dedicated thread to separate its priority.
While simple, this approach has a few major disadvantages. It requires an extra
thread to be spawned and scheduled. This approach also is not easily composed,
with a change of priority requiring the spawning of yet another thread. A bigger
issue is that the introduction of the new thread breaks the synchronous behavior
that the CML communication primitives provide. When communication is the
only method ordering computations between threads, this is a major limitation
on what can be expressed.

Instead, consider what happens if we attach priority directly to communica-
tion. In the case of CML, since communications are first-class entities, this would
mean prioritizing events. By giving a higher priority to the shutdown event (or
a user interaction event), the programmer can express the intent for those to be
handled as soon as is possible. If the time between communications is bounded,
this provides a guarantee of responsiveness to the application. As soon as we hit
the communication point, any available shutdown messages will be processed,
even if new computations are available.
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While event priority allows us to express communication priority, we still
desire a way to express the priority of the computations. In the case of our
server, we may want to give a higher priority to the act of serving clients over
background tasks like logging. The issue here is not driven by communications
between threads but rather competing for computation. As such, we arrive at a
system with both event and thread priority.

In a system with message passing, however, this gives rise to priority inversion
caused by communication. This happens when communication patterns result
in a low priority thread getting scheduled in place of a high priority thread due
to a communication choosing the low priority thread over the high priority one.
We have no guarantee that the communication priorities agree with the thread
priorities. To see this effect, consider the CML program shown in Fig. 2.

Tu: High Priority Thread TH \/\_A SYNC(SENAEVH(CT, VA)) +roveeseereeeessemreneeenns @
Thr: Medium Priority Thread

Tr: Low Priority Thread T —---- \/L sync(sendEvt(c2, v2)) - o —
TL -------mmmmmmm e W. *****
[Th] sync (sendEvt (cl, v1))

[TM] sync (sendEvt (c2, v2)) choose(recvEvt(c1), recvEvt(c2))
[Tr] sync (choose [ Time
recvEvt (c1, LOW),

recvEvt (c2, HIGH) \/\__ ,,,,,,,,,,,,,,
D

Running Waiting Blocking

Fig. 2. Priority Inversion by Choice

The programmer is free to specify event priorities that contradict the pri-
orities of threads. Therefore, to avoid priority inversion, we must make choose
aware of thread priority. A naive approach is to force the thread priority onto
events. That is, an event would have the priority equal to that of the thread
that created it. At first glance, it seems to solve the problem that shows up in
the example above. The choice in T, now can pick recvEvt cl as the matching
sendEvt (cl, v1) comes from Tpy. This approach effectively eliminates event
priorities, reviving all of the above issues with a purely thread-based model.

The solution is to combine the priorities of the thread and the event. In
order to avoid priority inversion, the thread priority must take precedence. This
resolves the problem illustrated in Fig. 2. To resolve choices between threads of
the same priority, we allow the programmer to specify an event priority. This
priority is considered after the priority of all threads involved. This allows the
message in our shutdown example to properly take precedence over other mes-
sages from high priority threads.
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This scheme is nearly complete but is complicated by CML’s exposure to
events as first-class entities. Specifically, events can be created within one thread
and sent over a channel to another thread for synchronization. When that hap-
pens, applying the priority of the thread that created the event brings back the
possibility of priority inversion. To see why, consider the example in Fig. 3.

[Tx] sync(sendEvt(c3, sync(sendEvt(c2, v2)))); sync(sendEvt(cl, v1))
[Ta] sync(recvEvt(c3))
[T7] choose(recvEvt(cl), recvEvt(c2))

Fig. 3. Priority Inversion Due to Passing of Events

In this example, Ty sends a sendEvt over the channel c2 which will be
received and synchronized on by Ths. It is to be noted that this sendEvt will be
at the highest priority (which was inherited from its creator Ty) even though
it is synchronized on by Ths. T then sends out a value vl on channel c1. T7,
has to choose between receiving the value on channel c1 or on channel c2. Since
Ty and Ty; are both of higher priority than 77, they will both execute their
communications before T, does. Thus T}, will have to make a choice between
either unblocking T); or Ty (by receiving on channel c2 or cl respectively).
Recall in the current scenario, the priority is determined by the thread that
created the event and not by the thread that synchronizes it. Therefore this
choice will be non-deterministic; both communications are of the same priority
as those created by the same thread. T, might choose to receive on channel c2
and thus allow the medium priority thread T3; to run while the high priority
thread Ty is still blocked - a priority inversion.

The important observation to be made from this example is that priority,
when inherited from a thread, should be from the thread that synchronizes on
an event instead of the thread that creates the event. This matches our intuition
about the root of priority inversion, as the synchronizing thread is the one that
blocks, and priority inversion happens when the wrong threads remain blocked.

We have now reconciled the competing goals of user-defined event prior-
ity and inversion-preventing thread priority. In doing so, we arrive at a tiered-
priority scheme. The priority given to threads takes precedence, as is necessary
to prevent priority inversion. A communication’s thread priority inherits from
the thread that synchronizes on the event, as was shown to be required. When
there is a tie between thread priorities, the event priority is used to break it.
We note that high priority communications tend to come from higher priority
computations. Thus, this approach is flexible enough to allow the expression of
priority in real-world systems. In Sect. 5, we show this in the context of a web
server and a GUI application in CML.
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4 Implementation

To demonstrate our priority mechanism, we have implemented it as an extension
to the CML implementation in MLton, an open source compiler for Standard
ML. Our implementation consists of approximately 1400 LOC, wholly in ML.

4.1 Priority atop CML

To understand why priority at the CML language level is needed, we first con-
sider a prioritized communication channel built from existing CML primitives.*
Implementing communication using a prioritized channel requires a two step
communication. We need one step to convey the event priority and another to
effect the event’s communication. The prioritized channel itself is encoded as a
server that accepts communications and figures out the appropriate pairings of
sends and receives (in this case based on priority).

The sender blocks, waiting to receive a notification from the server that is
acting as the priority queue, while it waits for its message to be delivered by the
priority queue to a matching receiver. Once the priority queue successfully sends
the value to a receiver, it unblocks the sender by sending a message. The mecha-
nism is nearly identical for a receiver, but since we need to return a value, we pass
an event generating function to the channel. While the per-communication over-
head is undesirable, this encoding captures the behavior of event priority for send
and receive. On selective communication, however, this encoding becomes signif-
icantly more complicated. A two stage communication pattern makes encoding
the clean up of events that are not selected during the choice challenging. We
also still lack the ability to extract the priority information from threads. Recall
that preventing priority inversions requires reasoning about the priority of both
threads and events. Instead, we opted to realize our priority mechanism as a
series of small modifications to the existing CML runtime.

4.2 Extensions to CML

The major changes made to CML are to the thread scheduler and channel struc-
ture. These changes are exposed through a set of new prioritized primitives,
shown in Fig. 4.

spawnp : (unit -> unit) -> threadPriority -> thread_id
sendEvtP : ‘a chan * ‘a * eventPrio -> unit event
recvEvtP : ‘a chan * eventPrio -> ‘a event

changePrio : (’a event * eventPrio) -> ’a event

Fig. 4. PrioCML Primitives

! Available at: https://gist.github.com/Cheng-EnC/ea317edb62f01f55b85a9406f6093
217.
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We extend the thread scheduler to be a prioritized round-robin scheduler
with three fixed thread priorities. While other work has explored finer-grained
approaches to priority [18], for simplicity, we use a small, fixed number of pri-
ority levels. We chose three priority levels as that is enough to encode complex
protocols such as the earliest deadline first scheduling [3]. Our implementation
could be extended to more priority levels if desired. The new primitive spawnp
spawns a new thread with a user-specified thread priority: LOW, MED, or HIGH.
Threads within the highest priority level are executed in a round-robin fashion
until all are unable to make further progress. This happens when all are block-
ing on communication. If all high priority threads are blocked, then the medium
priority threads are run until either a high priority thread is unblocked or all
medium threads block. This process continues with low priority threads. This
scheme guarantees that a thread will never be chosen to run unless no thread of
higher priority is able to make progress.

Event priority is managed by following primitives: sendEvtP, recvEvtP, and
changePrio. The eventPrio is an integer where a larger number implies higher
priority. The two base event primitives sendEvt and recvEvt are replaced by
their prioritized versions. These functions take in an event priority and tie that
priority to the created events. The changePrio function allows the priority of
an existing event to be changed. We also note that all CML primitives continue
to exist in PrioCML. The primitive spawn creates a thread with LOW priority.
The base event constructors are given default priority levels and reduce calls to
the new prioritized primitives. The combinators continue to work unchanged. In
this way, our system is fully backward compatible with existing CML programs.

4.3 Preventing Priority Inversion

To make the local selection, we leverage the channel structure. To see how this
is done, first consider the action pairing mechanism in unmodified CML [20].
When an event is synchronized, the corresponding action is placed in a queue
over the channel it uses. If there is a match already in the channel queue, the
actions are paired and removed. In the case of choice, all potential actions are
enqueued. Each carries a reference to a shared flag that indicates if the choice
is still valid. Once the first action in a given choice is paired, the flag is set to
invalid. If the action has its flag set to invalid upon attempting a match, it is
removed, and the next action in the queue is considered. This lazy cleaning of
the channel queues amortizes the cost of removal.

Figure 5 shows how a synchronized event is paired. We split the channel queue
into three queues in our prioritized implementation: one for each thread priority
level. Keeping those three priority queues separate is what allows us to realize
our tiered-priority mechanism efficiently. By looking first at the higher thread
priority queues, we give precedence to thread priority over the event priority
that orders each queue.

Choice is handled similarly to how it was handled before priority. Again,
lists are cleared lazily to amortize the costs of removal. The major overhead
our scheme introduces is that inserting an action into a channel now requires
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val send_pqueue = array of three priority queues for pending send events
val recv_pqueue = array of three priority queues for pending recv events
if is_send_event(current_evt) then
case deque(recv_pqueue[H]) of
SOME recv_evt => pair with recv_evt
NONE => case deque(recv_pqueue[M]) of ...
case deque(recv_pqueue[L]) of ...
NONE => enque(send_pqueue[thread_priority(current_evt)],
current_evt)
else (* Same structure as the if branch
but switch the recv_pqueue to send_pqueue *)

Fig. 5. Pairing a synchronized event

additional effort to keep the queues in order. For a choice, this overhead must
be dealt with for each possible communication path. The impacts of this are
measurable, but minor, as discussed in Sect. 5.1.

4.4 Polling

Polling, a common paradigm in concurrent programming, is fundamentally the
ability to do a non-blocking query on an event. The primitives of CML (Fig. 1
from Sect. 2) do not provide the ability to express non-blocking synchronization.
The only available synchronization operation is select, which is blocking.

This problem is illustrated by Reppy in Concurrent Programming in ML
[20]. At first glance, the always event primitive could provide a non-blocking
construction. This event is constructed with a value, and when synchronized on,
it immediately yields the wrapped value. By selecting between always and recv
events, the synchronization is guaranteed not to block. This flawed approach, as
explained by Reppy, would look as follows:

fun pollCh ch = sync (choose [alwaysEvt NONE, wrap (recvEvt ch, SOME)])

While it is true that this construction will never block, it may also ignore
available communications on the channel. The choose operation in CML is nonde-
terministic, and could choose the alwaysEvt branch, even if the recvEvt would
not block. This problem led to the introduction of a dedicated polling primi-
tive recvPoll in CML. While its use is generally discouraged, it serves as an
important optimization in some communications protocols outlined by Reppy.

In our discussion of PrioCML thus far, we have omitted discussion of the
always event for simplicity. The always event is different than the communica-
tion events as there is no blocked communication partner. It represents a one
sided communication. Therefore it is not immediately clear how it fits into our
tiered-priority which looks at the thread priorities of two threads. By introduc-
ing priority to the always event primitive we could capture the polling behav-
ior that would otherwise require a dedicated primitive. We do this by giving
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always events a fixed priority lower than any in the tiered priority system, e.g.
changePrio(alwaysEvt, -1) while 0 is the lowest priority in event priority. We
choose to give it the lowest priority because that expresses our desire to allow
another thread to proceed if at all possible. This means during a choice, we
will only pick the always event if no other events are available. Because of our
guarantee that an event is always picked if one is available though, it will still
never block. Therefore, under our prioritized implementation, the above example
actually works with the intended behavior.

5 Evaluation

To demonstrate that our implementation is practical we have conducted a series
of microbenchmarks to measure overheads as well as a case study in a real-
world webserver and GUI framework written wholly in CML. The benchmarks
and case study were run on our implementation and on MLton 20180207. The
benchmarking system had an Intel i7-6820HQ quad-core processor with 16 GB
of RAM. We note that MLton is a single core implementation, so although it
supports multiple threads these are multiplex over a single OS thread.

5.1 Microbenchmarks

We create microbenchmarks that exercise spawn, send-receive, and choice. In
spawn and send-receive, we see constant overheads as shown in Fig. 6 and Fig. 7.
We note that the send-receive benchmark performs n communications where n
is the number of iterations, so the constant overhead leads to a steeper slope to
the line. To benchmark choice, we build a lattice of selective communication. It
has a grid of choice cells where a single message is sent at the top and bounces
around non-deterministically until it falls out the bottom. To show the growth
behavior of this benchmark, we scaled both the height and width, so for a run
parameterized by n, there were n? choice cells, of which the message would pass
through n. From the results shown in Fig. 8, we observe that the runtimes of both
CML and PrioCML appear quadratic. Our implementation shows a cost higher
by a constant factor, and thus a steeper curve. From a static analysis of the
open-source Swerve web-server implementation, we believe deeply nested choice
operations to be rare in real-world applications. Thus, while our implementation
does exhibit noticeable slowdown on the synthetic benchmarks, we expect real-
world performance to be unaffected.

5.2 Case Study: Termination in Swerve

To demonstrate that the problem of timely graceful termination is prevalent in
message passing programs, we take a look at a large CML project: the Swerve
web server. Swerve is full featured, modular web server written using CML with
approximately 30,000 lines of code [22]. As noted by [22], Swerve lacks a graceful
shutdown mechanism. Currently, shutdown of the webserver is accomplished
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by sending a UNIX signal to terminate the process. This approach has several
drawbacks. As the process is killed immediately, it does not have the opportunity
to flush the asynchronous logging channel. This can lead to incomplete logs
near server shutdown. Additionally, clients being served at the time of server
shutdown have their connections closed abruptly, without a chance for the server
to finish a reply. This can lead to an error on the client side, or in the case that
the request was not idempotent, inconsistent or partially updated state server-
side. Thus to cleanly exit the server, it is important to allow all currently running
tasks to complete, including both flushing the log and handling connected clients.
As [22] explains, this can be handled by rejecting all new clients and waiting
for existing ones to finish before flushing the logs and exiting the process. We
implement such a system in Swerve, the core of which is seen in Fig.9.

select [wrap (recvEvt acceptChan, new_connect),
wrap (recvEvt lchan, handle_msg),
wrap (shutdownEvt, fn () => shutdown num_connects)]

Fig. 9. Graceful Shutdown in Swerve

Here we select between the three possible actions in the main connection han-
dling loop. We can accept an incoming connection over the channel acceptChan
by invoking the function new_connect. Alternatively, we can handle a client dis-
connect event, sent as a message on the channel 1chan via handle msg. Lastly, we
can receive a shutdown signal via the event shutdownEvt. This event is a receive
event on a channel shared with the signal handler registered to the UNIX inter-
rupt signal. Upon receipt of such a signal, the handler will send a message on
that channel to indicate the server should begin shutdown. We leverage CML’s
first class events to encapsulate this mechanism and hide the implementation
from the main loop. When the event shutdownEvt is chosen, we invoke the
shutdown function which stops accepting new connections, waits for all existing
connections to close, flushes the log, then removes a lock file and exits.

While this change successfully resolves the possibility of broken connections
and inconsistent server state, it still has a notable limitation. We have no guar-
antee of a timely shutdown. The original approach of killing the process via a
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select [wrap (recvEvt acceptChan, new_connect),
wrap (recvEvt lchan, handle_msg),
wrap (changePrio (shutdownEvt, 0), fn () => shutdown num_connects)]

Fig. 10. Prioritized Shutdown in Swerve

signal is effectively instantaneous. However, because we want to complete the
currently running server tasks, the server can’t shutdown immediately. We do
however, want to be sure that the server does not accept additional work after
being told to shutdown. Under the existing CML semantics, the server is free
to continue to accept new connections indefinitely after the shutdown event has
become ready, provided a steady stream of new connections is presented. This
is because there is no guarantee as to which event in a choice list is selected,
only that it does not unnecessarily block. Since CML only allows safe interac-
tions between threads via message passing, we have no other way for the signal
handler to alert the main loop that it should cease accepting new connections.
Thus, under heavy load, the server could take on arbitrarily more work than
needed to ensure a safe shutdown. We note that the MLton implementation of
CML features an anti-starvation heuristic which in our testing was effective at
preventing shutdown delays. This approach however is not a semantic guarantee.
By adding priority, as shown in Fig. 10, we obtain certainty that our shutdown
will be effected in a timely manner.

We verify the operation of this mechanism by measuring the number of clients
that report broken connections at shutdown. With a proper shutdown mechanism
we would see no broken connections as the server would allow all to complete
before termination. As seen in Fig. 13, without the shutdown mechanism in place
clients can experience broken connections. When there are very few clients, the
chances that any client is connected when the process terminates are low. As
the number of clients increases however, the odds of a broken connection do as
well. By adding our shutdown mechanism, we prevent these broken connections.
We emphasize that the introduction of priority means achieving a guarantee
that the shutdown is correct is simple. The implementing code is short and
concise because our mechanism integrates nicely with CML and retains its full
composability. We note that event priorities are crucial to ensuring this timely
shutdown. For example, consider the case where the signal handler was extended
to pass on an additional type of signal such as configuration reload. We would
still want to ensure that the shutdown event takes precedence. Thus we need to
assign more granular priorities than those available based solely on the priority
of the communicating thread.

5.3 Case Study: A GUI Shutdown Protocol

To demonstrate that priority can benefit the response time of graceful shutdown,
in this section, we present an evaluation of response time measurement with a
shutdown protocol in the context of eXene[10], a GUI toolkit in CML. A typical
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eXene program contains widgets. To realize a graceful shutdown protocol, our
eXene program needs to wait for all widgets to close upon receiving a shutdown
request. As a result, busy widgets tend to slow down the shutdown protocol.
Moreover, the choice’s nondeterministic selection degenerates the response time
as widgets may overlook a shutdown request. We improve the response time with
both shortening and stabilize it by proper encoding of priority in the communi-
cation protocol.

We build a widget network in eXene to compute the Fibonacci number. Each
widget has a number with the corresponding position in the Fibonacci sequence.
Upon a user click, the widget will calculate the corresponding Fibonacci num-
ber. By the definition of Fibonacci sequence, a widget of fib(n), except fib(0)
and fib(1), needs to communicate with other widgets, which is responsible for
computing fib(n — 1) and fib(n — 2), In the meanwhile, we need to encode the
shutdown event so that widget has a chance to receive shutdown request. A
widget can be implemented with CML code in Fig. 14

select [wrap(recvEvt out_ch_req, (* Outermost select *)
fn p => (select[ (* Middle select *)
wrap (sendEvt (fib_prel_req, (),
fn () => (let val vl = recv (fib_prel_com)
val _ = send (fib_pre2_req, ()
val v2 = recv (fib_pre2_com)
in select [ (* Innermost select *)
wrap (sendEvt (out_ch_com, vi+v2), ...),
shutdownEvt]
end)), ...,
shutdownEvt])),
shutdownEvt]

Fig. 14. Communication Protocol of Fibonacci Widget

Note that in above code we omit the case on the sendEvt(fib_pre2_req,
()) for brevity. On the outermost select, the widget is waiting for either a
compute request from out_ch_req or a shutdown request. Once receive a compute
request, it goes to middle select. The middle select picks between the widgets
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it needs to communicate and the shutdown event. The code above shows the
case the widget of fib(n — 1) is available. After we compute the result from
fib(n — 1), it moves to fib(n — 2). Finally, it adds the result and sends it to
the output channel in the innermost select, which picks with another shutdown
event. As for the shutdownEvt, every widget propagates the shutdown request to
the widget of fib(n —1). Hence, the shutdown protocol in the Fibonacci network
is a linear chain from the largest Fibonacci widget.

We encode priority in two places. First, the priority of the shutdown event
is higher than other events. The use of priority in shutdown events ensures that
the shutdown request will be chosen whenever it is available during a selection.
Second, we give the priority on send and recv on requesting and receiving the
computation of the Fibonacci number. The message priority is higher as the
number of Fibonacci is larger in the network. As a result, the widget with a
larger number has the priority to request or receive computation. By giving
these widgets preference, we boost the shutdown protocol as the linear chain is
from largest to smallest widget.

The histogram of CML and PrioCML is shown as Fig.11 and 12 respec-
tively. We run each setting for 100 times and record the time needed to finish
the shutdown protocol. We compute a large Fibonacci number to fill the network
computation requests so that every widget is saturated with Fibonacci computa-
tion before requesting the shutdown protocol. The result shows that the average
time spends on shutdown is improved by 26%, from 25.5s to 18.8s. Also, it sta-
bilizes the response time by reducing the standard deviation from 20.7 to 9.2.
This experiment shows that a shutdown protocol can be improved and become
more predictable by properly encoding the priority.

6 Related Work

Priority in Multithreading: Exploration into prioritized computation extends
far back into research on multithreaded systems. Early work at Xerox on the
Mesa [15] programming language, and its successor project Cedar [23], illustrated
the utility of multiple priority levels in a multithreaded system. These systems
exposed a fork-join model of concurrency, wherein the programmer would specify
that any procedure shall be called by forking a new process in which to run it. The
join operation then provides a synchronization point between the two threads
and allows the result of the computation to be obtained. This was implemented
atop monitors, a form of mutual exclusion primitive. These systems did not
consider communication as a first-class entity and only allowed it through the
use of monitored objects.

First-Class Communication: Concurrent ML introduced first-class synchronous
communication as a language primitive [19]. Since then, there have been multi-
ple incarnations of these primitives, both in languages other than ML (including
Haskell [4,21], Scheme [8], Go [11], and MPI [5]). Others adopted CML primitives
as the base for the parallel programming language Manticore [9]. Other work has
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considered extending Concurrent ML with support for first-class asynchrony [24].
We believe our approach to priority would be useful in this context. It would,
however, raise some questions regarding the relative priority of synchronous and
asynchronous events, analogous to the aforementioned issues with always events.
Another extension of interest would be transactional events [6,7]. The introduc-
tion of priority would be a natural fit as it provides a precise expression of how
multiple concurrently executing transactions should be resolved.

Internal Use of Priority in CML Implementations: As mentioned by [20] in
describing the SML/NJ implementation of CML, a concept of prioritization has
been previously considered in selective communication [20]. There, the principal
goal is to maintain fairness and responsiveness. To achieve this goal, [20] proposes
internally prioritizing events that have been frequently passed over in previous
selective communications. We note that these priorities are never exposed to
the programmer, and exist only as a performance optimization in the runtime.
Even if exposed to user, this limited notion of priority only encompasses selective
communication and ignores any consideration of the pairing communication. Our
realization of priority, and the associated tiered priority scheme is significantly
more powerful. This is both due to the exposure of priority to the programmer
and the ability of our realization of priority to encompass information from both
parties in a communication when considering the priority of an event.

Priority in ML: Recent work has looked at the introduction of priority to Stan-
dard ML [18].

To accomplish this, the system [18] propose, PriML, “rejects programs in
which a high-priority may synchronize with a lower-priority one.” Since all com-
munication in CML is synchronous, in order for a high priority thread to com-
municate with a lower priority thread, they must synchronize. This is exactly
the interaction that is explicitly disallowed by PriML.

7 Conclusion

This paper presents the design and implementation of PrioCML, an extension
to Concurrent ML that introduces priority to synchronous messages passing.
By leveraging a tiered-priority mechanism that considers both thread priority
and event priority, PrioCML avoids potential priority inversions. Our evaluation
shows that this mechanism can be realized to enable the adoption of priority with
little effort and minimal performance penalties. The further work is to formalize
the priority inversion and provide semantics for PrioCML.
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