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Privacy has become an emerging challenge in both information theory and computer science due to massive (centralized) collection
of user data. In this paper, we overview privacy-preserving mechanisms and metrics from the lenses of information theory, and unify
different privacy metrics, including f -divergences, Rényi divergences, and differential privacy, in terms of the probability likelihood
ratio (and its logarithm). We review recent progress on the design of privacy-preserving mechanisms according to the privacy metrics
in (i) computer science, where differential privacy is the standard privacy notion which controls the output shift given small input
perturbation, and (ii) information theory, where the privacy is guaranteed by minimizing information leakage. In particular, for
differential privacy, we include its important variants (e.g., Rényi differential privacy, Pufferfish privacy) and properties, discuss its
connections with information-theoretic quantities, and provide the operational interpretations of its additive noise mechanisms. For
information-theoretic privacy, we cover notable frameworks, including the privacy funnel, originated from rate-distortion theory
and information bottleneck, to privacy guarantee against statistical inference/guessing, and information obfuscation on samples and
features. Finally, we discuss the implementations of these privacy-preserving mechanisms in current data-driven machine learning
scenarios, including deep learning, information obfuscation, federated learning and dataset sharing.

Index Terms—Privacy metrics, differential privacy, information-theoretic privacy, obfuscation, deep learning, federated learning.

I. INTRODUCTION

In 1943, during the peak of World War II, Alan Turing
visited Bell Labs to examine the X-system—a secret voice
scrambler for private telephone communications between the
authorities in London and Washington [1, pg. 20–21]. At Bell
Labs, Turing met with a young Claude Shannon, who was also
working on cryptography (among other things). In an interview
with R. Price in 1982 [2], Shannon recalled that Turing and
him would frequently have lunch together but would avoid
discussing cryptography. They preferred topics that were not
classified, such as computing machines and the human brain.
According to Shannon, he described to the British computer
scientist the seminal ideas of what would become information
theory. “He was interested.” Shannon told Price, “He didn’t
believe they [my ideas] were in the right direction. I got a fair
amount of negative feedback almost.”

Since the inception of both fields, privacy has been squarely
within the purview of information theory and computer
science. As foreshadowed by the interaction between Shannon
and Turing, the two communities have developed their own
approach to the problem of preventing unauthorized extraction
of information from disclosed data1, with each community
considering their own models and often applying (very) distinct
mathematical techniques.

Three decades after Shannon and Turing met, the contrast
between the information theory and the computer science
approaches to privacy was again made evident in two seminal
papers published a year apart. The first paper was authored

1The definition of privacy adopted in our manuscript is “the problem of
preventing unauthorized extraction of information from communications over
an insecure channel.” This definition is due to Diffie and Hellman [3].

by Aaron Wyner in October 1975—while also working at
Bell Labs—and introduced the wire-tap channel [4]. Wyner
considered a model where data is transmitted over a discrete,
memoryless channel (DMC) subject to a wire-tap at the
receiver. The wire-tap is modeled as a second DMC whose
output is observed by a passive eavesdropper. Wyner derived
the maximum “error-free” communication rate between the
legitimate transmitter and receiver while ensuring perfect
secrecy against the wire-tapper—a result later strengthened
and generalized in several directions (see, e.g., [5]). He proved
that perfect privacy can be achieved by designing codes
that take advantage of the noisier channel observed by the
eavesdropper, guaranteeing secrecy even if the eavesdropper

is computationally unbounded. The goal of ensuring privacy
without making assumptions on an adversary’s computational
capabilities—often referred to as information-theoretic secrecy—
would become a centerpiece of the security research developed
within the information theory community.

Almost exactly a year later, in November 1976, Diffie and
Hellman published the ground breaking paper “New Directions
in Applied Cryptography” in the IEEE Transaction on Informa-
tion Theory2 [3]. This paper described the foundations of public
key cryptography, as well as public key distribution systems and
verifiable digital signatures. Instead of aiming for information-
theoretic secrecy, the cryptographic approach outlined by
Diffie and Hellman ensures security against a computationally
bounded adversary, relying on the computational difficulty in
discovering private information without additional knowledge

2Diffie and Hellman’s paper has arguably among the most ambitious opening
sentence ever published in the IEEE Transaction on Information Theory, stating
that “We stand today on the brink of a revolution in cryptography.” In hindsight,
they were absolutely correct.
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(e.g., of a private key). This assumption makes public key
cryptographic systems significantly easier to engineer and
deploy, not requiring an a priori secret key agreement between
communicating parties.

Since the publication of these two papers, public key
cryptography has achieved widespread deployment, funda-
mentally impacting banking, healthcare, public services, and
beyond. Algorithms resulting from the computer science
approach to cryptography—where an adversary is assumed
to be computationally bounded—are used billions of times per
day, in applications that range from digital rights management
to cryptocurrency. In fact, if you are reading this article on your
computer, you likely have used public key cryptography to au-
thenticate the website used to download this paper. In contrast,
information-theoretic approaches to secrecy have seen far less
success in practice: perfect secrecy against a computationally
unbounded adversary requires rigid assumptions, leading to
elegant mathematical models, but security schemes that are
often unwieldy and difficult to engineer in practice.

Today, the information theory and computer science ap-
proaches to privacy intersect yet again. The ever-increasing
harvesting of individual-level data (i.e., “Big Data”) has led
to new challenges and opportunities for both fields. On the
one hand, society has enjoyed significant utility (in the usual
economic sense) from massive data collection and processing,
ranging from large datasets for research to personalized services
and innovative business models. On the other hand, wide-spread
data collection poses new privacy threats: for example, social
media posts can lead to undesirable political targeting [6],
parameters and outputs of a machine learning model may reveal
sensitive information about the dataset used during training
[7], and public databases may be de-anonymized with only a
few queries [8].

Several of the privacy risks faced in the current data-
driven economy cannot be easily addressed via cryptographic
techniques. The key challenge is that an adversarial party
observes (by design) disclosed data in the clear. For example,
a statistician who queries a database that contains sensitive
information will receive a numerical value as an output (e.g.,
number of individuals with income below a threshold in a
given population)—simply encrypting the output would provide
no utility. By performing multiple queries, the statistician
could potentially infer private information. This is exactly
the challenge faced by the U.S. Census when disclosing
statistics about the American population while being legally
bound to preserve individual privacy and anonymity [9]. A
similar challenge arises when companies train machine learning
models with user data: the consumer receives utility from
disclosing personal information (e.g., facial recognition in
images taken on a smartphone), yet is subject to privacy
risks via undesired inferences (e.g., an adversary may learn
individual-level information by probing the model).

In contrast to cryptography and information-theoretic secu-
rity, the privacy desideratum in many data-driven applications
is not to ensure zero information leakage, be it against a
computationally-bounded or information-theoretic adversary.
Instead, the main goal is to ensure a provable level of
privacy—albeit not necessarily perfect—while achieving a

target level of utility. The privacy threat model is given by an
inferring adversary who observes disclosed data and attempts to
accurately estimate sensitive information (e.g., a user’s political
preference or if a target individual is in a database).

As we shall shortly see, recent approaches to privacy against
statistical inference introduced by both computer scientists and
information theorists do not make computational assumptions
on the adversary. The distinguishing factor between privacy
metrics is the adversary’s inference goal (e.g., probability of
correct guessing, small mean-squared reconstruction error) and
how private information is modeled. Utility, in turn, is more
difficult to quantify since it is inherently application dependent.
Delineating and navigating the fundamental privacy-utility
trade-off is a challenge at the heart of recent privacy research.

The goal of this paper is to review emerging privacy metrics
and models introduced by the computer science and information
theory communities in recent years. These models deal in
quantities familiar to most information theorists (e.g., mutual
information, f -divergences, probability of correct guessing)
and are amenable towards mathematical tools developed by
the information theory community over the past decades. We
also discuss emerging privacy challenges in machine learning,
such as federated learning and dataset obfuscation. These
applications provide a unique opportunity for information
theory research with real-world impact.

We hope to convince the reader that, despite differences
in notation and publication venues, the gap between current
information-theoretic and computer science approaches to
privacy is smaller than ever before, and there is ample
opportunity for collaboration and cross-pollination of ideas
between both fields. Perhaps if Shannon and Turing were to
meet today to discuss privacy—say, in the hallways of Google,
Apple, or Microsoft—they would likely find common ground.

A. Notation

Capital (e.g., X) and calligraphic letters (e.g., X ) are
used to denote random variables and sets, respectively. We
also use boldface lowercase letter to denote vectors. We use
PS,X , for joint probability distribution of S and X , PS|X
for conditional probability distribution of S given X , and
PS and PX for marginal probability distributions of S and
X , respectively. When X is distributed according to PX , we
write X ⇠ PX . For the sake of simplicity, we assume that the
probability distributions have finite support; however, the results
demonstrated in this paper can be generalized to probability
distributions of continuous random variables by considering
the Radon–Nikodym derivatives. We denote `p-norm of an
n-length vector z by kzkp = (

Pn
i=1 z

p
i )

1
p , where zi is the i

th

entry of z. We denote R the set of real numbers, R+ the set
of positive real numbers, and N the set of natural numbers.
Finally, for k 2 N, [k] denotes [1, 2, · · · , k] and �k denotes
the k-dimensional probability simplex.

B. Organization

In the remainder of the paper, we first introduce information-
theoretic quantities that measure privacy leakage using probabil-
ity distance in Section III. These privacy leakage measures are
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both used in differential privacy (Section II-A) and information-
theoretic privacy (Section II-B). In Section IV, we introduce the
definition and properties of differential privacy and it variants,
and connect DP with information-theoretic quantities. Finally
in Section V, we discuss recent applications of differential
privacy and information-theoretic privacy in the data-driven
deep learning scenarios.

II. OVERVIEW OF PRIVACY MECHANISMS AND METRICS

Privacy is usually ensured via a privacy-preserving mecha-

nism: an algorithm that randomizes data (or a function thereof)
in order to thwart unwanted statistical inferences. A privacy
mechanism may, for example, add noise to the output of a query
over a database, or randomize data in order to obfuscate private
information prior to release to a third party. The performance of
a privacy mechanism is quantified in terms of a privacy metric

3.
Naturally, the privacy metric to be attained is a key factor when
designing and evaluating privacy-preserving mechanisms.

Several works have proposed privacy metrics suitable for
different application contexts and adversarial threats. What
distinguishes different metrics are the kind of adversary they
consider, the data sources they assume to be available to the
adversary, and the aspects of privacy they measure [10]. Ideally,
privacy metrics should carry operational meaning beyond
their mathematical definition. For example, [11] proposed
privacy metrics based on the the probability of an adversary
identifying/guessing a given individual in a dataset, [12]
introduced a tunable measure that can be adapted to specific
adversarial actions, and [13] quantified maximal leakage where
the adversary is capable of guessing any function of the dataset.

In this review, we discuss privacy-preserving mechanisms
and privacy metrics through an information-theoretic lens:
we formulate metrics in terms of underlying probability
distributions and do not account for computational assumptions
on an adversary. In particular, there are two families of
privacy-preserving mechanisms based on assumptions made on
private information: (1) prior-independent mechanisms, where
minimal assumptions are made on the data distribution and an
adversary’s side information, and (2) prior-dependent mecha-
nisms, where the mechanism designer has (partial) knowledge
about private data statistics (e.g., probability distribution) and
adversarial capabilities.

A. Prior-Independent Privacy Mechanisms

The most popular privacy metric is differential privacy (DP).
Broadly speaking, DP quantifies how small perturbations at the
input of a privacy mechanism affects the probability distribution
of the output of the mechanism. A mechanism is said to be
✏-differentially private if the probability of any output event
does not change by more than a multiplicative factor e✏ for any
two neighboring inputs. The definition of neighboring inputs
depends on a pre-defined metric on the input space (e.g., two
inputs within a Hamming distance of 1).

DP is a prior-independent mechanism (up to the definition
of neighboring) since it does not depend on the probability

3The term “metric” is used here not in the usual mathematical sense (i.e., a
distance function), but rather as a measure of privacy risk.

distribution of the data. A motivating example for the definition
of DP is in statistical queries over a database: the result of a
query should be approximately the same no matter whether a
dataset contains an individual’s record. The privacy guarantee
of DP can usually be achieved by additive noise mechanisms,
i.e., adding a small perturbation/random noise sampled from
different distributions to the released data, (e.g., Gaussian,
Laplacian or exponential noise [14]).

Since its introduction in 2006, several variants of DP have
been proposed. The main distinguishing factors between these
metrics is how the concept of “neighboring” is defined and
how the change in output probability distribution induced by
two neighboring inputs is quantified. For example, approximate
differential privacy relaxes DP by allowing an additional small
additive parameter � [15] in addition to the multiplicative
factor e

✏. Local differential privacy assumes that all inputs
are neighboring, aiming to model adversaries who has access
to individual data points in a dataset [16]. Rényi differential
privacy uses Rényi divergence to to measure the difference in
output distribution from two neighboring inputs [17], and is
closely related to zero-concentrated DP [18, 19] and variations
inspired by formulations based on hypothesis testing [20].

DP satisfies two desirable properties of a privacy metric:
composability and robustness to post-processing (see Sec-
tion IV-C). Since privacy leakage may accumulate when an
adversary observes multiple responses from a DP mechanism,
the composability property guarantees that the aggregate output
after multiple observations still satisfies differential privacy.
Quantifying how privacy decays is an important theme in recent
DP research [21–23]. Moreover, DP is robust to post-processing
in the sense that the outputs differentially private mechanism
is still differentially private. In information-theoretic parlance,
DP satisfies a form of data-processing inequality—a fact that
follows naturally from the connection between DP and f -
divergences (see Section IV). Together, the composability and
robustness to post-processing allow the designer of privacy
mechanisms to modularize their construction and analysis for
a target privacy leakage budget.

B. Prior-Dependent Privacy Mechanisms

When statics and/or the probability distribution of the dataset
can be (partially) known or estimated, the design of privacy-
preserving mechanisms and privacy metrics has been studied
in information-theoretic (IT) privacy. IT privacy metrics aim to
quantify the amount of information an adversary gains about
private features of the data given access to disclosed data.
Here, privacy metrics are formulated in terms of divergences
between probability distributions such as f -divergences (e.g.,
mutual information [24], chi-squared divergence [25], etc.),
and Rényi divergence [12]. One of the advantages in using
divergences and related quantities as privacy metrics is that
they can often be equipped with operational meaning in terms
of an adversary’s ability to infer sensitive data. For instance,
[11] studied a maximum a posteriori adversary that can guess
specific private features and [13] introduced maximal leakage
to quantify worst-case privacy threats where the adversary is
capable of guessing any function of the dataset (not limited

Authorized licensed use limited to: Harvard Library. Downloaded on February 02,2022 at 16:20:55 UTC from IEEE Xplore.  Restrictions apply. 



2692-4080 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MBITS.2021.3108124, IEEE BITS
the Information Theory Magazine

4

to the private features). Despite having significantly different
operational meanings, the privacy measures in both of these
examples can be quantified by divergences between probability
distributions.

In addition to quantifying privacy leakage, divergence
measures that are common in information theory can also be
used to quantify the utility of the released data (see, for example,
[26], where utility is quantified in terms of mutual information).
The tradeoff between allowing a reasonable amount of utility
to be drawn from the disclosed data and satisfying a privacy
guarantee is analogous to the rate-distortion tradeoff found in
lossy compression: at one extreme, no data is released (perfect
privacy, no utility), and at the other extreme, data is disclosed
as-is (no privacy, maximum utility). By using prior knowledge
on the data statistics and tractable assumptions on adversary’s
inference capability, IT privacy can not only characterize the
fundamental privacy limits, but also help understand how to
navigate the privacy-utility tradeoff [27].

III. QUANTIFYING PRIVACY VIA DIVERGENCES

Consider two distributions P and Q with support X . The
likelihood ratio4

l(x) for x 2 X is defined as

l(x) , P (x)

Q(x)
. (1)

When considering two random variables S, Y ⇠ PS,Y , where
S represents an individual’s private/sensitive features (e.g.
political preference), and Y the released data, and setting
P = PS,Y and Q = PSPY , the likelihood ratio becomes

l(s, y) =
PS,Y (s, y)

PS(s)PY (y)
. (2)

This quantity is at the heart of most information-theoretic
measures of privacy (e.g., [13]) as well as differential privacy
(e.g., [14, 19]). Of course, the logarithm of this likelihood ratio
i(s, y) , log l(s, y), termed information density [28], plays a
central role in spectral methods, finite-blocklength analysis,
statistics (binary hypothesis testing) in information theory [29].
Intuitively, the information density captures the change in belief
about a sensitive attribute S upon an observation of disclosed
information Y .

A. Measuring Privacy Leakage

The privacy leakage can be understood as the “amount of
information” obtained about the private feature S through
observing the released data Y . A widely-used measure of the
mutual dependence between the two variables is Shannon’s
mutual information I(S;Y ) between S and Y , given by the
expectation of the information density

I(S;Y ) , EPS,Y [i(s, y)] = D(PS,Y kPSPY ), (3)

where D(PkQ) is the Kullback-Leibler (KL) divergence.
The equivalence between mutual information and the KL
divergence allows us to generalize the mutual information by
other information-theoretic divergences based on the likelihood

4This quantity is frequently referred to as lift in the data mining, or pointwise

mutual information in natural language processing.

ratio l(s, y) and the information density i(s, y). For example,
f -divergences [30] considers the expectation of a convex
transformation of the likelihood ratio, and the Rényi divergence
[12, 13] is proportional to the cumulant-generating function
of the information density. The latter can also be viewed as a
parameterized (by ↵) family of divergences, allowing for more
freedom in tuning the metric for different needs in practice.
These metrics are closely connected to differential privacy
(Section IV), and widely used in information and estimation-
theoretic privacy (Section III-B).

1) f -Divergences

Let f : (0,1) ! R be a convex function satisfying f(1) =
0. Assume that P and Q are two probability distributions over
a set X , and P is absolutely continuous with respect to Q.
The f -divergence between P and Q is given by

Df (PkQ) , EQ


f

✓
P (X)

Q(X)

◆�
. (4)

This definition can be used to generalize Shannon’s mutual
information. Replacing P and Q by PS,X and PSPX , one can
define f -information between S and X as

If (S;X) , Df (PS,XkPSPX). (5)

For more properties of f -divergences see, for example, [30].
The KL divergence D(PkQ) and Shannon’s mutual informa-
tion I(S;X) are special cases of (4) and (5), respectively, when
f(t) = t log t. Moreover, other measures that are widely used
in statistics and information theory can also be formulated
as f -divergences. For example, the ↵-Hellinger divergence
�
↵(PkQ) of order ↵ 2 (0, 1)

S
(1,1) uses f↵(t) = t↵�1

↵�1 .
An important f -divergence for privacy is the E�-divergence
[30] with f�(t) = max{t� �, 0},

E�(PkQ) = sup
X2X

[P (X)� �Q(X)] . (6)

These information-theoretic divergences are closely related to
differential privacy, see Section IV.

2) Rényi Entropy and Divergence

The Rényi entropy H↵(P ) and divergence R↵(PkQ) of
order ↵ 2 R+

/{1} are defined respectively as

H↵(P ) , 1

1� ↵
log
X

x

P (x)↵ =
↵

1� ↵
log kPk↵,

R↵(PkQ) , 1

↵� 1
log

 
X

x

✓
P (x)

Q(x)

◆↵

Q(x)

!
.

(7)

Both of these two quantities are defined by their continuous
extensions for ↵ = 1 and 1. In particular, for ↵ = 1,
the Rényi entropy and divergence recover Shannon entropy
and KL divergence respectively [12]. For ↵ = 1, H1 =
minx log 1/P (x) is called the min-entropy and R1(PkQ) =
maxx logP (x)/Q(x) is called the max-divergence. Rényi
entropy and divergence generalize the usual notion of mutual
information. Notably, Arimoto’s and Sibson’s mutual informa-
tionhave recently been proposed as operational measures for
information leakage, see e.g., [11] and [13].

Consider two random variables (X,Y ) ⇠ PX,Y , Arimoto’s
mutual information of order ↵ 2 R+

/{1} is given by

I
A
↵(X;Y ) , H↵(X)�H↵(X|Y ). (8)
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It can also be defined (by continuity) for the extreme cases
↵ = 1 and 1, respectively, as lim↵!1 I

A
↵(X;Y ) = I(X;Y )

and I
A
1(X;Y ) , lim↵!1 I

A
↵(X;Y ). The latter characterizes

the ability of an adversary to correctly guess X given Y . In
particular, it can be verified [11] that IA1(X;Y ) = log Pc(X|Y )

p⇤
X

,
where

Pc(X|Y ) , max
gY!X

Pr(X = g(Y )) =
X

y2Y
max
x2X

PX,Y (x, y),

denotes the probability of correctly guessing X given Y and
p
⇤
X , maxx2X PX(x), thus providing an operational meaning

for IA1(X;Y ).
Another operational measure of information leakage recently

proposed is Sibson’s mutual information [13] of order ↵ 2
R+

/{1} between X and Y , which is given by

I
S
↵(X;Y ) , inf

QY

R↵(PX,Y kPXQY ), (9)

One can similarly define I
S
1(X;Y ) as the limit of IS↵(X;Y )

when ↵ ! 1. This quantity, termed maximal leakage, was
recently shown to bear an important interpretation in terms
of worst-case privacy threats [13]. More precisely, maximal
leakage is equal to the logarithm of the multiplicative gain in
guessing any function of X given the observation of Y , that
is

I
S
1(X;Y ) = max

U�X�Y
log

Pc(U |Y )

p
⇤
U

, (10)

where the maximization is taken over random variable U

forming the Markov chain U �X � Y .

B. Information and Estimation-theoretic Privacy

Several privacy works in information theory considered a
scenario where two parties share information over a noiseless
channel [12, 13, 24]. Consider a Markov chain

S �X � Y, (11)

where X 2 X is the observed data; S 2 S is the sensi-
tive/private attributes, and Y 2 Y is the released data. The
goal of information and estimation-theoretic privacy is to
determine a conditional probability (i.e., a channel) PY |X as a
(randomized) privacy-preserving mechanism to publish the data
without leaking the private information S. Next, we discuss
three setups for designing the privacy mechanisms.

1) The Privacy Funnel

Assuming that both PS,X is known in (11), the first scenario,
termed the privacy funnel (PF), seeks to determine a mapping
PY |X that minimizes the privacy leakage I(S;Y ) while
preserving useful information (utility) I(X;Y ) � x, where
x � 0 is a controllable parameter, i.e.,

min
PY |X

I(S;Y ) such that I(X;Y ) � x. (12)

Inspired by rate-distortion theory [26], the PF (and its variants)
has shown to be an useful information-theoretic framework
in designing privacy mechanisms [27], The PF is also closely
related to the famous information bottleneck; in fact, the
information bottleneck and the PF jointly determine the achiev-
able set of the mutual information pairs {I(S;Y ), I(X;Y ) :
S �X � Y } [25].

2) Privacy against Statistical Inference

The second setup [24] considers the worst-case side infor-
mation the threat model may have about the input under (11).
Consider a cost function c : S ⇥�|S|�1 ! R+, and let the
solutions q 2 �|S|�1 prior to and after observing Y to be c

⇤
0

and c
⇤
y respectively, i.e.,

c
⇤
0 = min

q2�|S|�1
ES⇠PS(·)[c(S, q)],

c
⇤
y = min

q2�|S|�1
ES⇠PS|Y (·|Y=y)[c(S, q)],

(13)

the average and maximum gain of an adversary is defined as
�c = c

⇤
0 � EY [c⇤y] and �c

⇤ = c
⇤
0 � maxy2Y c

⇤
y respectively.

The goal of the channel designer is to find PY |X to minimize
the gain if the adversary while preserving useful information
in X by limiting the distortion between X and Y given a
distortion function d : X ⇥ Y ! R+. In summary, the overall
optimization problem is

min
PY |X

�c or �c
⇤ such that EX,Y [d(X,Y )]  �. (14)

When choosing the log-loss cost function c(S, q) = � log q(S),
the average cost gain and maximum cost gain are �c = I(S;Y )
and �c

⇤ = H(S)�miny2Y H(S | Y = y) respectively, with
the latter being the maximum information leakage, and (14)
can be efficiently solved as a convex optimization.

3) Privacy in Terms of Guessing

The last threat model is expanded even further by assuming
that only PY |X is known (i.e., the prior over the set of
observations PX is unknown), this latter threat model treats
privacy as an exclusive function of PY |X .

a) Maximal Leakage: One potential limitation of the
previous threat model is that the channel designer knows the
potential function of interest of the adversary (that is, PS|X is
known to a-priori). To overcome this limitation [13] defines
the maximal leakage from X to Y as

LmaxL(X ! Y ) , sup
S�X�Y�Ŝ

log
P (S = Ŝ)

maxs2S PS(s)
, (15)

where the supremum is taken over all distributions PS|X , PŜ|Y
with S, Ŝ. (15) measures the (worst-case) information gain the
adversary obtains from observing Y in guessing the value of
a potentially sensitive attribute S. It can be shown that the
maximal leakage is the Sibson mutual information of order
1, i.e., LmaxL(X ! Y ) = I

S
1(X;Y ), which shares many

properties with Shannon information, namely non-negativity
and data processing inequality, see [13].

b) ↵-Maximal Leakage: The authors in [12] propose two
measures of information leakage. For ↵ 2 [1,1], the ↵-leakage
is defined for a joint distribution PS,Y as

L↵(S ! Y ) , ↵
↵� 1

log
maxP

Ŝ|Y
E[P (Ŝ = S|S, Y )

↵
↵�1 ]

maxP
Ŝ
E[P (Ŝ = S|S)

↵
↵�1 ]

, (16)

and the ↵-maximum leakage as

Lmax
↵ (X ! Y ) , sup

S�X�Y
Lmax
↵ (S ! Y ) (17)

Similarly to LmaxL, ↵-maximum leakage measures the mul-
tiplicative increase in probability of correctly guessing any
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sensitive attribute S from Y that needs to be sent through
the intermediary channel PY |X . By using the equivalence
L↵(S ! Y ) = I

A
↵ (S;Y ), it can be shown that

Lmax
↵ (X ! Y ) =

(
supP

X̂
IS↵ (X̂;Y ), ↵ 2 (1,1],

I(X;Y ), ↵ = 1,
(18)

In this sense, ↵-maximal leakage is an intrinsic property of
the channel PY |X (and alphabet size |X |) since it implicitly
optimizes over all possible priors PX .

IV. QUANTIFYING PRIVACY VIA PERTURBATION

Differential privacy bounds the statistical difference in the
output distribution of a randomized algorithm induced by a
small perturbation of its input. Given a privacy-preserving
(randomized) mechanism m : D ! Y that takes a dataset
D 2 D and returns an output y 2 Y , the privacy loss [14]
measures the statistical difference between a given pair of
neighboring datasets5

D,D
0 2 D, and output set S ⇢ Y can

be defined as the log likelihood ratio

Lm(S;D,D
0) = log

Pr(m(D) 2 S)
Pr(m(D0) 2 S) . (19)

The strong guarantees given by differential privacy and its
variants are related to bounding this quantity over all possible
sets S and for all possible inputs D,D

0, as we illustrate next.

A. Differential Privacy and its Variants

Given the leakage parameter ✏ � 0, the mechanism m is said
to be ✏-differentially private if for any neighboring datasets
D,D

0 2 D and S ⇢ Y ,

Lm(S;D,D
0)  ✏. (20)

Perfect privacy is assured when ✏ = 0, and when ✏ = 1, there
is no privacy guarantee.

DP can be understood as a bound on the log likelihood
ratio between the probability distributions of the output of a
mechanism given neighboring inputs. This definition inherently
depends on how “neighboring inputs” is defined (e.g., inputs
within unit Hamming distance of each other). The most
stringent form of DP is when all inputs are considered
neighboring—a definition referred to as local differential

privacy (LDP) [16].
The definition of ✏-DP can be relaxed to (✏, �)-DP by

introducing an additive parameter � 2 [0, 1) to the constraint
(20). A mechanism is said to be (✏, �)-DP if for all neighboring
datasets D,D

0 2 D and S ⇢ Y ,

log
Pr(m(D) 2 S)� �

Pr(m(D0) 2 S)  ✏. (21)

Observe that (✏, 0)-DP is equivalent to ✏-DP.

5In [14] D and D0 are a collection of records from X that can be expressed
with a histogram notation (D,D0 2 N|X|) then D is adjacent to D0 if
||D�D0||1  1. Similarly, it is common to define two datasets as neighboring
if they differ in at most one record, denoted as D ⇠ D0.

Fig. 1: Visualizing the (✏, �)-
DP mechanism in terms of out-
come probabilities (see (21)).
A mechanism is (✏, �)-DP if
for every pair of neighbouring
datasets D,D0 and outcome S,
the resulting (joint) probability
lies in the DP cone. Note that
the � parameter has a large im-
pact on low probability events,
while ✏ controls the width of the
band around the identity line.

1) Rényi Differential Privacy

Rényi differential privacy uses Rényi divergence to measure
the statistical difference between outputs of a mechanism
induced by neighboring inputs [17]. A randomized algorithm
satisfies ✏-Rényi differential privacy (RDP) of order ↵ (or
(↵, ✏)-RDP) if for all neighboring datasets D,D

0 2 D,

R↵(PDkPD0)  ✏, (22)

where PD = Pr(m(D) 2 S) and PD0 = Pr(m(D0) 2 S).
The relationship between the Rényi divergence with ↵ = 1
and differential privacy is immediate. The definition of ✏-DP
in (20) can be equivalently expressed as R1(PDkPD0)  ✏,
where D1(PkQ) is the max-divergence. Comparing to the
KL divergence, max-divergence can be viewed as a worst-case
analog of KL divergence, similar to the way that min-entropy
(Section III-A2) is a worst-case analog of Shannon’s entropy.

2) Pufferfish privacy

Pufferfish privacy [31], similar to differential privacy, consid-
ers a threat model where privacy is defined in terms of decision
making (i.e., the adversary is trying to decide between two
hypothesis after observing a shared variable). The proposed
setting allows the user to tailor privacy definitions based on their
needs and assumptions about the attacker’s potential beliefs.

Given a set of potential secrets S, a set of discriminative
pairs Sp ✓ S ⇥ S , and a collection of data evolution scenarios
E , an algorithm m : D ! y is ✏-Pufferfish(S,Sp, E) private if
for all y 2 Y , for all (si, sj) 2 Sp, and for all ✓ 2 E such that
p(si|✓) > 0, p(sj |✓) > 0, the following holds

e
�✏  P (si | ✓,m(D) = y)

P (sj | ✓,m(D) = y)

P (sj | ✓)
P (si | ✓)

 e
✏
, ✏ � 0. (23)

In other words, Pufferfish privacy requires that the odds prior
to observing an output of our mechanism P (si|✓)

P (sj |✓) are close to
the odds after making our observation P (si|✓,m(D)=y)

P (sj |✓,m(D)=y) for any
belief ✓ teh potential adversary may have. With an appropriate
choice of S,Sp, E , ✏-Pufferfish privacy can be equivalent
to ✏-DP. Algorithms satisfying particular instantiations of
✏-Pufferfish(S,Sp, E) are shown in [31].

B. The Additive Noise Mechanism

Differential privacy can be achieved by a mechanism where
noise is added to a function f computed over data, and the
variance of the noise is dependent on the `p-sensitivity of f ,
defined as �p(f) , max

D⇠D0
kf(D) � f(D0)kp. Intuitively, a
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greater variance of a noise is needed to randomize a more
sensitive function. One example of such mechanism m is of
the form

m(x) = f(x) + L(0,
�1(f)

✏
), (24)

where L(a, b) is the Laplace distribution. This Laplace mech-
anism is a prototypical ✏-DP algorithm that releases an
approximate (noisy) answer to the function f . Similarly,
a Gaussian mechanism6 with N(0,�2) being the Gaussian
distribution is defined as

m(x) = f(x) +N(0,�2), (25)

can meet (✏, �)-DP for ✏ < 1 and � >

p
2 log 1.25/��2(f)/✏.

We note that there are several other mechanisms that account
for different data types, see, e.g., [32].

C. Composability and the Moments Accountant Approach

One of the most desirable properties of DP is its composabil-

ity, i.e. the combination of differentially private mechanisms is
itself differentially private. To be more precise, the sequential
combination of k independent (✏i, �i)-DP mechanisms mi for
i 2 [k] is (

P
i2[k] ✏i,

P
i2[k] �i)-DP. Similarly, the parallel

combination k independent ✏i-DP mechanisms is maxi2[k] ✏i-
DP. Another important property of differential privacy is its
robustness to post-processing. Formally, if a mechanism m

is ✏i-DP, then f � m is also ✏i-DP for any deterministic or
randomized function f . For a more interesting k-fold adaptive
composition, where the independence assumption among the
DP mechanisms is dropped, and each individual mechanism
can take an auxiliary query parameter, see [14].

The sequential and parallel composabilities are agnostic
to the specific mechanism, meaning that they only depend
on the type of compositions and the parameters ✏ and �.
To achieve tighter DP composition bounds, the moments

accountant approach [7] was recently proposed to relate the
privacy parameters ✏ and � with the moments of the privacy
loss random variable in (19). The �

th moment ↵m(�;D,D
0) is

defined as the cumulant moment generating function evaluated
at �,

↵m(�;D,D
0) = log EY⇠m(D)[e

�Lm(Y ;D,D0)], (26)

and the worst-case �
th moment ↵m(�) to bound all possible

↵m(�;D,D
0) is defined as

↵m(�) = max
D⇠D0

↵m(�;D,D
0). (27)

[7, Theorem 2] shows that the tail bound of the privacy loss
can translate the moments bound of ↵m(�) into (✏,�)-DP
guarantees, i.e., for any ✏ > 0 a mechanism m is (✏,�)-DP
with � = min

�
exp(↵m(�) � �✏). Moreover, the privacy loss

moments ↵m(�) of a composition of a sequence of adaptive
mechanisms m1, ...,mk, where mi is the output of the previous
i� 1 mechanisms, can be upper bounded as

↵m(�) 
kX

i=1

↵mi(�), 8�. (28)

6Note that Gaussian mechanism cannot meet ✏-DP for any ✏.

The Differentially Private Stochastic Gradient Descent (DP-
SGD) algorithm, viewed as a sequence of adaptive Gaussian
mechanisms, can be analyzed by the moments accountant
method ([7, Theorem 1]), leading to a stronger composition
theorem than that in [33].

D. Information-Theoretic Divergences and DP

RDP lacks a clear operational interpretation, and thus
RDP guarantees are often translated into DP guarantees [34]
Precisely, a mechanism m is (↵, �)-RDP is (✏, �)-DP for any
✏ > � and � = e

�(↵�1)(✏��). This translation is extensively
used in many recent ML applications [34, 35]; however, it is
loose and does not hold for all possible ✏ � 0. [23] exploited the
E�-divergence to determine the optimal relationship between
DP and RDP. In particular, given a (↵, �)-RDP mechanism m,
it is (✏, �✏↵(�))-DP for a given ✏ � 0, where �

✏
↵(�) is defined

as

�
✏
↵(�) = sup

m that is (↵, �)-RDP
sup

D⇠D0
Ee✏(m(D)km(D0)). (29)

V. APPLICATIONS IN MACHINE LEARNING

We review a few recent results in private machine learning
and data science that implement the information-theoretic
privacy (Section III-B) and differential privacy (Section IV).

A. Information Obfuscation

One particular problem that has received significant attention
is that of learning data representations from which an adversary
cannot reliably estimate a (known) sensitive variable S. The
data representations can be viewed as the outputs of a
(stochastic) parametric channel distribution PY |X , and can
be learnt using neural networks under the framework of the
constrained optimization formulation in (14) [36, 37], or by
adversarial generative networks [38].

Figure 2 shows one of the applications in [36], where the
observations are facial images and the privacy gaol is to prevent
an adversary from inferring the (labeled) sex of the person in
the image; the output variable Y shares the same support than
the input variable X (i.e., Y is an image), the distortion metric
in this case is preserving subject information as inferred by a
model trained on undistorted images. [37] further proposed that
an information obfuscation mechanism should ideally target
only the features in the data that potentially leak sensitive
information, and perturb those information-leaking features
in order to achieve better utility. Figure 3 illustrates the
detection of information-leaking features that reveal emotion
via information density estimation. A Gaussian obfuscation
mechanism with provable guarantees is then applied to those
information-leaking features.

Variations of (14) with mutual information I(S;Y ) as the
adversary cost and I(X;Y ) as the utility directly translate
to the bottleneck formulation [25, 26]. Since many of the
aforementioned approaches are purely data driven, it has proven
challenging to incorporate some of the stronger notions of
estimation-theoretic privacy, partly because optimizing over
any data prior PX (as is required for Sibson’s and Arimoto’s
MI) is a hard task to specify in hign-dimensional datasets used
in machine learning.
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Fig. 2: An image to image mapping that obfuscates information
about labeled gender while preserving information required
to perform subject identification; the mapping is implemented
with a neural network. Each row has a different constraint
on I(S;Y ), the last row being the tightest. The network
that performs identity recognition (the desired utility in this
example) can be trained using the obfuscated images and is
able to achieve a top 5 accuracy larger than 90% from a base
of 200 identities. Figure taken from [36].

Fig. 3: A Gaussian obfuscation mechanism on information-
leaking features for emotion. The obfuscated images in the last
row cannot be used to perform emotion classification task, but
can still be used to infer other useful information, e.g., gender.
Figure taken from [37].

B. Differential Privacy in Deep Learning

There are several successful developments of differential
privacy in modern deep learning methods, which depend
heavily on Stochastic Gradient Descent (SGD) to update
the hyper-parameters in a neural network. The training of
neural networks requires large-scale datasets, which may be
crowdsourced and contain sensitive information, and thus the
neural network models should not expose private information
in these datasets [7]. To address this issue, [7] proposed
DP-SGD (see Section IV-C) to update the weights. DP-SGD
enables computationally efficient training of neural networks
within a modest privacy budget by adding carefully designed
Gaussian noise to the learnt gradients, and has been studied in
a wide range of applications, see, e.g., [39, 40]. The privacy

Fig. 4: A classical federated learning scenario where a central
servers receives updates from a client pool, and distributes the
updated model. Clients locally train the model on their data and
provide the updated weights. The central server is responsible
for aggregating those updates into a unique updated model.

information may not only be inadvertently leaked during the
training of a neural networks, but also from a pre-trained model;
for example, when performing knowledge distillation from a
knowledgeable and pre-trained teacher model. To address those
concerns, Private Aggregation of Teacher Ensembles (PATE)
is proposed, which transfers the knowledge of an ensemble of
teacher models to a student model, with differential privacy
guaranteed by noisy aggregation of teachers’ answers [35].

C. Federated Learning

A common federated learning (FL) scenario is presented
in Figure 4 where a central server learns a parametric model
by sharing information with different clients that have access
to their own local data [41]. The advantage of this setting is
that it leads to models with better generalization capabilities,
owing to the potentially larger amounts of data the model has
access to when compared to standard, centralized learning.
This benefits all clients, especially those that do not have
enough data to train a reliable model on their own. Despite
this advantage, there are immediate privacy concerns that arise
from this collaboration, an example of this is the information
the central server (or other clients) can infer from the client’s
data based on server-client interactions (potentially a major
concern in critical domains like healthcare). It is therefore of
great interest to provide privacy guarantees on the mechanism
that the server uses to aggregate the client’s shared information
in the process of learning the model.

Variants of DP have been used to address these issues. For
example, if the central curator that collects data from all clients
is trustworthy, then the curator can be tasked with applying
a DP mechanism on the aggregation process, preventing the
federated learning output from leaking information. The need
to have a trusted central server can be removed by requiring
each client to apply a local DP mechanism to their updates
before sharing the information with the server [42, 43]. The
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main downside of this approach is that the loss in utility from
this mechanism needs to be compensated by an even larger
pool of clients to maintain good performance [44]. Hybrid DP
[45] strikes a compromise between these two approaches where
a group of users trust the central server, and opt into the central
curator model, with the remaining set of users opting to apply
local DP before sharing. Recently, a secure aggregation protocol
was proposed in [46], providing strong privacy guarantees on
the process of aggregating high dimensional data (e.g., adding
network parameters shared by different clients as in FL). This
approach still requires limited trust in the central server, and
allows the server to observe the aggregate information at each
communication round, which poses a potential information
leakage vulnerability, the computation process itself may
be computationally inefficient for sparse aggregate vectors.
Addressing these limitations remains an open problem [41].

D. Dataset Sharing

Multiple communities, from machine learning to computer
vision and natural language processing, have significantly
advanced the research thanks in part to datasets sharing.
Datasets are so important to the community that leading
conferences such as NeurIPS are starting tracks fully dedicated
to datasets7. While most of the publicly shared datasets are
derived from open data sources, others (e.g., clinical) can’t be
openly shared, resulting in slowing the progress in those fields.
This challenge opens an opportunity to research on privacy,
where for example we desire to privately share the data without
any sacrifice in its utility. Such no compromise in utility is
overall an important topic of study for the privacy community.

VI. CONCLUDING REMARK

We have discussed privacy from the lenses of statistics
and information/estimation theory. The more we rely on
data-dependent algorithmic-based decisions, the more privacy
becomes critical. There are legal aspects of privacy, such as
the European General Data Protection Regulation (GDPR) and
the right to be forgotten; as well as personal preferences of
privacy, all leading to many interesting theoretical and practical
questions. One of the exciting areas for privacy research is
in healthcare. First of all, utility can’t be sacrificed at all in
most healthcare applications. Secondly, user’s expectations and
desires about the privacy of their data needs to be taken into
account and not decided by a theory or an algorithm. For
example, a user might be willing to sacrifice privacy to further
improve utility, or even to help others obtain better utility.
Such individual choices bring new directions into the field, and
we are excited to see what new developments emerge in the
literature.
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