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ABSTRACT

Supermassive black hole binaries (SMBHBSs) are an inevitable consequence of galaxy mergers. At
sub-parsec separations, they are practically impossible to resolve and the most promising technique
is to search for quasars with periodic variability. However, searches for quasar periodicity in time-
domain data are challenging due to the stochastic variability of quasars. In this paper, we used
Bayesian methods to disentangle periodic SMBHB signals from intrinsic damped random walk (DRW)
variability in AGN light curves. We simulated a wide variety of realistic DRW and DRW+sine light
curves. Their observed properties are modeled after the Catalina Real-time Transient Survey (CRTS)
and expected properties of the upcoming Legacy Survey of Space and Time (LSST) from the Vera C.
Rubin Observatory. Through a careful analysis of parameter estimation and Bayesian model selection,
we investigated the range of parameter space for which binary systems can be detected. We also
examined which DRW signals can mimic periodicity and be falsely classified as binary candidates. We
found that periodic signals are more easily detectable if the period is short or the amplitude of the
signal is large compared to the contribution of the DRW noise. We saw similar detection rates both in
the CRTS and LSST-like simulations, while the false detection rate depends on the quality of the data
and is minimal in LSST. Our idealized simulations provide an excellent way to uncover the intrinsic

limitations in quasar periodicity searches and set the stage for future searches for SMBHBs.
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1. INTRODUCTION

Supermassive black hole binaries (SMBHBs) should
form frequently in the aftermath of galaxy mergers
(Hachnelt & Kauffmann 2002). However, the evolution
from this initial stage to the formation of a bound bi-
nary and the final coalescence is complex. After the
galaxy merger, the SMBHs hosted in the cores of their
parent galaxies sink to the center of the created galactic
remnant through dynamical friction. At scales of a few
parsecs, stellar scatterings and interactions with ambi-
ent gas continue shrinking the binary orbit. If these pro-
cesses remove sufficient energy and angular momentum
so that the binary efficiently overcomes the “final-parsec
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problem”, then gravitational waves (GWs) dominate the
binary decay and drive the binary to the final merger
(Begelman et al. 1980; Colpi 2014; De Rosa et al. 2019).

The most massive binaries (total mass of 10% —
101°Mg) emit GWs at low frequencies (few to hun-
dreds of nanohertz). GWs in this frequency band can
be detected by Pulsar Timing Arrays (PTAs), and of-
fer one of the only direct probes to SMBHBs at close
(roughly milli-parsec) separations (Burke-Spolaor et al.
2019; Taylor et al. 2019). Electromagnetic observations
can also infer the existence of a SMBHB, and provide a
unique probe of the binary’s environment (Bogdanovic
et al. 2021). The detection of GWs along with associated
electromagnetic counterparts will mark the beginning
of multi-messenger astrophysics in the low-frequency
regime (Kelley et al. 2019a). In fact, multi-messenger
techniques are already being developed. Incorporating
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information from SMBHB candidates in GW searches
allows us to place tighter constraints on the SMBHB
chirp mass (Arzoumanian et al. 2020a), and can boost
the detectability of the candidate in a typical “blind”
search (Liu & Vigeland 2021).

Closely-separated SMBHBs in the GW regime may be
detected as Active Galactic Nuclei (AGNs) or quasars
with periodic variability (Haiman et al. 2009). Previ-
ous studies have demonstrated a link between AGN and
galaxy mergers; this follows naturally from the idea that
the mergers bring significant amounts of gas to the cen-
tral regions of the post-merger galaxies, which may ac-
tively accrete onto the SMBHs, triggering AGN activity
(Goulding et al. 2018). Similarly, binaries are expected
to be surrounded by significant amounts of gas, which
can give rise to bright quasar-like electromagnetic emis—
sion (Armitage & Natarajan 2002; Tanaka et al. 20
Bogdanovic et al. 2021).

Specific predictions for periodic variability in binary
AGN has been demonstrated in multiple hydrodynam-
ical simulations of binaries embedded in gaseous disks
(MacFadyen & Milosavljevi¢ 2008; D’Orazio et al. 2013;
Roedig et al. 2012; Farris et al. 2014). The consensus
of these simulations is that the binary carves out a cen-
tral cavity, i.e. a region of low-density gas. As the bi-
nary orbit perturbs the edge of this cavity (especially
the secondary SMBH, which moves closer to the edge),
it pulls streams of gas inwards. Periodic accretion onto
the SMBHs from these streams may produce periodic
brightness fluctuations. Another mechanism that pro-
duces periodic variability is relativistic Doppler boost-
ing (D’Orazio et al. 2015; Tang et al. 2018). Some of
the gas that penetrates the cavity ends up bound to the
SMBHs forming mini-disks which orbit with relativistic
speeds. The emission from these mini-disks may be pe-
riodically boosted (and dimmed), even if the rest-frame
luminosity is constant. This signature is prominent for
unequal-mass binaries orbiting close to edge-on, where
the emission of the faster-moving secondary —which is
also typically brighter—dominates the variability.

In recent years, vast photometric databases of time-
domain surveys have provided light curves for large sam-
ples of AGNs, which are ideal for searches of SMB-
HBs. Numerous candidates have been identified from
systematic searches in optical surveys, such as the
Catalina Real-time Transient Survey (CRTS; Graham
et al. 2015a), the Palomar Transient Factory (PTF;
Charisi et al. 2016), the Panoramic Survey Telescope
and Rapid Response System (Pan-STARRS; Liu et al.
2019), and the Dark Energy Survey (DES; Chen et al.
2020). However, AGN also have intrinsic stochastic vari-
ability which makes periodicity identification quite dif-

ficult. AGN variability is successfully modeled by a
“damped random walk” (DRW) model, which takes the
form of a red-noise process at high frequencies, but a
white-noise process at low frequencies (MacLeod et al.
2010; Kozlowski et al. 2010). This intrinsic noise is
impressively capable at mimicking periodicity, partic-
ularly in sparsely sampled or short-baseline time se-
ries (Vaughan et al. 2016). So far, studies have fo-
cused on additional signatures for the binary nature
of candidates, such as multi-wavelength Doppler boost
(D’Orazio et al. 2015; Charisi et al. 2018; Xin et al.
2()2()), periodicity with multiple components (Charisi

- al. 2015), X-ray spectral excess (Saade et al. 2020)
and distorted radio jets (K{un et al. 2015; Mohan et al.
2016).

However, multi-wavelength follow-up monitoring of
candidates is demanding and such studies will be im-
practical (if not impossible) in the upcoming generation
of surveys like the Legacy Survey of Space and Time
(LSST) of the Vera C. Rubin Observatory (LSST Sci-
ence Collaboration et al. 2009). LSST is expected to
observe over 20 million of quasars, delivering an unprece-
dented data set for quasar periodicity searches both in
terms of quality and quantity. If we extrapolate the de-
tection rate of SMBHB candidates in the current time-
domain surveys (~ 1/1000) to LSST, we expect several
thousands of candidates. However, we know that these
samples likely contain many false detections (as demon-
strated by their tension with the GW background limits
when extrapolated to a full binary population; Sesana
et al. 2018). On the other hand, theoretical models
predict that hundreds of genuine binaries should be de-
tectable in LSST (K(‘H(‘\’ et al. 2019b; Xin & Haiman
2021a; Kelley et al. 2021). Because of this, the time
is ripe to develop a careful model selection in order to
reliably identify binary candidates.

In this work, we explore the capabilities and limita-
tions in identifying quasars with periodic variability in
the data sets of the upcoming decade. We simulate ide-
alized AGN light curves that contain DRW noise with
realistic parameters, while a subset of those contains
sinusoidal variations on top of the DRW noise. We con-
struct a pipeline that employs Bayesian model selection
and parameter estimation to identify periodic signals
(i.e. the binary candidates) in our sample, and constrain
their parameters. Finally, we quantify our ability to se-
lect genuine binaries and the degree of contamination
with false detections.

This paper is laid out as follows. In section 2, we
describe the methodology for creating simulated light
curves, as well as the Bayesian parameter estimation
and model selection methods. In section 3, we examine
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the efficacy of our Bayesian pipeline, as well as present
a statistical analysis of this efficacy across the simulated
SMBHB population. In section 5 we present the conclu-
sions we can draw from our analysis. These include the
following key findings:

e Our method can recover orbital periods extremely
accurately (even very long or short values), pro-
vided the signal is of sufficient strength. The de-
tectability of periodicity also depends on the am-
plitude of the sinusoid and the contribution of the
DRW noise.

e While a DRW process can mask some sinusoids in
current surveys, the false positive rate is very low
for LSST, and thus it is expected to deliver reliable
candidates.

e Particular combinations of DRW and sinusoidal
parameters are more likely to mask a signal than
others. This will help inform future analyses as we
attempt to confront the massive data volume that
will be produced by LSST.

Finally, in section 4, we discuss caveats of our method,
future improvements, and the prospects of multi-
messenger observations of binaries. This work presents
a necessary first step in preparation for the flood of
SMBHB candidates in the upcoming Rubin era.

2. METHODS

As mentioned above, identifying periodicity in quasars
is challenging because of the intrinsic stochastic variabil-
ity of quasars, the relatively short observation baselines
compared to the potential binary periods, and the noisy,
irregular data. Our goal is to explore the variety of bi-
nary signals (e.g., range of periods, amplitudes) that
can be detected in current and upcoming time domain
surveys. We also aim to assess the expected false pos-
itive rate in systematic searches for quasar periodicity.
For this, we simulate typical quasar light curves with
realistic DRW noise properties as well as SMBHB light
curves which include sinusoidal signals with a variety
of periods and amplitudes on top of DRW noise. We
chose to model the binary signal with a pure sinusoid
both for simplicity, and because previous searches for
quasars with periodic variability have focused on quasi-
sinusoidal signals. We construct a periodicity detection
pipeline that employs a Bayesian model parameter es-
timation and selection between a DRW and DRW+-sine
model, and apply it in a wide range of simulated light
curves. Below we describe the light curve simulations
and the periodicity detection method.

2.1. Simulated Data

To ensure that our analysis was realistic, we con-
structed our simulated light curves with properties that

reflect the observational capabilities of ongoing and
planned time-domain surveys. Each survey has a dis-
tinct observing strategy (depending on their primary
scientific objectives), which defines the average cadence
(frequency of observations), and observation baseline
(length of light curve). Additionally, each survey has
a limiting depth, which depends on the size of the tele-
scope used and the exposure time of the typical obser-
vation. This defines the photometric uncertainty, which
is typically a function of apparent magnitude; dimmer
sources have larger photometric errors and vice versa.
To limit the complexity of our analysis, we did not in-
corporate the magnitude dependence of the photometric
errors, and used an average photometric error for all the
simulated light curves. However, a future study should
address this and other limitations, as discussed in sec-
tion 4. To assess the detectability of SMBHBs in cur-
rent surveys, we used CRTS-like light curves, whereas
for future surveys, we used idealized LSST light curves
as described below.

In order to construct the CRTS-like light curves, we
extracted 10,000 AGN light curves spread across the sky
from the online database.! We examined the sampling
pattern in this set, which turns out to be similar for most
light curves. In particular, for each night the source was
observed, the light curves contain clusters of four suc-
cessive data points, then the next set of observations is
taken about one week to one month later for as long as
the source is observable (for about six months). Subse-
quently, there is a significant gap of no data for about six
months, e.g., when the source is obstructed by the sun
or below the horizon of the specific telescope, and then
the pattern roughly repeats. For the sampling of the
simulated light curves, we use one typical light curve
from that sample as a template. This light curve has
an average span of ~20days between successive nights
of observations, gaps of ~200days, and a total obser-
vation baseline of ~8years. This gives an effective ca-
dence (observation baseline divided by the number of
data points) of 46 days. Since very short term varia-
tions are not relevant for our study, this calculation did
not include multiple observations within the same night.
By examining the distribution of photometric errors in
these 10,000 light curves, we found that the peak occurs
at ~ 0.1 mag, and thus set the average photometric un-
certainty in the CRTS-like light curves at this value.

For LSST, the nominal duration is set to ten years, but
the observing strategy is not finalized yet (LSST Science
Collaborations et al. 2017). The majority of time will

! http://nesssi.cacr.caltech.edu/DataRelease/
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Figure 1. An example of simulated light curves containing a DRW process (top panel) and a DRW process plus a sinusoid
(bottom panel). The sinusoid is shown in the solid black curve, while the simulated data for a CRTS-like and LSST-like survey
are shown as red X’s and blue points, respectively. Depending on the DRW and sinusoid parameters, it is possible for these two

models to produce deceptively similar results.

Survey Mean Cadence Photometric Baseline

(days) Error (mag) (years)
CRTS 46 0.1 8
LSST 7 0.01 10

Table 1. Average parameters for each survey used to create
simulated data sets.

be spent on the deep-wide-fast survey mode, which will
cover the 18,000 deg? footprint with a regular cadence.
We set our simulation cadence at a conservative value of
seven days, while actual observations may repeat every
five or even three nights. We note, however, that LSST
will rotate between six filters, and successive observa-
tions will provide data in different photometric bands.
We do not take this into account in our simulations, but
we discuss this caveat further in section 4. Since the
observations will not repeat in exactly seven day incre-
ments, we create a linear grid of time stamps separated
by seven days and add Gaussian noise with a standard
deviation of one day. In our idealized LSST-like light
curves, we did not include gaps between observations,
although we recognize that they are unavoidable and
the observed light curves will have gaps of a few months
each year (but see also section 4). Finally, we set the
average photometric error at 0.01 mag. See Table 1 for a
summary of the parameters of the simulated light curves
for each survey.

With the observed properties of the time series, we
proceeded to simulate DRW and DRW+-sine light curves
following the steps from Charisi et al. (2016). The power
power spectral density function (PSD) of DRW is

do2T

P(f):my

1)

where o2 is the variance of the light curve data points, 7
is a characteristic DRW timescale, and f is the Fourier-
space frequency. With the inverse Fourier transform of
the PSD, we generate evenly sampled light curves (with
At = 1d) using the prescription from Timmer & Koenig
(1995), included in the python package astroML (Van-
derplas et al. 2012; Tvezi¢ et al. 2014). We downsample
the data to match the desired sampling pattern of the
survey setup described above and in Table 1. Next, we
add Gaussian errors with zero mean and standard de-
viation equal to the average photometric uncertainty of
the respective survey (Table 1).

For the set of simulations that also include SMBHB
signals, we inject a sinusoid on top of the DRW light
curve. This signal has the form

s(t) = Asin (%”(t - to)> 2)

where A is the amplitude in magnitudes, P is the pe-
riod of the sinusoid, and t; is a reference time. Both the
period and the amplitude of the sinusoid can be linked
to the parameters of the binary; the observed period
is typically the redshifted orbital period of the binary,
and if the periodicity is produced by relativistic Doppler
boost, the amplitude A depends on the line of sight ve-
locity of the secondary SMBH. Example time series with
a simulated DRW-only process, and DRW+sine, can be
seen in Figure 1, where with blue (and red) data points
we show the LSST-like (and CRTS-like) light curve.
We generated DRW and DRW+-sine light curves for a
wide variety of these five input parameters (P, A, tg, o,
and 7). First, in order to test the Bayesian pipeline’s
ability to recover the model parameters, we choose
values across an extreme range of 7 corresponding to
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those used in Kozlowski (2017). Injected values are
randomly selected from the range 7 = [1073T,157],
where T'=10yr is the nominal LSST observation base-
line. However, for the model selection analysis, we re-
strict the values of 7 to a realistic distribution derived
from those presented in MacLeod et al. (2010). For o,
we draw values from a log-uniform distribution ranging
from [—1.6, —0.25], corresponding to a range of greater
than an order of magnitude in o, to encompass a wide
range of DRW variability amplitudes similar to the range
presented in MacLeod et al. (2010).

The periods of the injected sinusoids range from 30
days to 10 years. The maximum value is set by the
LSST baseline, so that at least one full orbital cycle is
observed. This wide range of periods covers all the po-
tential SMBHBs that have GW frequencies detectable
by PTAs. However, it does not include very high-
frequency SMBHBs possibly detectable by the Laser
Interferometer Space Antenna (LISA; Xin & Haiman
2021a), which are expected to have periods of only a
few days (P < 1—2d). In section 4, we explore whether
such short period binaries need a distinct strategy for
detection, such as accounting for filter alternation and
combining the multi-band data in a single light curve.
Previous studies have required that at least 1.5 cycles (or
more) of the periodicity be observed within the available
baselines. We relax this requirement to assess the ability
to recover binaries in this regime and the resulting con-
tamination with false positives. This is significant, since
binaries evolve slower at large separations, and long-
period binaries are expected to be more common. The
reference time is set to any time between 0 and the pe-
riod of the specific realization, which corresponds to a
phase range of [0,2r]. The amplitude is set to a value
in the range [0.05,0.5] mag. These distributions of sim-
ulated values are summarized in Table 2.

2.2. Likelihood and MCMC Methods

For the DRW process defined in Equation 1, the co-
variance matrix S that determines the correlation be-
tween two data points at times ¢; and ¢; is given by

ti —tj
Sij = O'2 exp (| J|) (3)

T

where ¢? and 7 are the same values defined above.
The full covariance matrix is C' = S + N, where N =
diag(c2,) is the noise covariance matrix with o, the
survey’s photometric error. The DRW likelihood func-
tion marginalized over the mean of the light curve is

given by
P(y | p) x |C|—1/2 |LT0—1L|*1/2

T ~—1 (4)
X exp <_3/C;N> ,

with y the vector of the data (observed magnitudes) and
L a vector of ones with a length equal to the number of
data points, and

cll=cl—c'L(LTc'L) T LTe. (5)

For a detailed derivation we refer the reader to
Koztowski et al. (2010). The likelihood function for the
DRW+sine model is given by

_ _ —1/2
P(y | p) <|C| 2| LTC LY

xmp(fy—ﬁﬂg%y—@), ©)

with s a vector of the sinusoid s(t) = Asin(27/P(t—to))
sampled at the observed times.

We utilize Markov-Chain Monte Carlo (MCMC)
methods for both parameter estimation and model selec-
tion. In particular, we sample the likelihood using a par-
allel tempering MCMC sampler called PTMCMCSampler
(Ellis & van Haasteren 2017). This sampler was devel-
oped for GW searches in PTA data sets, which employ
similar Gaussian likelihoods for the analysis of the PTA
time series. The main advantages of using this sam-
pler is that it allows for easy implementation of cus-
tom jump proposals within the MCMC sampler and
the pipeline developed here can easily be extended to
multi-messenger searches of SMBHBs with joint PTA
and time-domain data (see section 4).

In general, we use relatively uninformative priors for
our MCMC analyses (either uniform or log-uniform), as
summarized in Table 2. The priors typically mirror the
distributions of simulated parameters described in sub-
section 2.1. We chose flat priors to avoid introducing
potential biases, and to emulate an uninformed system-
atic search. More informative priors could be imposed
for the DRW parameters; for example, MacLeod et al.
(2010) found that o and 7 are correlated with proper-
ties of the AGN (e.g., the SMBBH mass, the luminosity,
etc). Since in our simulated light curves we did not vary
luminosity-related parameters (e.g., the observed mag-
nitude) a fairly unrestricted search is more appropriate.

For each simulated light curve, we performed the
MCMC analysis for two models (DRW and DRW+-sine):
The first uses the DRW likelihood from Equation 4 to
search over only the two DRW parameters, o and 7, and
the second uses Equation 6 that also searches over the si-
nusoid parameters. To ensure convergence, each MCMC
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Parameter

Simulation Distribution

Prior

log,,0
log,,7 (Wide Range)
log,,7 (Realistic Distribution)
log,o P
A
to

Log-Uniform[-1.6, -0.25]
Log-Uniform[0.56, 4.73]
SkewNorm(3.0, 0.5, -1.4)
Log-Uniform[1.5, 3.5]
Uniform[0.05, 0.5]

Log-Uniform[-1.6, -0.25]
Log-Uniform[0.56, 4.73]
Log-Uniform[0.56, 4.73]
Log-Uniform[1.5, 3.5]
Uniform[0.05, 0.5]

Uniform[0, 3650] Uniform[0.05, 0.5]

Table 2. Simulation ranges for each of our five parameters, and prior shapes and ranges for our MCMC. Note that for model
selection analyses, we simulate the realistic distribution of 7 values derived from MaclLeod et al. (2010).

was conducted for 10,000 MCMC iterations, each re-
sulting chain was thinned by a factor of 10, and the
first 25% of the chain was trimmed to ensure burn-in.
From these MCMC searches, we estimated the values of
the two (or five) parameters that are most likely given
each simulated light curve. The posterior distributions
provided both median values and uncertainties for the
parameters. From the MCMC samples we also deter-
mined the value for set of parameters that maximized
the likelihood. For each simulation, we also calculated
a signal-to-noise ratio (SNR), where

SNR? =sT.C71.s. (7)

Here, s is the vector containing the input signal and
sampled at the simulated timestamps, and C ! is the
inverse of the DRW covariance matrix (Equation 3).
We used the outcome of the two MCMC searches
(DRW, and DRW+sine) to perform Bayesian model se-
lection using the Bayes Information Criterion (BIC)

BIC = k1In(n) — 2In(L), (8)

where k is equal to the number of free parameters, n is
equal to the number of data points in the light curve,
and L is the maximum likelihood value (Liddle 2007).
The BIC provides a simple metric through which to com-
pare our two models, and avoids overfitting the data by
accounting for the number of parameters in the model.
When selecting among multiple models, the one with
the smallest BIC is usually preferred. Here we selected
the preferred model by comparing the BIC values for
the DRW-only search to that of the DRW+sine search
by introducing

ABIC = BICDRW - BICDRWJrsine- (9)

A lower value of ABIC indicates more support for
the DRW+sine model. In general, evidence for the
DRW+-sine model can be considered positive for —2 >
ABIC > —6, and strong for ABIC < —6 (Kass &
Raftery 1995). Here, we defined our threshold to claim
a detection of a sinuosidal signal as ABIC = —2. Us-
ing this threshold, we sorted each result into one of four
categories:

e True Positive: A sinusoid was injected and the
DRW+-sine model was preferred.

e False Negative: A sinusoid was injected, yet the
DRW-only model was preferred.

e False Positive: No sinusoid was injected, yet the
DRW-+sine model was preferred

e True Negative: No sinusoid was injected, and
the DRW-only model was preferred.

In an idealized search we would have only true pos-
itives/negatives and no false positives/negatives, but
typically one needs to compromise and balance the rate
of detection of true signals with the contamination of a
few false positives. One of the main goals of this analysis
is to constrain these rates for current and future survey
capabilities. We note, however, that these rates refer
to our specific method of Bayesian model selection and
cannot be extended to existing samples of SMBHB can-
didates, since these candidates were selected with com-
pletely different methods, as we explain in section 4.

3. RESULTS

We assessed our ability to identify periodicity in AGN
light curves by simulating DRW and DRW-+sine light
curves and performing Bayesian model selection. First,
we tested how the MCMC algorithm performs in con-
straining the parameters of each model independently.
Subsequently, we determine the performance of the
model selection method by calculating the true and
false-positive rates, and characterizing their dependence
on the signal and noise parameters.

3.1. Parameter estimation
3.1.1. DRW model

For both our CRTS-like and LSST-like simulations,
we simulated 500 DRW light curves with properties as
described in subsection 2.1 and conducted the MCMC
analysis for the DRW likelihood (Equation 4). In Fig-
ure 2 we show the median values of o and 7 as a function
of the respective input values for the LSST light curves.
We note that the parameter estimation for the DRW
model shows very similar trends for the CRTS-like light
curves.
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Figure 2. Parameter estimation capability of our MCMC
methods for LSST light curves with a DRW process, col-
orized by the simulated value of 7. For low values of 7, both
parameters are recoverable as expected. However, for very
high values of 7, both are unlikely to be constrained accu-
rately.

We saw that low values of 7 are recovered accu-
rately, while high values were poorly constrained. This
is a known limitation in DRW studies. For instance,
Koztowski (2017) found that for 7 to be well-recovered,
the baseline of the light curve must be at least ten times
greater than 7 (7 < 107"). In that study, the authors
demonstrated this effect with simulated light curves for
a fixed parameter o. Here, by varying the values of o
for each simulation, we demonstrate that this limitation
affects the recovery of o as well. In Figure 2 we colorized
the data points by the input value of 7. We observed
that for light curves with large values of 7, where 7 is
not constrained (orange-yellow points), the algorithm
fails to recover the input value of o. On the other hand,

for light curves with small values of 7 (purple points),
the recovery of both ¢ and 7 is very accurate.

3.1.2. DRW+Sine Model

Once we confirmed that the DRW parameters can be
recovered by the MCMC methodology (within already
known limitations), we expanded our search to also in-
clude the sinusoidal signal representing an SMBHB. We
repeated the 500 simulations of both CRTS- and LSST-
like DRW light curves, and added a randomly generated
sinusoid to the data. This was then searched with a 5-
parameter MCMC using the DRW +sine likelihood from
Equation 6.

Figure 3 summarizes the recovery capability of the
DRW+sine model in LSST-like simulations, color-coded
by the SNR of the input signal. We note that even
though it is preferable to sample the likelihood in terms
of a reference time ty, we present results converted to
an initial phase ¢y = 27ty/P to avoid potential biases
or correlations with the period. In general, for LSST-
like simulations, we recovered strong sinusoids (SNR>5)
extremely accurately, with 75% of these signals hav-
ing both their periods and amplitudes recovered accu-
rately (i.e., within the 90% credible region of the pos-
terior distribution). 64% of these strong signals had
all parameters recovered accurately, and 80% of signals
with SNR>5 had both DRW parameters recovered ac-
curately. These proportions are nearly identical for the
CRTS-like simulations, but for a smaller fraction of light
curves having a sinusoid with SNR>5. This method is
successful at recovering sinusoids with a wide range of
injected parameters. It is important to note that the
algorithm accurately recovered periods from 30 days to
10 years, and it was not required for all light curves to
cover more than two cycles of the sinusoid for their pa-
rameters to be recoverable, as may be expected based on
analyses by Vaughan et al. (2016). We further explore
the longer period regime in subsection 3.2.

The DRW parameters ¢ and 7 were recovered with
the same accuracy as in the DRW-only search, even in
the presence of the sinusoid. We also saw the same lim-
itations in recovering long 7 and resulting limitations
in recovering o for this subset of light curves. How-
ever, our inability to constrain the DRW parameters in
certain light curves was not propagated to the recovery
of the parameters of the periodic signal. Additionally,
the highest o values are at near the maximum of the
observed quasar population, and will be fairly rare in
reality (MacLeod et al. 2010).

3.2. Model Selection

Next, we used a Bayesian model selection, described
in detail in section 2, to select quasars with periodic
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Figure 3. Recovery capabilites for the three sinusoid parameters (P, A, and ¢o) and two DRW parameters (o, and 7), as
demonstrated by our LSST-like light curve simulations. Color axis represents the SNR of the input signal, with red points
being strong signals (SNR>5). The sinusoids in these simulations were able to be recovered extremely accurately, and the DRW
parameters were recovered to the extent we expect from noise-only simulations.

variability. With simulated DRW and DRW+-sine light
curves, we traced the algorithm’s effectiveness. We con-
sidered two distinct surveys (CRTS and LSST, reflecting
current and future capabilities of time-domain surveys)
to explore how the light curve quality and properties
affect the detection rates of this method.

First, we simulated 1,500 DRW light curves, added a
randomly generated sinusoid and then applied our model
selection scheme. In Figure 4 we show the true positive
rate of periodic signals in the presence of DRW noise,
as a function of the input parameters P, A, o, 7, and ¢g.
Here, we define the true positive rate as the number of
detected periodic signals (true positives), divided by the
total number of simulated DRW+sine signals (condition
positives). In each bin, the associated uncertainty of the
rate is calculated with a binomial proportion confidence
interval (Newcombe 1998), where the rate can be con-
sidered as

ns

z
Tt —v ;
ny/n nsne

where n is the number of trials with ng successes and
np failures, and z is the 1 —«a/2 quantile of a normal dis-
tribution (for a 95% confidence interval, & = 1 — 0.95).

(10)

n

We observed that our ability to detect periodicity de-
pends both on the parameters of the sinusoid and the
intrinsic DRW variability. As expected, the true positive
rate increased for high sinusoidal amplitudes and was
independent of the initial phase. The true positive rate
was highest for short sinusoid periods, however, it was
non-zero even for periods equal to the observation base-
line, which is an unexpected improvement from Vaughan
et al. (2016), which showed a requirement of > 2 cy-
cles for a sinusoid to be differentiated from a stochastic
process. The true positive rate decreased for increasing
input o; therefore, when the noise contribution became
more significant, it hindered the periodicity detection,
as expected. We also saw in subsection 3.1 that high
values of o (or equivalently low SNR) resulted in an in-
naccurate estimation of the parameters. On the other
hand, 7 did not seem to have a significant effect on the
detection rate, despite the inability to constrain large
values of 7, with the true positive rate slightly increas-
ing for longer 7. Surprisingly, the overall true positive
rate varied only slightly between the two surveys.
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Figure 4. True positive rates (red) and false positive rates (blue) for LSST-like (solid lines) and CRTS-like (dashed lines)
simulations, shown as a function of the input values of each parameter in the simulations. Note that false positive rates are
only shown as a function of the two DRW parameters, as there are no input sinusoids present in the false positives. The rates

in each parameter bin are shown with associated uncertainties.

Next, we explored how the periodicity detection rate
varies as a function of the periodic parameters normal-
ized by the noise parameters. In Figure 5 we present the
input ratios of A/o against P/7, colorized by the result-
ing ABIC. In the side panels, we track the fraction
of recovered sinusoids (true positive rate) as a function
of either A/o (for the vertical panel) or P/ (for the
horizontal panel), again with the associated binomial
uncertainty marked in each bin.

As can be expected, the fraction of binaries recovered
was highly correlated with A/o. This value can be con-
sidered similar to an SNR; we saw that even though
it was not absolutely necessary that A > o for a peri-
odic signal to be detected, the detection rate dropped to
~50% when the amplitude of the sinusoid was compara-
ble to the standard deviation of the DRW noise. The re-
covery fraction also clearly depends on the value of P/T,
albeit less strongly than with A/o. That is, even with-
out considering A/o, the periodic signal is more likely
to be detected (i.e., ABIC is lower) for smaller ratios of
P/7. In terms of detectability, we see that all binary
signals were identified for small values of P/7, whereas

the true positive rate is ~75% when P and 7 are com-
parable and is further reduced to 50% for larger values.
This is consistent with our findings in Figure 4, where
we see that detectability increases for small periods and
for larger values of 7, although the latter correlation is
weaker. The correlation of the true positive rate with
the period seen in Figure 4 is fairly intuitive; a relatively
weak signal can be confidently detected if the period is
short and enough cycles are repeated within the data.
However, it is somewhat less obvious what drives the
correlation with P/7. One potential explanation is that
it may be easier to detect a periodic signal if the two
characteristic timescales (P and 7) of the light curve
are fairly distinct. Otherwise, if the values are similar,
they may be misidentified by the model selection process
(e.g., see subsection 4.3).

As a counterpoint to the previous analysis, we sub-
sequently simulated 1,500 DRW-only signals, ran our
model selection pipeline, and calculated the false posi-
tive rate for our same detection method. This represents
a scenario in which only DRW processes are occurring,
and either and an SMBHB is not present in the target,
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Figure 5. True positive (red) and false negative (blue) sig-
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idealized LLSST-like searches, when quantified by the ratios
of A/o and P/7. The net true positive rates integrated over
A/o and P/t are shown in the upper and right panels, re-
spectively, with associated uncertainties.

or it is not influencing the AGN light curve. Here, the
false positive rate is defined as the number of DRW-only
signals identified as periodic (false positives), divided by
the total number of DRW simulations (condition nega-
tives). In Figure 4, we show the false positive rate for
both surveys as a function of input ¢ and 7 with blue
curves, and again using the associated uncertainties cal-
culated with Equation 10. We see that the false positive
rate is significantly higher in CRTS, reflecting the lower
measurement, precision and sampling rate of the light
curves, whereas in LSST the false positives are almost
negligible. The overall false positive rate for CRTS-like
simulations is 14%, while for LSST-like simulations, it
is 0.8%, an improvement of over an order of magnitude.
Interestingly, the false positive rate does not show any
significant trend with o or 7. This indicates that any
combination of the DRW parameters is equally likely
to produce a signal that can be misidentified as a sinu-
soid. We also observed that the false positive rate did
not increase for large recovered sinusoid periods, as was
suggested by Vaughan et al. (2016); this is likely due
to the use of a DRW+sine model, as opposed to a pure
sinusoid.

In the above we examined the true-positive and false-
positive rates as a function of the input parameters of
the noise and the signal, considering a quasar to be pe-
riodic if ABIC < —2. However, as is obvious from Fig-
ure 5, these rates would be different had we chosen a
different detection threshold. This is typically quanti-
fied by a receiver operating characteristic (ROC) curve,
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Figure 6. ROC curves for CRTS-like (orange-lined dia-
monds) and LSST-like (blue-lined circles) light curves. Over-
all, LSST can be seen to perform better than CRTS at se-
lecting the correct model. For comparison, with our stan-
dard ABIC = —2, the true positive rate is 64%, and the
false positive rate is 0.8%. Stars in the curves represent the
point where ABIC = —2. Additionally, the model selection
is significantly improved when white noise (small points) is
present instead of a DRW process (large points), indicating
that red processes are indeed a significant hindrance.

which we construct in Figure 6. More specifically, we
show the true positive rate against the false positive rate
color-coded with the threshold value for periodicity de-
tection (i.e. the maximum ABIC required for detection
of a sinusoid within the light curve). We remind the
reader that a smaller ABIC means stronger support for
the binary model.

In Figure 6, we indicate the current threshold of
ABIC < —2 with a star. The corresponding true posi-
tive rate is ~64% for both surveys, whereas the false pos-
itive rate is ~0.8% for LSST and ~14% for CRTS. We
note that even though we chose this particular threshold
following standard practices for model selection based on
BIC, it turns out to be a reasonable threshold for both
CRTS and LSST. In fact, for a survey such as CRTS, it
is sensible to set the threshold at a level that maximizes
true positives, even if this allows some false positives.
High-quality light curves are available for ~ 10° quasars,
and given that SMBHBs are relatively rare, it is man-
ageable to pursue follow-up observations to distinguish
genuine binaries from interlopers for all candidates. For
LSST, on the other hand, it is critical to minimize false
positives. LSST will observe millions of quasars, and
follow-up of candidates needs to be significantly more
selective. The colorization of Figure 6 also illustrates
the much larger range of ABIC values in an LSST-like
survey, as compared to CRTS. This results in a much
larger number of strongly preferred signals, which will
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CRTS LSST

DRW 0.809 0.864
White Noise 0.960 0.999

Table 3. Area under curve (AUC) values for each of the
ROC curves shown in Figure 8, including those with or with-
out a DRW process. LSST is expected to be a much more
sensitive and reliable survey for the identification of period-
icities induced by SMBHBs.

allow for a dramatically more effective ranking system
for the follow-up of binary candidates.

We also show the respective ROC curve, for both
CRTS and LSST, for the case of periodicity on top
of white noise. This allowed us to test the hypothe-
sis that the classifier performs sub-optimally due to the
covariance between the sinusoid and DRW. We repeated
our simulations with 1,500 simulations containing white
noise and a sinusoid and another 1,500 with only white
noise, and performed an identical model selection pro-
cedure. Nearly all of the sinusoids were identified with
accurately estimated parameters, across the entire pa-
rameter space. The ROC curve for LSST is excellent,
with close to 100% recovery for true periodic signals and
almost 0% false detections. The ROC curve is slightly
worse for CRTS due to the lower data quality. This
indicates that, without the red DRW noise process in-
cluded, there was no confusion, allowing the sinusoids
to be identified accurately. The white noise realization
of the population, albeit unrealistic, demonstrates that
the limiting factor in detecting quasar periodicity is pri-
marily the stochastic DRW variability.

Finally, we quantitatively evaluated the performance
of our method in each survey by computing the area
under the ROC curve, also known as the AUC value.
In general, a larger AUC value indicates a better per-
forming classifier, as this metric equals the probability
that the classifier will rank a positive simulation better
than a negative one (Fawcett 2006, i.e. the probabil-
ity that we will calculate a lower ABIC if a sinusoid is
present). In Table 3, we summarize the AUC values for
CRTS and LSST both for idealized white noise simula-
tions and for the more realistic case that includes DRW
variability. The white-noise-only ROC curve for LSST
has near-perfect AUC value of 0.99, indicating that the
DRW process can mask a sinusoid from the model se-
lection process, while white noise cannot.

So far we have presented our results with respect to
the input signals. However, in real observations, we will
not know the true parameters of the signals, and thus
will be required to base our model selection conclusions
on the output parameters of the MCMC method. In Fig-
ure 7, we present the recovered parameters A/c versus

P/7 in order to map the parts of parameter space where
simulations with and without a sinusoid in addition to
DRW noise are more likely to lie. For instance, if the
DRW+sine model returns A/o > 1 in LSST, it is highly
likely to be a true detection regardless of P/7. In the
weak signal regime A/o < 1, the two populations over-
lap, although given the low number of false positives, a
detected signal is more likely to be genuine periodicity.
In CRTS-like survey, it is more challenging to derive a
conclusion about the validity of the detection based on
the inferred parameters of the light curve, due to the
higher rate of false positives. Overall, identifying peri-
odicity in the strong signal regime (e.g., A/o > 2) can
boost our confidence that the detection is real, since no
true negatives lie in this area.

One way to quantify the distinction between the popu-
lations with and without a simulated sinusoid is with the
Mahalanobis distance (Mahalanobis 1936). This metric
measures the distance between a point and a distribu-
tion, measured in standard deviations of the distribu-
tion, while accounting for correlations between the data
points. For the CRTS-like observations, the median Ma-
halanobis distance between the two populations is 0.73,
while for the LSST-like survey, this median distance in-
creases to 0.97. This indicates that, in next-generation
surveys, the populations of AGN with and without si-
nusoidal variations will become even more clearly re-
solved.

4. DISCUSSION
4.1. Previous Work

In this paper, we simulated CRTS-like and LSST-like
light curves and used a Bayesian model selection to as-
sess our capability to detect SMBHBs in time-domain
surveys. This is the first study that explores the param-
eter space of sinusoidal binary signals in the presence of a
DRW process, employing an array of idealized simulated
data. This allowed us to examine both the detectabil-
ity /completeness of binary signals and the contamina-
tion of a sample of candidates with false detections.

We found that the sample of periodic quasars is ex-
pected to be fairly incomplete for longer period binaries
and for binaries that cause weak periodic modulations
in the brightness of the AGN compared to the DRW
variability. This limitation is caused by the stochastic
variability of quasars, since in the presence of only white
noise, almost all the periodic signals would be detectable
with nearly zero contamination. These results are inde-
pendent of the time-domain survey setup. On the other
hand, the false-positive rate is higher in the CRTS-like
light curves compared to LSST. This suggests that the
contamination of the samples of SMBHB candidates de-
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Figure 7. Simulations of DRW light curves with (red) and without (blue) a sinusoid lie in regular regions of parameter space
when parametrized by the ratio of A/o and P/7. This makes apparent the cause of the location of false negatives in Figure 5.
It is also clear that more signals will become detectable in future surveys as cadences and baselines improve.

pends on the quality of the data. The reduced false-
positive rate in LSST is extremely encouraging for future
searches for candidate signatures of SMBHBs. This is
particularly important, since LSST will observe at least
20 million quasars, and a high false-positive rate would
render follow-up studies of SMBHB candidates nearly
impossible.

We emphasize that even though our results provide
an excellent qualitative picture of limitations and de-
tectability trends as a function of the signal and noise
parameters, they cannot be directly applied to deter-
mine the number of false positives in existing samples
of SMBHB candidates (Graham et al. 2015a; Charisi
et al. 2016; Liu et al. 2019). These candidates were cho-
sen with a different methodology, and likely suffer from
distinct biases that cannot be captured by our analy-
sis. We have already observed that with our algorithm,
changing the detection threshold would change the true-
and false-positive rate. This demonstrates that it will
be enlightening for future systematic searches for quasar
peridocity to use simulated light curves to carefully con-
struct an ROC curve, as in our study, to highlight the
effectiveness of the selection criteria of the search, given
the specific survey properties.

We also note that to date, a Bayesian model selec-
tion method has not applied in an extensive search for
binaries. This is unsurprising, as this method is com-
putationally demanding, and thus for a large sample of
quasars (of order 10° for CRTS and 107 for LSST) it is
practically impossible. Our idealized data sets require

a few hours of CPU time per light curve to complete
the model selection analysis, and realistic data, with a
larger number of associated parameters, will expand this
requirement. Therefore, this method may be applied in
combination with some other classifier which will make
an initial pre-selection, and therefore significantly re-
duce the size of the sample. Such a complementary
method will filter out most non-periodic quasars, and
thus the main requirements for it are speed and a high
true-positive rate, rather than a perfect false-positive
rate.

However, several Bayesian-model-selection algorithms
have been used in multiple studies to validate (or in-
validate) the periodicity for one of the most prominent
candidates, quasar PG1302-102 (Graham et al. 2015b;
D’Orazio et al. 2015; Vaughan et al. 2016; Liu et al.
2018; Zhu & Thrane 2020). It is intriguing that the
results of these studies are not in complete agreement,
neither for the best-fit parameters nor for the preferred
model. This is potentially due to choices made in these
analyses; for example, Vaughan et al. (2016) introduced
an extra parameter to account for poorly estimated pho-
tometric errors, Liu et al. (2018) binned the light curves
in wide bins of 150days, and D’Orazio et al. (2015) fixed
the parameters of the DRW model. This clearly illus-
trates the complexities of observed data sets that may
not be reflected in idealized simulations, such as the ones
we presented in this study.
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Figure 8. ROC curves for variations on our nominal LSST
simulations (solid curve), including increased observation
baseline (dashed curve) and increased obseration cadence
(dotted curve).

4.2. LSST Observing Strategy and Future
Improvements

To assess the prospects of detecting SMBHBs in
LSST, we simulated light curves with semi-regular sam-
pling (evenly sampled, but also adding a Gaussian error
to the timestamps). As a conservative scenario for the
wide-fast-deep survey, we chose a cadence of seven days,
but in reality, observations of the same source may re-
peat more often. We explore two additional optimistic
scenarios. First, we increase the cadence to three days,
and second, we extend the observation baseline to 15
years while keeping the cadence at seven days. We sim-
ulate both DRW and DRW+sine light curves and repeat
the Bayesian model selection.

In Figure 8, we present the ROC curve for these two
scenarios, compared with the initial LSST setup as re-
ported in Table 1. The AUC for these two scenarios are
0.834 (3 day cadence, 10 year baseline) and 0.883 (seven
day cadence, 15 year baseline) compared to 0.864 for
our typical LSST simulations with a 7 day cadence and
10 year baseline. We see both from the figure and the
AUC values that increasing the baseline has a positive
impact in our periodicity search, allowing us to better
constrain longer 7 and detect longer periods at higher
rates. This confirms that in preparation for LSST, it
is advantageous to prepare strategies that will allow us
to extend the LSST light curves with already existing
data by combining data from multiple surveys, such as
in Liu et al. (2018). On the other hand, increased ca-
dence does not improve our results. This is expected
given that the minimum searched period is set to 30
days. We note that the higher cadence will likely signif-
icantly affect the search for short period binaries, which

are potential LISA sources (Xin & Haiman 2021b). In
this work, we did not examine the shortest end of the
period distribution, because for very short periodicities,
a different method may be necessary; for example, the
deep coverage and more frequent sampling planned for
LSST Deep Drilling Fields will certainly be beneficial
for this type of source.

Moreover, even though the finalized survey strategy
has not yet been decided, we recognize that our simu-
lations are idealized for several reasons. First, our light
curves do not include gaps of no observations, which
are inevitable in a real survey, since the sources will
be obscured by the sun or low on the horizon. We
also used an average photometric uncertainty for all of
the simulated light curves, even though the photomet-
ric errors are in reality magnitude-dependent. Lastly,
even though the observations in the deep-wide-fast sur-
vey will repeat semi-regularly, they will rotate among
six narrow-band photometric filters from visit to visit.
Therefore, if we consider light curves in only one photo-
metric band, they will be significantly more sparse with
~10 observations per year. The preferred route would be
to combine the data in a single multi-band light curve.
In fact, a multi-band periodogram has been developed
for this purpose (VanderPlas & Ivezi¢ 2015). However,
for quasars, this process is more complicated, due to
their color-dependent variability, which must be taken
into account.

In future work, we intend to address several of the
limitations of this current idealized study. In the near
future, LSST’s observing strategy (such as cadence,
epoch/gap length, order of filter alternation and fre-
quency of observations in each photometric band, etc.)
will be finalized. Projections of the final survey have
begun to be released (LSST Dark Energy Science Col-
laboration (LSST DESC) et al. 2021), and as more ac-
curate data previews, such as LSST Data Preview 0,2
become available over the next year, we will modify our
simulations to include all the above decisions to more ac-
curately reflect the full capabilities of the survey. To do
S0, we must also incorporate the magnitude dependence
of the photometric errors. For this, we will simulate a
more realistic quasar population, based on the quasar
luminosity function and incorporate correlations of the
DRW parameters with the AGN properties (MacLeod
et al. 2010).

In addition to improvements to the simulated obser-
vation strategies, in future work it will be critical to
include a more realistic binary population and an ad-

2 https://rtn-001.Isst.io/
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vanced model for quasar variability. More specifically,
our analysis (and most searches for periodicity) assume
that quasar variability is described by a DRW model.
This model, albeit successful, comes with its own limita-
tions. A future study will include advanced noise model-
ing and employ a continuous-time autoregressive moving
average model, which also includes quasi-periodic oscil-
lations. For the population of SMBHBs, we randomly
drew the periods and amplitudes from (log)-uniform dis-
tributions. However, binary evolution models suggest
that binaries spend more time at larger separations (and
longer periods) and should be more common than short-
period binaries, while the amplitudes can be linked to
the orbital properties of the binary (e.g., mass-ratio, and
inclination for relativistic Doppler boost). We also mod-
eled binary signals with pure sinusoids, which, while a
decent approximation for a circular binary dominated
by Doppler boost variability, real binaries can produce
more complicated signatures. For instance, if the pe-
riodicity arises from periodic accretion or if the binary
has an eccentric orbit, the light curves will significantly
deviate from sinusoidal.

4.3. Covariance of Timescales

We found that the stochastic DRW noise hinders the
detection of the deterministic signal of a SMBHB. One
potential reason is the covariance between the parame-
ters of the signal and the noise. For instance, both the
amplitude of the sinusoid and the DRW ¢ determine the
overall SNR of the light curves. Unsurprisingly, we saw
that our ability to detect sinusoidal variability increases
when o is small and A is large, and vice versa. The co-
variance of the characteristic timescales P and 7 is less
obvious, so we explore this issue in more detail below.

First, we examined our results for potential correla-
tions when we fit for the incorrect model (i.e. injected
DRW-sine using the DRW likelihood from Equation 4).
Searching a light curve that has a sinusoid injected with
a DRW-only model will result in a biased recovery of 7,
as can be seen in Figure 9, where the recovered 7 value
is related to the injected period. For LSST-like simula-
tions, this was best fit with a quadratic function where

log,o 7 = —0.72 (log,o P)? 4 5.46 (log,, P) — 6.21. (11)

However, for CRTS-like simulations, this covariance is
best fit with a linear function

Koztowski et al. (2010) found a similar effect when they
applied the DRW formalism to periodic stellar light
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Figure 9. If a light curve is simulated to contain both a
sinusoid and a DRW process, but is modeled with only noise,
significant confusion can occur. The periods of recoverable
sinusoids (red) can be confused for the DRW timescale 7 if
only noise is modeled.

curves (e.g., their Fig. 12 and the related discussion).
We also confirm their finding that these correlations are
sensitive to the light curve properties, since we find a dif-
ferent correlation in our CRTS and LSST light curves.
When 7 is fit in conjuction with the periodicity (i.e in
the DRW+-sine model), this bias is resolved.

4.4. Prospects for Multi-Messenger Observations

Sub-parsec SMBHBs have remained a missing piece
in the puzzle of hierarchical structure formation despite
decades-long observational efforts seeking their detec-
tion. The upcoming decade is expected to bring tremen-
dous improvements both in electromagnetic observa-
tions and in GW searches. PTAs may be on the verge
of detecting the GW background from a population of
unresolvable SMBHBs (Arzoumanian et al. 2020b). The
detection of individually resolvable SMBHBs is expected
to follow soon after. Addtionally, LSST will provide a
revolutionary data set for searches targeting SMBHBs.
In this analysis, we have demonstrated that the unprece-
dented quality of the light curves will minimize the false
detection rate, while the large sample of quasars will
likely lead to at least a few confident detections. Some
of these binary candidates will have periods of a few
months to a year, allowing us to see the periodicity re-
peat for many cycles.

This opens the possibility of combined GW and elec-
tromagnetic observations of SMBHBs. Liu & Vigeland
(2021) found that incorporating priors from electromag-
netic observations in the GW analysis boosts the de-
tectability of binaries and improves parameter estima-
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tion of continuous GW searches. Arzoumanian et al.
(2020a) showed that having a candidate to target signif-
icantly improves GW-derived upper limits on the binary
chirp mass. Therefore, it is logical for GW searches
to specifically target SMBHB candidates identified in
time-domain surveys. Producing a large number of
high-quality electromagnetic SMBHB candidates from
LSST will provide a wealth of candidates to search for in
PTA data. This population of candidates will also pro-
vide critical information about the population of SMB-
HBs that create the stochastic gravitational wave back-
ground, which, as stated above, may be detectable by
PTAs extremely soon (Pol et al. 2021).

5. CONCLUSIONS

Using extensive simulations of time-domain observa-
tions of AGN, coupled with a Bayesian model selec-
tion and parameter estimation framework, we have ex-
plored the capabilities of current and future surveys
for SMBHB identification. In particular, we simulated
quasar light curves with DRW variability with a realis-
tic distribution of o and 7, as well as binary light curves
with sinusoidal variability on top of a DRW process in-
cluding a wide range of periods and amplitudes. We ex-
plored the likelihoods of the respective models with an
MCMC analysis, and determined the preferred model
using the BIC. Our findings are summarized as follows:

e Our ability to detect periodicity on top of DRW
variability depends on the parameters both of the
sinusoid and of the noise. Short periods and high
amplitudes are found at higher rates, whereas light
curves with significant noise contribution (high o)
are recovered at lower rates. The input phase and
7 do not appear to affect the detection rate.

e While our ability to discover long-period signals
is decreased, about 50% are recoverable. This is
significant, because longer-period SMBHBs are ex-
pected to be more common.

e The true positive rate is similar in both surveys.

e The incompleteness of the detectable binary sig-
nals is intrinsic due to the stochastic variability of

quasars. In the presence of white noise, all periodic
signals would be detectable almost independently
of the data quality.

e The false positive rate is higher for CRTS and al-
most minimal for LSST. This indicates that the
high quality of LSST light curves will allow for
the detection of very reliable SMBHB candidates.

e The false positive rate does not depend on the in-
put parameter of a simulated DRW signal, i.e. all
DRW light curves are equally likely to produce
false detections.

e There are parts of the parameters space where
there is no significant overlap between true signals
and false detections. If the recovered parameters
of a light curve fall in that regions (e.g., A/o > 1
for LSST) it can significantly increase our confi-
dence in the periodicity detection.

e If periodicity is present in a light curve, and only a
DRW model is fit, the recovery of the parameters
is biased.

e Future work will include more realistic LSST light
curves, a wider range of binary signal models, and
a physically motivated binary population.

ACKNOWLEDGMENTS

S.B.S. and C.A.W. were supported in this work by
NSF award Nos. 1458952 and 1815664. C.A.W.
acknowledges support from West Virginia University
through the STEM Completion Grant. S.B.S. is a CI-
FAR Azrieli Global Scholar in the Gravity and the Ex-
treme Universe program. M.C. and S.R.T. acknowledge
support from NSF AST-200793. S.R.T also acknow-
eledges support from NSF PHY-2020265, and a Van-
derbilt University College of Arts & Science Dean’s Fac-
ulty Fellowship. We acknowledge the use of Thorny Flat
at WVU, which is funded in part by National Science
Foundation Major Research Instrumentation Program
(MRI) award No. 1726534 and WVU.

REFERENCES

Armitage, P. J., & Natarajan, P. 2002, ApJL, 567, L9,
doi: 10.1086,/339770

Arzoumanian, Z., Baker, P. T., Brazier, A., et al. 2020a,
AplJ, 900, 102, doi: 10.3847/1538-4357/ababal

Arzoumanian, Z., Baker, P. T., Blumer, H., et al. 2020b,
ApJL, 905, L34, doi: 10.3847/2041-8213/abd401

Begelman, M. C., Blandford, R. D., & Rees, M. J. 1980,
Nature, 287, 307, doi: 10.1038/287307a0



16 WITT ET AL.

Bogdanovic, T., Miller, M. C., & Blecha, L. 2021, arXiv
e-prints, arXiv:2109.03262.
https://arxiv.org/abs/2109.03262

Burke-Spolaor, S., Taylor, S. R., Charisi, M., et al. 2019,
A&A Rv, 27, 5, doi: 10.1007/s00159-019-0115-7

Charisi, M., Bartos, 1., Haiman, Z., et al. 2016, MNRAS,
463, 2145, doi: 10.1093 /mnras/stw1838

Charisi, M., Bartos, 1., Haiman, Z., Price-Whelan, A. M., &
Marka, S. 2015, MNRAS, 454, L21,
doi: 10.1093/mnrasl/slv111

Charisi, M., Haiman, Z., Schiminovich, D., & D’Orazio,
D. J. 2018, MNRAS, 476, 4617,
doi: 10.1093/mnras/sty516

Chen, Y.-C., Liu, X., Liao, W.-T., et al. 2020, MNRAS,
499, 2245, doi: 10.1093/mnras/staa2957

Colpi, M. 2014, SSRv, 183, 189,
doi: 10.1007/s11214-014-0067-1

De Rosa, A., Vignali, C., Bogdanovié¢, T., et al. 2019,
NewAR, 86, 101525, doi: 10.1016/j.newar.2020.101525

D’Orazio, D. J., Haiman, Z., & MacFadyen, A. 2013,
MNRAS, 436, 2997, doi: 10.1093/mnras/stt1787

D’Orazio, D. J., Haiman, Z., & Schiminovich, D. 2015,
Nature, 525, 351, doi: 10.1038 /nature15262

Ellis, J., & van Haasteren, R. 2017,
doi: 10.5281/zenodo.1037579

Farris, B. D., Duffell, P., MacFadyen, A. I., & Haiman, Z.
2014, ApJ, 783, 134, doi: 10.1088/0004-637X /783,/2/134

Fawcett, T. 2006, Pattern Recognition Letters, 27, 861,
doi: 10.1016/j.patrec.2005.10.010

Goulding, A. D., Greene, J. E., Bezanson, R., et al. 2018,
PASJ, 70, S37, doi: 10.1093/pasj/psx135

Graham, M. J., Djorgovski, S. G., Stern, D., et al. 2015a,
MNRAS, 453, 1562, doi: 10.1093 /mnras/stv1726

—. 2015b, Nature, 518, 74, doi: 10.1038 /nature14143

Haehnelt, M. G., & Kauffmann, G. 2002, MNRAS, 336,
L61, doi: 10.1046/j.1365-8711.2002.06056.x

Haiman, Z., Kocsis, B., & Menou, K. 2009, ApJ, 700, 1952,
doi: 10.1088,/0004-637X/700/2/1952

Ivezié¢, Z., Connolly, A., Vanderplas, J., & Gray, A. 2014,
Statistics, Data Mining and Machine Learning in
Astronomy (Princeton University Press)

Kass, R. E., & Raftery, A. E. 1995, Journal of the
American Statistical Association, 90, 773,
doi: 10.1080,/01621459.1995.10476572

Kelley, L., Charisi, M., Burke-Spolaor, S., et al. 2019a,
BAAS, 51, 490. https://arxiv.org/abs/1903.07644

Kelley, L. Z., D’Orazio, D. J., & Di Stefano, R. 2021, arXiv
e-prints, arXiv:2107.07522.
https://arxiv.org/abs/2107.07522

Kelley, L. Z., Haiman, Z., Sesana, A., & Hernquist, L.
2019b, MNRAS, 485, 1579, doi: 10.1093/mnras/stz150

Kozlowski, S. 2017, A&A, 597, A128,
doi: 10.1051/0004-6361/201629890

Koztowski, S., Kochanek, C. S., Udalski, A., et al. 2010,
AplJ, 708, 927, doi: 10.1088/0004-637X/708/2/927

Kun, E., Frey, S., Gabanyi, K. E., et al. 2015, MNRAS,
454, 1290, doi: 10.1093 /mnras/stv2049

Liddle, A. R. 2007, MNRAS, 377, L74,
doi: 10.1111/j.1745-3933.2007.00306.x

Liu, T., Gezari, S., & Miller, M. C. 2018, ApJL, 859, L12,
doi: 10.3847/2041-8213/aac2ed

Liu, T., & Vigeland, S. J. 2021, arXiv e-prints,
arXiv:2105.08087. https://arxiv.org/abs/2105.08087

Liu, T., Gezari, S., Ayers, M., et al. 2019, ApJ, 884, 36,
doi: 10.3847/1538-4357/ab40cb

LSST Dark Energy Science Collaboration (LSST DESC),
Abolfathi, B., Alonso, D., et al. 2021, ApJS, 253, 31,
doi: 10.3847/1538-4365/abd62c

LSST Science Collaboration, Abell, P. A.; Allison, J., et al.
2009, arXiv e-prints, arXiv:0912.0201.
https://arxiv.org/abs/0912.0201

LSST Science Collaborations, Marshall, P., Anguita, T,
et al. 2017, ArXiv e-prints, doi: 10.5281/zenodo.842712

MacFadyen, A. 1., & Milosavljevi¢, M. 2008, ApJ, 672, 83,
doi: 10.1086/523869

MacLeod, C. L., Ivezié, Z., Kochanek, C. S., et al. 2010,
ApJ, 721, 1014, doi: 10.1088/0004-637X/721/2/1014

Mahalanobis, P. C. 1936, in On the generalized distance in
statistics, National Institute of Science of India

Mohan, P., An, T., Frey, S., et al. 2016, MNRAS, 463,
1812, doi: 10.1093/mnras/stw2154

Newcombe, R. G. 1998, Statistics in Medicine, 17, 857,
doi: https://doi.org/10.1002/(SICI)1097-0258(19980430)
17:8(857::AID-SIM777)3.0.CO;2-E

Pol, N. S., Taylor, S. R., Kelley, L. Z., et al. 2021, ApJL,
911, L34, doi: 10.3847/2041-8213/abf2c9

Roedig, C., Sesana, A., Dotti, M., et al. 2012, A&A, 545,
A127, doi: 10.1051/0004-6361,/201219986

Saade, M. L., Stern, D., Brightman, M., et al. 2020, ApJ,
900, 148, doi: 10.3847/1538-4357 /abad31

Sesana, A., Haiman, Z., Kocsis, B., & Kelley, L. Z. 2018,
ApJ, 856, 42, doi: 10.3847/1538-4357 /aaadOf

Tanaka, T., Menou, K., & Haiman, Z. 2012, MNRAS, 420,
705, doi: 10.1111/j.1365-2966.2011.20083.x

Tang, Y., Haiman, Z., & MacFadyen, A. 2018, ArXiv
e-prints. https://arxiv.org/abs/1801.02266

Taylor, S., Burke-Spolaor, S., Baker, P. T, et al. 2019,
BAAS, 51, 336. https://arxiv.org/abs/1903.08183

Timmer, J., & Koenig, M. 1995, A&A, 300, 707



QUASARS WITH PERIODIC VARIABILITY 17

Vanderplas, J., Connolly, A., Ivezié, Z., & Gray, A. 2012, in Xin, C., Charisi, M., Haiman, Z., et al. 2020, MNRAS, 496,
Conference on Intelligent Data Understanding (CIDU), 1683, doi: 10.1093/mnras/staal643
47 54, doi: 10.1109/CIDU.2012.6382200 Xin, C., & Haiman, Z. 2021a, MNRAS, 506, 2408,

doi: 10.1093/mnras/stab1856
—. 2021b, arXiv e-prints, arXiv:2105.00005.
doi: 10.1088/0004-637X/812/1/18 https://arxiv.org/abs/2105.00005

Vaughan, S., Uttley, P., Markowitz, A. G., et al. 2016, Zhu, X.-J., & Thrane, E. 2020, ApJ, 900, 117,
MNRAS, 461, 3145, doi: 10.1093 /mnras /stw1412 doi: 10.3847/1538-4357 /abac5a

VanderPlas, J. T., & Ivezi¢, Z. 2015, ApJ, 812, 18,



	1 Introduction
	2 Methods
	2.1 Simulated Data
	2.2 Likelihood and MCMC Methods

	3 Results
	3.1 Parameter estimation
	3.1.1 DRW model
	3.1.2 DRW+Sine Model

	3.2 Model Selection

	4 Discussion
	4.1 Previous Work
	4.2 LSST Observing Strategy and Future Improvements
	4.3 Covariance of Timescales
	4.4 Prospects for Multi-Messenger Observations

	5 Conclusions

