2021 IEEE International Symposium on Information Theory (ISIT) | 978-1-5386-8209-8/21/$31.00 ©2021 IEEE | DOI: 10.1109/1SIT45174.2021.9517932

Polynomial Approximations of Conditional
Expectations in Scalar Gaussian Channels

Wael Alghamdi and Flavio P. Calmon
Harvard University
alghamdi @g.harvard.edu, flavio@seas.harvard.edu

Abstract—We consider a channel ¥ = X + N where X
is a random variable satisfying E[|X]|] < oo and N is an
independent standard normal random variable. We show that
the minimum mean-square estimator of X from Y, which is
given by the conditional expectation E[X | Y], is a polynomial
in Y if and only if it is linear or constant; these two cases
correspond to X being Gaussian or a constant, respectively. We
also prove that the higher-order derivatives of y — E[X | Y = y]
are expressible as multivariate polynomials in the functions
y—E [(X —EX | Y)Y = y] for k € N. These expressions
yield bounds on the 2-norm of the derivatives of the conditional
expectation. These bounds imply that, if X has a compactly-
supported density that is even and decreasing on the positive half-
line, then the error in approximating the conditional expectation
E[X | Y] by polynomials in Y of degree at most n decays faster
than any polynomial in n.

I. INTRODUCTION

We investigate the extent to which polynomials can approx-
imate conditional expectations in the scalar Gaussian channel.
For

Y=X+N, (1

where X has finite variance and N ~ A(0,1) is independent
of X, the conditional expectation E[X | Y] is the minimum
mean-square error (MMSE) estimator:

min E [|X - Zﬂ —E [|X _E[X | Y]ﬂ . @

where the minimization is taken over all o(Y’)-measurable
random variables Z. It is well-known that E[X | Y] is linear
(i.e., a first degree polynomial in Y) if and only if X is
Gaussian (see, e.g., [1]). We take this a step further and
examine when E[X | Y] is close to being a polynomial.
Specifically, we focus on two questions:

(Q1) For which distributions of X is a polynomial estimator
optimal (in the mean-square sense) for reconstructing X
from Y'?
(Q2) When the MMSE estimator E[X | Y] is not a polynomial,
how well can it be approximated by a polynomial?
In the course of answering (Q2), we answer another funda-
mental question:
(Q3) How can the higher-order derivatives of E[X | Y = y] in
y be expressed and bounded?
We provide a full answer for (Q1) in Theorem 1, where we
show that the MMSE estimator is a polynomial if and only
if X is Gaussian or constant. In other words, the only way

E[X | Y] can be a polynomial is if it is linear in Y or is a
constant.

For the second question, if X has a probability density
function (PDF) or a probability mass function (PMF) px that
is compactly-supported, even, and decreasing over [0, 00) N
supp(px), then we show in Theorem 3 that for all positive
integers n and k satisfying n > max(k — 1,1) we have that

. 1
i 180X Y] = a0l = Oxs () - @)
Here, 42,, denotes the set of all polynomials with real coef-
ficients of degree at most n, the implicit constant in (3) can
depend on X and k, and || - |2 refers to the Py-weighted
2-norm, i.e., | f(Y)|[3 = E[f(Y)?).

The result in (3) hinges on our answer to (Q3) in virtue
of it giving a uniform upper bound on the derivatives of the
conditional expectation (see Theorem 2): there are absolute
constants {7 }r>1 such that

< k- “4)

dk
sup H E[X |Y =y]
2

E[| X|]<oco dy*

The bound in (4) is a corollary of our answer to the other half
of (Q3), where we express the derivatives of the conditional
expectation in the form (see Proposition 1)

dr—l
—— EX |Y =y|=
Gyt EX 1Y =y
r . i
> ewen J[E[(X—EX Y] |V =]
2Xo+- 4 rA=1 1=2
Az, A EN

(&)

for some explicit integers ey,,... », that we define in the

sequel. Setting » = 2 in (5) recovers the first derivative [2]
d
@E[X|Y=y]=Var[XlY=y}~ (6)

These results complement our previous work in [3], where
we show that if X has a moment generating function (MGF),
then there are constants {cy ;}nen,je[n] Such that

n—oo b

EX [Y]= lim Y ¢, ;Y (7)
JEn]

holds in the mean-square sense. In fact, we may choose

(Cn,Oa"’ ,Cn,n) :E[(XvXY"" ’XYR)] M;nlm ®)
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where the Hankel matrix of moments of Y is denoted by

My, .= (E [Yi+j])<z‘7j>e[n12 : ®

Denoting Y (") = (1,Y,--- ,Y™)7, the polynomial

B [X | Y] =E[(X,XY, -, XY")| My Y™  (10)

is the orthogonal projection of E[X | Y] onto the subspace
Z,(Y) = {p(Y) | p € &,}. This projection characteriza-
tion, in turn, makes E,[X | Y] the best-polynomial approx-
imation (in the weighted L?-norm sense) of the conditional
expectation E[X | Y. Specifically, E,,[X | Y] uniquely solves
the approximation problem

En[X | Y] = (11)

argmin
q(Y)EPn(Y)

la(Y) —E[X [ Y]],

For (3), we apply solutions to the Bernstein approximation
problem (see [4] for a comprehensive survey). The orig-
inal Bernstein approximation problem extends Weierstrass
approximation to polynomial approximation in L*° (R, ) for
a measure p that is absolutely continuous with respect to the
Lebesgue measure. The work by Ditzian and Totik [5]—which
introduces moduli of smoothness—shows that tools used to
solve the Bernstein approximation problem can also be useful
for polynomials approximation in LP(R, ) for all p > 1. We
apply their results for the case p = 2.

MMSE estimation in Gaussian channels plays a central role
in several information-theoretic applications (e.g., [, 6-9]).
The MMSE dimension [10] is a measure of nonlinearity of the
MMSE estimator. The first-order derivative of the conditional
expectation in Gaussian channels has been treated in [2]. In
particular, formula (6) is generalized in [2] to the multivariate
case.

The bound in (3) induces a bound on the gap between
the MSE achieved by polynomial estimators and the MMSE.
Indeed, the loss from replacing the MMSE estimator E[X | Y]
with its best-polynomial approximation E,[X | Y] is

Apx =X = Eo[X | Y]]3 — | X - E[X | V][5
= | ElX | Y] - EIX | Y]|I3,

(12)
13)

where (13) follows by the orthogonality principle for the
conditional expectation E[X | Y]. Hence, inequality (3) yields
the bounds A, x = Ox ¢(n~*) for every fixed £ > 0. We
note that utilizing higher-order polynomials as proxies of the
MMSE has appeared, e.g., in approaches to denoising [11].

The full proofs can be found in the extended version of this
paper [12].

A. Notation

The probability measure induced by a random variable (RV)
X is denoted by Px. If X is continuous (resp. discrete),
then its PDF (resp. PMF) is denoted by px. We use the
notation || - ||, for norms of RVs, i.e., for ¢ > 1 we have
|\X||Z =E[|X|?]. We say that a RV X is n-times integrable
if it satisfies || X||, < oo, and it is integrable if | X||; < co.
The norm of the Banach space L4(R) (for ¢ > 1) is denoted
by || - [lLaw)-

The characteristic function of a RV Z is denoted by
¢z (t) :=E [e"?] . We let &, denote the set of polynomials
of degree at most n with real coefficients. For n € N, we
set [n] := {0,1,--- ,n} and denote the set of all finite-length
tuples of non-negative integers by N*.

For every integer r > 2, let II,. be the set of unordered
integer partitions 7 = ry + - -- + 73 of 7 into integers r; > 2.
We encode II,. via a list of the multiplicities of the parts as

I :={(Ag, -, \) eN"; 2 g+ -+ LA =71}. (14)
In (14), ¢ > 2 is free, and trailing zeros are ignored (i.e.,
A¢ > 0). For a partition (Ag,---,A¢) = A € II,. having m =
Ao + - -+ Ay parts, we denote!

1 m r
C)":m()\%...’)\2)<27...ﬂ;...;&...j) (15)
—— ——

and

(16)

We set’ Cp := Y cp cx. Let {} denote the Stirling
numbers of the second kind (i.e., the number of unordered
set-partitions of an r-element set into m nonempty subsets).
The integer C). can be expressed as

ofong (i) o

J

A derivation of this formula is included in [12]. The first few
values of C). (for 2 < r < 7) are 1,1,4,11,56,267, and
we have the asymptotic C,. ~ (r — 1)!/a” for some constant
o = 1.146 as r — oo (see [13]) and the crude bound C,. < r".

B. Assumptions

We assume only that X is integrable and N ~ A(0,1) is
independent of X to prove that the conditional expectation
E[X | X + N] cannot be a polynomial of degree exceeding 1
(Theorem 1) and derive the formula for the higher-order
derivatives of the conditional expectation (Proposition 1) along
with the ensuing bounds on the norms of the derivatives
(Theorem 2). For the Bernstein approximation theorem we
prove for E[X | X+ N|] (Theorem 3), we impose the additional
assumption that X is either continuous or discrete with a PDF
or a PMF belonging to the set we define next.

Definition 1. Let & denote the set of compactly-supported
even PDFs or PMFs p that are non-increasing over

[0,00) N supp(p).

'The integer cy counts the number of cyclically-invariant ordered set-
partitions of an r-element set into m = Ag + --- + Ay subsets where, for
each k € {2,--- , ¢}, exactly A\ parts have size k.

>The integer C, counts the total number of cyclically-invariant ordered
set-partitions of an r-element set into subsets of sizes at least 2.
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II. POLYNOMIAL CONDITIONAL EXPECTATION

We start by showing that the only way E[X | Y] can be
a polynomial, for integrable X and Y = X 4+ N a Gaussian
perturbation, is if X is Gaussian or constant. The proof is
carried in two steps. First, we show that a degree-m non-
constant polynomial E[X | Y] requires py = e~ for some
polynomial h with deg h = m+1. The second step is showing
that, because py = e " is a convolution of the Gaussian
kernel, m = 1.

The following lemma will be useful, and we include its
proof in the extended version of this paper [12].

Lemma 1. For a RV X and a polynomial p, if p(X
integrable then so is Xde&(®)

) is

This lemma will allow us to conclude the finiteness of all
moments of X directly from the hypotheses that E[X | Y] is
a polynomial of degree exceeding 1 and || X||; < oo, because
IELX | Y]l < IIX]|x for every & > 1.

Theorem 1. For Y = X+ N where X is an integrable RV and
N ~ N(0,1) independent of X, the conditional expectation
E[X | Y] cannot be a polynomial in Y with degree greater
than 1. Therefore, the MMSE estimator in a Gaussian channel
with finite-variance input is a polynomial if and only if the
input is Gaussian or constant.
Proof. Suppose, for the sake of contradiction, that
EX |Y]=¢q() (18)

for some polynomial with real coefficients ¢ of degree m :=
degq > 1. The contradiction we derive will be that the
probability measure defined by

1
Q(B) := f/ e~ /2 dPx (z) (19)
aJB
for every Borel subset B C R, where a = E[e=¥"/2] is

the normalization constant, would necessarily have a cumulant
generating function that is a polynomial of degree m+1 > 2.
Let R be a RV distributed according to ). We note that the
polynomial ¢ is uniquely determined by (18) because Y is
continuous, for if ¢(Y) = ¢g(Y") for a polynomial g then the
support of Y must be a subset of the roots of ¢ — g.

The proof strategy is to compute the PDF py in two ways.
One way is to compute py as a convolution

LE [e—(X—y)2/2] )
vors

This equation shows by Lebesgue’s dominated convergence
that py is continuous. The second way to compute py
is via the inverse Fourier transform of ¢y. We consider
the Fourier transform that takes an integrable function ¢
to §(y) = [ye(t)e~"¥tdt, so the inverse Fourier trans-
form takes an integrable function p to (2m)~" [ p(y)e™ dy.
Now, py = @x@n is integrable; 1ndeed lox]| S 1 and
on(t) = e‘tz/g. Also, being a characteristic function, @y is
continuous too. Therefore, by the Fourier inversion theorem,
since @y /(27) is the inverse Fourier transform of py, we
obtain that py = @y/(2m). Equating this latter equation

py(y) = (20)

with (20), then multiplying both sides by +/ 2mey’/2 /a, that
R ~ @ (see (19)) implies

B[] = —— e 255(y).

21
av?2mw @D

Equation (21) holds for every y € R. The rest of the proof
derives a contradiction by showing that ¢y = e“ for some
polynomial G of degree m + 1 > 2.

Integrability of X implies integrability of E[X | Y], so for
every t € R

E [e"(X —E[X | Y])] =0. (22)
Substituting X =Y — N and E[X | Y] = ¢(Y) into (22),
E [ (Y = N —q(Y))] =0. (23)

Because the RVs ¢ (Y — ¢(Y)) and Y N are integrable,
we may split the expectation to obtain

E [ (Y —q(Y))] —E[e"YN] =o0. (24)

We rewrite equation (24) in terms of the characteristic func-
tions of Y and N.

Since ¢(Y") is integrable, Lemma 1 implies that Y is m-
times integrable. In particular, E [|(X + 2)™|] < co for some
z € R. By Lemma 1 again, X is m-times integrable. Hence,
for each k € [m] and Z € {X,N,Y}, that E [|Z|}] < o0

implies that the k-th derivative ¢, exists everywhere and
(—i)* P (t) = E [e"Z Z¥] . (25)

For the term E [e“YN] in (24), pluggingin ¥ = X + N,
we infer from (25) that

£ =)= o040
~*/2 50 @y (t) = —ton(t), hence (26) yields
E [eityN} = itpx (t)en(t) = itpy (t). 27)

Let oy for k € [m] be real constants such that q(u) =
Zke[m] agu® identically over R, so a,, # 0. For the first
term in (24), utilizing (25) repeatedly we obtain

(26)

But QDN( )

E [e”y(Y —q(Y))| =—1i Z ckap(k) (28)
ke[m]
where we define the constants
ok _ [ (=) tay if ke [m]\ {1},
ek = (=) aptoy = { l—a; ifk=1
(29)

Plugging (27) and (28) in (24), we get the differential equation

toy(t)+ Y el (1) =0. (30)
ke[m]

We will transform the differential equation (30) into a linear
differential equation in the Fourier transform of ¢y . For this,
we need first to show that for each k € [m] the derivative gpgf )
is integrable so that its Fourier transform is well-defined.

Now, repeated differentiation of @y (t) = @x(t)e '/
shows that for each k € [m] there is a polynomial rj in k + 2
variables such that

A0 =i (Lox (), o0, G0 W) e G
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Indeed, we start with ro(t,u) = wu because @y (t) =

cpx(t)e*t2/2. Now, suppose (31) holds for some k € [m —1].
The derivative (with respect to t) of the rj term is

d k k1
&rk (ta @X(t)a e 7‘»0&()(75)) = Sk (ta @X(t)a e a‘Pg(Jr )(t))

(32)
for some polynomial s, in k -+ 3 variables. Therefore, differ-
entiating (31), we get

42
(pqurl)(t) —— (t, ox(t), ' (t), - ,<p()?+1)(t)) o t/2
(33)
where

Uk41) = Sk (, Uo, -+ 5 Ukg1)
by (g,

Tt (L ug, - -

yuk)  (34)

is a polynomial in k4 3 variables. Therefore (31) holds for all
k € [m]. Now, for each j € [m], we have by (25) the uniform
bound [0 (1)] < E [|X]7] . Therefore, for each k € [m], let-
ting vy, be the same polynomial as r; but with the coefficients
replaced with their absolute values, the triangle inequality
applied to (31) yields the bound |o{¥ (1) < mp(t)e=t"/2
where 7;,(t) := vy, (t], 1, E[| X[}, -- ,E [|X|*]) is a (positive)
polynomial in |¢|. Since [, 7 (t)e=*"/2 dt < oo, we obtain that
gogf ) is integrable for each k € [m].

Taking the Fourier transform in the differential equation (30)
we infer

iov'(y) +@v(y) D eliy)* =0. (35)

ke[m]

We rewrite this equation in terms of the aj (see (29)) as

&) —ov) Y (e —dip)y" =0 (36)
ke[m]
Equation (35) necessarily implies
Y ap — 0
Pv(y)=Dexp | Y —E——thykst (37)

ki k+1

for some constant D. Since py = @y /(27), we necessarily
have D > 0. Therefore, we obtain the desired form for oy,
namely, gy = ¢ where G € 2,1\ P, is given by’

Gly)= Y

ke[m]

g =01k pi1

e Y + log(D). (38)

Plugging in this formula for @y in (21), we obtain that the
cumulant-generating function of the RV R is the degree-
(m+ 1) polynomial G(y)+ y*/2 —log(av/2r), contradicting
Marcinkiewicz’s theorem that a cumulant-generating function
has degree at most 2 if it were a polynomial (see, e.g., [14,
Theorem 2.5.3]). This concludes the proof by contradiction
that E[X | Y] cannot be a polynomial of degree at least 2.
For the second statement in the theorem, we consider the re-
maining two cases that E[X | Y] is a linear expression in Y or
is a constant. If E[X | Y] is constant, then differentiating and

31t can also be shown that we necessarily have o, < 0 and m is odd, but
these points are moot since we eventually have a contradiction.

taking the expectation in (6) yields that || X —E[X | Y]||2 = 0,
i.e.,, X = E[X | Y] is constant. Finally, under the assumption
that X has finite variance, E[X | Y] is linear if and only if
X is Gaussian (see, e.g., [1]). We note that if one requires
only that X be integrable, then one may deduce directly from
the differential equation (30) that a linear E[X | Y] implies a
Gaussian X in this case too (see [12]). O]

Remark 1. The conclusion of Theorem 1 is derivable from the
fact that E[X | Y = y] = O(y?), shown in [15, Proposition
1.2] under the assumption that the input RV X has finite
variance. Theorem | proves this conclusion under the more
general setup when X is assumed to be only integrable.

III. CONDITIONAL EXPECTATION DERIVATIVES

We develop formulas for the higher-order derivatives of
the conditional expectation, and establish upper bounds. The
bounds in Theorem 2 on the norm of the derivatives of the
conditional expectation will be crucial in Section IV for es-
tablishing a Bernstein approximation theorem that shows how
well polynomials can approximate the conditional expectation
in the mean-square sense.

Theorem 2. Fix an integrable RV X and an independent N ~
N(0,1), and set Y = X + N. Let r > 2 be an integer, let C,
be as defined in (17), and denote g, = |(v/8r +9 — 3)/2]
and vy, = (2rqr)!1/(4‘“). We have the bound

d7‘—1
H dyrfl

For 2 < r < 7, we obtain the first few values of ¢,
as 1,1,1,2,2,2, and we have ¢, ~ V2r as r — oo (see
Remark 3 for a way to reduce g,-). To prove Theorem 2, we first
express the derivatives of y — E[X | Y = y| as polynomials
in the moments of the RV X, —E[X,], where X, denotes the
RV obtained from X by conditioning on {Y = y}.

EX |Y =y]|| < 2°Cpmin (v, [|X|5,,,)- 39

2

Proposition 1. Fix an integrable RV X and an independent
N ~N(0,1), and let Y = X + N. For each (y,k) € R x N,
denote f(y) :=E[X |Y =y] and

ge(y) =E[(X —E[X [YD" Y =y]. @0

For (Mg, ,\¢) = X € N*, denote g* := Hf:z g}, with the
understanding that g0 = 1. Then, for every integer r > 2, we

have that
fO = 3" exg?,
Aell,

(41)

where the integers ey are as defined in (15)-(16).

Proof Sketch. Differentiating the conditional expectation, we
get ' = go. Further, differentiating gy for k& > 1 we obtain

9 = Jer1 — kgagr—1. 42)

By differentiating both sides of f’ = go repeatedly and
utilizing (42) after each differentiation step, we inductively
obtain that f("~1) admits a formula of the form

D= Y g

AEIL,.

(43)
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for integers hy. A closer look at how (43) is deduced from
f' = g2 and (42) reveals that the h) satisfy a recurrence rela-
tion of the form: for v € II,4; there are integers {dx , } e,
such that
hy =Y dayha, hay=1.
A€l

(44)

Further, the same recurrence in (44) generates the sequence
ey defined in (16), thereby yielding hy = ey for every A. [

Remark 2. The formula in Proposition 1 was derived in
parallel to this work in [16]. Further, it is shown in [16] that
formula (41) is the expansion of the r-th cumulant of X, in
terms of the moments of X, via Bell polynomials.

Now we are ready to prove Theorem 2.

Proof of Theorem 2. We use the notation of Proposition 1. Fix
(A2,-++,A¢) = A € II,. By the generalization of Holder’s
inequality stating [[¢1 - ¥k [l1 < [T, |[¥s]l, we have that

|| = | TT o> )
X0

where s is the number of nonzero entries in A. By Jensen’s
inequality for conditional expectation, for each %

Now, r = 3¢ ih > S5 i = — 1, so we have
that 32+3s—2r <0, ie., s < g,. Further, i\; < r for each i.
Hence, monotonicity of norms and inequalities (45) and (46)
imply the uniform (in A) bound

(45)

S
L O

RS (Y)H < [IX —E[X | Y]|2,. (46)

(s+1)(s+2)
2

HQA(Y)HQ <X —E[X | Y]l3q,- (47)

Observe that | X — E[X | Y]||y < 2min ((k1)/C0 || X))
(see [1]), so applying the triangle inequality in (41) we obtain

o=, = 3 el on], )
< 2 CT min ('yr, HXngqT) , (49)
where 7, = (2rg,)!"/(49") | as desired. O

Remark 3. A closer analysis reveals that ¢\;s in (46) cannot
exceed 3, := t2(t, + 1/2) for t, := (v/6r +7 — 1)/3. For
r — oo, we have rq./B, ~ 3%/2/2 ~ 2.6. The reduction
when, e.g., r = 7, is from rq, = 14 to 5, = 10.

IV. A BERNSTEIN APPROXIMATION THEOREM

We show that, if X ~ p € & (see Definition 1), then the
approximation error |[E,[X | Y] — E[X | Y]||2 decays faster
than any polynomial in n.

Theorem 3. Fix p € 9, let X ~ p, suppose N ~ N(0,1)
is independent of X, and set Y = X + N. There exists a
sequence {D(p, k) }ren of constants such that for all integers
n > max(k — 1,1) we have

The proof relies on results on the Bernstein approximation
problem in weighted L? spaces. In particular, we consider the
Freud case, where the weight is of the form =@ for @ of
polynomial growth, e.g., a Gaussian weight.

Definition 2 (Freud Weights). A function W : R — (0, 00)
is called a Freud Weight, and we write W € %, if it is of the
form W = e~ @ for Q : R — R satisfying:

1) @ is even,

2) Q is differentiable, and Q’(y) > 0 for y > 0,

3) y— yQ'(y) is strictly increasing over (0, c0),

4) yQ'(y) — 0 as y — 07, and

5) there exist A, a,b,c > 1 such that for every y > ¢

/
o< TN (51)
Q'(y)
The convolution of a weight in & with the Gaussian weight
o(x) := e~*"/2 /\/27 is a Freud weight. This can be shown by
noting that with py = ¢~? we have Q'(y) = E[N | Y = y].
We state this as a theorem here, and include the proof in [12].

Theorem 4. If p € & and X ~ p, then the probability density
function of X + N, for N ~ N(0,1) independent of X, is a
Freud weight.

To be able to state the theorem we borrow from the
Bernstein approximation literature, we need first to define the
Mhaskar—Rakhmanov—Saff number.

Definition 3. If ) : R — R satisfies conditions (2)-(4) in
Definition 2, and if y@Q’(y) — oo as y — oo, then the n-th
Mhaskar—Rakhmanov-Saff number a,,(Q) of @ is defined as
the unique positive root a,, of the equation

2 (1 antQ (ant
n=2= L(a)dt.

™ Jo V1-—t2
Remark 4. The condition yQ'(y) — oo as y — oo in
Definition 3 is satisfied if e~% is a Freud weight.

For example, the weight W (y) = e=¥’, for which Qy) =
y?, has a,(Q) = v/n because [ t?/V/1—t2dt = 5. If X ~
p € 9, say supp(p) C [-M,M], and py = e ‘o (where
N ~ N(0,1) is independent of X, and Y = X + N), then

an(Q) < (2M +2) V.

This follows straightforwardly from Q'(y) = E[N | Y = y]
(see [12] for the details).

We apply the following Bernstein approximation theorem
[4, Corollary 3.6] to prove Theorem 3.

(52)

(53)

Theorem 5. Fix W € %, and let u be an r-times continuously
differentiable function such that u'™) is absolutely continuous.
Let a,, = a,(Q) where W = e 9, and fix 1 < s < co. Then,
for some constant D(W,r,s) and every n > max(r — 1,1)
it (@ = wW e < DOrs) (2) W ey
(54)

Proof sketch of Theorem 3. The theorem follows by choosing

D(p, k) u(ly) =E[X |Y =y], s =2, and W = ,/py in Theorem 5,
|En[X | Y] -E[X Y]], < T;Q (50) and recalling (11), (53), and Theorems 2 and 4. O
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