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Abstract—We investigate the local differential privacy (LDP)
guarantees of a randomized privacy mechanism via its con-
traction properties. We first show that LDP constraints can be
equivalently cast in terms of the contraction coefficient of the
E,-divergence. We then use this equivalent formula to express
LDP guarantees of privacy mechanisms in terms of contraction
coefficients of arbitrary f-divergences. When combined with
standard estimation-theoretic tools (such as Le Cam’s and Fano’s
converse methods), this result allows us to study the trade-off
between privacy and utility in several testing and minimax and
Bayesian estimation problems.

I. INTRODUCTION

A major challenge in modern machine learning applications
is balancing statistical efficiency with the privacy of individu-
als from whom data is obtained. In such applications, privacy
is often quantified in terms of Differential Privacy (DP) [1].
DP has several variants, including approximate DP [2], Rényi
DP [3], and others [4-7]. Arguably, the most stringent flavor
of DP is local differential privacy (LDP) [8, 9]. Intuitively,
a randomized mechanism (or a Markov kernel) is said to
be locally differentially private if its output does not vary
significantly with arbitrary perturbations of the input.

More precisely, a mechanism is said to be e-LDP (or pure
LDP) if the privacy loss random variable, defined as the log-
likelihood ratio of the output for any two different inputs, is
smaller than € with probability one. One can also consider an
approximate variant of this constraint: K is said to be (¢, ¢)-
LDP if the privacy loss random variable does not exceed € with
probability at least 1 — ¢ (see Def. 1 for the formal definition).

The study of statistical efficiency under LDP constraints has
gained considerable traction, e.g., [§—19]. Almost all of these
works consider e-LDP and provide meaningful bounds only
for sufficiently small values of ¢ (i.e., the high privacy regime).
For instance, Duchi et al. [10] studied minimax estimation
problems under £-LDP constraints and showed that for ¢ < 1,
the price of privacy is to reduce the effective sample size from
n to £2n. A slightly improved version of this result appeared
in [13, 20]. More recently, Duchi and Rogers [21] developed
a framework based on the strong data processing inequality
(SDPI) [22] and derived lower bounds for minimax estimation
risk under £-LDP that hold for any ¢ > 0.

In this work, we develop an SDPI-based framework for
studying hypothesis testing and estimation problems under
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(e,9)-LDP, extending the results of [21] to approximate LDP.
In particular, we derive bounds for both the minimax and
Bayesian estimation risks that hold for any € > 0 and 6 > 0.
Interestingly, when setting § = 0, our bounds can be slightly
stronger than [10].

Our main mathematical tool is an equivalent expression for
DP in terms of E.-divergence. Given y > 1, the E-divergence
between two distributions P and () is defined as

1 1
£, (PIQ) =5 [P =2dQ - 56 -1
We show that a mechanism K is (g, d)-LDP if and only if
E,(PK[IQK) < 6E,(P||Q)

for v = e° and any pairs of distributions (P, Q) where
PK represents the output distribution of K when the input
distribution is P. Thus, the approximate LDP guarantee of a
mechanism can be fully characterized by its contraction under
E,-divergence. When combined with standard statistical tech-
niques, including Le Cam’s and Fano’s methods [23, 24], E-
contraction leads to general lower bounds for the minimax and
Bayesian risk under (¢, 4)-LDP for any € > 0 and ¢ € [0, 1].
In particular, we show that the price of privacy in this case is
to reduce the sample size from n to n[1 — e °(1 — §)].

There exists several results connecting pure LDP to the con-
traction properties of KL divergence Dy and total variation
distance TV. For instance, for any e-LDP mechanism K, it
is shown in [10, Theorem 1] that Dk (PK||QK) < 2(e® —
1)2TV2(P,Q) and in [13, Theorem 6] that TV(PK|QK) <
ZZH TV(P, Q) for any pairs (P, Q). Inspired by these results,
we further show that if K is (g,d)-LDP then D¢ (PK|QK) <
[1—e ¢(1—9)]D;(P||Q) for any arbitrary f-divergences D
and any pairs (P, Q).

Notation. For a random variable X, we write Px and X for
its distribution (i.e., X ~ Px) and its alphabet, respectively.
For any set A, we denote by P(A) the set of all probability
distributions on A. Given two sets X and Z, a Markov kernel
(i.e., channel) K is a mapping from X" to P(Z) given by = —
K(:|z). Given P € P(X) and a Markov kernel K : X —
P(Z), we let PK denote the output distribution of K when
the input distribution is P, i.e., PK(-) = [ K(:|z)P(dz). Also,
we use BSC(w) to denote the binary symmetric channel with
crossover probability w. For sequences {a, } and {b, }, we use
an 2 by to indicate a,, > Cb,, for some universal constant C'.

978-1-5386-8209-8/21/$31.00 ©2021 IEEE 545
Authorized licensed use limited to: Harvard Library. Downloaded on February 02,2022 at 16:27:46 UTC from |IEEE Xplore. Restrictions apply.



II. PRELIMINARIES
A. f-Divergences

Given a convex function f : (0,00) — R such that f(1) =
0, the f-divergence between two probability measures P < Q)
is defined as [25, 26]

dpP

D4(P|Q) =Eq [f(@)]. )
Due to convexity of f, we have D;(P|Q) > f(1) = 0. If,
furthermore, f is strictly convex at 1, then equality holds if
and only P = Q). Popular examples of f-divergences include
f(t) = tlogt corresponding to KL divergence, f(t) = |t — 1|
corresponding to total variation distance, and f(t) = t* — 1
corresponding to y2-divergence. In this paper, we mostly con-
cern with an important sub-family of f-divergences associated
with f,(t) = max{t — ~,0} for a parameter v > 1. The
corresponding f-divergence, denoted by E. (P||Q), is called
E,-divergence (or sometimes hockey-stick divergence [27])
and is explicitly defined in (1). It appeared in [28] for proving
converse channel coding results and also used in [7, 29-31]
for characterizing privacy guarantees of iterative algorithms in
terms of other variants of DP.

B. Contraction Coefficient

All f-divergences satisfy data processing inequality, i.e.,
D (PK||QK) < D;(P||Q) for any pair of probability distri-
butions (P, Q) and Markov kernel K [25]. However, in many
cases, this inequality is strict. The contraction coefficient of
Markov kernel K under Dy-divergence 7;(K) is the smallest
number 7 < 1 such that D;(PK|QK) < nD;(P||Q) for
any pair of probability distributions (P, (). Formally, 7;(K)
is defined as

Dy (PK]QK)
n¢(K) = sup — (3)
1 poep(x):  Di(PlQ)
D¢ (P]|Q)#0

Contraction coefficients have been studied for several f-
divergences, e.g., nty for total variation distance was stud-
ied in [32-34], nk. for KL-divergence was studied in [35-
40], and n,2 for X2-divergence was studied in [34, 40,
41]. In particular, Dobrushin [32] showed that 77y has
a remarkably simple two-point characterization 1ty (K) =
SUDg, zoex TV(K(|I1)5 K(|I2))

Similarly, one can plug E,-divergence into (3) and define
the contraction coefficient 7, (K) for a Markov kernel K under
E,-divergence. This contraction coefficient has recently been
studied in [31] for deriving approximate DP guarantees for
online algorithms. In particular, it was shown [31, Theorem
3] that 1, enjoys a simple two-point characterization, i.e.,
0, (K) = sup,., 1,2 B (K(|e1) [K(-le2)). Since E, (P]Q) =
TV(P,Q), this is a natural extension of Dobrushin’s result.

C. Local Differential Privacy

Suppose K is a randomized mechanism mapping each = €
X to a distribution K(-|z) € P(Z). One could view K as a
Markov kernel (i.e., channel) K : X — P(Z).

Definition 1 ([8, 9]). A mechanism K : X — P(Z2) is (g,0)-
LDP for ¢ > 0 and 6 € [0,1] if
sup sup [K(A|z) —e*K(A]z")] < 4. 4)
x,x'€X ACZ
K is said to be e-LDP if it is (¢,0)-LDP. Let Q. s be the
collection of all Markov kernels K with the above property.
When § = 0, we use Q. to denote Q. .

Interactivity in Privacy-Preserving Mechanisms: Suppose
there are m users, each in possession of a datapoint X,
1 € [n] :={1,...,n}. The users wish to apply a mechanism
K; that generates a privatized version of X, denoted by Z;. We
say that the collection of mechanisms {K;} is non-interactive
if K; is entirely determined by X; and independent of (X, Z;)
for j # ¢. When all users apply the same mechanism K, we
can view Z" := (Z1,...,Z,) as independent applications of
K to each X;. We denote this overall mechanism by K®".
If interactions between users are permitted, then K; need
not depend only on X;. In this case, we denote the overall
mechanism {K;}?_; by K". In particular, the sequentially
interactive [10] setting refers to the case when the input of
K; depends on both X; and the outputs Z*~! of the (i — 1)
previous mechanisms.

III. LDP As THE CONTRACTION OF E.-DIVERGENCE

We show next that the (g,d)-LDP constraint, with  not
necessarily equal to zero, is equivalent to the contraction of
E. -divergence.

Theorem 1. A mechanism K is (¢,0)-LDP if and only if
Nes (K) < 6 or equivalently

Ke Q.5 < E(PK|QK) <E.-(P|Q), VPQ.

The proof of this theorem (and all other results) are given
in [42]. We note that Duchi et al. [10] showed that if K is &-
LDP then Dy (PK||QK) < 2(ef — 1)2TV?(P, Q). They then
informally concluded from this result that e-LDP acts as a
contraction on the space of probability measures. Theorem 1
makes this observation precise.

According to Theorem 1, a mechanism K is -LDP if and
only if E.-(PK]||QK) = 0 for any distributions P and Q. An
example of such Markov kernels is given next.

Example 1. (Randomized response mechanism) Let X =
Z = {0,1} and consider the mechanism given by the
binary symmetric channel BSC(w.) with w. := == This
is often called randomized response mechanism [43] and
denoted by Kgg. This simple mechanism is well-known to
be e-LDP which can now be verified via Theorem 1. Let
P = Bernoulli(p) and @ = Bernoulli(g) with p,q € [0,1].
Then PKgg = Bernoulli(p*w,) and PKgg = Bernoulli(gxw;)
where axb == a(1—b)+b(1—a). It is straightforward to verify
that [pxw. —efqxw|+|1—prw. —ef(1—gxw,)| = 0.5(e* —1)
for any p, ¢, implying E.- (PKgg||@K&ig) = 0. When |X| =
k > 2, a simple generalization of this mechanism, called k-ary
randomized response, has been reported in literature (see, e.g.,

[13, 20]) and is defined by Z = X and Krr(2|z) = ==
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and Kygr(z|z) = ﬁl—kef for z # x. Again, it can be verified

that for this mechanism we have E.-(PKgg||QKirr) = 0,
for all P and @ in P(X).

E.,-divergence underlies all other f-divergences, in a sense
that any arbitrary f-divergence can be represented by E.-
divergence [44, Corollary 3.7]. Thus, an LDP constraint im-
plies that a Markov kernel contracts for all f-divergences, in
a similar spirit to E,-contraction in Theorem 1.

Lemma 1. Let K € Q. 5 and ¢(g,d) :=1—(1—35)e <. Then,
Ny (K) < ¢(e, d) or, equivalently,

Dy (PK||@K) < Dy (P||Q)(e,9)

Notice that this lemma holds for any f-divergences and any
general family of (&, §)-LDP mechanisms. However, it can be
improved if one considers particular mechanisms or a certain
f-divergence. For instance, it is known that nk_ (BSC(w)) =
(1 — 2w?) [22]. Thus, we have nkL(Kgg) = (&51)? for the
randomized response mechanism Kgg (cf. Example 1), while
Lemma 1 implies that nk (Kgig) < 1 — e~¢. Unfortunately,
nkL is difficult to compute in closed form for general Markov
kernels, in which case Lemma 1 provides a useful alternative.

Next, we extend Lemma 1 for the non-interactive mecha-
nism. Fix an (g, 0)-LDP mechanism K and consider the cor-
responding non-interactive mechanism K®™, To obtain upper
bounds on 7y (K®™) directly through Lemma 1, we would first
need to derive privacy parameters of K®” in terms of ¢ and
0 (e.g., by applying composition theorems). Instead, we can
use the tensorization properties of contraction coefficients (see,
e.g., [39, 40]) to relate n;(K®™) to ns(K) and then apply
Lemma 1, as described next.

VP,Q € P(X).

Lemma 2. Let K € Q. 5 and ¢,(c,0) =1 —
Then 1y (K®™) < @, (e,0) for n > 1.

e—ns(l _ 5)71,.

Each of the next three sections provide a different applica-
tion of the contraction characterization of LDP.

IV. PRIVATE MINIMAX RISK

Let X" = (X4,...,X,) be n independent and identically
distributed (i.i.d.) samples drawn from a distribution P in a
family P C P(X). Let also 8 : P — T be a parameter
of a distribution that we wish to estimate. Each user has a
sample X; and applies a privacy-preserving mechanism K; to
obtain Z;. Generally, we can assume that K; are sequentially
interactive. Given the sequences {Z;}? ,, the goal is to
estimate 6(P) through an estimator ¥ : Z™ — 7. The quality
of such estimator is assessed by a semi-metric £ : 7 x7T — Ry
and is used to define the minimax risk as:

Rn(P,l,e,8) = inf inf sup E[((¥(Z"),0(P))]. (5)

K"CQ: s ¥ pcp

The quantity R, (P,¢,e,d) uniformly characterizes the op-
timal rate of private statistical estimation over the family
P using the best possible estimator and privacy-preserving
mechanisms in Q. 5. In the absence of privacy constraints (i.e.,
Z™ = X™), we denote the minimax risk by R, (P, ).

The first step in deriving information-theoretic lower bounds
for minimax risk is to reduce the above estimation problem to
a testing problem [23, 24, 45]. To do so, we need to construct
an index set V with [V| < oo and a family of distributions
{P,,v € V} C P such that £(6(P,),0(P,)) > 27 for all
v # " in V for some 7 > 0. The canonical testing problem is
then defined as follows: Nature chooses a random variable V'
uniformly at random from V), and then conditioned on V' = v,
the samples X" are drawn i.i.d. from P,, denoted by X" ~
ng". Each X is then fed to a mechanism K; to generate Z;.
It is well-known [23, 24, 45] that R, (P,{) > 7P.(V|X™),
where P.(V|X™) denotes the probability of error in guessing
V given X™. Replacing X™ by its (g, §)-privatized samples Z"
in this result, one can obtain a lower bound on R, (P,¢,¢,0)
in terms of P¢(V|Z™). Hence, the remaining challenge is to
lower-bound P.(V'|Z™) over the choice of mechanisms {K;}.
There are numerous techniques for this objective depending
on V. We focus on two such approaches, namely Le Cam’s
and Fano’s method, that bound P.(V|Z™) in terms of total
variation distance and mutual information and hence allow us
to invoke Lemmas 1 and 2.

A. Locally Private Le Cam’s Method

Le Cam’s method is applicable when V is a binary set
and contains, say, Py and P,;. In its simplest form, it relies
on the inequality (see [23, Lemma 1] or [24, Theorem 2.2])
P.(VIX™) > %[1 —TV(PO®”,P1®")]. Thus, it yields the
following lower bound for non-private minimax risk

R (P, 1) > g [1 - TV(RE", PE™] ©

>Tho 2

Z 5 NG
for any Py # P; in P, where the second inequality follows
from Pinsker’s inequality and chain rule of KL divergence.
In the presence of privacy, the estimator ¥ depends on Z"
instead of X", which is generated by a sequentially interactive
mechanism K™. To write the private counterpart of (6), we
need to replace P’™ and PP™ with P{"K" and P?"K" the
corresponding marginals of Z”, respectively. A lower bound
for R,,(P,¥,e,d) is therefore obtained by deriving an upper
bound for TV(P{"K™, PE"K™) for all K* C Q. 5.

nDkL(Po||P1) |, @)

Lemma 3. Let Py, P, € P satisfy {(0(Py),0(P1)) > 27. Then
we have

T 1
> 21—
Rn('])a&‘aé) =9 1 \/i\/nw(‘g?é)DKL(PO”Pl)

By comparing with the original non-private Le Cam’s
method (7), we observe that the effect of (¢,0)-LDP is to
reduce the effective sample size from n to (1 —e= (1 —0))n.
Setting § = 0, this result strengthens Duchi et al. [10,
Corollary 2], where the effective sample size was shown to
be 4¢2n for sufficiently small e.

Example 2. (One-dimensional mean estimation) For some k >
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1, we assume P is given by
P=P,={PePX):

The goal is to estimate 6(P) = Ep[X] under { = /(3
the squared /o metric. This problem was first studied in
[10, Propsition 1] where it was shown Rn(Pk,ég,a,O) >
(ne?)=(+=1/k only for ¢ < 1. Applying our framework to
this example, we obtain a similar lower bound that holds for

all e > 0 and ¢ € [0,1].

[Ep[X]| < 1,Ep[IX|*] < 1}.

Corollary 1. Forall k > 1, € >0, and 6 € (0,1), we have

(k-1
)] R S

It is worth instantiating this corollary for some special
values of k. Consider first the usual setting of finite variance
setting, i.e., £ = 2. In the non-private case, it is known that
the sample mean has mean-squared error that scales as 1/n.
According to Corollary 1, this rate worsens to 1/¢(g,8)y/n
in the presence of (¢,0)-LDP requirement. As k — oo, the
moment condition E,[|X|*] < 1 implies the boundedness of
X. In this case, Corollary | implies the more standard lower
bound (¢?(g,d)n)~!

R (P, £2,€,8) = min {1, [n

B. Locally Private Fano’s Method

Le Cam’s method involves a pair of distributions (FPo, P;)
in P. However, it is possible to derive a stronger bound
considering a larger subset of P by applying Fano’s inequality
(see, e.g., [23]). We follow this path to obtain a better minimax
lower bound for the non-interactive setting.

Consider the index set V = {1,...,|V|}. The non-private
Fano’s method relies on the Fano’s inequality to write a lower
bound for P.(V|X™) in terms of mutual information as

I(X™ V) +log2
log V|

To incorporate privacy into this result, we need to derive an

upper bound for I(Z™; V') over all choices of mechanisms

{K;}. Focusing on the non-interactive mechanisms, the fol-
lowing lemma exploits Lemma 2 for such an upper bound.

Rn(,PaE) Z T 1- (9)

Lemma 4. Given X™ and V as described above, let Z" be
constructed by applying K™ on X™. If K is (¢,8)-LDP, then
we have

nV) < nn (€, 6)

1(Z™ V) < pn(e,0) (X <
(27:V) < (e, 0)1 e

v’ €Y

This lemma can be compared with [10, Corollary 1], where
it was shown

I(Z™ V) < 2(ef — | |2 > D(Py||Py).

v’ €V

(10)

This is a looser bound than Lemma 4 for any n > 1 and
€ > 0.4 and only holds for § = 0.

Example 3. (High-dimensional mean estimation in an {-ball)

Z Dy (P, || Pyr)

For a parameter r < co, define
P, ={P € P(B5(r))}, (11)

where BY(r) {r € R? llz|la < r} is the fo-
ball of radius r in R? The goal is to estimate the mean
0(P) = E[X] given the private views Z™. This example was

first studied in [10 Proposition 3] that states R, (P, ¢3,¢,0) >

r2 min {

U nsg for ¢ € (0,1). In the following, we use
Lemma 4 to derive a similar lower bound for any € > 0 and
d € (0,1), albeit slightly weaker than [10, Proposition 3].

Corollary 2. For the non-interactive setting, we have
1 d
.12
nen(e,0)’ n2e2 (e, ) } 12)

Rn(P,02,¢,0) > r? min{

V. PRIVATE BAYESIAN RISK

In the minimax setting, the worst-case parameter is con-
sidered which usually leads to over-pessimistic bounds. In
practice, the parameter that incurs a worst-case risk may
appear with very small probability. To capture this prior
knowledge, it is reasonable to assume that the true parameter
is sampled from an underlying prior distribution. In this case,
we are interested in the Bayes risk of the problem.

Let P = {Px|o(:|f) : 0 € T} be a collection of parametric
probability distributions on X and the parameter space T
is endowed with a prior Pg, i.e., © ~ Pg. Given an i.i.d.
sequence X" drawn from Py e, the goal is to estimate © from
a privatized sequence Z" via an estimator ¥ : Z” — T . Here,
we focus on the non-interactive setting. Define the private
Bayes risk as

RE»*(Pe,l,¢,8) == inf infE[(O,¥(Z"))],

KeQ. s ¥

13)

where the expectation is taken with respect to the randomness
of both © and Z™. It is evident that RE2s(Pg, ¢, e, §) must
depend on the prior Pg. This dependence can be quantified
by

£(¢) = sup Pr(€(8,1) < ),

teT

for ¢ < supg g7 0(6,0'). Xu and Raginsky [46] showed
that the non-private Bayes risk (i.e., X™ = Z™), denoted by
RB¥es(Pg, (), is lower bounded as

I1(©; X™) + logﬂ
log(1/£L(¢))
Replacing 7(0; X™) with I(©; Z™) in this result and applying

Lemma 2 (similar to Lemma 4), we can directly convert (15)
to a lower bound for RB¥s(Pg. /¢, §).

(14)

Ranes(P@,f) > sup( [1 — (15)

¢>0

Corollary 3. In the non-interactive setting, we have

[1 _ pnlE,0)I(0; X)) + log2]
log(1/£(¢)) '
In the following theorem, we provide a lower bound for
RBa¥es(Pg, 0,¢,6) that directly involves E.-divergence, and
thus leads to a tighter bounds than (3). For any pair of random

RE™*S(Pg,l,e,8) > sup(
¢>0
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—— Theorem 2
—— Corollary 3

0.0 0.5 1.0 15 2.0
13

Fig. 1. Comparison of the lower bounds obtained from Theorem 2
and the private version of [46, Theorem 1] described in Corollary 3
for Example 4 assuming 6 = 10~ and n = 20.

variables (A, B) ~ Pap with marginals P4 and Pp and a
constant v > 0, we define their E-information as

I,(A; B) := Ey(Pag||PaPp).

Theorem 2. Let K be an (g,0)-LDP mechanism. Then, for
n =1 we have

RE™(Po, (,€,8) 2 sup ¢ [1 - 61+ (6; X) — e"L(Q)]
¢>0

and for n > 1 in non-interactive setting we have

RE™(Po, ,6,0) > sup¢ [1 ~ gule, 6)Ie (0; X™) — L (C)].
¢>0

We compare Theorem 2 with Corollary 3 in the next
example.

Example 4. Suppose © 1is uniformly distributed on [0, 1],
Px|e—¢ = Bernoulli(f), and £(6,0") = [0 —0'|. As mentioned
earlier, £(¢) < min{2¢,1}. We can write for 7 = e°
1
I,(0; X™) :/ E. (Pxo(o]| Px)do. (16)
0
A straightforward calculation shows that Pxng(z") =
65" (1 — 0;"’5(“), for any 6 € [0,1], and Pxn(z") =
% where s(z™) is the number of 1’s in 2™. Given
these marginal and conditional distribution, one can obtain
after algebraic manipulations

Lo~ [Mgsq — gynms (D!
n—{-lg/o [9 (1-6) s!(n—s)!_7

Plugging this into Theorem 2, we arrive at a maximization
problem that can be numerically solved. Similarly, we com-
pute [(©; X") = fol Dy (Pxng||Pxn»)df and plug it into
Corollary 3 and numerically solve the resulting optimization
problem. In Fig. 1, we compare these two lower bounds for
§ = 10~* and n = 20, indicating the advantage of Theorem 2
for small €.

L(0;X") =
+

Remark 1. The proof of Theorem 2 leads to the following

lower bound for the non-private Bayes risk

Ry¥®(Po, ) > sup ¢ [1 = L,(0; X™) = vL(¢) — (1 = 7)+].
¢>0,

720

A7)

For a comparison with (15), consider the following exam-
ple. Suppose © is a uniform random variable on [0,1] and
Px|e—9 = Bernoulli(§). We are interested in the Bayes risk
with respect to the {1-loss function £(0,0") = |0 — 0'|. It can
be shown that 1(0; X) = 0.19 nats while

0.25+2 if v €1[0,1]
I,(0;X) =20.25(y—2)* ifyel,2] (18)
0 otherwise.

Moreover, L(() = supc(o,1) Pr(|© —t| < () < min{2¢, 1}. It
can be verified that (15) gives RlBayes(P@, {1) > 0.03, whereas
our bound (17) yields RlBayes(P@,Kl) > 0.08.

VI. PRIVATE HYPOTHESIS TESTING

We now turn our attention to the well-known problem of
binary hypothesis testing under local differential privacy con-
straint. Suppose n i.i.d. samples X" drawn from a distribution
Q € P(X) are observed. Let now each X; be mapped to
Z; via a mechanism K; € Q. 5 (i.e., sequential interaction is
permitted). The goal is to distinguish between the null hypoth-
esis Hy : Q = Py from the alternative H; : Q = P; given
Z". Let T be a binary statistic, generated from a randomized
decision rule Ppjz» : 2" — P({0,1}) where 1 indicates
that Hy is rejected. Type I and type II error probabilities
corresponding to this statistic are given by Pr(7T" = 1|Hj) and
Pr(T = 1|H,), respectively. To capture the optimal tradeoff
between type I and type II error probabilities, it is customary
to define 35°(a) := inf Pr(T = 0|H,) where the infimum is
taken over all kernels Pr|z» such that Pr(T" = 1|Hp) < «
and non-interactive mechanisms K®" with K € Q5. In the
following lemma, we apply Lemma 1 to obtain an asymptotic
lower bound for 559(a).

Corollary 4. We have for any € > 0 and § € [0,1]

.1 .
lim — log 50 (a) > —¢(e, 8) Dk (Po| Py).

n—oo N

19)

A similar result was proved by Kairouz et al. [13, Sec. 3]
that holds only for sufficiently “small” (albeit unspecified)
and 6 = 0. When compared to Chernoff-Stein lemma [47,

do. Theorem 11.8.3], establishing Dy (FPy|Py) as the asymptotic

exponential decay rate of 359 (a), the above corollary, once
again, justifies the reduction of effective sample size from n
to (g, d)n in the presence of (g, )-LDP requirement.
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