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ABSTRACT

We present an analysis of a densely repeating sample of bursts from the first repeating fast radio
burst, FRB 121102. We reanalysed the data used by Gourdji et al. (2019) and detected 93 additional
bursts using our single-pulse search pipeline. In total, we detected 133 bursts in three hours of data at
a center frequency of 1.4 GHz using the Arecibo telescope, and develop robust modeling strategies to
constrain the spectro-temporal properties of all the bursts in the sample. Most of the burst profiles show
a scattering tail, and burst spectra are well modeled by a Gaussian with a median width of 230 MHz.
We find a lack of emission below 1300 MHz, consistent with previous studies of FRB 121102. We also
find that the peak of the log-normal distribution of wait times decreases from 207 s to 75 s using our
larger sample of bursts, as compared to that of Gourdji et al. (2019). Our observations do not favor
either Poissonian or Weibull distributions for the burst rate distribution. We searched for periodicity
in the bursts using multiple techniques, but did not detect any significant period. The cumulative
burst energy distribution exhibits a broken power-law shape, with the lower and higher-energy slopes
of —0.44 0.1 and —1.8 4 0.2, with the break at (2.3 £ 0.2) x 1037 ergs. We provide our burst fitting
routines as a python package BURSTFIT® that can be used to model the spectrogram of any complex
FRB or pulsar pulse using robust fitting techniques. All the other analysis scripts and results are
publicly available®.

Keywords: Radio transient sources(2008) — Extragalactic radio sources(508) — Radio bursts(1339)
— Astronomy data analysis(1858) — Markov chain Monte Carlo(1889) — Observational
astronomy(1145)

1. INTRODUCTION

Repeating sources of fast radio bursts (FRBs) have
helped broaden the horizons of FRB astronomy since
their discovery (Spitler et al. 2014, 2016; CHIME/FRB
Collaboration et al. 2019). FRB 121102 was first de-
tected in the PALFA survey using the Arecibo telescope,
and ten repeat bursts were later detected during tar-
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a) https://github.com/thepetabyteproject/burstfit
b) https://github.com/thepetabyteproject/FRB121102

geted observations of the source. While FRB 121102
remains the most extensively observed and studied re-
peater, to date, 24 repeaters have now been reported
(Petroff & Chatterjee 2021; Spitler et al. 2016; Luo
et al. 2020; Kumar et al. 2019, 2021; The CHIME/FRB
Collaboration et al. 2021; Fonseca et al. 2020). More-
over, two of these repeating FRBs (FRB 121102 and
FRB 180916) show long-term (i.e., days to months) pe-
riodicity in their activity (Aggarwal et al. 2020; Rajwade
et al. 2020b; Pastor-Marazuela et al. 2020). Some FRBs
have also been localized to a variety of host galaxies,
ranging from dwarf galaxies to massive elliptical galax-
ies to luminous spiral galaxies (Heintz et al. 2020).
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Both repeating and non-repeating FRBs show a vari-
ety of spectro-temporal features and polarization prop-
erties: frequency modulation, sub-millisecond structure,
drifting sub-pulses, varying polarization position angle,
etc (Shannon et al. 2018; Farah et al. 2019; Luo et al.
2020). Detection of multiple bursts from repeaters (like
FRB 121102) have facilitated detailed studies of their
properties and their environment. However, even after
extensive follow-up and detection of hundreds of bursts
from FRB 121102, the intrinsic emission mechanism re-
mains uncertain, and many progenitor models have been
proposed to explain the observational results. As theo-
retical models lack robust predictions for the observed
properties of bursts, several empirical techniques have
been employed to model the observed properties of the
bursts. Some of those are: (1) using Weibull and Poisson
distributions to model the clustering of repeater bursts;
(2) using a truncated and broken power-law to model
the flux-density distribution; (3) using 2D Gaussians to
model the burst spectro-temporal properties; (4) using
Gaussians convolved with an exponential tail to model
scattering; (5) using a statistical spectral index to com-
pare burst rates at multiple frequencies; (6) using signal-
to-noise and structure to maximize DM, etc. (for further
details, see Li et al. 2021; Cruces et al. 2020; Pastor-
Marazuela et al. 2020; Gourdji et al. 2019; Hessels et al.
2019; Houben et al. 2019; Gajjar et al. 2018).

In view of all these considerations, it is necessary to
detect and carefully investigate a large number of bursts
from the repeaters to improve the understanding of their
emission mechanism. In this paper, we reanalyze the ob-
servations for FRB 121102 previously reported by Gour-
dji et al. (2019) and present the detection of an ad-
ditional 93 bursts, for a full sample of 133 bursts in
these observations. We detail a thorough burst model-
ing procedure and report extreme frequency modulation
in burst spectra and a dearth of burst emission below
1300 MHz. We present and compare the updated burst
energy and wait-time distributions and demonstrate how
these estimates change dramatically for an incomplete
search. We also perform exhaustive short-period peri-
odicity tests to detect any possible rotational period as
predicted by neutron star-based progenitor models. We
also discuss various differences between our single-pulse
search pipeline and the one used by Gourdji et al. (2019)
to explain the extra bursts detected in our search (see
Section 5.6).

This paper is laid out as follows: In §2 we briefly dis-
cuss the data used in this work and discuss the search
and spectro-temporal modeling procedure in §3. We
then present our modeling results in §4, followed by a
discussion of those results and conclusions in §5 and §6.

2. DATA

The data reported here were originally collected,
searched for FRBs, and reported by Gourdji et al.
(2019). Here we provide only a brief summary of the
data used in this analysis, and refer the reader to Gour-
dji et al. (2019) for further details. The observations
were carried out with the 305-m William E. Gordon
Telescope at the Arecibo Observatory with the L-Wide
receiver and recorded using the Puerto Rican Ultimate
Pulsar Processing Instrument (PUPPI). FRB 121102
was observed with 800 MHz bandwidth at a center fre-
quency of 1375 MHz on MJDs 57644 and 57645 for
5967 s and 5545 s respectively. The data were coher-
ently dedispersed at a dispersion measure (DM) value of
557 pcem ™2 during the observations and were recorded
with 1.56-MHz channel bandwidth and 10.25-us sam-
pling resolution. The data used for this study were fur-
ther decimated to 12.5-MHz channel bandwidth with 64
total channels and 81.92-us sampling interval.

3. METHODS
3.1. The Petabyte Project

Characterizing the diversity and event rates of FRBs
as a function of observing frequency is critical for un-
derstanding their nature, the extreme emission physics
responsible for FRB and pulsar emission, and the re-
lationship between these two classes of objects. Many
surveys have sought comprehensive estimates of these
values, all using different observing frequencies, tele-
scopes, and search algorithms but without character-
izing the completeness of their search. The Petabyte
Project’ (TPP) aims to address these issues to pro-
vide robust event rate estimates and discoveries in sev-
eral petabytes of new and archival radio data. TPP
will perform a uniform search for FRBs in an unprece-
dented amount of archival data and better probe tran-
sients closer, farther, and at higher radio frequencies
than previous searches. Our search will have a robust
internal assessment of completeness, allowing us to con-
fidently project the frequency-dependent rates of FRBs
and other transients.

TPP will use YOUR (a recursive acronym for “your
unified reader”; Aggarwal et al. 2020) to ingest the data
and HEIMDALL (Barsdell 2012)? to search it for single
pulses. The deep learning-based classifier FETCH (Agar-
wal et al. 2020a)? is then used to classify the candidates
identified by HEIMDALL. The data will be searched up to

I https://thepetabyteproject.github.io
2 https:/ /sourceforge.net /projects/heimdall-astro
3 https://github.com/devanshkv/fetch
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a DM of 5000 pcem ™2 (or more, if possible) and a pulse
width of 32 ms. This pipeline can easily be modified to
search for higher DMs and pulse widths, in specific cases.
All the candidates above a signal-to-noise ratio (S/N) of
6 classified as astrophysical by FETCH will be manually
verified. The maximum DM and the pulse width to be
searched is governed by the observing frequency, data
resolution, and GPU memory and hence would be dealt
with on a case-by-case basis. The data and results pre-
sented in this paper were analyzed under TPP, using an
early version of the TPP pipeline. In the following sub-
section, we discuss the details of the single-pulse search
pipeline used in this analysis.

3.2. Single-Pulse Search

Within YOUR, we used your_heimdall.py which runs
HEIMDALL on the PSRFITS data files collected by PUPPI
for the single-pulse search. We used two search strate-
gies: (1) DM range between 450-650 pcem ™ with a
DM tolerance* of 1% and (2) DM range between 10—
5000 pcem™2 with a tolerance of 25%, with a max-
imum pulse width of 84 ms in both cases (note that
the widest FRB 121102 pulse reported at this frequency
had a width of ~35 ms, see Cruces et al. 2020). The
searches resulted in 1,428 and 11,276 candidates, re-
spectively. For each candidate, we extracted a segment
of the data (which we hereafter refer to as a “cutout”)
centered at the arrival time (referenced to the top of
the observing band) as reported by HEIMDALL with a
time window equal to twice the dispersion delay using
your_candmaker.py. We then used spectral kurtosis
RFT mitigation with a 3o threshold (Nita & Gary 2010)
to identify and excise frequency channels corrupted by
RFTI (see Figure 2 for fraction of bursts for which a fre-
quency channel was flagged due to RFI) and used this
cleaned data to create dedispersed frequency-time im-
ages where a factor of width/2 was used to decimate the
time axis. We created the DM-time image by dedis-
persing the data from zero to twice the reported DM
and simultaneously decimating the time axis as above
(for more details on the candidate pre-processing, see
Agarwal et al. 2020a). These cutouts are then used by
FETCH to label FRBs and RFI, and were also manu-
ally verified. In total, we found 133 bursts with DMs
consistent with that of FRB 121102 (i.e., between 550-
580 pcem™3) with 93 new bursts as compared to the
previously published results. We highlight some impor-
tant differences between our single-pulse search pipeline

4 DM tolerance is the acceptable sensitivity loss between DM trials
for a single-pulse search (for further details, see Aggarwal et al.
2021; Levin 2012)

and the one used by Gourdji et al. (2019) in Section 5.6
to explain the new burst detections. We did not detect
any bursts at other DMs. Our search missed one burst,
B33, reported by Gourdji et al. (2019), probably because
it was weak and narrowband (see Section 5.7 for caveats
of our search). Figure 1 shows the dynamic spectra of
some of the bursts. Candidate cutouts for all the bursts
are available on Github®.

3.3. Completeness Limit

We define the completeness limit as the pulse en-
ergy (also known as fluence) value above which any
burst emitted during the observation would be detected.
Determining the completeness limit of any single-pulse
search is, therefore, essential to defining the sample of
bursts to be used for statistical analyses. The most ro-
bust method of determining the completeness limit in-
volves an exhaustive injection analysis. In such anal-
yses, simulated transients (with varying properties) are
injected on background data, and by analyzing the tran-
sients that were recovered (or missed), one can de-
termine the completeness limit of a search (Li et al.
2021; Gupta et al. 2021; The CHIME/FRB Collabora-
tion et al. 2021; Agarwal et al. 2020b; Farah et al. 2019).
Such an analysis requires access to a large amount of
native-resolution data observed with the same telescope
and observing configuration as the search data.

As we had access to decimated data for just two ob-
servations, we could not do such an injection analysis.
We, therefore, estimate the completeness limit from the
radiometer equation. We use a conservative approach
by including the effect of RFI mitigation, which reduces
search sensitivity. We flagged more than 35% of data for
many candidates due to RFI, leading to a usable band-
width of 500 MHz. Using this smaller bandwidth and
nominal pulse width of 1 ms, the fluence limit above an
S/N of 8 is 0.0216 Jy ms. We use bursts with fitted
fluence above this limit in the burst sample analysis.

3.4. Spectro-temporal Burst Modelling

To measure the properties of the bursts in our sam-
ple, we perform spectro-temporal modeling of all the
detections. We model each component of the bursts’
spectra with a Gaussian function and the profile using a
Gaussian convolved with a one-sided exponential func-
tion to represent the Gaussian pulse and the scattering
tail. Therefore, we model each component of the burst
(at an observing frequency f and time t), using the fol-

5 https://github.com/thepetabyteproject/FRB121102
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Figure 1. Dynamic spectra of six bursts, dedispersed at DM = 560.5 pccm 3. For each burst, the top panel shows the burst
profile obtained by averaging along the frequency axis, and the right panel shows the burst spectra obtained by averaging the
burst data along the time axis. The white horizontal lines show the channels masked due to RFI. The color scale of each
spectrogram has been set from mean to 3 times the standard deviation of the off-pulse region. The ranges of 1D plots are
different for individual plots. Burst numbers are mentioned on the top right of each subplot.
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Figure 2. The fraction of bursts for which a frequency chan-
nel was flagged due to RFI.

lowing function,
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Here, S is the fluence of the component, G is the Gaus-
sian function to model the spectra
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and P is used to model the profile. For bursts with
scattering, we use the Gaussian convolved with a one-

sided exponential function (McKinnon 2014),
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where the mean of the Gaussian pulse after accounting
for the dispersion delay at that respective frequency,

11
R

Here fiop is the highest frequency in the band (in MHz),
f is the frequency of a channel (in MHz) and u, is the
mean of the Gaussian pulse at fiop. At each frequency
channel, the scattering time scale

%) (5)

In this expression, frof is the reference frequency and
is set to be 1 GHz. The exponent (—4) is assuming a
normal distribution of plasma-density inhomogeneities.
Finally, we defined P (t; upm, 01, Tse) to be a Gaussian
G(t; ppm, o) for 7ee/op < 6, and P]Sccat(t;uDM,ot,Tsc)
for 75c/o¢ > 6. We used this value for the cutoff in
order to maintain numerical stability while calculating
Equation 3.

It follows from the above discussion that our model F
is generated using seven parameters: S, fif, 05, fe, Ot, Tsc
and DM. Using this model we fit the burst spectrograms,
as described in the next section.

pipa = p — 4.148808 x 103 DM ( ) 5. (4)

el f) = (
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3.5. BURSTFIT

While fitting for complex FRB bursts is an arduous
task, we scrupulously automate the entire procedure and
present it as python package BURSTFIT®. BURSTFIT pro-
vides a framework to model any spectrogram consisting
of any complex FRB or pulsar pulse using robust meth-
ods. It can easily incorporate any user-defined python
function(s) to model the profile, spectra, and spectro-
gram and is not limited to the functions we have imple-
mented for this current analysis. BURSTFIT primarily
consists of the following five steps.

3.5.1. Data Preparation

First, we dedispersed the burst spectrogram at the
DM obtained from the single-pulse search. This DM
is usually accurate enough to correct for most of the
dispersion. We cut out a time window of 200 ms encom-
passing the burst from this dedispersed spectrogram and
normalized this data to zero mean and unit standard
deviation using the off-pulse region. Both the cutout
and normalized data were then used for fitting. We also
masked all the channels flagged as RFI during the search
and candidate pre-processing so as not to influence the
fitting procedure.

3.5.2. Stage 1: Single-component Fitting

In this first stage of fitting, we used scipy.curve_fit”
to perform the fits and got an initial estimate of the
fitted parameters. We created the time-series profile
by summing along the frequency axis, and modelled
it using S x Pr(t; pie, 04, Tsc). We then used the fitted
values of p; and o; to identify the time samples with
the burst signal and average them to produce the burst
spectra. We normalised this spectra to unit area, and
modelled it using G(f; ttf,0). Following this, we mod-
elled the complete spectrogram. We first generated the
model spectrogram by stacking Ny model pulse profiles
(S % Py (t; poM, 0, Tsc)) together, where Ny is the num-
ber of frequency channels. Note that the mean of each
profile was already corrected for the dispersion delay at
that respective frequency. This gave us a scattered and
dispersed spectrogram at a given set of profile parame-
ters and a DM.

We then multiplied this spectrogram with the model
spectra to obtain the model spectrogram. Additionally,
we clipped the model spectrogram at the estimated sat-
uration level (see Section 3.5.6) and masked the RFI
channels. Using this model we fit for all the seven pa-

6 https://github.com /thepetabyteproject /burstfit

7 This routine is a part of the python-based scipy package. We

used version 1.5.2 of this package in our analysis.

rameters in F(f,t;S, uyr,0¢, e, 0¢, Tsc) along with DM
by comparing the model with the dedispersed cutout
spectrogram obtained in the previous step. Again, we
used scipy.curve_fit for fitting, and used the esti-
mates from individual profile and spectra fits as initial
guesses for the parameters.

3.5.3. Stage 2: Statistical Tests

Following Stage 1, we obtained the residual spectro-
gram by subtracting the fitted model from the origi-
nal spectrogram. Then we performed several statistical
tests (see, e.g., Kramer et al. 1994) to compare the prop-
erties of on-pulse residual with respect to the off-pulse
regions in the original spectrogram. We performed the
following three comparisons: left off-pulse vs. right off-
pulse, on-pulse vs. left off-pulse, and on-pulse vs. right
off-pulse. We used the following four tests (all imple-
mented within scipy): Kolmogorov—Smirnov test (for
distribution comparison), F-test (for variance compar-
ison), T-test (for mean comparison), and Kruskal test
(for median comparison).

We considered the two distributions similar if at least
two of the four tests had a p-value above 0.05 (i.e. we
did not have significant support for the non-similarity of
the distributions). Comparing left off-pulse with right
off-pulse region gave us confidence in our choice of off-
pulse region. We terminated the single component fit-
ting procedure if either of the off-pulse vs. on-pulse com-
parisons demonstrates that the distributions are similar.
If the distributions were different, we used the residual
spectrogram and repeated Stage 1 and 2 to fit another
component and compared the on-pulse residual with off-
pulse data. We kept fitting for components until the sta-
tistical tests pass or until a maximum of five components
is reached.

3.5.4. Stage 3: Multi-component Fitting

In cases where multiple components were found, we
performed another stage of the fitting. Here, we gener-
ated a combined model consisting of all the components
and fit for all components by comparing our model with
the original spectrogram. This combined model (F.y)
was generated by summing together the individual com-
ponent models (F;) for all N components,

N
Fan = Z]:i- (6)

Again, we used scipy.curve_fit for fitting. Here, the
fit results of the individual component fits from previous
stages were used as the initial guess for the parameters
in curve_fit.
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3.5.5. Stage 4: MCMC

While scipy.curve fit is sufficient for fitting in
many scenarios, in our testing we found that the es-
timates and the errors reported by scipy.curve fit
were not robust for our purposes. In many cases, the
errors reported by scipy.curve_fit were possibly un-
derestimated, and fitted results were highly susceptible
to the choice of input parameter bounds. This was es-
pecially true for low-significance bursts and multiple-
component bursts, where the least-squares-minimization
technique struggles to find a good solution. Therefore,
we added another stage to our fitting procedure and
used a Markov Chain Monte Carlo (MCMC) to obtain
the final fitting results. We used the results of previous
stages (that used scipy.curve_fit) as initial estimates
to determine the starting positions of the walkers for
the MCMC. An advantage of the MCMC procedure is
that it provides the full posterior distribution of all the
fitted parameters, which we could then use to estimate
the errors and further follow-up analysis of the burst
sample. We used the Goodman and Weare affine invari-
ant sampler (Goodman & Weare 2010) as implemented
in EMCEE (Foreman-Mackey et al. 2013). We used uni-
form priors for all the parameters, with the ranges of
the priors given in Table 1. We used the log-likelihood
function

InL=-05Y" (‘S_GE“Y , (7)

where S refers to the original spectrogram, F,) refers
to the model, and o is the off-pulse standard deviation
of the measured spectrogram. The sum is over all the
pixels in the two spectrograms. We used autocorrela-
tion analysis to determine when the MCMC has con-
verged®. We then estimated the burn-in” using the au-
tocorrelation time and used the remaining samples to
determine the fitting results. To decide if scattering was
present in a burst, we used the percentage of samples
with 74 /0¢ < 6. If this percentage was greater than 50%,
we concluded that scattering was not present (or was
very small) in that burst. We do not report scattering
timescales for such bursts.

8 See https://emcee.readthedocs.io/en/stable/tutorials/autocorr

for details.

9 To avoid the phenomenon known as “burn-in”, where there is a
high degree of correlation between neighboring samples in each
MCMC chain, the initial values are typically discarded. This
is especially important if the MCMC was initialized at a low
probability region in the parameter space. Therefore, if the ini-
tial samples are not discarded, then those might bias the poste-
rior distributions of MCMC samples. See section 7 of Hogg &
Foreman-Mackey (2018) for more details.

Table 1. Priors used in the MCMC fitting

Parameter  Minimum Maximum

S 0 500x max(time_series)xofit
1233 *2><Nf 3><Nf
af 0 5><Nf
Lt 0.8x pufit 1.2 x plit
ot 0 1.2><(¢7f5it + rfit)
Tsc 0 1.2x (ofit 4 £fity
DM 0.8 x DMt 1.2x DMfit

NoTE—Superscript fit refers to the values obtained using
fits done in previous stages. N refers to the number of
frequency channels. time_series refers to the 1-D array
obtained by summing the dedispersed cutout spectrogram
along the frequency axis. Subscripts ¢ and f are used for
profile and spectra parameters.

We generated corner plots and fit-result plots to verify
the quality of the fits, as shown in Figures 5 and 6. We
provide all the results (output parameters, corner plots,
fitting-result plots, etc.) from our analysis in a Github
repository.'?

3.5.6. Handling data saturation

The data we use in this analysis were recorded as 8-bit
unsigned integers. Hence, the data range lies between
0-255, and any signal brighter than 255 is clipped at
this value. We noticed data saturation for two bursts
(B6 and B121), and hence this effect has been incor-
porated in our burst modeling. The spectrograms are
subtracted by the off-pulse mean (pog) and divided by
the off-pulse standard deviation (oog). While making
the spectro-temporal model, we clip the values greater
than (255 — po)/0om. This effect is visible in Figure 3
for burst B121 where the red dot-dashed curve and
green dotted curve show the fit to the burst spectra with
and without clipping, respectively. The fit performed
without considering the saturation underestimates the
burst’s spectral width, leading to an underestimated
burst energy.

3.5.7. Caveats to our fitting analysis

There are some caveats to our fitting procedure that
are worth noting here. First, as with any model-
dependent fitting, our analysis and results are depen-
dent on the choice of the functions we use to model the
data. We described those functions and our motivation
for using them in Section 3.4, but these are not the only
proposed methods to model the spectrogram of an FRB.

10 https://github.com/thepetabyteproject/FRB121102
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Figure 3. Plots of spectra and fits in case of data saturation.
Blue solid line shows the spectrum of burst B121. The spec-
trum shows saturation between 1250 MHz and 1550 MHz,
and any real structure in the spectrum is lost between those
frequencies. The red dot-dashed line shows the model spec-
trum obtained when the fitting procedure incorporates the
effect of saturation, while the dotted green line shows the
spectrum obtained without considering saturation. The red
curve better estimates the shape of the spectrum (assuming
that the spectrum can be modeled using a Gaussian func-
tion), while the green curve underestimates the fluence and
frequency width. See § 3.5.6 for more details.

The spectrum of an FRB can also have power-law-like
behavior (CHIME/FRB Collaboration et al. 2020), and
some other pulse broadening functions can also be used
besides the exponential tail used to model the scattering
effect (Bhat et al. 2004).

Second, the emission of some bursts in our sample
was present only in the top part of the band. In many
such cases, the emission appeared similar to the tail of
a Gaussian function, with the mean lying outside our
observing band. Although we allowed for such a mean
value to be estimated with the MCMC procedure, our
fitting results for such bursts would inevitably be un-
constrained. We therefore mark such bursts with a } in
Table 2 to highlight this.

Third, in some cases, the MCMC procedure was un-
able to find a robust solution. This was due to the pres-
ence of RFI, which could not be removed as the FRB
signal coincided with the channels heavily corrupted by
RFI. It also occurred when there was significant base-
line variation in the data close to a weak FRB pulse.
This could dominate the MCMC likelihood estimate,
and therefore the procedure could not converge on a so-
lution. For such cases, we only used scipy.curve_fit
to perform the fits, and we modified the fitting bounds to
obtain a visually good fit. We highlight these in Table 2
with %, and note that the values could be unreliable.

4. RESULTS

As mentioned previously, we tripled the number of
published bursts from these two observations to 133, by
detecting 93 new bursts. Dynamic spectra for some of
the high-significance bursts are shown in Figure 1.

We used the burst modeling procedure described in
the previous sections to estimate spectral and temporal
properties for all the bursts. Figure 5 shows the fitting
results for two bursts. Comparing the three columns,
we can see that the modeled bursts look similar to the
original burst signal and the residuals are noise-like, in-
dicating that the models assumed for the burst spectro-
gram provide satisfactory fits. Figure 6 shows the poste-
rior distribution of the burst properties obtained using
MCMC for B67. The 1D plots show the parameter his-
togram, while the 2D plots show correlations between
parameters. The properties of the bursts are given in
Table 2.

4.1. Burst sample properties

We used the converged sample chains from the MCMC
fitting for each burst to generate a cumulative corner
plot with the whole burst sample properties. To do this,
we randomly selected 1000 samples from the final 25%
of the MCMC chains and then concatenated such sam-
ples from all the bursts. We then generated a corner
plot using these samples, as shown in Figure 7'!. We
can now use Figure 7 to infer trends in various spectro-
temporal properties of FRB 121102. Table 3 shows the
summary statistics of all the bursts obtained from this
analysis. We can see that the spectra of the bursts typ-
ically peak around 1650 MHz, and there is a dearth of
burst emission below 1300 MHz. Most of the burst spec-
tra peak within the top part of our observing band (i.e
1550-1780 MHz). This behavior possibly extends fur-
ther to higher frequencies, as is evident from many burst
spectra that increase towards the top part of the observ-
ing band with their spectral peak possibly lying outside
our observing band. Interestingly, Platts et al. (2021)
have recently reported complex bifurcating structures in
some FRB 121102 bursts below 1250 MHz using higher-
resolution data. It is, therefore, possible that the emis-
sion of FRB 121102 shows a different behavior below
these frequencies, which might also vary with time.

As already noted by Gourdji et al. (2019), FRB 121102
shows a variety of spectral widths. Using our modeling,
we observe that most bursts are frequency-modulated
and have a typical frequency width of ~ 230 MHz. The

11 Note that this corner plot is different from the one in Figure 6.
Figure 6 shows the samples from MCMC fit on only one burst,
while Figure 7 shows the cumulative samples obtained from
MCMC fit on all the bursts.
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Figure 4. Flowchart showing the various stages of fitting in BURSTFIT. See Section 3.5 for details.

Table 2. Properties of the first 10 bursts. See Appendix for the full table.

Burst @ f oy S Lt b ot 7€ DM
ID (MHz) (MHz) (Jy ms) (MJD) (ms) (ms) (pc cm~3)
Blx 1560730 210190 0.091992  57644.408906976(1)  0.0T9Y%2 19703 5653704
B2x 1200179 5010 0.04370-997  57644.40956768(1)  1.3579:9% - 562.410-8
B3.1% 2900t§88 8007300 0.6797 , 57644.409673699(3) 04792 1.3707  566.8708
B3.2t 11007390 100072999 0.09703%  57644.40967384(2)  0.3T53 03757 5647735
B4t 31007209 550780, 23 57644.410072889(4) 1.1t8;§ 03792 56471
B5t 21007995 27007995, 0.19790%  57644.410157834(4) 07753 1.07T9% 5621707
B6.1 139377 18317 0471552 57644.411071954(1)  1.097353 - 562.3102
B6.2 14177 10275 0.33758%  57644.4110719755(9) 0.57795% - 560.9102
B7.1f 310073200 430750 1073 57644.412240214(5)  0.715%  0.8T0% 56913
B7.2t 1460735 90730 0.09755  57644.41224043(2) 19799 1.278¢ 56973
Bst 30007206 700190 1173 57644.414123628(4)  1.075%  0.870% 567.5702
+10 +9 +0.003 +0.6 +0.6 +2
BYx 1430119 7519 0.07670-9%%  57644.41447161(2)  2.0705 04758 56472
10 8 0.01 0.3 0.3 ~5+3
B10 1630715 821 0.1 57644.414475391(7) 14753 05703 56213

NoOTE—1o errors on the fits are shown on superscript and subscript of each value in the table. For u¢, the
error on the last significant digit is shown in parenthesis.

@Burst IDs are chronological. Individual component number (N) for multi-component bursts are appended
to the burst IDs. Bursts modeled only using curve_fit are marked with . Note that the errors on these
bursts could be unreliable and may be either under or over-estimated

. Bursts that extend beyond the observable bandwidth can also have unreliable estimates of spectra parameters
and fluence (see Section 3.5.7). We mark those bursts with { to indicate that their fluence and spectra
parameters could be unconstrained.

but is the mean of the pulse profile in units of MJD. This can be considered as the arrival time of the

pulse. It is referenced to the solar system barycenter, after correcting to infinite frequency using a DM of
560.5 pccm 3.

€1 is referred to 1 GHz.
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Figure 5. Results of spectro-temporal fits on two bursts (B93 and B67). The first column shows the original (normalized)
dynamic spectra of the bursts. The burst can be seen in both cases towards the top of the band. B93 shows two components,
separated by around 10 ms. The middle column shows the noise-free model spectrograms that best fit the original data. The
last column shows the residual spectrogram obtained by subtracting the model from the original data. The residual spectrogram
in both cases shows noise-like data with no remaining artifacts. See Section 3.5 for details of the fitting procedure.
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bursts also show a wide range of intrinsic pulse widths,
from 0.4 ms to 20 ms, and various scattering timescales,
up to 3 ms. The median dispersion measure of the bursts
we observe was 564 pcem ™3, with a lo variation of ~
4 pcem™3. This variation in DM is also apparent in
Figures 7 and 8. This value is consistent with the other
published estimates (Li et al. 2021; Platts et al. 2021;
Cruces et al. 2020; Gourdji et al. 2019). We also did
not see any strong correlation between any two burst
properties from Figure 7. Several of the bursts from this
sample also show the characteristic sub-burst drift in
frequency during the burst duration, sometimes referred
to as the “sad-trombone” effect (Hessels et al. 2019).
We did not detect any evidence of upward drifting as
predicted by some FRB models (Cordes et al. 2017),
and reported by Platts et al. (2021).

Many bursts in our sample show multiple components,
and we estimated the properties of these components
using our fitting procedure. Nine bursts in our sam-
ple show two components, while there is one burst with
three components (see Table 2). We also note that it is
difficult to differentiate between multiple closely spaced
bursts and different components from single bursts. This
is further complicated by the detection of a very wide
(~35 ms) burst reported by Cruces et al. (2020). As
there is no clear consensus on how to resolve this, we vi-
sually identified some bursts as components of a nearby
burst and reported them as such in Table 2. We con-
sider all the components as individual bursts for all the
following analysis except the cumulative energy distri-
bution analysis.

Figure 8 shows the scatter plots of various burst prop-
erties with respect to the burst time. The bursts from
two observations are shown in different colors, and the
time is referenced to the first burst of the respective ob-
servation. The burst properties do not show any tempo-
ral evolution at the seconds-to-minutes time scale. We
also did not observe any distinction between the distri-
bution of properties of bursts detected on two consecu-
tive days.

5. DISCUSSION
5.1. Cumulative energy distribution

Energy distributions can provide useful intuition into
the emission mechanism of the source. Regular pul-
sar emission typically shows a log-normal distribution,
whereas giant pulses show power-law cumulative distri-
butions (Burke-Spolaor et al. 2012). Crab giant pulses
have how evidence that the index depends on pulse
width and energy, with flatter indices for weaker and
shorter pulses (Karuppusamy et al. 2010; Popov & Stap-
pers 2007; Bera & Chengalur 2019). High-energy mag-

Table 3. Results from the burst
sample analysis. The values rep-
resent the median values with lo

€rrors.

Parameter Units Value
[if MHz 160872159

+130
of MHz 102_3013

+0.
S Jy ms 0.137) 05

ot ms 1.1f8'g

T ms 0.7f812

DM pc cm ™3 564J_r§

netar emission has been described by power-law dis-
tributions with v ranging from roughly —1.6 to —1.8
(Cheng et al. 2020). Previous studies of FRB 121102
energy distributions have used a single power-law fit
(N(> E) «x E7) to model the cumulative distribution
and have obtained different values of + ranging from
—0.7 in Law et al. (2017), —1.1 in Cruces et al. (2020),
—1.7 in Oostrum et al. (2020) and —1.8 in Gourdji
et al. (2019). Another well-studied repeating source,
FRB 180916, shows v = —1.3 at 400 MHz, although
recent observations have reported a flattening of the
power-law at lower energies (Chime/Frb Collaboration
et al. 2020; Pastor-Marazuela et al. 2020).
We calculate the isotropic energy (E) of a burst as,

E =47D3 x S (Jy s) x 2.355 0 (Hz)
%10~ 2 (ergs 'em2Hz V). (8)

Here, Dy is the luminosity distance to FRB 121102,
972 Mpc, as reported by Tendulkar et al. (2017). S
and 2.355 o are the fitted fluence and FWHM of the
Gaussian spectra.

To make the cumulative energy distribution, we
choose only bursts for which the +10 bounds on the
spectral peak fell within our observing band. This was
done as our fluence estimates obtained from fitting are
reliable for bursts within our band and because we are
incomplete to the population of bursts that are partially
outside our band (Aggarwal 2021). Therefore, from a
total of 133 bursts, we obtained 60 bursts that satisfied
this criteria. For each of the 60 such bursts, we used the
posterior distribution of bandwidths and fluences from
the MCMC based fitting analysis to calculate the dis-
tribution of energies (using Eq. 8). We then randomly
sample one energy from the burst energy distributions
of each of the 60 bursts and generate a cumulative en-
ergy distribution using those 60 energies. We repeated
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of individual parameters for all the FRB 121102 bursts, while the 2D plots show the correlations for different parameters. The
shaded and darker regions in 1D and 2D plots correspond to 1 o. See Section 4 for more details.

this process 1000 times and thereby generated 1000 cu-
mulative energy distributions.

The previous studies of the cumulative energy distri-
bution of FRB 121102 have reported a break in power-
law with a flattening towards low energies (Gourdji et al.
2019; Cruces et al. 2020). Also, it was visually evident in
our data that the cumulative distribution flattened to-
wards low energies. Therefore, a single power-law would

not have been sufficient to accommodate the burst en-
ergy distribution. Therefore, we used scipy.curve_fit
to fit each of these 1000 energy distributions with a bro-
ken power-law of the form,

Escale( L
N(Z E) — Epreak

e

) ’ if £ < Ebreak
e\’ .

Ecale (Ebreak) , if B> Epreak-
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Figure 8. Scatter plots of fitted property of the bursts versus the fitted time of the burst. The data from the two observations
are shown in different colors, with MJD 57644 in red and MJD 57645 in blue. u: is referred to the first detected burst in the
observation. Only bursts fit using MCMC are shown here. The error bars represent 1 ¢ errors on the fit. Errors on u: are very
small, and hence are not visible. None of the six properties show any clear trend with respect to the burst time.

Here, o and S are the two power-law indices, Fipeak iS
the break energy, and Fycae is the energy scaling. Fig-
ure 9 shows the cumulative energy distributions above
an estimated completeness of 5.8 x 1036 ergs, calculated
from the aforementioned completeness limit on the flu-
ence, 0.0216 Jy ms (Section 3.3), and median bandwidth
(2.3550¢) of the bursts i.e. 240 MHz. It also shows (in
red) the power-law fit to each cumulative energy distri-
bution.

The median of the distribution of fitted power-law
indices and break energy (with lo errors) are given
by a = —04£0.1, B = —1.8 +0.2 and Eprearc =
(2.28 4 0.19) x 1037ergs. This break at Fpear could
indicate the actual completeness energy limit of our ob-
servations, and we might therefore be incomplete to the
bursts with energies below FEyeax. This could be due
to the incompleteness of our observations to the weak,
band-limited bursts. The bursts above this energy are
well fitted by the power-law of index f = —1.840.2. The
break in energy distribution has also been reported for
other repeating FRBs (Pastor-Marazuela et al. 2020).
It is worth noting that our higher-energy power-law in-
dex B is also consistent with the power-law index es-
timated by Gourdji et al. (2019) above a completeness
threshold of 2x 1037 ergs. In the context of pulse-energy
distributions, the similarity of the power-law indices of
FRB 121102 with both those of Crab giant pulses and
magnetar pulses might also imply a common origin (Lyu
et al. 2021).

5.1.1. Testing for a high-energy break

Figure 9 shows that two high-energy bursts deviate
from the power-law fits. This has also been seen in Crab
giant pulses, where this behavior was speculated to be
due to supergiant pulses (Mickaliger et al. 2012). We
therefore tested the presence of a high-energy break in
the power-law (between 5 — 9 x 1037 ergs). We assumed
that the break energy estimated above to be the com-
pleteness threshold, and only used the energies greater
than that value. Then we repeated the bootstrapping
method to fit the cumulative distribution of the remain-
ing bursts using: a single power-law and a broken power-
law. Note that in this test we were only fitting the bursts
with energy greater than 2.3 x 1037ergs.

The fitted slope obtained for the single power-law fit
was —1.870:2. The fitted slopes (below and above the
break energy) for the double power-law fit were —1. 8+0 5
and —0.5703 with fitted break energy of 7.8779 x
10%7ergs. The power-law slope obtained in the single
power-law fit (and the lower energy slope in case of dou-
ble power-law fit) was consistent with the higher energy
slope reported earlier ( = —1.8 +0.2). We also found
that the reduced chi-square value for the single power-
law case was 1.2720 while that for the double power-
law fit was 0.087905. This indicates that the double
power-law fit model over-fitted the data, and so a single
power-law is sufficient. This test gives further confi-
dence that above the energy of 2.3 x 10%7ergs, bursts
from FRB 121102 follow a single power-law with slope
B = —1.840.2, and that there is no evidence for a higher
energy break in the energy distribution.

5.2. Wait-time distribution
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Figure 9. Cumulative energy distribution of bursts above our completeness limit of 5.81 x 10%¢ ergs. The grey points show
the cumulative energy distributions created by bootstrapping the burst energies. The red lines show the broken power-law fit
to each of these cumulative energy distributions. See Section 5.1 for more details.

The left panel in Figure 10 shows the distribution of
wait times between bursts, which follows a bi-modal dis-
tribution as also seen in previous studies (Li et al. 2019;
Gourdji et al. 2019). On wait times greater than 1 s,
we use scipy.curve_fit to fit a log-normal function to
the main distribution, finding a peak at 74.8 + 0.1 s.
The peak of our wait-time distribution is significantly
lower than the 207 £ 1 s peak found in this data by
Gourdji et al. (2019), due to our increased sample of
bursts filling in the wait-time gaps. As more bursts are
discovered in an observation of constant length, the av-
erage time between bursts decreases, lowering the peak
of the wait time distribution. Our findings most closely
match the wait-time distribution of Zhang et al. (2018),
which peaks at ~ 67 s; while the original paper did not
report an exact peak, we used their publicly available
data'? to perform our wait-time analysis. These simi-
larities suggest that careful single-pulse searches using
machine-learning algorithms allow us to obtain a robust
sample of bursts that accurately reflects the burst pop-
ulation.

12 Table 2, accessible at https://doi.org/10.3847/1538-4357 /aadf31

As in previous studies (e.g., Li et al. 2019; Katz 2018;
Gourdji et al. 2019), we find a smaller population of
bursts with sub-second separations. However, unlike the
previously reported distributions, which cluster around
tens of milliseconds, our sub-second burst separations
span the range of tens of milliseconds up to nearly one
second without as clear of a break between the two dis-
tributions. For this analysis, we assume that each closely
spaced pair of bursts is composed of two separate bursts
instead of components of a single broader burst, leading
to the larger distribution of short wait times compared
to other papers. This assumption will not drastically
alter the fitted log-normal distribution since the sub-
second wait-time population is small, and their removal
will not significantly alter the shape of the main distri-
bution. As in Gourdji et al. (2019) and Li et al. (2019),
we find that the wait time between bursts and their rel-
ative fluences are not correlated.

To quantify the change in the wait-time peak as a
function of the number of bursts in a sample, we per-
form the same wait-time analysis for a random selection
of our bursts over a range of burst numbers, as seen
in the right-hand panel of Figure 10. Each point rep-
resents a fit to 300 random selections of that number
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of bursts, with the error bars representing the standard
deviation of all of the fitted peaks. Our findings show
the expected effect that as more bursts are included in a
sample from a constant-length observation, the average
time between bursts will decrease along with the fitted
wait-time distribution peak. We find that the distribu-
tion of fitted wait times peaks exponentially decays with
added bursts with a timescale of ~ 29 seconds. We ob-
serve the same effect in the Zhang et al. (2018) dataset,
which shows a timescale of ~ 25.5 seconds. The peak ob-
tained by Gourdji et al. (2019) using this data is shown
in the figure and matches with our fitted exponential
curve. We perform a similar analysis by filtering out
the lowest fluence bursts from our sample and find that
the wait time peak increases as the minimum fluence
limit is increased, and weaker bursts are excluded. This
serves to explain the higher wait-time peaks calculated
by previous papers with fewer bursts and higher fluence
limits.

5.3. Short-period periodicity search

In this section we discuss the results of various peri-
odicity searches tested on this burst sample to search
for a short-period periodicity (millisecond to hundreds
of seconds).

5.3.1. Difference Search

We first perform a periodicity search on the burst
times (u¢ in Table 2) by calculating the differences be-
tween consecutive pulse times and searching over a range
of trial periods to determine how many differences are
evenly divisible, within some tolerance, by this period.
We searched over trial periods starting with the mini-
mum difference between pulses, in integer divisors down
to the minimum difference divided by 256, after remov-
ing all differences less than 50 ms, in both the full set
of pulses and 100 trials where only three-quarters of
the bursts were randomly selected (to sample a more
complete range of minimum differences). Differences
less than 50 ms were removed, since potential single
bursts with widths greater than 30 ms have been re-
ported from FRB 121102 (e.g. Katz 2018), and the dis-
tinction between whether these bursts are single multi-
component bursts or separate bursts is unclear. Further-
more, shorter trial periods are much more likely to re-
turn false positive results. To allow for a variety of pos-
sible emission mechanisms for FRB 121102, including
a broad or multi-component pulse profile, we searched
phase tolerances ranging from 1% to 50%. At any given
phase tolerance, a trial period is considered to fit a dif-
ference between two pulses if the difference is an integer
multiple of the trial period, within an error equal to the
phase tolerance.

We also searched 1000 simulated time series of identi-
cal length, with the same number of pulses distributed
randomly, using the same methodology in order to gauge
the significance of any detected periodicities. By search-
ing for periods in a set of bursts with no underlying pe-
riod, we can evaluate whether our period search finds
a real periodicity in the data, or if it is a coincidence.
Above a 50% tolerance, we get many more pulse matches
in all of the random timeseries than we do with the real
data, likely due to the FRB pulse distribution not fol-
lowing a random distribution (see Figure 10 for the dis-
tribution of pulse arrival time differences).

The most significant period found was 658.838 mil-
liseconds, which fit nine pulses at a tolerance of 3%,
with a false alarm probability (FAP) of 0.3% for ran-
dom trials at that tolerance. However, considering all
50 tolerance values searched over two observations, the
effective FAP is 30%, and we therefore conclude that
no periodicity can be detected through this differencing
method.

5.3.2. Fast Folding Algorithm

We ran a fast folding algorithm (FFA) on each obser-
vation using riptide (Morello et al. 2020). Unlike the
periodicity search in the previous section which uses the
calculated pulse arrival times, riptide searches for pe-
riodic signals in the entire dedispersed time series. This
allows us to efficiently search over a greater range of
trial periods, and will not be affected by issues such
as missing bursts, or considering closely spaced individ-
ual bursts as a single multi-component burst. However,
while it is more sensitive to weak, time-averaged peri-
odic emission, it is less sensitive to periodicities only
found in the detected single pulses. The FFA folds each
dedispersed time series over a range of trial periods to
create an integrated pulse profile. For each observa-
tion, we searched time series with DMs ranging from
550 pc ecm™3 to 580 pc cm ™3 and at periods greater
than 500 ms (the approximate period at which folding
algorithms are more sensitive than Fourier techniques;
see Parent et al. 2018) and less than 20 s (to ensure
a sufficient number of pulses across the observation for
a pulsed detection). We used 1024 output bins, with
boxcar filters providing sensitivity to pulses with widths
ranging from 1 to 300 ms.

First, candidates due to RFI, such as periods at ex-
act integers and known RFT frequencies, were removed.
Of the remaining candidates, a signal-to-noise cutoff of
100 was applied for a total of 1,250 candidate periods
between the two observations.

We then folded the relevant dedispersed time series for
each candidate using the prepfold command from the
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Figure 10. Left: the wait time distribution for both observations is plotted in gray, with the fitted log-normal function peaking
at 74.84+0.1 s. The individual observations are plotted in green and blue, respectively. The fitted wait-time peaks from previous
works are notated with vertical lines. Right: the average fitted wait-time peaks as a function of the number of bursts randomly
selected from the full sample. The fitted exponential distribution is shown with a black dashed line, and the error bars represent
one standard deviation of the fitted peaks. The fitted peak from Gourdji et al. (2019) is represented with a red star.

PRESTO (Ransom 2011) package at the candidate period
and DM identified by riptide. We allowed prepfold
to search in DM in order to determine which candidates
had signal-to-noise ratios which peaked for DMs inside
of the searched range. We expanded our acceptable DM
range from 520 to 610 pc cm ™3 to allow leeway in prep-
fold’s search, leaving 91 periodic candidates in total. We
visually inspected these profiles and found that all were
consistent with RFI or noise, with no evidence of emis-
sion at the same phase over time or frequency. We com-
pared the candidate periods found by the algorithm on
both observations, and found that the only common pe-
riods were caused by RFI.

5.3.3. frbpa

We used frbpa (Aggarwal et al. 2020) to search
for a short-period periodicity using the burst times
(MJDs). We used two methods: search to find the pe-
riod that minimizes the fractional width of folded pro-
file (Rajwade et al. 2020b) and a Quadratic-Mutual-
Information-based periodicity search technique (Huijse
et al. 2018). In the first method, we phase-coherently
folded the burst times between trial periods and gen-
erated a set of profiles consisting of the source activity
with respect to the trial period phase. We then mea-
sured the width of the source activity in each folded
profile. Low width would indicate that source activity
is concentrated in a small set of contiguous phase win-

dows, indicating the presence of periodic activity (Ra-
jwade et al. 2020b). The second method uses quasi-
mutual-information to estimate the period. It has been
shown to be robust to noise and works well on sparsely
sampled data as well (Huijse et al. 2018). We searched
for periods between 1-1000 seconds on bursts from the
two days individually and did not recover any significant
period.

5.3.4. Lomb-Scargle

We also used timeseries.LombScargle from the
astropy library (Astropy Collaboration et al. 2013;
Price-Whelan et al. 2018) to search for periods ranging
from 100 ms to 1000 seconds on the bursts from the two
observations separately. Note that sensitivity to 100-ms
periods requires sampling frequencies higher than the
traditional Nyquist limit. This is possible because the
effective Nyquist frequency for unevenly sampled data
set is much smaller than the traditional limit (Vander-
Plas 2018). The most significant periods are approxi-
mately 118 and 179 milliseconds. However, false alarm
probabilities of around 3% and 26%, respectively, in-
dicate that the detected periods are unlikely to be real.
We therefore we conclude that we did not detect any sig-
nificant periodicity in the bursts using the Lomb-Scargle
method.

5.4. Burst Rate
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Previous observations of FRB 121102 have found
significant evidence for pulse clustering on short time
scales, where the burst separations deviate from a Pois-
sonian distribution (Oppermann et al. 2018; Oostrum
et al. 2020; Cruces et al. 2020). The Weibull distri-
bution, as described in Oppermann et al. (2018), is a
modification of the Poisson distribution, with a shape
parameter k£ describing the degree of pulse clustering.
Clustering is present for k < 1 with lower values cor-
responding to more clustering, while £k = 1 reduces to
the Poissonian case; a value of k > 1 causes the dis-
tribution to peak more sharply at the event rate and
indicates a periodic signal. A better understanding of
the burst statistics may help us understand the progen-
itor of FRB 121102 and help strategize the timing of
future observations.

Figure 11 shows the cumulative probability density
of the wait times between consecutive bursts, fitted to
the Weibull and Poisson cumulative density functions
as defined by Oppermann et al. (2018). The fitted val-
ues are given in Table 4, as well as the reduced chi-
squared statistic and the coefficient of determination,
r2, which ranges from zero to one with a value of one
representing a perfect fit. In Figure 11, we also plot the
values of the reduced chi-squared statistic for the Pois-
son and Weibull distributions when fitted to only the
wait times longer than a range of chosen minimum wait
times. We observe that both the Poisson and Weibull
distributions fit the main population of longer wait times
much better than the entire set of bursts. The Weibull
distribution’s ability to account for clustering allows it
to have a significantly better fit when including shorter
wait times, as its reduced chi-squared statistic is a fac-
tor of 18 smaller than that of the corresponding Poisson
distribution (see Table 4). However, the Weibull distri-
bution is only slightly favored over the Poisson distribu-
tion when fitting only longer wait times. We find that
the reduced chi-squared statistic is equal to 0.368 for the
Weibull fit to wait times greater than one second, indi-
cating that the distribution is overfitted. These findings
may indicate that the main distribution of bursts with
longer wait times roughly follows a Poissonian distribu-
tion, while the entire burst rate distribution cannot be
accurately described with solely a Poisson or Weibull
distribution. This may result from our decision to con-
sider each burst as a separate burst rather than a sub-
component of a broad burst.

In addition to their observations, Cruces et al. (2020)
used the original dataset from Gourdji et al. (2019) to
study the burst rate statistics and found that the addi-
tion or removal of the sub-second wait time population
in each dataset significantly impacts the extrapolated

burst rate behavior. In each case, removing these short
wait times led to the fitted Weibull shape parameter k
increasing towards one, further indicating that the main
distribution of pulses may follow a Poissonian distribu-
tion while the shorter distributions do not. However, the
sample used in Cruces et al. (2020) only had two sub-
second wait times; our more extensive sample of short
wait times allows us to confirm this behavior with more
statistical significance. In Figure 12, we plot the fitted
burst rates for the Weibull and Poisson distributions and
the Weibull shape parameter k as a function of minimum
wait time. As the minimum wait time increases, both
burst rates converge to a rate of roughly 45 bursts per
hour. We also find that the fitted value of k increases
with the minimum wait time, reaching a value of k =1
at a minimum wait time cutoff of roughly 0.1 s.

Table 4. Fitted burst rate distributions

Rate (hour™1) k X2 r2
Poisson (all) 65 £ 8.4 e 495  0.953
Weibull (all) 42+9 0.63+£0.07 27.5 0.970
Poisson (4t > 1s) 41+1.6 1.076  0.994

Weibull (6t > 1s) 46 +1.5 1.16 £0.04 0.368 0.997

NoOTE—The posterior values for the Poisson and Weibull distributions

as well as the reduced chi-squared statistic and 2 value, fit both to
the entire set of wait times as well as only wait times greater than
one second. The errors represent 1 o uncertainties.

5.5. Implications for progenitor models

Based on our results, any progenitor model proposed
for FRB 121102 would have to explain the following ob-
servations: (1) band-limited emission; (2) varying peak
emission of the spectra and its lack below 1300MHz;
(3) median scattering timescale of 0.7 ms, with a maxi-
mum value of around 2 ms; (4) rapid variability of these
three properties at second timescales. Further, some
of these observations have also been reported for other
FRBs (Kumar et al. 2021; Shannon et al. 2018; Pastor-
Marazuela et al. 2020).

5.6. Comparison to previous work

In this work, we have presented 93 additional bursts
detected on reprocessing the data presented in Gour-
dji et al. (2019). Figure 13 shows the distribution of
properties of new bursts detected with our pipeline as
compared to the ones already published by Gourdji et al.
(2019). We performed Kolmogorov-Smirnov (KS) tests
to compare the distributions of fitted parameters of old
versus the new bursts. The distribution of S, o; and DM
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Figure 11. The cumulative wait time distributions fitted by the Poisson (blue solid lines) and Weibull (green dashed lines)
distributions for the entire sample of wait times (left) and for the population of wait times greater than one second (middle).
The fitted values for the Poisson distribution for the left and middle plots are r = 65 hr~' and r = 41 hr~' respectively. The
fitted values of the Weibull distribution are k = 0.634, r = 42 hr~! and k = 1.162, 7 = 46 hr~! respectively. Right: The reduced
chi-squared statistic of the Poisson and Weibull fits, when fitted to wait times greater than the minimum wait time. While
the middle and right panels show that both the Weibull and Poisson distributions fit the longer wait times well, the left panel
shows that neither distribution accurately fits for the larger sample of sub-second wait times. The right panel shows that pulse
clustering starts to impact the fits once wait times shorter than ~ 50 ms are considered.
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Figure 12. Left: the fitted burst rate per hour for the Poisson (blue) and Weibull (green) distributions as a function of the
minimum wait time used in the fitting. As the minimum wait time increases and we begin to sample only the main distribution
of wait times, the burst rates converge to roughly 45 bursts per hour. Right: The Weibull shape parameter k as a function of
minimum wait time. The fitted value increases with the minimum wait time, and black dotted lines have been added to indicate
that the Weibull parameter increases to a value of 1.0 at a minimum wait time of 0.1 seconds.

are similar, while those for p¢, oy and 7 are different.
This indicates that the searches carried out by Gourdji
et al. (2019) missed bursts that span the entire range
of these parameter values, rather than just the weaker
bursts.

Recently, Li et al. (2021) reported a large sample
of bursts from FRB 121102 detected using the Five-
hundred-meter Aperture Spherical radio Telescope. The
mean of the wait-time distribution estimated from that
larger sample of bursts (70 £+ 12s) is consistent with
what we report in Section 5.2. They also did not de-
tect any short-term periodicity, similar to our findings.
Further, they report a bimodal energy distribution for
FRB 121102. Aggarwal (2021) highlighted that this bi-
modality disappears when burst bandwidth, instead of
center frequency of the observing band, is used to cal-
culate the energy. Moreover, the burst bandwidths re-

ported in Li et al. (2021) were estimated visually, and
not using a fitting procedure. This can lead to observa-
tional biases that will make the interpretation of intrin-
sic energy distributions difficult (Aggarwal 2021).

All the tools and software used in our pipeline are in-
dependent of the ones used in the original work (Gourdji
et al. 2019). This brings the critical question of under-
standing why our pipeline detected more bursts or why
the original work missed the bursts. While an exhaustive
comparison of the two pipelines using a standard dataset
consisting of simulated FRBs is beyond the scope of this
work, here, we try to investigate the reasons for different
results based on our understanding of the software used.
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We discuss three reasons that might contribute to very
different recovery rates'? of the two pipelines.

5.6.1. Threshold signal-to-noise ratio

Although Gourdji et al. (2019) used a S/N threshold
of 6 for the search, they discarded candidate groups with
a maximum S/N less than 8. We used a S/N threshold
of 6 in our search. Therefore, they would have missed
low S/N candidates.

Assuming that the higher energy power-law slope of
-1.8 (estimated in Section 5.1) is intrinsic to FRB, we
can estimate the expected ratio of number of bursts with
S/N greater than 6 to that above a S/N of 8. This is
given by (6/8)71% = 1.7. The observed ratio of the
number of bursts above S/N of 6 (N= 133) to that above
S/N of 8 (N= 70) is: 133/70 = 1.9. This implies that
we detected more bursts between S/N of 6 and 8, than
expected from the power-law distribution of energies.
But, it is important to note that this simple estimate
relies on the following assumptions:

1. Our observations are complete to bursts with S/N
< 8. But the flatter energy distribution at low
energies indicates that this might not be true.

2. The fluence and energy distributions are similar.
This is true only when there is no incompleteness
due to banded nature of the burst spectra (Aggar-
wal 2021).

3. The burst energy distribution can be modeled by
a single power-law, even at low energies.

Further, we now estimate the number of purely noise
candidates we expect above a S/N greater than 6 in
our search. The chance probability of a purely noise
candidate with S/N greater than 6 is P= 9.9 x 10710,
The number of trials in our search can be calculated by:

(10)

Where, Nija is the total number of trials in our
search, Npy is the number of trial DMs (65, between
450-650 pccm 3 at a tolerance of 1%) and Nyjye is the
total number of time samples in the data (~ 3 hrs at a
time resolution of 81.92-us). The sum is over the box-
car widths searched (2° to 2'°, doubling at each step).
Therefore, we expect P xNy;ia1 ~ 20 purely noise events,

13 By recovery rate, we mean the percentage of transients (above
the completeness limit) correctly identified by the software. A
perfect pipeline would have a recovery rate of 100%, indicating
that it can detect all transients present in the data.

with a S/N greater than 6, for these number of trials.
But number of events we detected with S/N > 6 in our
single pulse search were 1,427 (with 133 FRB and 1,294
RFTI candidates).

This shows that we detected much more candidates
above a S/N of 6 than expected from pure Gaussian
noise, implying that data is non-Gaussian. Most of the
candidates we obtained were due to RFI, which is ex-
pected. It is possible that some weak events are still
misidentified, however this will not influence the results
of our analysis.

5.6.2. Single-pulse search software

Gourdji et al. (2019) used single_pulse_search.py
(Ransom 2011) to search for the bursts, and manually
verified the candidates. In contrast, we used HEIMDALL
for the single-pulse search, and FETCH for classification.
Keane & Petroff (2015) highlight several steps at which
a single-pulse search pipeline might miss a transient. A
few such steps are sizes of boxcar convolutional kernel,
spacing between DM trials, the position of the boxcar
convolution with respect to the phase of the pulse, clus-
tering of redundant candidates, etc. Although recovery
rates for both these search softwares have been shown to
be >90% in their respective pipelines (Patel et al. 2018;
Agarwal et al. 2020b; Gupta et al. 2021), a thorough
comparison of the two search strategies has so far not
been done.

5.6.3. RFI mitigation and classification

Gourdji et al. (2019) used a different RFI mitigation
strategy than our pipeline. They used the classifier (SPs)
presented in Michilli et al. (2018) to filter the RFI can-
didates and then manually verified the remaining 125
candidates to search for real pulses. SPS was designed
specifically to search for Galactic single pulses in a LO-
FAR survey. Features in LOFAR data would be very
different from the data used in this study. This is pri-
marily due to different observing bands (1.4GHz for this
study, compared to 100MHz for LOFAR), RFI environ-
ment, telescopes, and observing backends. Moreover,
the dispersion in FRB pulses is typically much larger
than that seen in Galactic transients. Due to these dif-
ferences, it is not possible to translate the performance
of sps on LOFAR data to the data used in this work.
Michilli et al. (2018) mention the use of specially de-
signed filters for such datasets on which SPS was not
trained, but they did not report the performance of these
filters on any such data. Agarwal et al. (2020a) and
Connor & van Leeuwen (2018) also highlight that it is
non-trivial to generalize a machine learning algorithm
to unseen data without rigorous pre-processing and in-
jection tests. It is therefore possible that SPS missed to
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Figure 13. Normalized histogram of burst properties. New bursts detected in this analysis are shown in green, while the
ones published by Gourdji et al. (2019) are shown in blue. For all the bursts, the properties shown here were estimated using
the fitting procedure described in Section 3.5. We did a KS-test to compare the old and new burst distributions, for all the
properties, with p-values obtained from these tests given on the top right of each plot.

correctly identify real pulses that were correctly detected
by single_pulse_search.py.

As mentioned previously, we used spectral kurtosis for
RFT mitigation (Nita & Gary 2010) and used FETCH
for classification. It is known that very strict RFI flag-
ging can lead to a reduced recovery rate, as the RFI
algorithm might flag real signal as RFI (Rajwade et al.
2020a). Spectral kurtosis is robust to astrophysical sig-
nals and performs better than the simple median-based
RFI thresholds (Nita & Gary 2010). FETCH was de-
veloped to be robust to different telescopes, observing
configurations and RFI environments (Agarwal et al.
2020a). We accomplished this by a carefully designed
pre-processing and training strategy. We also showed
that the performance of FETCH remains consistent on
unseen data. This has been further established by the
new FRBs discovered using FETCH on different tele-
scopes (Kumar et al. 2019; Law et al. 2020; Aggarwal
et al. 2020; Rajwade et al. 2020b; Kumar et al. 2021;
Pleunis et al. 2021; Kirsten et al. 2021).

5.6.4. General comments

As mentioned in Section 3.3, a robust analysis of any
single-pulse search software and pipeline requires ex-
haustive injection analysis. Such an analysis can high-
light the percentage of transients recovered with re-
spect to various physical parameters of interest, like
DM, width, phase, etc. These metrics are essential in
understanding possible inefficiencies and estimating the
completeness of any single-pulse search. Such analysis
done for specific pipelines that use HEIMDALL has re-
ported a recovery rate of > 90% (Agarwal et al. 2020b;

Gupta et al. 2021). While our pipeline is not identical,
it is very similar to the one reported by Agarwal et al.
(2020b). On a less diverse dataset, the recovery rates
for single_pulse_search.py were also reported to be
> 90% (Patel et al. 2018), but a more rigorous analysis
would better assess the robustness of this search soft-
ware.

Additionally, if a machine learning classifier is de-
ployed in a single-pulse search pipeline, then it is neces-
sary to estimate the recovery rate for the classifier itself.
Such rigorous analyses have been performed for some
classifiers (Agarwal et al. 2020a; Gupta et al. 2021), and
provide insights into their recovery rate estimates. The
robustness of a classifier to unseen data should also be
carefully investigated (or verified by manual inspection),
before reporting the completeness of any search. While
human recovery rates for visual classification of thou-
sands of candidates have not been estimated for FRBs,
similar estimates are present in computer vision litera-
ture. Here, the neural networks (a top-5 error rate of
3.5%) routinely outperform humans (a top-5 error rate
of 5.1%) in image classification tasks (He et al. 2015;
Russakovsky et al. 2014).

Further, as most of the bursts detected in this sam-
ple are narrow-band (i.e., present only in a part of the
frequency band), traditional searches might still miss
bursts. Sub-banded searches would be more sensitive to
detect such band-limited bursts, especially at wide-band
systems (R. Anna-Thomas et al. 2021, in preparation;
Kumar et al. 2021; Gourdji et al. 2019).

5.7. Caveats
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Finally, it is appropriate to highlight and reiterate four
main caveats to the analysis presented in this work. (1)
The data used in this analysis was downsampled to 64
frequency channels. We did not have access to the na-
tive resolution data; therefore, all the search and analy-
sis was performed on downsampled data. The sensitivity
of single-pulse search would be higher on native resolu-
tion data; therefore, our pipeline may have missed some
pulses. (2) We only performed a search on the data
that averaged over the full bandwidth to create time-
series. Given the band-limited nature of many bursts, a
sub-band search on this data might reveal weaker and
narrower bursts. (3) As mentioned previously, our es-
timate of completeness limit is not robust, as such a
robust estimate requires injection analysis that was not
possible with the available data. (4) The reported prop-
erties of the bursts depend on the assumption that burst
spectra and profile follow the assumed functional forms
used for fitting.

6. CONCLUSIONS

This paper presents a dense sample of FRB 121102
bursts detected at L-band using Arecibo Observatory,
analyzed as a part of The Petabyte Project. More im-
portantly, we report 93 new bursts detected with our
single-pulse search pipeline, as compared to the pub-
lished results (Gourdji et al. 2019), making a total of
133 burst detections in 3 hours of data. We have de-
veloped a robust burst fitting procedure to model the
spectro-temporal properties of FRBs and provide it as
a user-friendly python package BURSTFIT'*. We use the
MCMC procedure implemented in BURSTFIT to estimate
the properties of all the bursts in our sample. We find
that the burst spectra can be well modeled using a Gaus-
sian function, with a median width of 230 MHz and a
median peak at 1608 MHz. Most of the burst emission
is present in the top of our band, and there is a lack of
emission below 1300 MHz, consistent with other pub-
lished results (Gourdji et al. 2019; Platts et al. 2021).
Many bursts also show a scattering tail, with a median
timescale of 0.7 ms. Some bursts show complex struc-
tures like multiple components and frequency drift. The

wait time distribution of the bursts shows two distribu-
tions, at millisecond and second timescales. The latter
of the two follows a log-normal distribution, with the
peak at 74.8 s, consistent with other published results
(Zhang et al. 2018). We further note that the peak of the
wait time changes significantly based on the number of
bursts in an observation. We find that both Poisson and
Weibull distributions fit the burst rate distributions at
long wait times (> 1 second) equally well, and neither
accurately describes the whole burst rate distribution.
We did not detect any short-period periodicity in the
bursts. The cumulative burst energy distribution is well
modeled by a double power-law with a break. We find
the value of low and high-energy slopes to be —0.4+0.1
and —1.840.2 with a break at (2.340.2) x 1037 ergs. Our
analysis reveals that only the bursts that are completely
within the band should be used for energy distribution
analysis. We discuss some possible differences between
our single-pulse search pipeline and the one used by
Gourdji et al. (2019), to explain the different results ob-
tained using the two approaches. All the analysis scripts
and results presented in this paper are openly available
in a Github repository'® for the community to use in
their repeater burst analyses.
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APPENDIX

Table 5 shows the fitted properties (with 1o errors) of all the bursts reported in this analysis.

M https://github.com/thepetabyteproject /burstfit
15 https://github.com/thepetabyteproject /FRB121102
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Table 5. Properties of all the bursts presented in this analysis.

Burst @ Wy oy S Lt b ot 7€ DM
ID (MHz) (MHz) (Jy ms) (MJD) (ms) (ms) (pc cm™3)
Blx 1560730 210735 0.091952 57644.408906976(1)  0.010:02  1.9703  565.370)
B2+ 1200170 50150 0.04370-097  57644.40956768(1)  1.3519:92 - 562.410-8
B3.1t 29007200 8007350  0.6%0% 57644.409673699(3) 04752 13707 566.8708
B3.2t 11007395, 100073950 0.0910-33 57644.40967384(2)  0.375% 03797 5647705
B4t 31007290 550759, 273 57644.410072889(4) 11752 03732 56471
B5t 21007990 27001950,  0.1975:6° 57644.410157834(4) 07793 1004 5621107
B6.1 139377 18377 0.471052 57644.411071954(1)  1.0975:83 - 562.3702
B6.2 141712 10273 0.3379-93 57644.4110719755(9) 0.57109% 560.975-2
B7.1f 310073050 430759 1072 57644.412240214(5)  0.770% 0803 56913
B7.2t 1460730 90730 0.09%961 57644.41224043(2)  1.9799 12708 56913
B8t 30001200 700108 11Tl 57644.414123628(4)  1.075% 08794 5675702
B9« 1430710 7519 0.07610:00%  57644.41447161(2)  2.010% 04708 56473
B10 1630710 8218 0.170:01 57644.414475391(7) 14753 05103 56273
Bl11 1550710 100718 0.0747399%  57644.414878803(4)  0.8752 037937 560.3709
B12 31007209 45079 20129 57644.41537809(1)  1.970%  1.575% 56913
B13 1692753 90720 0.14106% 57644.416314736(5)  1.5752  0.6793 5727
Bl4 1260710 6713 0.1379-92 57644.41830674(8) 311 L6*gs 56217
B15.1t 1550715  80fid 0.0779-01 57644.418309206(7)  0.970%  0.870% 56517
B15.2t 200071509  3000%1500 0.12%002 57644.418309273(2)  0.2793 07703 569.4703F
B16t 31007200 510190 613 57644.420508580(4)  1.2702 05193 5702
B17 200073990 300071999 0.1575-9° 57644.42110545(1)  1.579% 07ty 570t
B18+ 1530730 140130 0.04675008  57644.426303862(4)  1.57071 - 564.875-8
B19+ 1330730 160735 0.11+952 57644.42721003(2)  1.970%  1.6703 5647
B20t 29007105, 10007299%  0.2310-3% 57644.427376859(4)  0.775% 06795 565.670%
B21t 31007390 6001150 377 57644.42794036(2)  4.2790  18Tp% 57673
B22t 30007300 7001300 1.3T0 7 57644.428593784(8)  1.9794 15705 56812
B23 169975 70729 0.08970:999  57644.430170170(2)  0.7751 037937 569.0719
B24x 1670730 802D 0.038415-5007  57644.430170303(1)  0.0270:95  1.2753  563.0702
B25 175012380 2001390 0.1613 57 57644.430171419(4) 14703 07703 5687T]
B26 1470710 110739 0.09670:0%9  57644.431295361(4)  0.8792 05702 565.6707
B27 1340179, 1000%3050  0.17F088 57644.43223490(2)  2.0709  1a*0% 57013
B28 1750139 100139 0.141953 57644.432242722(1)  0.597595  0.1670-0%  561.3703
B29 168073340 1307480 0.067L5, 57644.434045197(4)  0.6702% 04733 5627}
B30 1440710 100739 0.12+961 57644.43636575(2)  2.179% 12705 56872
B31 150216 10012 0.1979:01 57644.438794966(4)  1.6705 05707 566.6707
B32 1410™% 7973 0.14196% 57644.43884518(1)  1.775%  0.6703% 56471
B33 1480730 120135 0.0815:01 57644.439212855(8)  1.2+93 06198 563.0710
B34t 26007990, 200011000 027100 57644.440688613(5)  1.370%  1.0703  567.070%
B35 17073 6118 0.2415:01 57644.442097729(6)  2.8%03 07505 57513
B36t 31001300 470770 10725 57644.44358918(2) 312 2+2 574+1L
B37 1410730 130735 0.06570:007  57644.443590029(3)  0.58T0¢s  0.14751,  562.8703
B38 1620120 110720 0.1f50% 57644.445225058(7)  0.970% 19707 56773
B39 1500730 130715 0.057T00%s  57644.446788124(1)  0.21705%  0.127513 560.9701
B40 1590710 81ty! 0.121992 57644.447567822(8)  1.170%  2.070% 56013

Table 5 continued
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Table 5 (continued)

T

C

Burst @ Iy of S Lt 4 ot T DM
ID (MHz) (MHz) (Jy ms) (MJD) (ms) (ms) (pc cm™3)
B4lx 13797} 31+ 0.410-02 57644.44772750(2)  0.8752  3.0%%32 55972
B42 1670710 110725 0.09970:999  57644.449915568(3) 09752  04752Z  566.0703
B43 1683732 120730 0.2270-01 57644.451605444(1)  0.7919%. 09791 s568.2703
Bdat 31007300 520030 11t 57644.452389712(6)  1.8703 11703 56912
B45 171073299 1607370 0.0770 5L 57644.453937473(4)  0.9792 05103 s5627]
B46 137112 6172 0.4119-01 57644.454477404(8) 28703 06707 569.670%
B47 9007895 200073390 0.1575-97 57644.457883227(3)  0.5701  0.237008 5619703
B48.1t 29007390 60072300 1+15 57644.464507488(7) 04703 07705 56515
B4g.2t 013300 5007500 0.7726:2 57644.4645075(2) 09732 0738 6001500
B49.1 1660710  140%25  0.497093 57644.46475893(1)  8.370% 20107  568%]
B49.2 24007799, 20007153 0.167052 57644.464759903(1)  0.2751 06732 561.3703
B50 1460710 90719 0.1319:02 57644.46476275(1) 13759 L7T0E 56173
B51t 25007550 10007150° 0.3%92 57644.465729923(7)  1.475% 12705 56977
B52 166715 7378 0.18575-009  57644.466222289(4)  1.4%31 06752 5701
B53 1720730 120739 0.197053 57644.468095365(4)  1.5752 11733 572t
B54x 16007800 1007180 0.0751 57644.47117767(7) 0119 09732 560790
B55 1650719 100719 0.137061 57644.474717918(6)  1.4793 13705 57072
B56 170674 54718 0.1619 51 57644.477082041(3)  0.9797 09703 56073
B57 153078 18678 0.25470:9%  57645.4110889611(4) 0.48195%  0.217502  561.7573-95
B58 146278 787+8 0.12970:098  57645.411651653(4) 09751 04751 564.4798
B59 153715 6874 0.270-01 57645.411889086(9)  2.270% 11703 56872
B60.1 30007390 440755, 47§ 57645.412281872(4)  0.87937 03703 56673
B60.2 23007200 5001350 04738 57645.412281990(6)  0.975¢ 25108 56172
B61t 100071599 28007399, 0.2570:08 57645.41286869(2)  2.0739 212 58073,
B62 1570719 110710 0.1275-98, 57645.413644740(5)  1.3702 06103 s567T]
B63 1280110 86Tl 0.170:0! 57645.41609534(1) 08703 06707  562.070%
B64t 200071990 300011509 0.32715-69 57645.41639521(1) 14752 37! 564713
B65 1550710 110729 0.09173:9%9  57645.416564818(6)  1.2¥52 06753 566.0710
B66 1440710 120%10 010570990 57645.417467306(6) 1.6792 - 567.7+0-7
B67 1640730 180739 0.09973:999  57645.417897463(2)  0.8791 03791 564.8703
B6st 200071505 200071909 0.275-53 57645.419005902(8)  1.075¢ 09703  567.9793
B69 1450720 80115 0.059T5809  57645.41920745(1)  0.7133 05783 5647
B70t 31007250 6007150 0.9%5 % 57645.419896226(4)  0.8753%  0.8T03% 56471
B71 137815 7818 0.3473-02 57645.420265931(9)  1.0752 26702 561.1190
B2t 31007250 7007200 12734 57645.420600439(9)  1.2757 271 55912
B73t 31007250  600t100 23 57645.420679524(7) 15758 17108 57573
B74t 31001305 5207500 512 57645.420752363(6)  1.2%9%  1.9%07 551t
B75t 22007399, 27001390, 0.3970°7 57645.421284056(4)  0.9753% 18703 567.6702
B76 1410732, 90729 0.0515-t1% 57645.4212900699(5)  0.4275-25 0147022 561.6705
B77 131272 5178 0.12+951 57645.42161300(2)  1.379% 07703 56673
B78 1170135 80ty 0.117053 57645.42184846(1)  0.97073  0.28T0g 562470
B79 170274 5718 0.187061 57645.421872443(3)  1.2702 17703 56873
B80 160117 81F8 0.1319:01 57645.422454976(3) 05703 1.370% 56447 5Q
B81 17207390 60 t3L° 0.0570%, 57645.423009490(6)  0.78759% 06705 56373
B82t 31007305 5807150 473 57645.424145870(2)  1.3751 - 569.2197

Table 5 continued
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Table 5 (continued)

T

Burst @ Iy of S Lt 4 ot € DM
ID (MHz) (MHz) (Jy ms) (MJD) (ms) (ms) (pc cm™3)
B83t 24007735, 200073990 0.1510-07 57645.424617988(6)  0.7793 04702 5647107
B84t 30007300  600T300  1t3 57645.425478263(8)  1.070% 17705 56372
B85+ 1310720 130720 0.11+9:92 57645.426746546(2)  0.0179:0%  2.070%  566.1703
B86 1550715 80719 0.0670 008 57645.426792398(7)  0.6105 091035 5631]
B87 17607320 1907200 0.270-38 57645.426922532(4) 14752 09793 5711709
B88.1 200071590 20007359  0.17+96¢ 57645.427338932(7)  0.779% 10707 56172
Bsg.2 1460735  13073) 0.11%961 57645.427339178(9) 24753 - 56173
B89 147978 12078 0.181562 57645.428904793(6)  2.4752 - 569.070%
B90 1420730, 120727199 0.0970 (3 57645.42990044(2) 24758 08705 56573
BI1 147615 81130 0.1279-01 57645.43034452(2)  3.1754 - 57213
B92 172174 3976 0.17+952 57645.43044763(1)  2.675% 3% 580710
B93.1 159115 1067 5° 0.12675008  57645.430622487(3)  1.2¥0% 04752 565.3703
B93.2 1620719 120730 0.137951 57645.430622591(7)  1.7703% 08703 56473
Bo4t 31007200 500759, 70 57645.431306274(4) 11752 06105 56572
B95 1693751 90729 0.09570:597  57645.431478373(2)  0.6970°5% 0.227512  563.570-8
B96t 200071900 28001390 0.270-08 57645.43254531(2) 21795 09705 56572
BO7Tt 29007300 8007500 0.3701% 57645.433086695(3)  0.6194 10194 5624102
B9S 166777 6713 0.09470:00,  57645.434330453(5)  1.1792 07703 55972
B99t 200073599 28001390, 0.137053 57645.440066847(4) 08792 03732 5658709
B100  1688™% 6272 0.15470:09%  57645.440814641(2)  1.07971 05792 567.0710
B101x 1510730 130730 0.0427399¢  57645.441999925(3)  0.8719:92 - 568.6170%
B102  20007320° 3007350 02127 57645.442100164(8)  2.170% 08709 56413
B103 1470713 90710 0.0879-01 57645.44263325(1) 14702 06105 s5627]
B104x 1460785 90739 0.071959 57645.4427413(1) 0t 21705 56918
B105 1670717 110129 0.095T5-008  57645.444480955(2)  0.51700, 0.5751  565.4702
B106 148017  o7tl0 0.16+0-01 57645.444919472(7) 20792 05%02 56671
B107 28007390 370778 10719 57645.445443070(5)  1.275% 09704 56173
B10g  1488"% 8374 0.14173:9%6  57645.448802883(2)  0.667005 - 5611703
B109 146015 8713 0.2470-01 57645.449987035(8)  2.8702 - 56871
B110+ 1620715 100719 0.175:01 57645.451201066(8)  1.710%  1.370% 56173
B11l 146975 5877 0.109705%,  57645.45198993(1)  1.6752 05703 56313
B112 144273 6874 0.14275-808  57645.453426198(4)  0.59700%  0.47587  563.1758
B113  16997% 6818 0.297061 57645.453639067(4) 25701 0.6703 56973
B114 1570720 110129 0.0779-91 57645.453640216(3)  0.3792  1.4%03 5665107
B115 1730735 90739 0.197053 57645.454258102(7)  2.3793%  0.970% 56973
B116x 1480750 260159 0.0879-92 57645.4544929400(9)  0.05195T 14703 5657702
B117 1580725 130730 0.175-92 57645.45736147(1)  1.879% 18708 56373
B118 1580735 130730 0.175-02 57645.45736147(1) 17709 18709  563*3
B119 1670755 170759 0.2119:52 57645.458536220(6)  1.270% 26705 56972
B120 16907354 1301380 0.0970 87 57645.459103357(6)  0.8792 12705 56673
B121.1 161272 9012 0.39470:997  57645.460053270(1)  0.82705%  0.257598  562.170-2
B121.2 132173 17873 1.7379-92 57645.4600533283(4)  0.957502  0.3670:02  561.9870 03
B121.3 118179, 931 0.3570-93 57645.460053409(4)  1.221099 561.6702
B122 140574 7173 0.22051 57645.462106655(9)  2.3752 05792 56571
B123+ 1690720  9072) 0.0973-93 57645.462556118(6)  1.1794  2.0%38 56713

Table 5 continued
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Table 5 (continued)

Burst @ Iy of S Lt 4 ot € DM
ID (MHz) (MHz) (Jy ms) (MJD) (ms) (ms) (pc cm™3)
B124 1560730 150120 0.00470:0%%  57645.464052738(3)  1.01792 057037 565.3707
10 20 0.01 0.2 0.2 0.8
B125  16007}) 140120 0.12175-80,  57645.464188555(4)  1.2%02 07782 564.4708
B126 160075190 23012380 0.071033 57645.464503855(6)  0.979% 09108 56712
B127 200071950 200073599  0.1970-9 57645.465133243(7)  0.8754% 12738 566.072
B128t 100071990 27001990 0.2575:65 57645.466100959(6) 11752 09793 567.0707
B129 171011380 got4s0 g qpt4s6 57645.466379997(5)  1.0703  1.3%04  573+2
B130t 200071590 300071500 0.18F0 02 57645.46833947(1) 14754 06705 5655753
B131 1460715  90t1) 0.0879-01 57645.47236212(1) 11105 07708 5647
+80 +70 +0.03 +0.1 +0.2 +1
B132 1720759 100759 0.0979-03 57645.474138540(3)  0.7751 04702 s617]
B133 17401180 930110 (99f0-1 57645.474448220(4) 17455 0.740Y  570.6%57

NOTE—1o errors on the fits are shown on superscript and subscript of each value in the table. For u¢, the error on the
last significant digit is shown in parenthesis.

@Burst IDs are chronological. Individual component number (N) for multi-component bursts are appended to the burst
IDs. Bursts modeled only using curve_fit are marked with . Note that the errors on these bursts could be unreliable
and may be either under or over-estimated

Bursts that extend beyond the observable bandwidth can also have unreliable estimates of spectra parameters and
fluence (see Section 3.5.7). We mark those bursts with T to indicate that their fluence and spectra parameters could be
unconstrained.

b pt is the mean of the pulse profile in units of MJD. This can be considered as the arrival time of the pulse. It is referenced

to the solar system barycenter, after correcting to infinite frequency using a DM of 560.5 pccm™3.

€1 is referred to 1 GHz.

Facilities: Arecibo 2020), Matplotlib (Hunter 2007), Pandas (Wes McKin-
ney 2010; Reback et al. 2021), YOUR (Aggarwal et al.
2020), FETCH (Agarwal et al. 2020a), Emcee (Foreman-
Mackey et al. 2013), ChainConsumer (Hinton 2016), Sci-
encePlots (Garrett & Peng 2021)

Software:  Astropy (Astropy Collaboration et al.
2013; Price-Whelan et al. 2018), Numpy (Harris et al.
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