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Abstract—We propose a new technique for deriving the differ-
ential privacy parameters in federated learning (FL). We consider
the setting where a machine learning model is iteratively trained
using stochastic gradient descent (SGD) and only the last update
is publicly released. In this approach, we interpret each training
iteration as a Markov kernel. We then quantify the impact of the
kernel on privacy parameters via the contraction coefficient of
the Eγ-divergence that underlies differential privacy. To do so,
we generalize the well-known Dobrushin’s ergodicity coefficient,
originally defined in terms of total variation distance, to a family
of f -divergences. We then analyze the convergence rate of SGD
under the proposed private FL framework.

I. INTRODUCTION

Federated Learning (FL) [1] is a distributed method for
training machine learning models. In the prototypical setting,
users compute gradients on their local data and send them
to a server referred to as the central aggregator (uplink
update). The local gradients are then aggregated into an
update by the server, which is then sent back to users (down-
link update). This iterative distributed algorithm has recently
gained attention due to its inherit parallelization, storage, and
communication efficiency. Although users never share their
local data directly during each iteration—only gradients are
transmitted—FL can still compromise user privacy [2, 3].

In this paper, we derive privacy guarantees for FL. We adopt
differential privacy (DP) as our privacy metric of choice, since
DP has become the standard for large-scale model fitting (e.g.,
[4–14]). We make two key assumptions. First, we assume that
users communicate over encrypted channels with a trusted
aggregator. Second, we assume that the aggregator releases
the model parameters publicly only after a certain number
of iterations and hides all intermediate updates. Augenstein
et al. [15] recently studied the same setting where, after T
iterations, the last model parameters are used to generate
synthetic data for data inspection purposes. This assumption is
also in line with the recent works [16, 17] where the privacy
amplification resulting from hiding intermediate updates was
quantified. However, these works differ from ours in that we
allow for subsampling of users and adopt the approximate
DP as the measure of privacy. In contrast, in [16, 17] noise
at each iteration is the only source of randomness (i.e., no
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subsampling) and the privacy was given in terms of Rényi
differential privacy.1

To characterize the privacy-utility trade-off, we analyze the
convergence rate of stochastic gradient descent (SGD) under
the proposed privacy-preserving FL framework. We consider
two common data generation scenarios. First, we let each
local sample be generated i.i.d. according to an unknown
source PX . In this case, we show that the convergence rate
is degraded by an additive term C0σ2/n, where σ is the
variance of the noise added in each iteration. Second, we
consider heterogeneous data and make no assumption on the
underlying distribution. Due to the one-pass nature of the
proposed FL algorithm, the standard SGD analysis fails in
this regime since the local gradient obtained at each step is no
longer unbiased. To overcome this, we generalize the results
on without-replacement SGD [20], proving a similar upper
bound on the convergence rate. Our results specify the relation
between convergence rate, noise level as well as sample and
batch size. Moreover, it sheds light on how to select these
hyper-parameters to achieve better privacy-utility trade-off.
Notation. For any set A, we denote by P(A) the set of all
probability distributions on A. Given two sets Y and Z , a
Markov kernel (i.e., channel) K is a mapping from Y to P(Z)
given by y !→ K(y). Given µ ∈ P(Y) and a Markov kernel
K : Y → P(Z), we let µK denote the output distribution of
K when the input distribution is µ, i.e., µK =

∫
K(y)µ(dy).

II. PRELIMINARIES

A. Differential Privacy

Let Xn be the set of all possible datasets of size n, where
each entry takes values in X . A pair of datasets x ∈ Xn and
x′ ∈ Xn are neighboring (denoted by x ∼ x′) if they differ in
exactly one entry. A randomized mechanism M acts on each
x ∈ Xn and generates a random variable with distribution
Mx. A mechanism M is said to be (ε, δ)-DP [21], for ε ≥ 0
and δ ∈ [0, 1], if we have

sup
x∼x′

sup
A

[Mx(A)− eεMx′(A)] ≤ δ, (1)

where the first supremum is taken over all measurable sets A.

1We note that Rényi differential privacy can be converted into (ε, δ)-DP,
according to [18]. However, as shown in [19], the resulting privacy guarantees
are weaker than what would be obtained by directly computing ε and δ.
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B. f -Divergences
Given a convex function f : [0,∞) → R with f(1) = 0, the

f -divergence [22, 23] between two probability measures µ and
ν is defined as Df (µ‖ν) := Eν

[
f
( dµ

dν

)]
. This includes several

popular measures: KL-divergence, χ2-divergence, and total
variation distance TV are f -divergences for f(t) = t log(t),
f(t) = (t− 1)2, and f(t) = 1

2 |t− 1|, respectively.
Given ε ≥ 0, consider the convex function fε(t) :=

(t − eε)+, where (a)+ := max{0, a}. The corresponding
f -divergence, denoted by Eε(P‖Q), is called Eε-divergence
(or sometimes hockey-stick divergence [24]) and is explicitly
defined as

Eε(µ‖ν) =
∫

Y

(
d(µ− eεν)(y)

)
+
. (2)

From the Neyman-Pearson lemma we can obtain an alternative
formula for Eε(µ‖ν) as Eε(µ‖ν) = supA [µ(A)− eεν(A)] ,
implying that the DP constraint (1) can be equivalently ex-
pressed in terms of Eε-divergence [25]: M is (ε, δ)-DP if and
only if

sup
x∼x′

Eε(Mx‖Mx′) ≤ δ. (3)

This Eε-divergence representation of DP was used in [26–
30] to prove new privacy results or simplify the proofs of
existing results. The following properties of Eε-divergence can
be readily proved:

• 0 ≤ Eε(µ‖ν) ≤ TV(µ, ν) for any ε > 0. The upper
bound is equality if and only if ε = 0,

• ε !→ Eε(µ‖ν) is continuous and strictly decreasing on
(0,TV(µ, ν)],

• (µ, ν) !→ Eε(µ‖ν) is convex,
• Eε(µ‖ν) decreases by post-processing (Data-Processing

Inequality). That is, Eε(µK‖νK) ≤ Eε(µ‖ν) for any
Markov kernel (or a channel) K.

The Data Processing Inequality can be strict for non-trivial
kernels. This can be captured by the contraction coefficient
[31] ηε(K) of K under Eε-divergence as

ηε(K) := sup
µ,ν:

Eε(µ‖ν) #=0

Eε(µK‖νK)
Eε(µ‖ν)

. (4)

This quantity has been studied in detail in [19]. In particular,
it was shown that ηε(K) enjoys a remarkably simple two-point
characterization.

Theorem 1 ([19]). For any ε ≥ 0 and K : Y → P(Z), we
have

ηε(K) = sup
y1,y2∈Y

Eε(K(y1)‖K(y2)). (5)

When ε = 0, this theorem reduces to the well-known
Dobrushin’s theorem [32] that has been an instrumental result
in several statistical problems, see, e.g, [32–35].

In this paper, we are concerned with the Gaussian Markov
kernel specified by K(y) = N (y,σ2I) for some y ∈ Rd and
σ > 0. To compute the contraction coefficient of such kernels,
we need the following lemma, whose proof is essentially the
same as [26, Lemma 6].

Lemma 1. For m1,m2 ∈ Rd and σ > 0, we have

Eε(N (m1,σ
2I)‖N (m2,σ

2I)) = θε
(‖m1 −m2‖

σ

)
,

where θε : [0,∞) → [0, 1] is given by

θε(r) := Q
(ε
r
− r

2

)
− eεQ

(ε
r
+

r

2

)
, (6)

and Q(t) = 1√
2π

∫∞
t e−u2/2du.

In light of Theorem 1 and Lemma 1, it follows that Gaussian
kernels have a trivial contraction coefficient, i.e., ηε(K) = 1
(for instance by choosing m1 = 0 and m2 with ‖m‖2 → ∞).
However, if the input is assumed to be restricted to a bounded
subset of Rd, then ηε(K) < 1.

Lemma 2 ([19]). Let Y ⊂ Rd be a bounded set. For the
Markov kernel specified by K(y) = N (y,σ2I) for y ∈ Y and
σ > 0, we have

ηε(K) = θε
(‖Y‖

σ

)
,

where ‖Y‖ := maxy1,y2∈Y ‖y1 − y2‖.

The constraint that the input of Gaussian kernels must be
bounded is not restrictive in machine learning and is satisfied
in many practical algorithms. For instance, each iteration of
the projected noisy stochastic gradient descent with Gaussian
noise (see e.g., [4, 5, 7, 8, 11, 29]) can be viewed as a Gaussian
kernel whose input (and output) are values from a compact set.
Such kernels are called projected Gaussian kernels. We focus
on this particular kernel in the next section.

III. FEDERATED LEARNING

In our federated learning model, n distributed users send
their updates of a shared model to a trusted aggregator.
At each iteration, m number of users are chosen uniformly
without replacement. Each selected user computes a local
update, randomizes it via a Gaussian kernel, and returns it
to the aggregator. The aggregator adds all the local updates,
projects it onto (2-ball of fixed radius ρ and then sends
the global update back to users. For simplicity, we assume
m = qn and since the subsampling is performed without
replacement, the total number of iterations is T = n

m = 1
q .

This procedure is described in Algorithm 1. The model we
investigate differs from the typical settings studied in the
literature in that here the aggregator is expected to publicly
display the model parameters only after the T th iteration. This
model is conceptually similar to the recent work of Augenstein
et al. [15] where the final model parameters were used to
generate synthetic data for the purpose of data inspection under
privacy constraints.

A. Warm-Up: Batches of Size 1

Suppose n users, each with local data xi, i ∈ [n] :=
{1, . . . , n}, communicate over an encrypted channel with the
trusted aggregator and send their local updates one at a time,
i.e., m = 1. Although this setting may not be practical, it
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Fig. 1. Iteration t can be viewed as a Markov kernel that is composed
of Ψt defined in (7), Gaussian noise addition and then projection
operator onto ball(ρ).

elucidates the proof technique employed for the general setting
(i.e., m ≥ 1).

Let π ∈ Sn be a random permutation map and Sn the
symmetric group on [n]. The federated learning algorithm
iterates as follows:

• The aggregator samples the initial parameter W0 in
ball(ρ), the (2 ball of radius ρ in Rd, according to a
distribution µ0 and sends it to user π(1).

• User π(1) uses W0 and her local data xπ(1) to compute
the update W̃1 := η1∇((W0, xπ(1)) + η1σ1Z1, where
Z1 ∼ N (0, I). This update is then sent back to the
aggregator.

• Upon receipt of W̃1, the aggregator computes W1 =
projρ(W0 − W̃1), where projρ(·) denotes the projection
operator onto ball(ρ). Then W1 is sent to user π(2).

• Repeat the above procedure until all n users have sent
their updates to the aggregator (i.e., T = n iterations).
The aggregator releases WT .

To obtain the privacy guarantee of this algorithm, we model
each iteration as a projected Gaussian Markov kernel. Let
Kt be the Markov kernel associated with the map w !→
projρ (Ψt(w)− ηtσtZt) for t ∈ [T ], where

Ψt(w) := w − ηt∇((w, xπ(t)), (7)

and Zt is a random vector sampled from N (0, I). More
precisely, Kt(w) = projρ(N (Ψt(w), η2t σ

2
t I)). It is clear from

Lemma 2 that ηε(Kt) < 1 for all ε ≥ 0 and ρ < ∞.
Notice that the tth iteration can be equivalently expressed
by Kt whose input is Wt−1 and output is Wt (see Fig 1).
Letting µt−1 denote the distribution of Wt−1, we therefore
have Wt ∼ µt−1Kt.

Now consider a pair of neighboring datasets x and x′ that
differ in the ith entry (i.e., xi ,= x′

i and xj = x′
j for j ∈

[n]\{i}) and let µt and µ′
t be the distributions of the Wt when

algorithm runs on x and x′, respectively. Let t = π−1(i) (or
equivalently π(t) = i). Clearly, µj = µ′

j for all j ∈ [t − 1].
Also, µt = µt−1Kt and µ′

t = µt−1K′
t where K′

t is the Markov
kernel associated with the map w !→ projρ (Ψ

′
t(w)− ηtσtZt)

and
Ψ′

t(w) := w − ηt∇((w, x′
i).

It follows, according to (3), that the algorithm is (ε, δ)-DP if
Eε(µT ‖µ′

T ) ≤ δ, for all i ∈ [n]. By the definition of ηε, we
have

Eε(µT ‖µ′
T ) ≤ Eε(µT−1‖µ′

T−1)ηε(KT )

Algorithm 1 Federated learning with a trusted aggregator

1: Input: Dataset {x1, . . . , xn} ∈ Rnd, learning rate {ηt},
batch size m, noise variances {σ2

t }, initial distribution µ0

2: Choose W0 ∼ µ0

3: for t = 1 to T do
4: Take batch Bt ⊂ [n] of size m uniformly without

replacement
5: Local update: W j

t−1 = ηt
[
∇((Wt−1, xj) + σtZ

j
t

]
,

∀j ∈ Bt and Zj
t ∼ N (0, I)

6: Upload: W j
t−1 is sent to aggregator

7: Model aggregation: aggregator updates the model pa-
rameter as Wt = projρ(Wt−1 − 1

m

∑
j∈Bt

W j
t−1)

8: end for
9: Output: WT

≤ Eε(µT−2‖µ′
T−2)ηε(KT )ηε(KT−1).

Applying this for T − t times, we obtain

Eε(µT ‖µ′
T ) ≤ Eε(µt‖µ′

t)
T∏

j=t+1

ηε(Kj)

= Eε(µt−1Kt‖µt−1K
′
t)

T∏

j=t+1

ηε(Kj) (8)

Consequently, the computation of δ boils down to computing
the contraction coefficient of projected Gaussian kernels and
Eε-divergence between mixture of projected Gaussian distri-
butions with the same variance. The former can be bounded
directly by Lemma 2. To obtain an upper bound for the latter,
we apply Jensen’s inequality (recall that (µ, ν) !→ Eε(µ‖ν)
is convex), Data Processing Inequality (to get rid of the
projection operator), and Lemma 1. When m > 1, we can
proceed similarly except that the resulting Markov kernel at
each iteration is composed of m projected Gaussian kernels.

B. Batch of size m

Here we assume that at each iteration, the aggregator shares
the global update with m users. In this setting, T = n

m and, in
lieu of permutation, we define a mapping which assigns each
i ∈ [n] to a single batch.

Theorem 2. Let the loss function w !→ ((w, x) be convex, L-
Lipschitz and β-smooth for all x ∈ X and also η ≤ 2

β . Then
Algorithm 1 is (ε, δ)-DP for ε ≥ 0 and

δ =
m

n

T∑

t=1

θε

(
2L√
mσt

) T∏

j=t+1

θε

(
2ρ

√
m

ηjσj

)
,

where θε is defined in (6). In particular, if ηt = η and σt = σ
for all t ∈ [T ], we have

δ =
m

n
θε
( 2L√

mσ

)1− θε
(

2ρ
√
m

ησ

) n
m

1− θε
(

2ρ
√
m

ησ

) .

��	
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Fig. 2. Differential privacy parameters of Algorithm 1 for different
sub-sampling rates according to Theorem 2. The parameters of
algorithm are as follows: η = 0.5, L = 1, ρ = 1,σ = 1.5, n = 100.

The proof of this theorem (and other results) are given in
[36]. Note that the convexity and smoothness of ((·, x) are
used in the proof of Theorem 2 only to obtain an upper
bound for ‖Ψt(ball(ρ))‖. This was shown via standard results
in convex analysis (e.g., Prop 18 in [16]) that state w !→
w − η∇((w, x) is contractive for η ≤ 2

β if ((·, x) is convex,
L-Lipschitz, and β-smooth, implying ‖Ψt(ball(ρ))‖ ≤ 2ρ.
However, one can easily show that in the absence of convexity
and smoothness, ‖Ψt(ball(ρ))‖ ≤ 2(ρ + ηtL). Therefore, the
convexity and smoothness can be relaxed in Theorem 2 at the
cost of slightly looser bound. If, however, the cost function
is strongly convex, then Theorem 2 can be improved as it is
known that w !→ w− η∇((w, x) is contractive with Lipschitz
constant strictly smaller than 1 (see, e.g., [37, Theorem 3.12]).
In Fig. 2, we demonstrate the privacy parameters obtained
from Theorem 2 for ηt = 0.5, σt = 1.5, and different sub-
sampling rates q = 0.1, 0.2, 0.3. As illustrated in this figure,
the more users are involved in each iteration, the better the
privacy guarantee is.

IV. PRIVACY-UTILITY TRADE-OFF

In this section, we apply the technique developed in the
last section to study the convergence rate of private SGD
(Algorithm 1). In particular, we consider two canonical data
generation scenarios.

• Distributional SGD (stochastic optimization): each local
data Xi is drawn identically and independently from an
unknown source PX , and the goal is to minimize

F (W ) ! EPX [((W,X)] + r(W ), (9)

for some loss function ((·) and regularization r(·).
• Distribution-free SGD: each xi ∈ X , and the goal is to

minimize

F (W ) ! 1

n

n∑

i=1

((W,xi) + r(W ). (10)

Note that in the standard SGD setting, the sever observes a
local unbiased estimate of gradient vector ∇F (Wt) at each

iteration t and updates the global model Wt accordingly, thus
as long as we select user uniformly at random, there is no
difference between distributional and distribution-free SGD.
However, due to the privacy constraint, in Algorithm 1 each
user is selected randomly but without-replacement, hence the
updates need not be (conditionally) unbiased, rendering the
traditional convergence analysis of SGD futile.

A. Distributional SGD
By applying standard SGD convergence results (for instance

Theorem 1 in [38]), we obtain the following utility guarantee.

Corollary 1. Suppose W ⊆ ball(ρ) and F (W ) !
EPX [((W,X)] is λ strongly convex and β smooth on W ,
with ‖∇F (W )‖22 ≤ D2 and VarPX (∇((W,X)) ≤ G2. Let
T ! n

m and WT be the output of Algorithm 1. Then by
choosing ηt =

1
λt and σt = σ, we have

E [F (WT )]− inf
W∈W

F (W ) ≤
2β
(
D2 + G2+σ2

m

)

λ2T

=
2β
(
mD2 +G2 + σ2

)

λ2n
.

Moreover, by Theorem 2, Algorithm 1 satisfies (ε, δ)-DP
with

δ =
m

n

T∑

t=1

θε

(
2L√
mσ

) T∏

j=t+1

θε

(
2ρ

√
λmj

σ

)

≤ m

n
θε
( 2L√

mσ

)1− θε
(

2ρλn√
mσ

) n
m

1− θε
(

2ρnλ√
mσ

) , (11)

where the inequality is due to the monotonicity of r !→ θε(r).
Therefore we see that the price of privacy is an additive term
σ2/n in the convergence rate. Notice that a straightforward
upper bound on (11) is θε

(
2L√
mσ

)
, making clear that stronger

privacy guarantee can be obtained by increasing either noise
level σ or batch size m (see Fig 2).

B. Distribution-free SGD
In general, the local data at each user is highly heteroge-

neous (e.g., a mobile phone) and, thus, better represented by
the distribution-free setting. However, since in Algorithm 1
each user is selected without replacement at each iteration,
the resulting local gradient vector is no longer an unbiased
estimate of the global gradient, making the traditional SGD
convergence analysis fail. Nevertheless, borrowing the idea
from [20], we show that sampling each user without replace-
ment does no harm on the convergence rate compared to the
classic SGD (i.e. with-replacement SGD).

a) Utility guarantee: We start with the following con-
vergence result.

Corollary 2. Suppose W ⊆ ball(ρ) and that F (·) !
1
n

∑
i fi(·) is λ strongly convex on W . Assume fi(W ) =

( (〈W,xi〉) + r(W ) where ‖xi‖ ≤ 1, r(·) is possibly
some regularization term, and ( is L-Lipschitz and β-smooth

���
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on {z : z = 〈W,x〉,W ∈ W , ‖x‖ ≤ 1}. Furthermore, suppose
supW∈W ‖∇fi(W )‖ ≤ G. Then choose ηt =

1
λt , m = 1 and

let Wt be the model after t-th round in Algorithm 1, we have
(for a universal constant c)

E
[
1

n

n∑

t=1

F (Wt)

]
− inf

W∈W
F (W )

≤ c

(
(L+ µB)2 +G2

)
log(T )

λn
+

∑
t ηtσ

2
t

n
.

Remark 1. Note that Theorem 2 is essentially the result of
Theorem 3 in [20], except that now we replace the update
rule Wt+1 = Projρ

(
Wt − ηt∇fπ(t) (Wt)

)
with Wt+1 =

Projρ
(
Wt − ηt

(
∇fπ(t) (Wt) + σtZt

))
.

To extend Corollary 2 to batch-size m, simply rewrite

F (·) = 1

n

∑

i

fi(·) =
1

T

T∑

t=1

(
1

m

∑

i∈Bt

fi(·)
)

! 1

T

T∑

t=1

gt(·),

where T ! n
m and Bt is a random size-m batch selected

without replacement. Then the update rule in Algorithm 1 can
be viewed as

Wt+1 = Projρ



Wt − ηt



∇gπ(t) (Wt) +
1

m

∑

j∈Bt

σtZ
j
t







 ,

and applying Corollary 2 yields

E
[
1

T

T∑

t=1

F (Wt)

]
− inf

W∈W
F (W )

≤ c

(
(L+ µB)2 +G2

)
log(T )

λT
+

∑
t ηtσ

2
t

mT

= c
m
(
(L+ µB)2 +G2

)
log(n/m)

λn
+

∑
t ηtσ

2
t

n
.

b) Privacy guarantee: Corollary 2 only ensures the
convergence of 1

T

∑T
t=1 F (Wt) instead of the output WT .

Notice that if we replace the output of Algorithm 1 with
W̄ ! 1

T

∑T
t=1 Wt, the privacy guarantee in Theorem 2 need

not hold. To address this issue, we consider a randomly
stopped version of Algorithm 1 as in [19], where after running
τ ∼ uniform(T ) rounds of update, we stop and return Wτ . In
this case, the output satisfies E [Wτ ] =

1
T

∑T
t=1 Wt, hence the

convergence result in Corollary 2 holds.
Motivated by [19, Theorem 5], we give the following

privacy guarantee for the randomly stopped version of Al-
gorithm 1:

Corollary 3. Let T ! n
m and τ ∼ uniform(T ). If we run

Algorithm 1 for τ rounds and return Wτ , then Wτ satisfies
(ε, δ)-DP with

δ =
1

T 2

T∑

τ=1

τ∑

t=1

θε

(
2L√
mσt

) τ∏

j=t+1

θε

(
2ρ

√
m

ηjσj

)
.

Moreover, if η∗ ! mint∈[T ] ηt and σ∗ ! mint∈[T ] σt, then we

can also pick δ as

δ =
1

T 2
θε

(
2L√
mσ∗

) T∑

τ=1

1− θτε

(
2ρ

√
m

η∗σ∗

)

1− θε
(

2ρ
√
m

η∗σ∗

) . (12)

For the parameters given in Corollary 2, we have η∗ = 1
λT .

Thus, by choosing σ2
t =

√
n, we obtain the privacy guarantee

from (12)

δ =
1

T 2
θε

(
2L√
mσ∗

) T∑

τ=1

1− θτε

(
2λρn√
mσ∗

)

1− θε
(

2λρn√
mσ∗

)

≤ 1

T 2
θε

(
2L√
m 4
√
n

) T∑

τ=1

1− θτε

(
2λρn

3
4√

m

)

1− θε

(
2λρn

3
4√

m

) ,

and the convergence rate from Corollary 2 as Õ
(

1√
n
∨ m

n

)
,

where ∨ denotes the maximization operator.
We close this section with a few remarks. In Corollary 1

and Corollary 2, we assume the loss function to be strongly
convex (which generally holds if we add a regularization
term r(W )). One can remove this assumption, as in standard
SGD convergence analysis (e.g. Chapter 14 in [39]), and
obtain O

(
1√
T

)
rate (instead of Õ

(
1
T

)
). Moreover, comparing

Corollary 1 with Corollary 2, we see that having i.i.d. property
on local samples has two consequences: 1) it is no longer
needed to randomly stop Algorithm 1, and 2) the loss function
((·, xi) does not need to take the form ((〈·, xi〉). Finally, the
randomly stopped version of Algorithm 1 can be replaced
with α-suffix averaging [38], that is, the stopping time τ is
chosen τ ∼ uniform (αT : T ) for some α ∈ (0, 1). This can
potentially improve the privacy guarantee (12) in Corollary 3
by a constant factor.

V. CONCLUSION

In this work, we introduce a new approach for computing
differential privacy (DP) parameters via contraction coefficient
of Markov kernels under a certain f -divergence, namely Eε-
divergence. In this approach, we interpret federated learning
algorithms as a composition of several Markov kernels and
express the DP privacy parameters as the product of contrac-
tion coefficients of such kernels. The main assumption is that
the algorithm releases the model update only after a certain
number of iterations are passed; thus no composition theorems
are required. The proof technique relies on a technical theorem
that establishes a close-form expression for the contraction
coefficient of general Markov kernels under Eε-divergence.

This approach can be adapted to study the more typical
scenario where the model updates get released after each
iteration. The privacy analysis in this case amounts to deriving
the contraction coefficient of a Markov kernel that is obtained
by tensor product of all T kernels, i.e., a kernel with T -tuple
input and output, under Eε-divergence.
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