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information from SMBHB candidates in GW searches
allows us to place tighter constraints on the SMBHB

chirp mass (Arzoumanian et al. 2020a), and can boost

the detectability of the candidate in a typical “blind”

search (Liu & Vigeland 2021).
Closely-separated SMBHBs in the GW regime may be

detected as Active Galactic Nuclei (AGNs) or quasars
with periodic variability (Haiman et al. 2009). Previ-

ous studies have demonstrated a link between AGN and

galaxy mergers; this follows naturally from the idea that

the mergers bring significant amounts of gas to the cen-

tral regions of the post-merger galaxies, which may ac-

tively accrete onto the SMBHs, triggering AGN activity

(Goulding et al. 2018). Similarly, binaries are expected

to be surrounded by significant amounts of gas, which

can give rise to bright quasar-like electromagnetic emis-

sion (Armitage & Natarajan 2002; Tanaka et al. 2012;

Bogdanovic et al. 2021).
Specific predictions for periodic variability in binary

AGN has been demonstrated in multiple hydrodynam-
ical simulations of binaries embedded in gaseous disks
(MacFadyen & Milosavljević 2008; D’Orazio et al. 2013;

Roedig et al. 2012; Farris et al. 2014). The consensus

of these simulations is that the binary carves out a cen-

tral cavity, i.e. a region of low-density gas. As the bi-

nary orbit perturbs the edge of this cavity (especially

the secondary SMBH, which moves closer to the edge),
it pulls streams of gas inwards. Periodic accretion onto
the SMBHs from these streams may produce periodic

brightness fluctuations. Another mechanism that pro-

duces periodic variability is relativistic Doppler boost-

ing (D’Orazio et al. 2015; Tang et al. 2018). Some of
the gas that penetrates the cavity ends up bound to the

SMBHs forming mini-disks which orbit with relativistic
speeds. The emission from these mini-disks may be pe-
riodically boosted (and dimmed), even if the rest-frame

luminosity is constant. This signature is prominent for

unequal-mass binaries orbiting close to edge-on, where

the emission of the faster-moving secondary —which is

also typically brighter—dominates the variability.

In recent years, vast photometric databases of time-
domain surveys have provided light curves for large sam-

ples of AGNs, which are ideal for searches of SMB-

HBs. Numerous candidates have been identified from

systematic searches in optical surveys, such as the

Catalina Real-time Transient Survey (CRTS; Graham

et al. 2015a), the Palomar Transient Factory (PTF;

Charisi et al. 2016), the Panoramic Survey Telescope

and Rapid Response System (Pan-STARRS; Liu et al.

2019), and the Dark Energy Survey (DES; Chen et al.

2020). However, AGN also have intrinsic stochastic vari-

ability which makes periodicity identification quite dif-

ficult. AGN variability is successfully modeled by a
“damped random walk” (DRW) model, which takes the
form of a red-noise process at high frequencies, but a

white-noise process at low frequencies (MacLeod et al.

2010; Koz lowski et al. 2010). This intrinsic noise is

impressively capable at mimicking periodicity, partic-
ularly in sparsely sampled or short-baseline time se-

ries (Vaughan et al. 2016). So far, studies have fo-

cused on additional signatures for the binary nature

of candidates, such as multi-wavelength Doppler boost

(D’Orazio et al. 2015; Charisi et al. 2018; Xin et al.

2020), periodicity with multiple components (Charisi
et al. 2015), X-ray spectral excess (Saade et al. 2020)

and distorted radio jets (Kun et al. 2015; Mohan et al.
2016).

However, multi-wavelength follow-up monitoring of

candidates is demanding and such studies will be im-

practical (if not impossible) in the upcoming generation

of surveys like the Legacy Survey of Space and Time

(LSST) of the Vera C. Rubin Observatory (LSST Sci-

ence Collaboration et al. 2009). LSST is expected to
observe over 20 million of quasars, delivering an unprece-

dented data set for quasar periodicity searches both in

terms of quality and quantity. If we extrapolate the de-

tection rate of SMBHB candidates in the current time-

domain surveys (∼ 1/1000) to LSST, we expect several
thousands of candidates. However, we know that these

samples likely contain many false detections (as demon-
strated by their tension with the GW background limits
when extrapolated to a full binary population; Sesana

et al. 2018). On the other hand, theoretical models

predict that hundreds of genuine binaries should be de-

tectable in LSST (Kelley et al. 2019b; Xin & Haiman
2021a; Kelley et al. 2021). Because of this, the time

is ripe to develop a careful model selection in order to
reliably identify binary candidates.

In this work, we explore the capabilities and limita-

tions in identifying quasars with periodic variability in
the data sets of the upcoming decade. We simulate ide-
alized AGN light curves that contain DRW noise with

realistic parameters, while a subset of those contains
sinusoidal variations on top of the DRW noise. We con-
struct a pipeline that employs Bayesian model selection
and parameter estimation to identify periodic signals

(i.e. the binary candidates) in our sample, and constrain

their parameters. Finally, we quantify our ability to se-

lect genuine binaries and the degree of contamination

with false detections.
This paper is laid out as follows. In section 2, we

describe the methodology for creating simulated light

curves, as well as the Bayesian parameter estimation

and model selection methods. In section 3, we examine
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the efficacy of our Bayesian pipeline, as well as present
a statistical analysis of this efficacy across the simulated

SMBHB population. In section 5 we present the conclu-

sions we can draw from our analysis. These include the

following key findings:
• Our method can recover orbital periods extremely

accurately (even very long or short values), pro-
vided the signal is of sufficient strength. The de-
tectability of periodicity also depends on the am-

plitude of the sinusoid and the contribution of the

DRW noise.

• While a DRW process can mask some sinusoids in

current surveys, the false positive rate is very low

for LSST, and thus it is expected to deliver reliable

candidates.

• Particular combinations of DRW and sinusoidal

parameters are more likely to mask a signal than

others. This will help inform future analyses as we

attempt to confront the massive data volume that

will be produced by LSST.
Finally, in section 4, we discuss caveats of our method,

future improvements, and the prospects of multi-

messenger observations of binaries. This work presents

a necessary first step in preparation for the flood of

SMBHB candidates in the upcoming Rubin era.

2. METHODS

As mentioned above, identifying periodicity in quasars

is challenging because of the intrinsic stochastic variabil-

ity of quasars, the relatively short observation baselines

compared to the potential binary periods, and the noisy,

irregular data. Our goal is to explore the variety of bi-

nary signals (e.g., range of periods, amplitudes) that
can be detected in current and upcoming time domain
surveys. We also aim to assess the expected false pos-
itive rate in systematic searches for quasar periodicity.

For this, we simulate typical quasar light curves with

realistic DRW noise properties as well as SMBHB light

curves which include sinusoidal signals with a variety

of periods and amplitudes on top of DRW noise. We

chose to model the binary signal with a pure sinusoid

both for simplicity, and because previous searches for

quasars with periodic variability have focused on quasi-

sinusoidal signals. We construct a periodicity detection
pipeline that employs a Bayesian model parameter es-
timation and selection between a DRW and DRW+sine

model, and apply it in a wide range of simulated light

curves. Below we describe the light curve simulations

and the periodicity detection method.

2.1. Simulated Data

To ensure that our analysis was realistic, we con-

structed our simulated light curves with properties that

reflect the observational capabilities of ongoing and

planned time-domain surveys. Each survey has a dis-

tinct observing strategy (depending on their primary

scientific objectives), which defines the average cadence

(frequency of observations), and observation baseline

(length of light curve). Additionally, each survey has

a limiting depth, which depends on the size of the tele-

scope used and the exposure time of the typical obser-

vation. This defines the photometric uncertainty, which

is typically a function of apparent magnitude; dimmer

sources have larger photometric errors and vice versa.

To limit the complexity of our analysis, we did not in-

corporate the magnitude dependence of the photometric

errors, and used an average photometric error for all the
simulated light curves. However, a future study should
address this and other limitations, as discussed in sec-

tion 4. To assess the detectability of SMBHBs in cur-

rent surveys, we used CRTS-like light curves, whereas

for future surveys, we used idealized LSST light curves

as described below.

In order to construct the CRTS-like light curves, we
extracted 10,000 AGN light curves spread across the sky

from the online database.1 We examined the sampling

pattern in this set, which turns out to be similar for most

light curves. In particular, for each night the source was

observed, the light curves contain clusters of four suc-

cessive data points, then the next set of observations is

taken about one week to one month later for as long as
the source is observable (for about six months). Subse-
quently, there is a significant gap of no data for about six

months, e.g., when the source is obstructed by the sun

or below the horizon of the specific telescope, and then

the pattern roughly repeats. For the sampling of the

simulated light curves, we use one typical light curve

from that sample as a template. This light curve has
an average span of ∼20 days between successive nights

of observations, gaps of ∼200 days, and a total obser-

vation baseline of ∼8 years. This gives an effective ca-

dence (observation baseline divided by the number of
data points) of 46 days. Since very short term varia-

tions are not relevant for our study, this calculation did
not include multiple observations within the same night.
By examining the distribution of photometric errors in
these 10,000 light curves, we found that the peak occurs

at ∼ 0.1 mag, and thus set the average photometric un-

certainty in the CRTS-like light curves at this value.
For LSST, the nominal duration is set to ten years, but

the observing strategy is not finalized yet (LSST Science
Collaborations et al. 2017). The majority of time will

1 http://nesssi.cacr.caltech.edu/DataRelease/
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those used in Koz lowski (2017). Injected values are
randomly selected from the range τ = [10−3T, 15T ],

where T=10 yr is the nominal LSST observation base-

line. However, for the model selection analysis, we re-

strict the values of τ to a realistic distribution derived
from those presented in MacLeod et al. (2010). For σ,

we draw values from a log-uniform distribution ranging
from [−1.6,−0.25], corresponding to a range of greater

than an order of magnitude in σ, to encompass a wide

range of DRW variability amplitudes similar to the range
presented in MacLeod et al. (2010).

The periods of the injected sinusoids range from 30
days to 10 years. The maximum value is set by the

LSST baseline, so that at least one full orbital cycle is

observed. This wide range of periods covers all the po-

tential SMBHBs that have GW frequencies detectable

by PTAs. However, it does not include very high-

frequency SMBHBs possibly detectable by the Laser

Interferometer Space Antenna (LISA; Xin & Haiman

2021a), which are expected to have periods of only a
few days (P < 1−2 d). In section 4, we explore whether

such short period binaries need a distinct strategy for

detection, such as accounting for filter alternation and

combining the multi-band data in a single light curve.

Previous studies have required that at least 1.5 cycles (or

more) of the periodicity be observed within the available

baselines. We relax this requirement to assess the ability
to recover binaries in this regime and the resulting con-
tamination with false positives. This is significant, since

binaries evolve slower at large separations, and long-

period binaries are expected to be more common. The

reference time is set to any time between 0 and the pe-

riod of the specific realization, which corresponds to a

phase range of [0, 2π]. The amplitude is set to a value
in the range [0.05, 0.5] mag. These distributions of sim-

ulated values are summarized in Table 2.

2.2. Likelihood and MCMC Methods

For the DRW process defined in Equation 1, the co-

variance matrix S that determines the correlation be-

tween two data points at times ti and tj is given by

Sij = σ2 exp

(
−
|ti − tj |

τ

)
(3)

where σ2 and τ are the same values defined above.

The full covariance matrix is C = S + N , where N =
diag(σ2

err) is the noise covariance matrix with σerr the

survey’s photometric error. The DRW likelihood func-
tion marginalized over the mean of the light curve is

given by

P (y | p) ∝ |C|−1/2
∣∣LTC−1L

∣∣−1/2

× exp

(
−
yTC−1

⊥
y

2

)
,

(4)

with y the vector of the data (observed magnitudes) and

L a vector of ones with a length equal to the number of

data points, and

C−1

⊥
= C−1 − C−1L

(
LTC−1L

)−1
LTC−1. (5)

For a detailed derivation we refer the reader to

Koz lowski et al. (2010). The likelihood function for the

DRW+sine model is given by

P (y | p) ∝|C|−1/2
∣∣LTC−1L

∣∣−1/2

× exp

(
−

(y − s)TC−1

⊥
(y − s)

2

)
,

(6)

with s a vector of the sinusoid s(t) = Asin(2π/P (t− t0))

sampled at the observed times.

We utilize Markov-Chain Monte Carlo (MCMC)

methods for both parameter estimation and model selec-
tion. In particular, we sample the likelihood using a par-
allel tempering MCMC sampler called PTMCMCSampler

(Ellis & van Haasteren 2017). This sampler was devel-

oped for GW searches in PTA data sets, which employ

similar Gaussian likelihoods for the analysis of the PTA

time series. The main advantages of using this sam-

pler is that it allows for easy implementation of cus-

tom jump proposals within the MCMC sampler and

the pipeline developed here can easily be extended to

multi-messenger searches of SMBHBs with joint PTA

and time-domain data (see section 4).

In general, we use relatively uninformative priors for

our MCMC analyses (either uniform or log-uniform), as

summarized in Table 2. The priors typically mirror the
distributions of simulated parameters described in sub-

section 2.1. We chose flat priors to avoid introducing
potential biases, and to emulate an uninformed system-

atic search. More informative priors could be imposed

for the DRW parameters; for example, MacLeod et al.

(2010) found that σ and τ are correlated with proper-
ties of the AGN (e.g., the SMBBH mass, the luminosity,

etc). Since in our simulated light curves we did not vary

luminosity-related parameters (e.g., the observed mag-

nitude) a fairly unrestricted search is more appropriate.

For each simulated light curve, we performed the
MCMC analysis for two models (DRW and DRW+sine):

The first uses the DRW likelihood from Equation 4 to
search over only the two DRW parameters, σ and τ , and

the second uses Equation 6 that also searches over the si-

nusoid parameters. To ensure convergence, each MCMC
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Parameter Simulation Distribution Prior

log
10
σ Log-Uniform[-1.6, -0.25] Log-Uniform[-1.6, -0.25]

log
10
τ (Wide Range) Log-Uniform[0.56, 4.73] Log-Uniform[0.56, 4.73]

log
10
τ (Realistic Distribution) SkewNorm(3.0, 0.5, -1.4) Log-Uniform[0.56, 4.73]

log
10
P Log-Uniform[1.5, 3.5] Log-Uniform[1.5, 3.5]

A Uniform[0.05, 0.5] Uniform[0.05, 0.5]

t0 Uniform[0, 3650] Uniform[0.05, 0.5]

Table 2. Simulation ranges for each of our five parameters, and prior shapes and ranges for our MCMC. Note that for model
selection analyses, we simulate the realistic distribution of τ values derived from MacLeod et al. (2010).

was conducted for 10,000 MCMC iterations, each re-
sulting chain was thinned by a factor of 10, and the
first 25% of the chain was trimmed to ensure burn-in.

From these MCMC searches, we estimated the values of

the two (or five) parameters that are most likely given

each simulated light curve. The posterior distributions

provided both median values and uncertainties for the
parameters. From the MCMC samples we also deter-
mined the value for set of parameters that maximized
the likelihood. For each simulation, we also calculated

a signal-to-noise ratio (SNR), where

SNR2 = sT · C−1 · s. (7)

Here, s is the vector containing the input signal and

sampled at the simulated timestamps, and C−1 is the

inverse of the DRW covariance matrix (Equation 3).
We used the outcome of the two MCMC searches

(DRW, and DRW+sine) to perform Bayesian model se-
lection using the Bayes Information Criterion (BIC)

BIC = k ln(n) − 2 ln(L̂), (8)

where k is equal to the number of free parameters, n is
equal to the number of data points in the light curve,
and L̂ is the maximum likelihood value (Liddle 2007).

The BIC provides a simple metric through which to com-

pare our two models, and avoids overfitting the data by

accounting for the number of parameters in the model.

When selecting among multiple models, the one with

the smallest BIC is usually preferred. Here we selected

the preferred model by comparing the BIC values for

the DRW-only search to that of the DRW+sine search

by introducing

∆BIC = BICDRW − BICDRW+sine. (9)

A lower value of ∆BIC indicates more support for

the DRW+sine model. In general, evidence for the

DRW+sine model can be considered positive for −2 >

∆BIC > −6, and strong for ∆BIC < −6 (Kass &

Raftery 1995). Here, we defined our threshold to claim
a detection of a sinuosidal signal as ∆BIC = −2. Us-

ing this threshold, we sorted each result into one of four

categories:

• True Positive: A sinusoid was injected and the
DRW+sine model was preferred.

• False Negative: A sinusoid was injected, yet the

DRW-only model was preferred.

• False Positive: No sinusoid was injected, yet the

DRW+sine model was preferred
• True Negative: No sinusoid was injected, and

the DRW-only model was preferred.
In an idealized search we would have only true pos-

itives/negatives and no false positives/negatives, but

typically one needs to compromise and balance the rate

of detection of true signals with the contamination of a

few false positives. One of the main goals of this analysis

is to constrain these rates for current and future survey

capabilities. We note, however, that these rates refer
to our specific method of Bayesian model selection and
cannot be extended to existing samples of SMBHB can-

didates, since these candidates were selected with com-

pletely different methods, as we explain in section 4.

3. RESULTS

We assessed our ability to identify periodicity in AGN

light curves by simulating DRW and DRW+sine light

curves and performing Bayesian model selection. First,

we tested how the MCMC algorithm performs in con-

straining the parameters of each model independently.

Subsequently, we determine the performance of the

model selection method by calculating the true and

false-positive rates, and characterizing their dependence

on the signal and noise parameters.

3.1. Parameter estimation

3.1.1. DRW model

For both our CRTS-like and LSST-like simulations,

we simulated 500 DRW light curves with properties as

described in subsection 2.1 and conducted the MCMC

analysis for the DRW likelihood (Equation 4). In Fig-

ure 2 we show the median values of σ and τ as a function

of the respective input values for the LSST light curves.

We note that the parameter estimation for the DRW

model shows very similar trends for the CRTS-like light

curves.
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CRTS LSST

DRW 0.809 0.864

White Noise 0.960 0.999

Table 3. Area under curve (AUC) values for each of the
ROC curves shown in Figure 8, including those with or with-
out a DRW process. LSST is expected to be a much more
sensitive and reliable survey for the identification of period-
icities induced by SMBHBs.

allow for a dramatically more effective ranking system

for the follow-up of binary candidates.

We also show the respective ROC curve, for both

CRTS and LSST, for the case of periodicity on top

of white noise. This allowed us to test the hypothe-

sis that the classifier performs sub-optimally due to the
covariance between the sinusoid and DRW. We repeated
our simulations with 1,500 simulations containing white
noise and a sinusoid and another 1,500 with only white

noise, and performed an identical model selection pro-

cedure. Nearly all of the sinusoids were identified with

accurately estimated parameters, across the entire pa-

rameter space. The ROC curve for LSST is excellent,

with close to 100% recovery for true periodic signals and

almost 0% false detections. The ROC curve is slightly

worse for CRTS due to the lower data quality. This

indicates that, without the red DRW noise process in-

cluded, there was no confusion, allowing the sinusoids

to be identified accurately. The white noise realization

of the population, albeit unrealistic, demonstrates that

the limiting factor in detecting quasar periodicity is pri-

marily the stochastic DRW variability.

Finally, we quantitatively evaluated the performance

of our method in each survey by computing the area

under the ROC curve, also known as the AUC value.

In general, a larger AUC value indicates a better per-

forming classifier, as this metric equals the probability

that the classifier will rank a positive simulation better

than a negative one (Fawcett 2006, i.e. the probabil-

ity that we will calculate a lower ∆BIC if a sinusoid is

present). In Table 3, we summarize the AUC values for
CRTS and LSST both for idealized white noise simula-

tions and for the more realistic case that includes DRW
variability. The white-noise-only ROC curve for LSST
has near-perfect AUC value of 0.99, indicating that the
DRW process can mask a sinusoid from the model se-

lection process, while white noise cannot.

So far we have presented our results with respect to
the input signals. However, in real observations, we will

not know the true parameters of the signals, and thus
will be required to base our model selection conclusions
on the output parameters of the MCMC method. In Fig-

ure 7, we present the recovered parameters A/σ versus

P/τ in order to map the parts of parameter space where
simulations with and without a sinusoid in addition to

DRW noise are more likely to lie. For instance, if the

DRW+sine model returns A/σ > 1 in LSST, it is highly

likely to be a true detection regardless of P/τ . In the

weak signal regime A/σ ≤ 1, the two populations over-

lap, although given the low number of false positives, a
detected signal is more likely to be genuine periodicity.
In CRTS-like survey, it is more challenging to derive a
conclusion about the validity of the detection based on

the inferred parameters of the light curve, due to the

higher rate of false positives. Overall, identifying peri-

odicity in the strong signal regime (e.g., A/σ > 2) can

boost our confidence that the detection is real, since no

true negatives lie in this area.

One way to quantify the distinction between the popu-

lations with and without a simulated sinusoid is with the

Mahalanobis distance (Mahalanobis 1936). This metric

measures the distance between a point and a distribu-
tion, measured in standard deviations of the distribu-

tion, while accounting for correlations between the data
points. For the CRTS-like observations, the median Ma-
halanobis distance between the two populations is 0.73,

while for the LSST-like survey, this median distance in-
creases to 0.97. This indicates that, in next-generation

surveys, the populations of AGN with and without si-
nusoidal variations will become even more clearly re-

solved.

4. DISCUSSION

4.1. Previous Work

In this paper, we simulated CRTS-like and LSST-like

light curves and used a Bayesian model selection to as-

sess our capability to detect SMBHBs in time-domain

surveys. This is the first study that explores the param-

eter space of sinusoidal binary signals in the presence of a
DRW process, employing an array of idealized simulated
data. This allowed us to examine both the detectabil-

ity/completeness of binary signals and the contamina-

tion of a sample of candidates with false detections.

We found that the sample of periodic quasars is ex-
pected to be fairly incomplete for longer period binaries

and for binaries that cause weak periodic modulations
in the brightness of the AGN compared to the DRW
variability. This limitation is caused by the stochastic

variability of quasars, since in the presence of only white

noise, almost all the periodic signals would be detectable

with nearly zero contamination. These results are inde-

pendent of the time-domain survey setup. On the other

hand, the false-positive rate is higher in the CRTS-like

light curves compared to LSST. This suggests that the

contamination of the samples of SMBHB candidates de-
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tion of continuous GW searches. Arzoumanian et al.

(2020a) showed that having a candidate to target signif-

icantly improves GW-derived upper limits on the binary

chirp mass. Therefore, it is logical for GW searches

to specifically target SMBHB candidates identified in

time-domain surveys. Producing a large number of

high-quality electromagnetic SMBHB candidates from
LSST will provide a wealth of candidates to search for in
PTA data. This population of candidates will also pro-

vide critical information about the population of SMB-

HBs that create the stochastic gravitational wave back-

ground, which, as stated above, may be detectable by

PTAs extremely soon (Pol et al. 2021).

5. CONCLUSIONS

Using extensive simulations of time-domain observa-

tions of AGN, coupled with a Bayesian model selec-

tion and parameter estimation framework, we have ex-

plored the capabilities of current and future surveys

for SMBHB identification. In particular, we simulated

quasar light curves with DRW variability with a realis-

tic distribution of σ and τ , as well as binary light curves

with sinusoidal variability on top of a DRW process in-

cluding a wide range of periods and amplitudes. We ex-

plored the likelihoods of the respective models with an

MCMC analysis, and determined the preferred model

using the BIC. Our findings are summarized as follows:

• Our ability to detect periodicity on top of DRW

variability depends on the parameters both of the
sinusoid and of the noise. Short periods and high
amplitudes are found at higher rates, whereas light

curves with significant noise contribution (high σ)

are recovered at lower rates. The input phase and

τ do not appear to affect the detection rate.

• While our ability to discover long-period signals

is decreased, about 50% are recoverable. This is

significant, because longer-period SMBHBs are ex-

pected to be more common.

• The true positive rate is similar in both surveys.

• The incompleteness of the detectable binary sig-

nals is intrinsic due to the stochastic variability of

quasars. In the presence of white noise, all periodic
signals would be detectable almost independently
of the data quality.

• The false positive rate is higher for CRTS and al-
most minimal for LSST. This indicates that the

high quality of LSST light curves will allow for

the detection of very reliable SMBHB candidates.

• The false positive rate does not depend on the in-

put parameter of a simulated DRW signal, i.e. all

DRW light curves are equally likely to produce

false detections.

• There are parts of the parameters space where

there is no significant overlap between true signals

and false detections. If the recovered parameters

of a light curve fall in that regions (e.g., A/σ > 1

for LSST) it can significantly increase our confi-
dence in the periodicity detection.

• If periodicity is present in a light curve, and only a
DRW model is fit, the recovery of the parameters
is biased.

• Future work will include more realistic LSST light
curves, a wider range of binary signal models, and

a physically motivated binary population.
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