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 Impact of Sharing Driving Attitude Information: 
A Quantitative Study on Lane Changing  

Xiangguo Liu1, Neda Masoud2, Qi Zhu1  

Abstract−Autonomous vehicles (AVs) are expected to be an 
integral part of the next generation of transportation systems, 
where they will share the transportation network with human-
driven vehicles during the transition period. In this work, we 
model the interactions between vehicles (two AVs or an AV and 
a human-driven vehicle) in a lane changing process by 
leveraging the Stackelberg game. We explicitly model driving 
attitudes for both vehicles involved in lane changing. We design 
five cases, in which the two vehicles have different levels of 
knowledge, and make different assumptions, about the driving 
attitude of the rival. We conduct theoretical analysis and 
simulations for different cases in two lane changing scenarios, 
namely changing lanes from a higher-speed lane to a lower-
speed lane, and from a lower-speed lane to a higher-speed lane. 
We use four metrics (fuel consumption, discomfort, minimum 
distance gap and lane change success rate) to investigate how 
the performance of a single vehicle and that of the system will 
be influenced by the level of information sharing, and whether 
a vehicle trajectory optimized based on selfish criteria can 
provide system-level benefits. 

I. INTRODUCTION 

The transportation system of tomorrow is envisioned to 
be connected and automated. While a vast array of safety, 
mobility, and environmental benefits are anticipated from 
deploying these technologies [1], [2], [3], [4], [5], [6], 
training automated vehicles to navigate the transportation 
network remains an underdeveloped area of research. The 
difficulty is two-fold: first, to enhance the adoption rate of 
autonomous vehicles (AVs) and foster a seamless transition 
from human-driven vehicles to autonomous ones, their 
driving patterns should mimic those of human drivers, so as 
to induce a familiar sense of travel in passengers that can 
facilitate acceptance of AVs as a safe mode of transportation. 
Second, during the transition period to a fully-automated 
transportation system, a heterogeneous traffic stream of both 
human-driven and autonomous vehicles need to share the 
transportation network. For the interactions between human-
driven and autonomous vehicles to be safe, they need to 
replicate some aspects of human driving. 

With the development of machine learning techniques, 
driving behavior can be sensed and modeled to high levels 

of accuracy. This provides an opportunity to build human-
like AVs and enhance interactions between human drivers 
and the control entity in AVs [7], [8], [9]. However, such 
advancements may put forward concerns on whether an AV 
may gain advantage over human drivers by using its onboard 
sensors and computational resources to collect and analyze 
data from human drivers in real-time. On the other hand, 
there are concerns on human drivers exploiting their 
knowledge of AVs, e.g., taking advantage of the fact that 
AVs tend to maintain larger safety gaps. As such, there is 
interest in quantifying the value of knowing other vehicles’ 
driving attitude for a vehicle looking to maximize its own 
utility. A further interesting problem is to analyze how 
knowing different extent of knowledge by AVs or human 
drivers on other vehicles may impact system-level 
performance metrics. 

In this context, this paper models the lane-changing 
process of an AV, where the AV (vehicle 1 in Fig. 1) intends 
to change lanes and insert itself downstream of a (human-
driven or an autonomous) vehicle (vehicle 2 in Fig. 1) in the 
target lane. We consider this process to be a continuous one, 
involving continuous assessment of two vehicles of their 
relative positions, and revising their trajectories. We follow 
a game-theoretic approach in order to capture the 
interactions between vehicles, and investigate the degree to 
which one entity’s perception of the driving attitude of the 
other affects the success rate of lane changing, the fuel 
consumption of the two vehicles, and safety and comfort 
levels of their passengers. 

There are a number of studies in the literature that focus 
on developing models for vehicles while considering the 
interactions between them. [10] utilizes hierarchical 
reasoning to model interactions between vehicles and 
reinforcement learning to update level-k policy in an 
environment of all level-(k-1) vehicles. They simulate 
macroscopic traffic with drivers of different levels of 
reasoning. [11] and [12] also develop vehicle models by the 
method of hierarchical reasoning, but in different application 
scenarios. [13] performs an interaction-aware motion 
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Fig. 1. Lane Changing Case 
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prediction model for all surrounding vehicles. In their work, 
the probability of different maneuvers can be calculated 
based on observed trajectory. 

A number of studies focus on the interaction between 
human drivers and robot drivers. [14] assumes that humans 
presume robots to behave rationally. As such, robots can 
predict human behavior and take advantage of it in their 
motion planning. [15] uses microscopic traffic simulations to 
show that the average travel time decreases by a factor of 4 
if altruistic AVs are introduced to traffic streams. [16] and 
[17] leverage Kalman filter and machine learning to detect 
and recover sensor attacks or sensor faults in AVs from 
surrounding environment. [18] models surrounding vehicles 
based on level-k game theory. Optimal decisions for an AV 
at roundabouts are computed after estimating the driver type 
of the opponent vehicle. [19] and [20] model the interaction 
between AVs and human drivers using dynamic game 
theory. [21] utilizes inverse reinforcement learning to model 
human drivers, assuming they are perfectly rational. AVs can 
thus purposefully elicit desired changes in the human state. 
[22] claims that by interacting with humans, robots can learn 
the humans’ internal states and thus optimize their 
operations. However, this information might lead to the 
robot taking advantage of the humans. 

The difficulties in modeling the interactions between 
human drivers and robot drivers are mainly from (1) the 
uncertainty and possible irrationality of human behavior 
[23], and the fact that not all human drivers have the same 
model [24], and (2) the difficulty of predicting AV intentions 
by human drivers [25]. The challenge in ensuring safety 
without overly impacting performance is acknowledged 
widely [26]. 

In this paper, we focus on the interaction of two vehicles 
involved in a lane changing scenario: the vehicle who intends 
to change lanes, and its upstream vehicle in the target lane. 
For each vehicle, we quantify multiple important metrics 
(including fuel cost, comfort level, safety level, and lane 
changing success rate) under different levels of knowledge 
of the other vehicle’s driving attitude (measured by its 
aggressiveness level). Additionally, we investigate how 
these metrics change at the system level under different 
levels of information sharing. Insights from this research 
could help inform regulations on the degree of information 
sharing. Additionally, this work could shed light on whether 
introducing incentives to encourage information sharing by 
drivers could produce system-level benefits. 

The rest of this paper is organized as follows. In 
Section II.A, we introduce our Stackelberg game-based lane 
changing model. In Section II.B, we present a simulation 
environment and different case settings for different degrees 
of information sharing, and list four metrics to measure the 
individual vehicle and system performance. We then present 
a number of theoretical observations under simplified 
models in Section III.A, and analyze the simulation results 

obtained in Matlab for the full model in Section III.B. We 
summarize the takeaways in Section IV. 

II. METHOD 

A. Stackelberg Game-Based Lane Changing Model 
We model the lane changing process using a Stackelberg 

game [27]. In this game, the subject vehicle who intends to 
change lanes is the leader (vehicle 1 in Fig. 1), and the 
vehicle upstream the subject vehicle in the target lane is the 
follower (vehicle 2 in Fig. 1). The game starts by vehicle 1 
deciding to either “Stay in the current lane” or “Change 
lanes”, where each of these decisions is accompanied with a 
decision on longitudinal acceleration. Following vehicle 1’s 
decision, vehicle 2 decides its longitudinal acceleration 
accordingly. Assuming both vehicles are rational players, 
each vehicle solves a bi-level optimization problem to 
maximize its payoff, denoted by 𝑈𝑖,  𝑖 ∈ {1,2}, while 
assuming that the other vehicle aims to maximize its own 
payoff. 

Following the work by [24], we assume the payoffs of 
the two vehicles involved in the lane-changing process are 
affected by their perception of a suitable safety gap with 
other vehicles, their level of protectiveness of the space 
ahead of them, and their level of comfort, where all these 
factors are a function of the drivers’ driving attitudes. The 
driving attitude of a vehicle is modeled by a parameter 𝑞, 
which can be viewed as the aggressiveness factor of the 
driver and bounded within the range [𝑞𝑚𝑖𝑛, 𝑞𝑚𝑎𝑥]. 

Note that while we leverage the work from [24] in our 
modeling, there are several important modifications we 
made to make the model more representative of the lane 
changing behaviour in practice: (𝑖) We utilize a more 
realistic trajectory model in our work – while [24] utilizes a 
piece-wise constant acceleration function to describe a 
vehicle’s longitudinal motion, we adopt a time-based quintic 
function as our trajectory function to guarantee a smooth 
overall trajectory [28]. (𝑖𝑖) Rather than assuming that the 
trajectories are computed by a central controller, we assume 
each vehicle will compute its own trajectory based on its 
knowledge of the rival. (𝑖𝑖𝑖) We explicitly consider the 
computation/perception-reaction delay and the control 
period for both vehicles. (𝑖𝑣) We capture a more realistic 
driving scenario by incorporating a number of additional 
parameters that are related to aggressiveness, e.g., ideal 
headway and lateral average speed. We introduce “functions 
of aggressiveness” to incorporate these factors in our model. 
(𝑣) We assume that a vehicle’s safety payoff is a function of 
the smallest gap it maintains with other vehicles. For 
example, in Fig. 1, after vehicle 1 changes lanes, it will create 
a time gap with vehicle A and one with vehicle 2. The 
smaller of these two time gaps will be considered as the final 
safety payoff. In the remaining of this section, we will first 
layout the vehicle trajectory, and then mathematically 
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present the total payoff of vehicles as a function of their 
trajectories. 

A vehicle’s trajectory, including its longitudinal and 
lateral movements, is modeled by Eq. (1). 

 
{
𝑥(𝑡) = 𝑎5𝑡

5 + 𝑎4𝑡
4 + 𝑎3𝑡

3 + 𝑎2𝑡
2 + 𝑎1𝑡 + 𝑎0

𝑦(𝑡) = 𝑏5𝑡
5 + 𝑏4𝑡

4 + 𝑏3𝑡
3 + 𝑏2𝑡

2 + 𝑏1𝑡 + 𝑏0
 (1) 

where the coefficients 𝑎𝑖  and 𝑏𝑖 can be determined by the 
boundary conditions in Eqs. (2) and (3). 

 
{
𝑥(𝑡0) = 𝑥0, 𝑥̇(𝑡0) = 𝑣𝑥,0, 𝑥̈(𝑡0) = 𝑎𝑥,0
𝑦(𝑡0) = 𝑦0, 𝑦̇(𝑡0) = 𝑣𝑦,0, 𝑦̈(𝑡0) = 𝑎𝑦,0

 (2) 

 
{
𝑥(𝑡l𝑜𝑛

𝑓
) = 𝑥

𝑡l𝑜𝑛
𝑓 ,  𝑥̇(𝑡l𝑜𝑛

𝑓
) = 𝑣

𝑥,𝑡l𝑜𝑛
𝑓 ,  𝑥̈(𝑡l𝑜𝑛

𝑓
) = 𝑎

𝑥,𝑡l𝑜𝑛
𝑓

𝑦(𝑡l𝑎𝑡
𝑓
) = 𝑦

𝑡l𝑎𝑡
𝑓 ,  𝑦̇(𝑡l𝑎𝑡

𝑓
) = 𝑣

𝑦,𝑡l𝑎𝑡
𝑓 ,  𝑦̈(𝑡l𝑎𝑡

𝑓
) = 𝑎

𝑦,𝑡l𝑎𝑡
𝑓

 (3) 

In Eq. (2), 𝑡0 is the starting time of the planned trajectory, 
and its value is context-dependent. For example, if vehicle 1 
is planning its own trajectory, 𝑡0 = 0, since this vehicle is 
aware of its real-time motion data. However, if vehicle 1 is 
interested in predicting vehicle 2’s trajectory, there exists a 
time delay of 𝑡𝑑1 in obtaining vehicle 2’s motion data, hence 
𝑡0 = −𝑡𝑑

1. Let 𝑥0, 𝑣𝑥,0, and 𝑎𝑥,0 denote the longitudinal 
position, velocity and acceleration at time 𝑡0, respectively. 
Similarly, let 𝑦0, 𝑣𝑦,0, and 𝑎𝑦,0 be the lateral position, 
velocity, and acceleration at time 𝑡0. Let us define 𝑡l𝑎𝑡

𝑓  and 
𝑡l𝑜𝑛
𝑓  as the ending time of lateral and longitudinal motions, 

respectively. Note that 𝑡l𝑎𝑡
𝑓  and 𝑡l𝑜𝑛

𝑓  may have different 
values, which indicates that the lateral and longitudinal 
motions do not necessarily take similar time to complete. In 
Eq. (3), 𝑥

𝑡l𝑜𝑛
𝑓 , 𝑦

𝑡l𝑎𝑡
𝑓 , 𝑣

𝑥,𝑡l𝑜𝑛
𝑓 , 𝑣

𝑦,𝑡l𝑎𝑡
𝑓 , 𝑎

𝑥,𝑡l𝑜𝑛
𝑓 , and 𝑎

𝑦,𝑡l𝑎𝑡
𝑓  denote 

longitudinal and lateral positions, velocities and acceleration 
values at the ending time of the lane changing process. We 
make the same assumptions as in [28] to model the status of 
the vehicle at the end of the lane changing process, i.e., the 
vehicle will aim to achieve the same speed as its leading 
vehicle, with no longitudinal acceleration, no lateral 
velocity, and zero acceleration. 

We assume that the lateral average velocity during the 
lane changing process, 𝑣𝑙, is a function of the aggressiveness 
factor of vehicle 1 – the more aggressive the driver, the larger 
the value of 𝑣𝑙, as formulated in Eq. (4). 

𝑣𝑙 = 𝑣𝑙
min + (𝑣𝑙

max − 𝑣𝑙
min) ⋅

𝑞1 − 𝑞min

𝑞max − 𝑞min
 (4) 

where 𝑣𝑙max and 𝑣𝑙min are the maximum and minimum 
lateral velocity of the most aggressive (𝑞1 = 𝑞max) and the 
most cautious (𝑞1 = 𝑞min) drivers, respectively. The ending 
time of the lateral motion, 𝑡l𝑎𝑡

𝑓 , can thus be computed as in 
Eq. (5). Hence, 𝑥

𝑡l𝑜𝑛
𝑓  and 𝑦

𝑡l𝑎𝑡
𝑓  remain the only free decision 

variables. 

𝑡l𝑎𝑡
𝑓 = 𝑡0 +

|𝑦
𝑡l𝑎𝑡
𝑓 − 𝑦0|

𝑣𝑙

 (5) 

In the scenario shown in Fig. 1, vehicle 1 has both 
longitudinal and lateral motions, while vehicles 2 and A only 
have longitudinal motions. 

A set of constraints need to be incorporated in motion 
planning to ensure that the planned trajectory is safe, and to 
account for the vehicle’s mechanical capacity. These 
constraints impose limitations on vehicular speed, 
acceleration, and jerk, and guarantee collision avoidance. 
Details of these constraints can be found in [29]. 

We adopt the same payoff functions as in [24]. The 
overall payoff 𝑈all is a function of the space payoff, 𝑈space, 
and the safety payoff, 𝑈safety, as shown in Eq. (6). Safety 
payoff reflects the willingness to maintain a large-enough 
gap with other vehicles to avoid collisions, and the space 
payoff reflects the competing objective of attempting to keep 
one’s relative position in the traffic stream (i.e., avoiding 
other vehicles from injecting themselves downstream the 
vehicle). 

𝑈all = 𝑓𝑤(𝐽) ⋅ ((1 − 𝛽(𝑞)) ⋅ 𝑈safety (𝑥𝑡l𝑜𝑛
𝑓
1 , 𝑦

𝑡l𝑎𝑡
𝑓
1 , 𝑥

𝑡l𝑜𝑛
𝑓
2 , 𝑡𝑏)

+𝛽(𝑞) ⋅ 𝑈space (𝑥𝑡l𝑜𝑛
𝑓
1 , 𝑦

𝑡l𝑎𝑡
𝑓
1 , 𝑥

𝑡l𝑜𝑛
𝑓
2 ) + 1) − 1

 (6) 

where 𝑓𝑤(𝐽), as defined in Eq. (6), is the penalty on jerk 
(the smaller the jerk, the more comfortable the ride, and thus 
the larger the payoff). 𝛽(𝑞), as defined in Eq. (8), is the 
weight to balance space and safety payoffs (a higher weight 
indicates a more aggressive driver). 𝑡𝑏, as define in Eq. (9), 
is the ideal safe headway (the driver achieves its maximum 
safety payoff when its time gap with any other vehicle is 
larger than 𝑡𝑏). 

𝑓𝑤(𝐽) = exp[−
∫ 𝐽2
𝑡l𝑜𝑛
𝑓

𝑡0
(𝑡)d𝑡

𝑤 ⋅ (𝑡l𝑜𝑛
𝑓 − 𝑡0)

] (7) 

𝛽(𝑞) =
1

1 + 𝑒−𝑞
 (8) 

𝑡𝑏 = 𝑡max − (𝑡max − 𝑡min) ⋅
𝑞1 − 𝑞min

𝑞max − 𝑞min
 (9) 

where 𝑡max and 𝑡min are the maximum and minimum 
ideal time gaps of the most cautious (𝑞1 = 𝑞min) and the 
most aggressive (𝑞1 = 𝑞max) drivers, respectively. For 
equations to compute 𝑈safety and 𝑈space, refer to [24]. 

As shown in [24], if driver aggressiveness factors are 
publicly known to everyone, then the final solution of the 
Stackelberg game will be: 
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(𝑥
𝑡l𝑜𝑛
𝑓
1∗ , 𝑦

𝑡l𝑎𝑡
𝑓
1∗ ) = arg max

(𝑥
𝑡l𝑜𝑛
𝑓
1 ,𝑦

𝑡l𝑎𝑡
𝑓
1 )∈𝛤1

( min
𝑥
𝑡
l𝑜𝑛
𝑓
2 ∈𝛾2

𝑈all
1 (𝑥

𝑡l𝑜𝑛
𝑓
1 , 𝑦

𝑡l𝑎𝑡
𝑓
1 , 𝑥

𝑡l𝑜𝑛
𝑓
2 , 𝑞1)) (10) 

𝛾2 (𝑥
𝑡l𝑜𝑛
𝑓
1 , 𝑦

𝑡l𝑎𝑡
𝑓
1 ) ≜ {𝜉 ∈ 𝛤2: 𝑈all

2 (𝑥
𝑡l𝑜𝑛
𝑓
1 , 𝑦

𝑡l𝑎𝑡
𝑓
1 , 𝜉, 𝑞2)

≥ 𝑈all
2 (𝑥

𝑡l𝑜𝑛
𝑓
1 , 𝑦

𝑡l𝑎𝑡
𝑓
1 , 𝑥

𝑡l𝑜𝑛
𝑓
2 , 𝑞2) , ∀𝑥𝑡l𝑜𝑛

𝑓
2 ∈ 𝛤2}

 

(11) 

𝑥
𝑡l𝑜𝑛
𝑓
2∗ = arg min𝑥

𝑡
l𝑜𝑛
𝑓
2 ∈𝛾2𝑈a𝑙𝑙

1 (𝑥
𝑡l𝑜𝑛
𝑓
1∗ , 𝑦

𝑡l𝑎𝑡
𝑓
1∗ , 𝑥

𝑡l𝑜𝑛
𝑓
2 , 𝑞1) (12) 

where for 𝑖 = 1,2, 𝑈a𝑙𝑙
𝑖  denotes the overall payoff of 

vehicle 𝑖, 𝑞𝑖 denotes the aggressiveness factor of vehicle 𝑖, 
𝑥
𝑡l𝑜𝑛
𝑓
𝑖  denotes the longitudinal position of vehicle 𝑖 at time 

𝑡l𝑜𝑛
𝑓 , 𝛤𝑖  denotes the strategies (action candidates) of vehicle 
𝑖. 𝑦

𝑡l𝑎𝑡
𝑓
1  denotes the lateral position of vehicle 1 at time 𝑡l𝑎𝑡

𝑓 . 

(𝑥
𝑡l𝑜𝑛
𝑓
1∗ , 𝑦

𝑡l𝑎𝑡
𝑓
1∗ , 𝑥

𝑡l𝑜𝑛
𝑓
2∗ ) represent the optimal solutions for 

vehicles 1 and 2. 
However, each of the vehicles 1 and 2 may not have 

perfect knowledge of the other’s aggressiveness factor. 
Moreover, they may have different communication and 
computation performances. Accordingly, the interaction 
between the two vehicles during the lane changing process 
can be captured as in Fig. 2. As the figure shows, vehicles 1 
and 2 independently compute the equilibrium state based on 
their knowledge/perception of the other. Taking vehicle 1 as 
an example, it obtains vehicle 2’s outdated motion data (with 
delay 1), and computes the solution of the Stackelberg game 
based on its knowledge of the aggressiveness factors of both 
vehicles: 𝑞1 and 𝑞12, where 𝑞1 is the true aggressiveness 
factor of vehicle 1, and 𝑞12 is vehicle 1’s perception of 
vehicle 2’s aggressiveness factor. At this iteration, the 
planned trajectory within the first control period will be 
executed. Next, the computation process will repeat in a 
receding-horizon until vehicle 1 changes lane successfully or 
the trial time reaches the pre-defined maximum value 𝑇max. 

 

 
Fig. 2. Two Vehicles Interaction Diagram 

 

B. Simulation Setting 
We consider multiple lane-changing scenarios that differ 

in the extent each vehicle knows about the other’s 
aggressiveness factor. More specifically, we consider the 
following five cases: (𝑖) Vehicles 1 and 2 have complete 
knowledge of the aggressiveness factor of each other, i.e., 
𝑞21 = 𝑞1 and 𝑞12 = 𝑞2. (𝑖𝑖) Vehicle 2 has complete 
knowledge of vehicle 1’s aggressiveness factor, while 
vehicle 1 assumes vehicle 2 to be the most aggressive, i.e., 
𝑞21 = 𝑞1 and 𝑞12 = 𝑞max. (𝑖𝑖𝑖) Vehicle 2 has complete 
knowledge of vehicle 1’s aggressiveness factor, while 
vehicle 1 assumes vehicle 2 to be the most cautious, i.e., 
𝑞21 = 𝑞1 and 𝑞12 = 𝑞min. (𝑖𝑣) Vehicle 1 has complete 
knowledge of vehicle 2’s aggressiveness factor, while 
vehicle 2 assumes vehicle 1 to be the most aggressive, i.e., 
𝑞12 = 𝑞2 and 𝑞21 = 𝑞max. (𝑣) Vehicle 1 has complete 
knowledge of vehicle 2’s aggressiveness factor, while 
vehicle 2 assumes vehicle 1 to be the most cautious, i.e., 
𝑞12 = 𝑞2 and 𝑞21 = 𝑞min. 

For each case, we evaluate four metrics: (𝑖) the total fuel 
cost of vehicles 1 and 2, (𝑖𝑖) the total accumulated discomfort 
along the trajectories of vehicles 1 and 2, (𝑖𝑖𝑖) the minimum 
distance gap with other vehicles along the trajectories of 
vehicles 1 and 2, and (𝑖𝑣) the success rate of lane changing. 
Fuel cost and discomfort level are measured by the integral 
of the square of acceleration and jerk, respectively. 

In our study, we first find the equilibrium solutions 
analytically, without considering safety and vehicle 
mechanics constraints. Next, we use simulations that 
incorporate these constraints to obtain the equilibrium 
solutions in more realistic settings. We conduct simulations 
by generating a total of 49 instances in which 𝑞1 × 𝑞2 ∈
{−3,−2, −1,0,1,2,3}2, where 𝑞𝑚𝑖𝑛 is set to −3 and 𝑞𝑚𝑎𝑥 to 
3. Similarly as in [28], for each instance we simulate two 
scenarios: in scenario 1, vehicle 1 changes from a high-speed 
lane (60 km/h) to a low-speed lane (40 km/h); in scenario 2, 
vehicle 1 changes from a low-speed lane (60 km/h) to a high-
speed lane (80 km/h). Table I summaries parameters, along 
with their definitions and assumed values in simulations. 

III. RESULT ANALYSIS 

A. Theoretical Intuition 

We assume that during the lane changing process, 
avoiding collisions and respecting a vehicle’s mechanical 
constraints have the highest priority, balancing the space and 
safety payoffs has the second highest priority, and comfort 
has the least priority. To enforce the first priority, minimum 
gaps and the vehicles’ mechanical constraints are 
incorporated as constraints. To address the second priority, 
we set 𝑤 in Eq. (7) to a large value, which results in 𝑓𝑤(𝐽) 
approaching 1 and 𝑈all approximating to a linear combination 
of 𝑈safety and 𝑈space.
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TABLE I 

PARAMETER DEFINITIONS AND VALUES 

Parameter Value Definition 
𝑡𝑑
𝑖  0.7 secs Computation/perception-reaction delay of vehicle 𝑖 
𝑡𝑐
𝑖  0.7 secs Control period of vehicle 𝑖 
𝑣𝑥,0
1  60 km/h Initial velocity of vehicle 1 

𝑣𝑥,0
2  40 km/h or 80 km/h Initial velocity of vehicle 2 

𝑞𝑖  ∈ {−3, −2,−1,0,1,2,3} Aggressiveness factor of vehicle 𝑖 
𝑞𝑗𝑖  ∈ {−3, −2,−1,0,1,2,3} Aggressiveness factor of vehicle 𝑖 as perceived by vehicle 𝑗 
𝑤 100 Weight in Eq. (7) to compute payoff’s penalty on jerk 
𝑡𝑏 ∈ [𝑡𝑏,min , 𝑡𝑏,max] = [1,3] secs Ideal time gap between vehicles 
𝑣𝑙 ∈ [𝑣𝑙,𝑚𝑖𝑛, 𝑣𝑙,𝑚𝑎𝑥] = [0.5,1.75] m/s Average lateral velocity in the lane changing process 

𝑡l𝑜𝑛
𝑓  10 secs Length of the prediction horizon (duration of the longitudinal motion during 

lane changing) 
𝑥0
1 𝑣𝑥,0

2  meters Initial position of vehicle 1 
𝑥0
2 0 meter Initial position of vehicle 2 

𝑥0
𝐴 3𝑣𝑥,0

2  meters Initial position of vehicle A 
Variable Domain Definition 
𝑥
𝑡l𝑜𝑛
𝑓
1  ∈ [𝑥0

1, 𝑥
𝑡l𝑜𝑛
𝑓
𝐴 ] meters Longitudinal position of vehicle 1 at 𝑡l𝑜𝑛

𝑓  
𝑦
𝑡l𝑎𝑡
𝑓
1  ∈ {0, 3.5} meters Lateral position of vehicle 1 at 𝑡l𝑎𝑡

𝑓  
𝑥
𝑡l𝑜𝑛
𝑓
2  ∈ [𝑥0

2, 𝑥
𝑡l𝑜𝑛
𝑓
𝐴 ] meters Longitudinal position of vehicle 2 at 𝑡l𝑜𝑛

𝑓  

 

TABLE II 

OPTIMAL STRATEGY FOR VEHICLE 2 WITHOUT ACCOUNTING FOR SAFETY AND VEHICLE MECHANICS CONSTRAINTS 

Vehicle 1 Action 
Driving Attitude of Vehicle 2 

Aggressive Cautious 

Vehicle 1 changes lane 
𝛽(𝑞2)

6
≥
1 − 𝛽(𝑞2)

𝑡𝑏
2  

𝛽(𝑞2)

6
<
1 − 𝛽(𝑞2)

𝑡𝑏
2  

Stay as close to vehicle 1 as possible Maintain a time headway that is no less than 𝑡𝑏2 

Vehicle 1 stays in the 
current lane 

𝛽(𝑞2)

3
≥
1 − 𝛽(𝑞2)

𝑡𝑏
2  

𝛽(𝑞2)

3
<
1 − 𝛽(𝑞2)

𝑡𝑏
2  

Maintain a larger longitudinal position than vehicle 1 Maintain a time headway that is no less than 𝑡𝑏2 

Next we will first conduct theoretical analysis without 
considering the safety and vehicle mechanics constraints. 
Then later in Section III.B, we will use simulations to 
conduct extensive analyses that take into account of these 
constraint sets. 

Table II shows the optimal actions for vehicle 2 in 
response to an action by vehicle 1. For example, if vehicle 1 
chooses to change to vehicle 2’s lane, vehicle 2 will attempt 
to be as close to vehicle 1 as possible if it is aggressive 
enough (i.e., 𝛽(𝑞2)

6
≥

1−𝛽(𝑞2)

𝑡𝑏
2 ); otherwise it will maintain a 

time headway that is no less than 𝑡𝑏2. Following this policy, 
vehicle 2 can maximize its payoff 𝑈all

2 . 
As discussed in Section II.A, one of the contributions of 

this work is to consider a vehicle’s ideal safety gap to be a 
function of the driver’s driving attitude (aggressiveness). As 

the results presented in Table II demonstrate, if vehicle 2’s 
ideal safety gap 𝑡𝑏2 is not a function of its aggressiveness 
factor, the optimal action of vehicle 2 will not depend on the 
driving attitude of vehicle 1. This indicates that even if 
vehicle 1 has a wrong estimation for vehicle 2’s 
aggressiveness factor (i.e., 𝑞12 ≠ 𝑞2), as long as inequalities 
𝛽(𝑞12)

6
<

1−𝛽(𝑞12)

𝑡𝑏
2  and 𝛽(𝑞2)

6
<

1−𝛽(𝑞2)

𝑡𝑏
2  hold, its prediction of 

vehicle 2’s behavior remains unchanged. However, in real 
driving scenarios, people with different driving attitudes will 
typically require different safety gaps. This also motivates 
our modification of the model in [24] to assumes that the gap 
is dependent of the driver’s aggressiveness factor. 

Table III shows the optimal 𝑥
𝑡l𝑜𝑛
𝑓
1  and its corresponding 

payoff 𝑈all
1  for different actions of vehicle 1 and different 

aggressiveness factor levels of vehicle 2, without 
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considering the safety gap and vehicle mechanical 
constraints. The optimal action 𝑦

𝑡l𝑎𝑡
𝑓
1  is determined by 

comparing the payoffs in Table III. If vehicle 2 is aggressive, 
vehicle 1 will choose to change lanes if Eq. (13) holds, and 
stay in the original lane otherwise. 

(1 − 𝛽(𝑞1)) ⋅ (
2𝑡min

𝑡𝑏
1 − 1) + 𝛽(𝑞1) ⋅

𝑡min

3

> (1 − 𝛽(𝑞1)) + 𝛽(𝑞1) ⋅ (
2𝑡min

3
− 1)

 (13) 

where 𝑡min = (𝑙𝑐𝑎𝑟 + 𝑙min
𝑔𝑎𝑝

)/ (𝑣
𝑡l𝑜𝑛
𝑓
𝐹 ) is the minimum 

time headway (𝑣
𝑡l𝑜𝑛
𝑓
𝐹  is the following vehicle’s velocity at 

time 𝑡l𝑜𝑛
𝑓 ). 

If vehicle 2 is cautious, vehicle 1 will change lanes if 
Eq. ([condition lc_2]) holds, and stay in the original lane 
otherwise. 

(1 − 𝛽(𝑞1)) ⋅ min (
2𝑡𝑏

2

𝑡𝑏
1 − 1,1) + 𝛽(𝑞1) ⋅

𝑡𝑏
2

3

> (1 − 𝛽(𝑞1)) + 𝛽(𝑞1) ⋅ (
2𝑡𝑏

2

3
− 1)

 (14) 

If 𝑡𝑏2 > 𝑡𝑏
1, this inequality Eq. (14) will always hold, 

which indicates vehicle 1 will always change lanes if it is 
more aggressive than vehicle 2. 

From Eqs. (13) and (14), we can see that when vehicle 2 
is aggressive, vehicle 1’s optimal decision does not depend 
on the exact value of 𝑞2 (as 𝑞2 does not appear in Eq. (13)). 
While in the case that vehicle 2 is cautious, vehicle 2’s 
aggressiveness extent will influence vehicle 1’s optimal 
action. 

When considering constraints on safety gap and vehicle 
mechanics (e.g., constraints that enforce speed, acceleration, 
jerk and collision avoidance), optimal solutions may deviate 
from those presented in Tables II and III. In our simulation 
model, 𝑥

𝑡l𝑜𝑛
𝑓
1  and 𝑦

𝑡l𝑎𝑡
𝑓
1  are vehicle 1’s decision variables that 

indicate the longitudinal and lateral positions of this vehicle 
at the end of the planning horizon. The decision variable 𝑦

𝑡l𝑎𝑡
𝑓
1  

determines the lane in which vehicle 1 is positioned at the 
end of the planning horizon, indicating whether the lane 
changing process has been completed successfully. The 
decision variable 𝑥

𝑡l𝑜𝑛
𝑓
1  indicates the detailed trajectory of the 

vehicle. 

B. Experimental Results 
In this section, we compare fuel cost, discomfort, 

distance gap and lane changing success rate for different 
cases and different scenarios. Fig. 3 and Fig. 4 are box-plots 
for lane changing scenarios from 60 km/h to 40 km/h and 
from 60 km/h to 80 km/h, respectively. The values showed 
in these figures are sum of the values for both vehicle 
trajectories. 

Fig. 3 demonstrates that when the subject vehicle 
(vehicle 1) is moving from a higher-speed lane into a lower-
speed lane, case (𝑖𝑖) provides the best general outcome (the 
smallest fuel cost, highest safety gap, and least discomfort), 
where vehicle 1 assumes that vehicle 2 is the most aggressive 
and vehicle 2 has complete knowledge of vehicle 1’s 
aggressiveness level. This can be attributed to the low rate of 
lane-changing success under this case – since vehicle 1 
assumes that vehicle 2 is aggressive, for most cases an intent 
for lane changing results in an equilibrium solution that does 
not involve lane changing. As such, vehicles do not 
experience the higher fuel consumption, discomfort, and 
safety risks associated with frequent changes in speed and 
acceleration, which are inherent parts of the lane-changing 
process. Fig. 3 also indicates that all other cases achieve 
success rates in lane changing that are similar to each other, 
and higher than that of case (𝑖𝑖). In general, case (𝑖𝑖) 
provides fuel consumption, distance gap, discomfort level, 
and large-changing success rate that are different from the 
same metrics for other cases in a statistically significant 
manner (at the 5% significance level), while there is no 
statistically significant difference between any of the metrics 
among other cases according to paired Student’s t-tests.
 

TABLE III 
OPTIMAL  𝑥

𝑡
l𝑜𝑛
𝑓
1 AND ITS CORRESPONDING PAYOFF FOR VEHICLE 1 WITHOUT ACCOUNTING FOR SAFETY AND VEHICLE MECHANICS 

Driving Attitude 
of Vehicle 2 

Lateral Position of Vehicle 1 at the End of the Horizon, 𝑦
𝑡l𝑎𝑡
𝑓
1  

Stay in the current lane Change lanes 

Aggressive 
Maintain a larger longitudinal position than vehicle 2 Catch up with vehicle A (longitudinally) 

(1 − 𝛽(𝑞1)) ⋅ (
2𝑡min

𝑡𝑏
1 − 1) + 𝛽(𝑞1) ⋅

𝑡min

3
 (1 − 𝛽(𝑞1)) + 𝛽(𝑞1) ⋅ (

2𝑡min

3
− 1) 

Cautious 
Maintain a time headway that is no less than min(𝑡𝑏

1, 𝑡𝑏
2) Maintain a larger longitudinal position than vehicle 2 

(1 − 𝛽(𝑞1)) ⋅ min (
2𝑡𝑏

2

𝑡𝑏
1 − 1,1) + 𝛽(𝑞1) ⋅

𝑡𝑏
2

3
 (1 − 𝛽(𝑞1)) + 𝛽(𝑞1) ⋅ (

2𝑡𝑏
2

3
− 1) 
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Fig. 3. Four Metrics under Different Cases for the Scenario where Vehicle 1 Changes Lane from 60 km/h to 40 km/h 

 

Fig. 4. Four Metrics under Different Cases for the Scenario where Vehicle 1 Changes Lane from 60 km/h to 80 km/h 

 

Fig. 4 shows the fuel cost, distance gap, discomfort level, 
and lane-changing success rate for the scenario in which the 
subject vehicle (vehicle 1) intends to change from a lower-
speed lane to a higher-speed lane. In this scenario, case (𝑣), 
in which vehicle 1 has complete information about the 
aggressiveness factor of vehicle 2 but vehicle 2 assumes 
vehicle 1 to be the most cautious, provides the best results in 
fuel consumption and comfort. Similar to the previous 
scenario, these results can be attributed to vehicle 1’s low 
lane-changing success rate, which is due to its cautious 
attitude. This figure indicates that the highest distance gaps 
are maintained under case (𝑖𝑖), in which vehicle 1 perceives 
vehicle 2 to be extremely aggressive. Due to this perception, 
lane changing can rarely be completed (note the low success 
rate), and only under circumstances where a comfortable 
safety gap can be maintained. However, the failed attempts 

at lane changing could lead to higher fuel costs and 
discomfort levels, as demonstrated in Fig. 4. 

Fig. 5 shows a successful lane changing example in case 
(𝑖𝑖𝑖). At about 𝑡 = 3 seconds, vehicle 1 starts to change 
lanes, assuming that vehicle 2 is the most cautious. However, 
it later cancels this lane changing plan as its computed 
trajectory does not allow for a safe lane change. At about 𝑡 =
5, vehicle 1 starts another attempt to change lanes, which is 
successfully executed. Fig. 6 shows another example based 
on case (𝑖𝑖𝑖) in which vehicle 1 fails to change lanes. 

Tables IV and V display the best and worst cases for each 
metric, for vehicle 1, vehicle 2, and at the system level 
(computed as sum of the relevant metrics for both vehicles). 
Interestingly, these tables demonstrate that under no scenario 
are the best metric values obtained under vehicles having full 
knowledge of each other’s aggressiveness factor (i.e., case 
𝑖). For example in Table V, the best cases for vehicle 1 in 
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terms of the fuel cost and safety metrics are not obtained 
under having the full knowledge of vehicle 2’s 
aggressiveness factor, but are under making assumptions on 
vehicle 2. It is only for the comfort metric that vehicle 1 
would benefit from having full knowledge of vehicle 2’s 
aggressiveness factor. These tables also suggest that the 
worst and best cases of information sharing depend on the 
relative speeds of the original and target lanes. For example, 
when vehicle 1 attempts to move from a higher-speed lane to 
a lower-speed lane, case (𝑖𝑖) provides the best results 
according to all three metrics. However, when moving from 
a lower-speed lane to a higher-speed lane, vehicle 1 may 
benefit differently under various information levels 
depending on the metric of interest. Finally, it is interesting 
to observe that in Table IV, when vehicle 1 is moving from 
the higher-speed to the lower-speed lane, the system level 
benefits align with vehicle 1’s benefit. Conversely, Table V 
suggests that when vehicle 1 attempts to move from a lower-
speed to a higher-speed lane, system level benefits align with 
vehicle 2’s benefits. These observations suggest that the 
system level benefits are in general more aligned with the 
benefits of the vehicle who is traveling on the higher-speed 
lane. 

 
Fig. 5. Vehicle 1 Changes Lane Successfully 

 

 
Fig. 6. Vehicle 1 Fails to Change Lane 

 

TABLE IV 

VEHICLE 1 CHANGES LANES FROM 60 KM/H LANE TO 40 KM/H 
LANE 

 

Metrics Vehicle 1 Vehicle 2 Both Vehicles 
Best Worse Best Worst Best Worst 

Fuel cost (ii) (i) (iv) (v) (ii) (i) 
Discomfort (ii) (i) (v) (iv) (ii) (iv) 
Distance gap (ii) (iii) (iv) (v) (ii) (iii) 
Success rate — — — — (iii) (ii) 

 

TABLE V 

VEHICLE 1 CHANGES LANES FROM 60 KM/H LANE TO 80 KM/H 
LANE 

 

Metrics Vehicle 1 Vehicle 2 Both Vehicles 
Best Worse Best Worst Best Worst 

Fuel cost (iii) (ii) (v) (iv) (v) (ii) 
Discomfort (iv) (ii) (v) (iv) (v) (ii) 
Distance gap (ii) (iii) (ii) (iii) (ii) (iii) 
Success rate — — — — (iii) (v) 

IV. CONCLUSION 

In this paper, we developed a realistic game-theoretic 
lane changing model, in which driving attitude are explicitly 
modeled. We assume the two vehicles most closely involved 
in the lane-changing process continuously monitor each 
other and compute new trajectories accordingly. We account 
for computation/perception-reaction delay as well as the 
control period for both vehicles during this process. We 
relaxed the constraints on safety and mechanical constraints 
on the vehicles, which enabled us to obtain closed-form 
equilibrium solutions. Analyzing these closed-form 
solutions provides insights into how a vehicle’s trajectory is 
impacted by its level of access to information on the driving 
attitude (aggressiveness level) of the rival. Additionally, we 
used simulations to quantify the change in four metrics (fuel 
consumption, discomfort feeling, minimum distance gap and 
lane changing success rate) under more realistic scenarios 
where vehicle safety and mechanical constraints are present. 
Our simulation results suggest that, interestingly, the 
complete information case, in which both vehicles have full 
information on the driving attitude of the rival, does not 
provide the best system-level performance under any of the 
metrics. Simulation results suggest that the optimal level of 
information sharing depends on multiple factors, including 
(1) the entity for which we are optimizing (e.g., the level of 
information that provides the best trajectory for the vehicle 
changing lane may be different from the level of information 
that provides the best trajectory for the vehicle who is 
traveling on the target lane), and (2) the metric of interest. 
However, despite the dependency of the equilibrium solution 
on these factors, some general interesting insights can be 
drawn from the simulation results; for example, the best 
system-level solutions, under all metrics, are in line with the 
the solutions that optimize the trajectory for the vehicle 
traveling in the higher-speed lane, regardless of whether this 
vehicle intends to change lanes, or is in the target lane. 
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