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Abstract—Autonomous vehicles (AVs) are expected to be an
integral part of the next generation of transportation systems,
where they will share the transportation network with human-
driven vehicles during the transition period. In this work, we
model the interactions between vehicles (two AVs or an AV and
a human-driven vehicle) in a lane changing process by
leveraging the Stackelberg game. We explicitly model driving
attitudes for both vehicles involved in lane changing. We design
five cases, in which the two vehicles have different levels of
knowledge, and make different assumptions, about the driving
attitude of the rival. We conduct theoretical analysis and
simulations for different cases in two lane changing scenarios,
namely changing lanes from a higher-speed lane to a lower-
speed lane, and from a lower-speed lane to a higher-speed lane.
We use four metrics (fuel consumption, discomfort, minimum
distance gap and lane change success rate) to investigate how
the performance of a single vehicle and that of the system will
be influenced by the level of information sharing, and whether
a vehicle trajectory optimized based on selfish criteria can
provide system-level benefits.

I. INTRODUCTION

The transportation system of tomorrow is envisioned to
be connected and automated. While a vast array of safety,
mobility, and environmental benefits are anticipated from
deploying these technologies [1], [2], [3], [4], [5], [6],
training automated vehicles to navigate the transportation
network remains an underdeveloped area of research. The
difficulty is two-fold: first, to enhance the adoption rate of
autonomous vehicles (AVs) and foster a seamless transition
from human-driven vehicles to autonomous ones, their
driving patterns should mimic those of human drivers, so as
to induce a familiar sense of travel in passengers that can
facilitate acceptance of AVs as a safe mode of transportation.
Second, during the transition period to a fully-automated
transportation system, a heterogeneous traffic stream of both
human-driven and autonomous vehicles need to share the
transportation network. For the interactions between human-
driven and autonomous vehicles to be safe, they need to
replicate some aspects of human driving.

With the development of machine learning techniques,
driving behavior can be sensed and modeled to high levels
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Fig. 1. Lane Changing Case

of accuracy. This provides an opportunity to build human-
like AVs and enhance interactions between human drivers
and the control entity in AVs [7], [8], [9]. However, such
advancements may put forward concerns on whether an AV
may gain advantage over human drivers by using its onboard
sensors and computational resources to collect and analyze
data from human drivers in real-time. On the other hand,
there are concerns on human drivers exploiting their
knowledge of AVs, e.g., taking advantage of the fact that
AVs tend to maintain larger safety gaps. As such, there is
interest in quantifying the value of knowing other vehicles’
driving attitude for a vehicle looking to maximize its own
utility. A further interesting problem is to analyze how
knowing different extent of knowledge by AVs or human
drivers on other vehicles may impact system-level
performance metrics.

In this context, this paper models the lane-changing
process of an AV, where the AV (vehicle 1 in Fig. 1) intends
to change lanes and insert itself downstream of a (human-
driven or an autonomous) vehicle (vehicle 2 in Fig. 1) in the
target lane. We consider this process to be a continuous one,
involving continuous assessment of two vehicles of their
relative positions, and revising their trajectories. We follow
a game-theoretic approach in order to capture the
interactions between vehicles, and investigate the degree to
which one entity’s perception of the driving attitude of the
other affects the success rate of lane changing, the fuel
consumption of the two vehicles, and safety and comfort
levels of their passengers.

There are a number of studies in the literature that focus
on developing models for vehicles while considering the
interactions between them. [10] utilizes hierarchical
reasoning to model interactions between vehicles and
reinforcement learning to update level-k policy in an
environment of all level-(k-1) vehicles. They simulate
macroscopic traffic with drivers of different levels of
reasoning. [11] and [12] also develop vehicle models by the
method of hierarchical reasoning, but in different application
scenarios. [13] performs an interaction-aware motion



prediction model for all surrounding vehicles. In their work,
the probability of different maneuvers can be calculated
based on observed trajectory.

A number of studies focus on the interaction between
human drivers and robot drivers. [14] assumes that humans
presume robots to behave rationally. As such, robots can
predict human behavior and take advantage of it in their
motion planning. [15] uses microscopic traffic simulations to
show that the average travel time decreases by a factor of 4
if altruistic AVs are introduced to traffic streams. [16] and
[17] leverage Kalman filter and machine learning to detect
and recover sensor attacks or sensor faults in AVs from
surrounding environment. [18] models surrounding vehicles
based on level-k game theory. Optimal decisions for an AV
at roundabouts are computed after estimating the driver type
of the opponent vehicle. [19] and [20] model the interaction
between AVs and human drivers using dynamic game
theory. [21] utilizes inverse reinforcement learning to model
human drivers, assuming they are perfectly rational. AVs can
thus purposefully elicit desired changes in the human state.
[22] claims that by interacting with humans, robots can learn
the humans’ internal states and thus optimize their
operations. However, this information might lead to the
robot taking advantage of the humans.

The difficulties in modeling the interactions between
human drivers and robot drivers are mainly from (1) the
uncertainty and possible irrationality of human behavior
[23], and the fact that not all human drivers have the same
model [24], and (2) the difficulty of predicting AV intentions
by human drivers [25]. The challenge in ensuring safety
without overly impacting performance is acknowledged
widely [26].

In this paper, we focus on the interaction of two vehicles
involved in a lane changing scenario: the vehicle who intends
to change lanes, and its upstream vehicle in the target lane.
For each vehicle, we quantify multiple important metrics
(including fuel cost, comfort level, safety level, and lane
changing success rate) under different levels of knowledge
of the other vehicle’s driving attitude (measured by its
aggressiveness level). Additionally, we investigate how
these metrics change at the system level under different
levels of information sharing. Insights from this research
could help inform regulations on the degree of information
sharing. Additionally, this work could shed light on whether
introducing incentives to encourage information sharing by
drivers could produce system-level benefits.

The rest of this paper is organized as follows. In
Section II.A, we introduce our Stackelberg game-based lane
changing model. In Section II.B, we present a simulation
environment and different case settings for different degrees
of information sharing, and list four metrics to measure the
individual vehicle and system performance. We then present
a number of theoretical observations under simplified
models in Section III.A, and analyze the simulation results

obtained in Matlab for the full model in Section III.B. We
summarize the takeaways in Section I'V.

II. METHOD

A. Stackelberg Game-Based Lane Changing Model

We model the lane changing process using a Stackelberg
game [27]. In this game, the subject vehicle who intends to
change lanes is the leader (vehicle 1 in Fig. 1), and the
vehicle upstream the subject vehicle in the target lane is the
follower (vehicle 2 in Fig. 1). The game starts by vehicle 1
deciding to either “Stay in the current lane” or “Change
lanes”, where each of these decisions is accompanied with a
decision on longitudinal acceleration. Following vehicle 1°s
decision, vehicle 2 decides its longitudinal acceleration
accordingly. Assuming both vehicles are rational players,
each vehicle solves a bi-level optimization problem to
maximize its payoff, denoted by U‘ i€ {1,2}, while
assuming that the other vehicle aims to maximize its own
payoff.

Following the work by [24], we assume the payoffs of
the two vehicles involved in the lane-changing process are
affected by their perception of a suitable safety gap with
other vehicles, their level of protectiveness of the space
ahead of them, and their level of comfort, where all these
factors are a function of the drivers’ driving attitudes. The
driving attitude of a vehicle is modeled by a parameter g,
which can be viewed as the aggressiveness factor of the
driver and bounded within the range [@min, Gmax]-

Note that while we leverage the work from [24] in our
modeling, there are several important modifications we
made to make the model more representative of the lane
changing behaviour in practice: (i) We utilize a more
realistic trajectory model in our work — while [24] utilizes a
piece-wise constant acceleration function to describe a
vehicle’s longitudinal motion, we adopt a time-based quintic
function as our trajectory function to guarantee a smooth
overall trajectory [28]. (ii) Rather than assuming that the
trajectories are computed by a central controller, we assume
each vehicle will compute its own trajectory based on its
knowledge of the rival. (iii) We explicitly consider the
computation/perception-reaction delay and the control
period for both vehicles. (iv) We capture a more realistic
driving scenario by incorporating a number of additional
parameters that are related to aggressiveness, e.g., ideal
headway and lateral average speed. We introduce “functions
of aggressiveness” to incorporate these factors in our model.
(v) We assume that a vehicle’s safety payoff is a function of
the smallest gap it maintains with other vehicles. For
example, in Fig. 1, after vehicle 1 changes lanes, it will create
a time gap with vehicle A and one with vehicle 2. The
smaller of these two time gaps will be considered as the final
safety payoff. In the remaining of this section, we will first
layout the vehicle trajectory, and then mathematically



present the total payoff of vehicles as a function of their
trajectories.

A vehicle’s trajectory, including its longitudinal and
lateral movements, is modeled by Eq. (1).
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where the coefficients a; and b; can be determined by the
boundary conditions in Egs. (2) and (3).
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In Eq. (2), t, is the starting time of the planned trajectory,
and its value is context-dependent. For example, if vehicle 1
is planning its own trajectory, t, = 0, since this vehicle is
aware of its real-time motion data. However, if vehicle 1 is
interested in predicting vehicle 2’s trajectory, there exists a
time delay of ¢} in obtaining vehicle 2’s motion data, hence
to = —tg. Let xg, vy, and a, o denote the longitudinal
position, velocity and acceleration at time t,, respectively.
Similarly, let y,, vy, and a,, be the lateral position,

velocity, and acceleration at time t,. Let us define tlj;t and
tlfm as the ending time of lateral and longitudinal motions,

respectively. Note that tl’;t and tlj;n may have different
values, which indicates that the lateral and longitudinal
motions do not necessarily take similar time to complete. In
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longitudinal and lateral posmons, Velocmes and acceleration
values at the ending time of the lane changing process. We
make the same assumptions as in [28] to model the status of
the vehicle at the end of the lane changing process, i.e., the
vehicle will aim to achieve the same speed as its leading
vehicle, with no longitudinal acceleration, no lateral
velocity, and zero acceleration.

We assume that the lateral average velocity during the
lane changing process, v, is a function of the aggressiveness
factor of vehicle 1 —the more aggressive the driver, the larger
the value of v, as formulated in Eq. (4).
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Qmin

v = vt 4 (PP — pin). “)
Amin

where v and v™" are the maximum and minimum

lateral velocity of the most aggressive (q; = Gmax) and the
most cautious (q; = qmin) drivers, respectively. The ending
time of the lateral motion, t{;t, can thus be computed as in

Eq. (5). Hence, x o and Yo f remain the only free decision
bat

variables.
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In the scenario shown in Fig. 1, vehicle 1 has both
longitudinal and lateral motions, while vehicles 2 and A only
have longitudinal motions.

A set of constraints need to be incorporated in motion
planning to ensure that the planned trajectory is safe, and to
account for the wvehicle’s mechanical capacity. These
constraints impose limitations on vehicular speed,
acceleration, and jerk, and guarantee collision avoidance.
Details of these constraints can be found in [29].

We adopt the same payoff functions as in [24]. The
overall payoff Uy, is a function of the space payoft, Ugpyce,
and the safety payoff, Uy, as shown in Eq. (6). Safety
payoff reflects the willingness to maintain a large-enough
gap with other vehicles to avoid collisions, and the space
payoff reflects the competing objective of attempting to keep
one’s relative position in the traffic stream (i.e., avoiding
other vehicles from injecting themselves downstream the
vehicle).

U= ()" ((1 - ﬁ(Q)) : Usafety(
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where f,, (J), as defined in Eq. (6), is the penalty on jerk
(the smaller the jerk, the more comfortable the ride, and thus
the larger the payoff). S(q), as defined in Eq. (8), is the
weight to balance space and safety payoffs (a higher weight
indicates a more aggressive driver). t;, as define in Eq. (9),
is the ideal safe headway (the driver achieves its maximum
safety payoff when its time gap with any other vehicle is
larger than t;).
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where t.x and tp;, are the maximum and minimum
ideal time gaps of the most cautious (q; = qmin) and the
most aggressive (q; = qmax) drivers, respectively. For
equations to compute Ugygry and Ugpyee, refer to [24].

As shown in [24], if driver aggressiveness factors are
publicly known to everyone, then the final solution of the
Stackelberg game will be:
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where for i = 1,2, U}, denotes the overall payoff of
vehicle i, q; denotes the aggressiveness factor of vehicle i,

xt s denotes the longitudinal position of vehicle i at time
lon
tf

., I'" denotes the strategies (action candidates) of vehicle

f

i.y'; denotes the lateral position of vehicle 1 at time t{,,.
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vehicles 1 and 2.

) represent the optimal solutions for

However, each of the vehicles 1 and 2 may not have
perfect knowledge of the other’s aggressiveness factor.
Moreover, they may have different communication and
computation performances. Accordingly, the interaction
between the two vehicles during the lane changing process
can be captured as in Fig. 2. As the figure shows, vehicles 1
and 2 independently compute the equilibrium state based on
their knowledge/perception of the other. Taking vehicle 1 as
an example, it obtains vehicle 2’s outdated motion data (with
delay 1), and computes the solution of the Stackelberg game
based on its knowledge of the aggressiveness factors of both
vehicles: q; and qq,, where q; is the true aggressiveness
factor of vehicle 1, and q,, is vehicle 1’s perception of
vehicle 2’s aggressiveness factor. At this iteration, the
planned trajectory within the first control period will be
executed. Next, the computation process will repeat in a
receding-horizon until vehicle 1 changes lane successfully or
the trial time reaches the pre-defined maximum value Ty, .

Vehicle 1 Vehicle 2

Computation Delay 1 Delay 2 y .
(Qz1. q2)
Control
Period 1 Control
-f Period 2
Control
Period 1 -
Control

Period 2

I

g is vehicle i’s aggressiveness factor

as perceived by vehicle j

Fig. 2. Two Vehicles Interaction Diagram

B. Simulation Setting

We consider multiple lane-changing scenarios that differ
in the extent each vehicle knows about the other’s
aggressiveness factor. More specifically, we consider the
following five cases: (i) Vehicles 1 and 2 have complete
knowledge of the aggressiveness factor of each other, i.c.,
q;1 = q1 and @qq, = q,. (ii) Vehicle 2 has complete
knowledge of vehicle 1’s aggressiveness factor, while
vehicle 1 assumes vehicle 2 to be the most aggressive, i.e.,
21 = q1 and qq3 = Qmax- (ili) Vehicle 2 has complete
knowledge of vehicle 1’s aggressiveness factor, while
vehicle 1 assumes vehicle 2 to be the most cautious, i.e.,
;1 = q1 and i3 = Qmin- (iv) Vehicle 1 has complete
knowledge of vehicle 2’s aggressiveness factor, while
vehicle 2 assumes vehicle 1 to be the most aggressive, i.c.,
Q12 = q; and @31 = Qmax- (V) Vehicle 1 has complete
knowledge of vehicle 2’s aggressiveness factor, while
vehicle 2 assumes vehicle 1 to be the most cautious, i.e.,
d12 = q2 and qz1 = Gmin-

For each case, we evaluate four metrics: (i) the total fuel
cost of vehicles 1 and 2, (ii) the total accumulated discomfort
along the trajectories of vehicles 1 and 2, (iii) the minimum
distance gap with other vehicles along the trajectories of
vehicles 1 and 2, and (iv) the success rate of lane changing.
Fuel cost and discomfort level are measured by the integral
of the square of acceleration and jerk, respectively.

In our study, we first find the equilibrium solutions
analytically, without considering safety and vehicle
mechanics constraints. Next, we use simulations that
incorporate these constraints to obtain the equilibrium
solutions in more realistic settings. We conduct simulations
by generating a total of 49 instances in which q; X g, €
{—3,-2,-1,0,1,2,3}2, where @i, is set to —3 and qpqy to
3. Similarly as in [28], for each instance we simulate two
scenarios: in scenario 1, vehicle 1 changes from a high-speed
lane (60 km/h) to a low-speed lane (40 km/h); in scenario 2,
vehicle 1 changes from a low-speed lane (60 km/h) to a high-
speed lane (80 km/h). Table I summaries parameters, along
with their definitions and assumed values in simulations.

III. RESULT ANALYSIS
A. Theoretical Intuition

We assume that during the lane changing process,
avoiding collisions and respecting a vehicle’s mechanical
constraints have the highest priority, balancing the space and
safety payoffs has the second highest priority, and comfort
has the least priority. To enforce the first priority, minimum
gaps and the vehicles’ mechanical constraints are
incorporated as constraints. To address the second priority,
we set w in Eq. (7) to a large value, which results in f,, (J)
approaching 1 and U, approximating to a linear combination
of Usafety and Uspace-



TABLE I

PARAMETER DEFINITIONS AND VALUES

Parameter Value Definition

th 0.7 secs Computation/perception-reaction delay of vehicle i

té 0.7 secs Control period of vehicle i

Vio 60 km/h Initial velocity of vehicle 1

v2, 40 kmv/h or 80 km/h Initial velocity of vehicle 2

qi €{-3,-2,-1,0,1,2,3} Aggressiveness factor of vehicle i

qji €{-3,-2,-1,0,1,2,3} Aggressiveness factor of vehicle i as perceived by vehicle j
w 100 Weight in Eq. (7) to compute payoff’s penalty on jerk

ty € [tp,min> thmax] = [1,3] secs Ideal time gap between vehicles

v € [Vimins> Vimax] = [0.5,1.75] m/s Average lateral velocity in the lane changing process

f Length of the prediction horizon (duration of the longitudinal motion during
tion 10 secs lane changing)

gmg

x5 v2, meters Initial position of vehicle 1
x? 0 meter Initial position of vehicle 2
x4 3v2, meters Initial position of vehicle A
Variable Domain Definition
x;lfo . € [xs, x:fu n] meters Longitudinal position of vehicle 1 at tlfm
J’tllfa . € {0, 3.5} meters Lateral position of vehicle 1 at tlj;t
XZ); . € [x3, x:}; n] meters Longitudinal position of vehicle 2 at tlj:m

TABLE II

OPTIMAL STRATEGY FOR VEHICLE 2 WITHOUT ACCOUNTING FOR SAFETY AND VEHICLE MECHANICS CONSTRAINTS

Vehicle 1 Action

Driving Attitude of Vehicle 2

Aggressive Cautious

ﬁ@ﬁ>1—ﬁWQ

B@ﬂ<1—ﬁwﬁ

Vehicle 1 changes lane 6

t2 6 ti
Stay as close to vehicle 1 as possible

Maintain a time headway that is no less than t2

£(q2) > 1-£(q2)

Vehicle 1 stays in the 2
3 ti

current lane

Maintain a larger longitudinal position than vehicle 1

B(qz) 1-pB(q2)
_ < [ ——
3 th
Maintain a time headway that is no less than t?

Next we will first conduct theoretical analysis without
considering the safety and vehicle mechanics constraints.
Then later in Section III.B, we will use simulations to
conduct extensive analyses that take into account of these
constraint sets.

Table II shows the optimal actions for vehicle 2 in
response to an action by vehicle 1. For example, if vehicle 1
chooses to change to vehicle 2’s lane, vehicle 2 will attempt
to be as close to vehicle 1 as possible if it is aggressive
LICARS 1—ﬁ2(qz)

6 t2
time headway that is no less than t2. Following this policy,
vehicle 2 can maximize its payoff U3,.

enough (i.e., ); otherwise it will maintain a

As discussed in Section II.A, one of the contributions of
this work is to consider a vehicle’s ideal safety gap to be a
function of the driver’s driving attitude (aggressiveness). As

the results presented in Table II demonstrate, if vehicle 2’s
ideal safety gap t? is not a function of its aggressiveness
factor, the optimal action of vehicle 2 will not depend on the
driving attitude of vehicle 1. This indicates that even if
vehicle 1 has a wrong estimation for wvehicle 2’s
aggressiveness factor (i.e., g1, # q5), as long as inequalities

B(le) < 1_Bt(flz) and 5(22) < 1_[:§q2) hold, its prediction of
b b

vehicle 2’s behavior remains unchanged. However, in real
driving scenarios, people with different driving attitudes will
typically require different safety gaps. This also motivates
our modification of the model in [24] to assumes that the gap
is dependent of the driver’s aggressiveness factor.

Table III shows the optimal xlf and its corresponding
lon

payoff UJ, for different actions of vehicle 1 and different
aggressiveness factor levels of vehicle 2, without



considering the safety gap and vehicle mechanical

constraints. The optimal action ytlf is determined by
lat

comparing the payoffs in Table III. If vehicle 2 is aggressive,
vehicle 1 will choose to change lanes if Eq. (13) holds, and
stay in the original lane otherwise.

(1 - ﬂ(ch)) : (
> (1= ) + B - (

2tmin
2

tmin

3

- 1) +B(q0) -

2tmin _ 1)

3
)/ <v:f ) is the minimum
lon

(13)

gap

where tyin = (lear + 1900

time headway (vtFlf is the following vehicle’s velocity at
on

time tl’:m).

If vehicle 2 is cautious, vehicle 1 will change lanes if
Eq. ([condition Ic_2]) holds, and stay in the original lane
otherwise.

2

(1- B(qp) - min (Zﬁ
ty

tp

- 1'1> + ﬁ(ql) : 3

)

If t2 > t}, this inequality Eq. (14) will always hold,
which indicates vehicle 1 will always change lanes if it is
more aggressive than vehicle 2.

2t7 (14)

> (1_B(Q1))+ﬁ(‘h)'<?_1

From Egs. (13) and (14), we can see that when vehicle 2
is aggressive, vehicle 1°s optimal decision does not depend
on the exact value of q, (as g, does not appear in Eq. (13)).
While in the case that vehicle 2 is cautious, vehicle 2’s
aggressiveness extent will influence vehicle 1’s optimal
action.

When considering constraints on safety gap and vehicle
mechanics (e.g., constraints that enforce speed, acceleration,
jerk and collision avoidance), optimal solutions may deviate
from those presented in Tables II and III. In our simulation

model, xtlf and y:f are vehicle 1°s decision variables that
lon lat

indicate the longitudinal and lateral positions of this vehicle

at the end of the planning horizon. The decision variable ytlf
lat

determines the lane in which vehicle 1 is positioned at the
end of the planning horizon, indicating whether the lane
changing process has been completed successfully. The

decision variable xlf indicates the detailed trajectory of the
lon

vehicle.

B. Experimental Results

In this section, we compare fuel cost, discomfort,
distance gap and lane changing success rate for different
cases and different scenarios. Fig. 3 and Fig. 4 are box-plots
for lane changing scenarios from 60 km/h to 40 km/h and
from 60 km/h to 80 km/h, respectively. The values showed
in these figures are sum of the values for both vehicle
trajectories.

Fig. 3 demonstrates that when the subject vehicle
(vehicle 1) is moving from a higher-speed lane into a lower-
speed lane, case (ii) provides the best general outcome (the
smallest fuel cost, highest safety gap, and least discomfort),
where vehicle 1 assumes that vehicle 2 is the most aggressive
and vehicle 2 has complete knowledge of wvehicle 1’s
aggressiveness level. This can be attributed to the low rate of
lane-changing success under this case — since vehicle 1
assumes that vehicle 2 is aggressive, for most cases an intent
for lane changing results in an equilibrium solution that does
not involve lane changing. As such, vehicles do not
experience the higher fuel consumption, discomfort, and
safety risks associated with frequent changes in speed and
acceleration, which are inherent parts of the lane-changing
process. Fig. 3 also indicates that all other cases achieve
success rates in lane changing that are similar to each other,
and higher than that of case (ii). In general, case (ii)
provides fuel consumption, distance gap, discomfort level,
and large-changing success rate that are different from the
same metrics for other cases in a statistically significant
manner (at the 5% significance level), while there is no
statistically significant difference between any of the metrics
among other cases according to paired Student’s t-tests.

TABLE III

OPTIMAL x:f AND ITS CORRESPONDING PAYOFF FOR VEHICLE 1 WITHOUT ACCOUNTING FOR SAFETY AND VEHICLE MECHANICS

lon

Driving Attitude Lateral Position of Vehicle 1 at the End of the Horizon, ytllfa .
of Vehicle 2 Stay in the current lane Change lanes

Maintain a larger longitudinal position than vehicle 2 Catch up with vehicle A (longitudinally)
Aggressive 2tmi tmi 2tmi

e (1-B(a) ( o _ 1> +Bla) - (1- @)+ B - (32— 1)
b

Maintain a time headway that is no less than min(tl}, tlf) Maintain a larger longitudinal position than vehicle 2

Cautious (2t} t? 2t¢
(1-B(g1)) - min e 1L,1)+B(q) - 3 (1-B@)+B)- 3 - 1
b
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Fig. 3. Four Metrics under Different Cases for the Scenario where Vehicle 1 Changes Lane from 60 km/h to 40 km/h
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Fig. 4. Four Metrics under Different Cases for the Scenario where Vehicle 1 Changes Lane from 60 km/h to 80 km/h

Fig. 4 shows the fuel cost, distance gap, discomfort level,
and lane-changing success rate for the scenario in which the
subject vehicle (vehicle 1) intends to change from a lower-
speed lane to a higher-speed lane. In this scenario, case (v),
in which vehicle 1 has complete information about the
aggressiveness factor of vehicle 2 but vehicle 2 assumes
vehicle 1 to be the most cautious, provides the best results in
fuel consumption and comfort. Similar to the previous
scenario, these results can be attributed to vehicle 1’s low
lane-changing success rate, which is due to its cautious
attitude. This figure indicates that the highest distance gaps
are maintained under case (ii), in which vehicle 1 perceives
vehicle 2 to be extremely aggressive. Due to this perception,
lane changing can rarely be completed (note the low success
rate), and only under circumstances where a comfortable
safety gap can be maintained. However, the failed attempts

at lane changing could lead to higher fuel costs and
discomfort levels, as demonstrated in Fig. 4.

Fig. 5 shows a successful lane changing example in case
(iii). At about t = 3 seconds, vehicle 1 starts to change
lanes, assuming that vehicle 2 is the most cautious. However,
it later cancels this lane changing plan as its computed
trajectory does not allow for a safe lane change. Atabout t =
5, vehicle 1 starts another attempt to change lanes, which is
successfully executed. Fig. 6 shows another example based
on case (iii) in which vehicle 1 fails to change lanes.

Tables IV and V display the best and worst cases for each
metric, for vehicle 1, vehicle 2, and at the system level
(computed as sum of the relevant metrics for both vehicles).
Interestingly, these tables demonstrate that under no scenario
are the best metric values obtained under vehicles having full
knowledge of each other’s aggressiveness factor (i.e., case
i). For example in Table V, the best cases for vehicle 1 in



terms of the fuel cost and safety metrics are not obtained
under having the full knowledge of vehicle 2’s
aggressiveness factor, but are under making assumptions on
vehicle 2. It is only for the comfort metric that vehicle 1
would benefit from having full knowledge of vehicle 2’s
aggressiveness factor. These tables also suggest that the
worst and best cases of information sharing depend on the
relative speeds of the original and target lanes. For example,
when vehicle 1 attempts to move from a higher-speed lane to
a lower-speed lane, case (ii) provides the best results
according to all three metrics. However, when moving from
a lower-speed lane to a higher-speed lane, vehicle 1 may
benefit differently under various information levels
depending on the metric of interest. Finally, it is interesting
to observe that in Table IV, when vehicle 1 is moving from
the higher-speed to the lower-speed lane, the system level
benefits align with vehicle 1°s benefit. Conversely, Table V
suggests that when vehicle 1 attempts to move from a lower-
speed to a higher-speed lane, system level benefits align with
vehicle 2’s benefits. These observations suggest that the
system level benefits are in general more aligned with the
benefits of the vehicle who is traveling on the higher-speed
lane.
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TABLE IV
VEHICLE 1 CHANGES LANES FROM 60 KM/H LANE TO 40 KM/H
LANE
. Vehicle 1 Vehicle 2 Both Vehicles
Metrics
Best | Worse | Best | Worst | Best | Worst

Fuel cost (ii) (i) (iv) ) (ii) (i)
Discomfort (ii) (i) v) (iv) (ii) (iv)
Distance gap (ii) (iii) (iv) ) (ii) (iii)
Success rate — — — — (iii) (ii)

TABLE V
VEHICLE 1 CHANGES LANES FROM 60 KM/H LANE TO 80 KM/H
LANE
Metrics Vehicle 1 Vehicle 2 Both Vehicles
Best | Worse | Best | Worst | Best | Worst

Fuel cost (iii) (ii) ) (iv) ) (ii)
Discomfort (iv) (ii) W) (iv) ) (ii)
Distance gap (ii) (iii) (i) (iii) (ii) (iii)

Success rate — (iii) v)

IV. CONCLUSION

In this paper, we developed a realistic game-theoretic
lane changing model, in which driving attitude are explicitly
modeled. We assume the two vehicles most closely involved
in the lane-changing process continuously monitor each
other and compute new trajectories accordingly. We account
for computation/perception-reaction delay as well as the
control period for both vehicles during this process. We
relaxed the constraints on safety and mechanical constraints
on the vehicles, which enabled us to obtain closed-form
equilibrium  solutions. Analyzing these closed-form
solutions provides insights into how a vehicle’s trajectory is
impacted by its level of access to information on the driving
attitude (aggressiveness level) of the rival. Additionally, we
used simulations to quantify the change in four metrics (fuel
consumption, discomfort feeling, minimum distance gap and
lane changing success rate) under more realistic scenarios
where vehicle safety and mechanical constraints are present.
Our simulation results suggest that, interestingly, the
complete information case, in which both vehicles have full
information on the driving attitude of the rival, does not
provide the best system-level performance under any of the
metrics. Simulation results suggest that the optimal level of
information sharing depends on multiple factors, including
(1) the entity for which we are optimizing (e.g., the level of
information that provides the best trajectory for the vehicle
changing lane may be different from the level of information
that provides the best trajectory for the vehicle who is
traveling on the target lane), and (2) the metric of interest.
However, despite the dependency of the equilibrium solution
on these factors, some general interesting insights can be
drawn from the simulation results; for example, the best
system-level solutions, under all metrics, are in line with the
the solutions that optimize the trajectory for the vehicle
traveling in the higher-speed lane, regardless of whether this
vehicle intends to change lanes, or is in the target lane.
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