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ABSTRACT: Native mass spectrometry (MS) has become a versatile tool for characterizing high-mass complexes and meas-
uring biomolecular interactions. Native MS usually requires resolution of different charge states produced by electrospray 
ionization to measure the mass, which is difficult for highly heterogeneous samples that have overlapping and unresolvable 
charge states. Charge detection-mass spectrometry (CD-MS) seeks to address this challenge by simultaneously measuring the 
charge and m/z for isolated ions. However, CD-MS often shows uncertainty in the charge measurement that limits the resolu-
tion. To overcome this charge state uncertainty, we developed UniDecCD (UCD) software for computational deconvolution of 
CD-MS data, which significantly improves the resolution of CD-MS data. Here, we describe the UCD algorithm and demonstrate 
its ability to improve CD-MS resolution of proteins, megadalton viral capsids, and heterogeneous nanodiscs made from natu-
ral lipid extracts. UCD provides a user-friendly interface that will increase the accessibility of CD-MS technology and provide 
a valuable new computational tool for CD-MS data analysis. 

INTRODUCTION: 
Since the introduction of electrospray ionization-mass 

spectrometry (ESI-MS), deconvolution of the charge and 
mass dimensions of mass spectra has been a critical step in 
their analysis.1 Because ESI-MS of peptides and proteins 
produces ions with multiple charges, measuring the mass 
requires first assigning the charge states. The most direct 
way to assign charge states in ESI-MS is from the isotope 
distribution, which leverages the known mass spacing be-
tween isotopologues. For larger proteins or spectra without 
isotopic resolution, the charge state distribution pattern can 
be used to assign the charge states. However, for protein 
complexes that are very large or very polydisperse, overlap 
between the charge states can create unresolvable data 
where individual charge states cannot be assigned.  

To address this challenge, charge detection-mass spec-
trometry (CD-MS) seeks to simultaneously measure the m/z 
ratio and the charge for isolated ions using a charge sensi-
tive detector. CD-MS was first performed on custom-built 
instruments,2-7 but conventional Orbitrap detectors have 
been recently applied for CD-MS by measuring the image 
current per single ion, which expands the potential reach of 
the technology.8-14 CD-MS is uniquely suited for mass analy-
sis of large and/or polydisperse proteins and protein 

complexes, including vaccine and gene therapy delivery ve-
hicles.10,15-16  

The primary limitation of CD-MS analysis, as noted in sev-
eral recent reports, is uncertainty in the charge measure-
ment.10-11 Although great advancements have been made in 
CD-MS measurements with Orbitraps, the standard devia-
tions of the charge measurements are still 1–3 charges, 
which cause significant uncertainties in the mass.10-11 Cus-
tom instruments have achieved the highest charge resolu-
tion with uncertainties less than a single charge, but charge 
resolution can still limit the measurements in some 
cases.2,5,17  

Here, we address this challenge in charge uncertainty 
with UniDecCD (UCD), which provides the first deconvolu-
tion algorithm for CD-MS data. UCD builds on our widely 
used UniDec software for deconvolution of ESI-MS data and 
translates the UniDec algorithm to CD-MS data. As a graph-
ical software package, it provides an open-source, cross-
platform, and vendor-neutral interface for CD-MS data anal-
ysis and visualization that taps into the wide range of data 
processing and analysis tools available in UniDec, such as 
smoothing, background subtraction, binning, and tools for 
peak assignment and integration. As a deconvolution algo-
rithm, UCD enables fast deconvolution of two-dimensional 
CD-MS data to computationally reduce the uncertainties in 
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charge assignment, which dramatically improves the accu-
racy of CD-MS data from Orbitrap detectors. We demon-
strate the utility of CD-MS deconvolution with protein com-
plexes, lipid nanodiscs, and adeno-associated viral (AAV) 
capsids. 

METHODS: 
Materials and methods for protein, viral capsid, and nano-

disc sample preparation as well as conventional native MS 
analysis parameters are provided in the Supplemental 
Methods.  

CD-MS Analysis. CD-MS was performed on a Q-Exactive 
HF quadrupole-Orbitrap mass spectrometer equipped with 
ultra-high mass range (UHMR) modifications (Thermo 
Fisher Scientific, Bremen). For all CD-MS data sets, the res-
olution was set to 240,000, which is a transient time of 512 
ms, and the noise threshold was set to 0. CD-MS data sets 
were collected for 2–15 minutes. Typically, each CD-MS rep-
licate contained at least 5,000 ions after filtering. Ion injec-
tion times varied from 0.06–512 ms between samples to de-
crease or increase the number of ions in the Orbitrap to 
achieve sufficiently low ion levels for CD-MS, as previously 
described.10 Additional instrument settings are provided in 
Table S1.  

For CD-MS analysis of MSP1D1(–), alcohol dehydrogen-
ase (ADH), and bovine serum albumin (BSA) nitrogen was 
used as the collision gas and the trapping gas pressure was 
set to 0.1–1. Low m/z detector optimization and low m/z 
transfer optics were used for BSA and MSP1D1(–). For ADH, 
low m/z detector optimization was used with high m/z 
transfer optics.  Interestingly, it was crucial to use the cor-
rect m/z detector optimization for proteins with different 
m/z. If the wrong detector optimization was used, we found 
that the single ion data was biased towards either higher or 
lower S/N values. ADH, which had a range of 5,300–6,000 
m/z, required low m/z detector optimization and samples 
with higher m/z required high m/z detector optimization. 
However, this may be different between instruments. Pro-
teins were analyzed with a spray voltage of 1100 V and a 
m/z range of 1,000–8,000, 2,000–10,000, or 3,000–10,000 
m/z. 30 V of HCD voltage was used for BSA to remove ad-
ducts.  

DPPC, E. coli, and brain nanodiscs required a trapping gas 
pressure setting of 1, high m/z detector optimization, high 
m/z transfer optics, and a m/z range of 2,000–25,000 m/z 
was used for natural lipid extract nanodiscs. For DPPC 
nanodiscs, a m/z range of 6,000–25,000 m/z was used, and 
the source fragmentation was set to 50 V. For E. coli nano-
discs and brain nanodiscs, the source fragmentation was 
lowered to 30 V to retain more single ions.  

GroEL and AAV particles were analyzed with argon as the 
collision gas. For GroEL, the trapping gas pressure varied 
from 5–7 to achieve sufficient single-ion levels. For AAV 
particles, the m/z range was set to 5,000–45,000, the HCD 
voltage was set to 200 V, the spray voltage was set to 2200–
2600 V, and the trapping gas setting varied from 8–10. De-
tailed deconvolution settings are provided in the Support-
ing Methods and Table S2. 

UCD Software. UCD is available as a module of the open-
source UniDec software package in version 5.0.0 
(https://github.com/michaelmarty/UniDec). UCD was pro-
grammed in Python 3 and uses a Model-Presenter-View ar-
chitecture. The UCD engine (CDEng.py) can be used via com-
mand line or scripts for automated processing. It relies pri-
marily on the NumPy and SciPy libraries,18-19 but the core 
deconvolution algorithm has been written to also use CuPy, 
a CUDA-based GPU-accelerated library, when it is availa-
ble.20 The GPU acceleration increased the speed of the de-
convolution by a factor of 5–20 in our preliminary tests. The 
UCD presenter (CDPres.py) coordinates between the engine 
and specific GUI components such as the control panel, 
menu, and main window. The UCD engine and presenter in-
herit classes from the UniDec presenter and engine and re-
use much of the same code, including key classes for peaks, 
data, and configuration parameters. Thus, users familiar 
with UniDec will find the same design and functions with 
UCD. The primary difference is that conventional UniDec 
has the core deconvolution algorithm programmed in par-
allelized C, whereas UCD has the core deconvolution algo-
rithm in Python. Using linearized data and GPU-acceleration 
has enabled UCD to be developed in Python to make it more 
accessible at a reasonable speed. The UCD algorithm is bro-
ken into two main parts: data processing and deconvolu-
tion. A schematic overview of the algorithm is provided in 
Figure S1. 

UCD Data Processing. We will begin by describing the 
data processing algorithm. First, data is imported from the 
provided file path. UCD currently supports Thermo Raw 
(Windows only), mzML, zipped mzML, text, CSV, binary, and 
NumPy compressed data formats. For text, CSV, binary, and 
NumPy compressed data, it assumes a format where the 
first column is the m/z values, the second column are the 
intensities, and the third column is the optional scan num-
ber, which can be left out. For Thermo Raw and mzML data, 
the m/z, intensities, and scan numbers are imported di-
rectly from the data. They also import the injection time. 
The intensities in the Thermo data need to be corrected by 
multiplying by the injection time in units of seconds, as pre-
viously described.10 Importantly, for all data types, the data 
needs to be supplied in centroid mode. If needed, MSCon-
vert can be used to convert Thermo data from profile to cen-
troid prior to opening with UCD.21 After importing the data, 
UCD saves the three columns (m/z, intensity, and scans) to 
a NumPy array. This array is then saved as a NumPy com-
pressed binary file so that it can be quickly read if the data 
is reopened.  

Finally, the noise level is measured.  In the Orbitrap, the 
main component of the noise is amplifier electrical noise,22-

23 and it is far more abundant than the chemical noise from 
ions. We tested several different ways to calculate the noise, 
including the median noise and the pre-calculated noise in-
cluded in the Raw file.11 However, we found that the most 
consistent definition of the noise was the highest peak in the 
second derivative of the noise intensity distribution above 
the median, which captures the upper edge of the noise dis-
tribution (Figure S2). The lower end of the noise values 
tended to shift with m/z, which made the median noise shift 
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as the m/z range was changed. The upper edge of the noise 
values was more constant and reliable for calibration.   

The next step in data processing is filtering the data array 
to remove unwanted ions. These steps largely follow the 
procedure outlined by Heck and coworkers.10 First, ions are 
filtered by their m/z within a specific range. Next, ions are 
removed if their centroids are too close together within the 
same scan. Finally, ions are filtered by their intensity range. 
We have defined the intensity filtering by charge states be-
cause this is more intuitive for users. The intensity range is 
calculated from the user-supplied charge range based on 
the intensity/charge or signal-to-noise/charge slope pa-
rameter (see below). 

After ion filtering, the intensity values for each ion are 
converted to charge states. There are two options for charge 
state conversion. The first is to divide the intensities by the 
slope of the charge vs. intensity plot. Heck and coworkers 
found the slope to be 12.51 intensity/charge, and we have 
observed similar slope values in some of our data.10 How-
ever, we found that changing some instrumental parame-
ters such as m/z range can affect the observed slope. To cor-
rect for these changes, the slope can be calculated as inten-
sity/(charge * noise) or signal-to-noise/charge.22 Here, the 
intensity values are divided by the slope times the noise to 
get the charge. For non-Orbitrap instruments, different 
slopes can be used, or the charge can be calculated prior to 
importing into UCD. In this case, a slope of 1 will return the 
same charge values unaltered. 

Next, the list of ions with m/z and z values are pooled with 
a two-dimensional histogram to get a 2D array of ion counts 
as a function of m/z and z. The linear bin size for the histo-
gram can be set for both dimensions, but the default bin size 
for the charge dimension is 1 to give each bin an integer 
charge value.  The charge bin can be set to a non-integer 
such as 0.1, but the smooth charge states feature currently 
requires an integer charge bin of 1. The histogram array can 
then be processed with several techniques, including 2D 
Gaussian smoothing, intensity thresholding, and back-
ground subtraction. Finally, the processed histogram array 
is then converted from an m/z vs. z array into a resampled 
mass vs. charge array. The resampling of m/z into mass can 
be done via interpolation or integration, and the linear bin 
size for the mass sampling is set by the user. Finally, the 
mass vs. charge array is summed along the charge axis to 
produce the final mass distribution. After the final zero-
charge mass distribution is assembled, the plots show the 
m/z vs. charge array, the charge distribution, the m/z distri-
bution, and the mass distribution. The mass vs. charge array 
can also be plotted.  

UCD Deconvolution Algorithm. After data processing, 
CD-MS data can be deconvolved with a Bayesian deconvolu-
tion algorithm analogous to the conventional UniDec algo-
rithm.24 At the core is a Richardson-Lucy deconvolution al-
gorithm.24-26 Here, the user defines a 2D “point spread func-
tion”, which specifies how much an ideal delta function of 
ions would spread in the instrument in both the m/z and z 
dimensions. The charge spread function can be measured 
by analyzing a well-resolved protein where we can confi-
dently assign a given m/z range to a single charge state, and 

tools in UCD allow the user to select specific charge states 
and fit them to Gaussian, Lorentzian, or split Gaussian/Lo-
rentzian functions. The width of the point spread function 
can be set to 0 in either dimension to assume no spreading 
in either m/z or z. Setting both to 0 will turn off Richardson-
Lucy deconvolution altogether. The Richardson-Lucy de-
convolution uses an iterative series of convolutions to re-
move the point spread function out of the data and has the 
effect of narrowing 2D peak widths within the data.  

Because the charge state is already known from the CD-
MS measurement, the Richardson-Lucy deconvolution 
alone can be sufficient for achieving a good deconvolution. 
However, other components of the UniDec algorithm can 
also be useful in improving the deconvolution. One of the 
core components of the original UniDec algorithm is the 
smoothing of the charge state distribution, which is essen-
tial for assigning charge states in conventional native MS 
data without isotopic resolution.24 In UCD, a similar smooth-
ing of charge state distribution was implemented. Assuming 
spectra should have a smooth charge state distribution, this 
feature increases the intensity of charge states with support 
from neighboring charge states and decreases the intensity 
of those with neighboring charge states that have lower in-
tensity. Although not essential, it significantly improves the 
quality of the deconvolution when distinct charge states are 
visible. A similar smoothing can be applied in the mass di-
mension where known mass spacings are expected, which 
is beneficial for spectra from lipid nanodiscs where peaks 
are separated by the mass of the lipid. However, charge and 
mass smoothing may be less useful for highly unresolved 
and heterogeneous species, where they could produce arti-
facts if not used carefully. 

Finally, two additional deconvolution tactics are availa-
ble. A SoftMax function can be applied to favor a single 
charge state per m/z value.27 Unlike conventional UniDec 
deconvolution, lower SoftMax beta parameters of 1 or 5 
were more useful. Also, point smoothing can be applied to 
smooth the intensities in each charge state among neighbor-
ing points.28 In total, there are five potential approaches 
used during deconvolution: Richardson-Lucy deconvolu-
tion, charge state smoothing, mass smoothing, point 
smoothing, and artifact suppression via SoftMax. Each of 
these can be used or not used in combination with the oth-
ers, and the performance of each is largely analogous to con-
ventional UniDec. Following deconvolution, the core histo-
gram array is modified to include the deconvolved histo-
gram array, and the deconvolved m/z vs. z histogram is con-
verted to mass vs. z as described above. Additional mathe-
matical details on the algorithm are provided in the sup-
porting information. 

RESULTS: 
Calibration of Orbitrap CD-MS Data. Our overall goal 

was to use computational deconvolution to reduce the 
charge uncertainty in CD-MS data. Previous publications 
have shown that the charge uncertainty is most likely due 
to collisions or dephasing of ions in the Orbitrap from ion-
ion repulsion in the Orbitrap.11,23 First, we set out to cali-
brate our Orbitrap mass analyzer for CD-MS data collection. 
In the Orbitrap, a single ion’s image current is directly 
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proportional to its charge, and prior studies have shown 
they scale linearly.10,13 We therefore set out to create a cali-
bration plot, similar to Wӧrner et al.,10 that would convert a 
single ion’s intensity to charge. We analyzed a variety of 
well-resolved protein complexes ranging from 22–801 kDa 
with CD-MS and plotted their signal intensity vs. their 
known charge states from their native mass spectra. How-
ever, we found that the signal intensity/charge slope in our 
Orbitrap was variable due to different instrument parame-
ters that were required between different samples (Figure 
S3A). This variability could be reduced to an acceptable fit 
by limiting the m/z range to a narrow window around the 
analyte of interest (Figure S4), but this approach would be 

limited for samples with ions spread across a wider range 
of m/z values.  

Therefore, similar to Makarov and coworkers,11 we used 
the signal-to-noise (S/N) ratio rather than the raw intensity 
to measure the charge,22 which internally controls for any 
unexpected deviations in the injection time. Here, the noise 
level likely serves as an internal correction for the injection 
time or other instrumental settings that may affect the ab-
solute intensity per second that is reported. For our S/N ra-
tio, as described above, we defined the noise as the peak of 
the second derivative of the intensity distribution above the 
median noise level, which quantifies the upper edge of the 
noise distribution (Figure S2). We found that this definition 

 
Figure 1. UCD resolves CD-MS of GroEL similarly to conventional native MS. Conventional native MS of GroEL with A) the raw 
mass spectrum, B) deconvolved charge vs. m/z, and C) deconvolved mass spectrum with UniDec. CD-MS of GroEL with D) one 
representative scan of single ions with S/N on the y-axis and the noise level indicated as a red dashed line, E) histogram of charge 
vs. m/z based on the raw data, and F) mass distribution for the raw CD-MS data, which shows significant uncertainty. In contrast, 
G) the UCD deconvolved charge vs. m/z and H) the deconvolved CD-MS mass distribution show single charge state resolution. 
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of noise was consistent across the m/z spectrum, unlike the 
median and lower end of the noise distribution, which var-
ied across the m/z range and were thus susceptible to 
changing when the m/z range was adjusted. Our calibration 
yielded a slope of 0.2083 S/N per charge (Figure S3B). How-
ever, it would be best for users to perform their own cali-
bration because there may be variability instrument to in-
strument, drift over time, and variability due to different 
transient times and different Orbitrap sizes. 

 To compare the raw intensity and S/N calibration meth-
ods, we measured the root mean square deviation (RMSD) 
between the median measured charge values from our 
standards and the fit charge values from the calibrations 
(Figure S4). We found that the signal intensity to charge 
conversion with a narrow m/z range had an average RMSD 

of 1.38 e, and the S/N to charge conversion had a slightly 
lower RMSD of 0.71 e, indicating a moderately more accu-
rate fit for this data set.  

Deconvolution Improves Charge Precision. After we 
had a reliable calibration to convert S/N to charge, we in-
corporated the UCD deconvolution algorithm. Although the 
charge can be directly measured with CD-MS, we found that 
the raw CD-MS data gave typical charge state standard de-
viations of around 2 charges. For example, although GroEL 
gave nicely resolved charge states when analyzed with con-
ventional native MS (Figure 1A–C), the raw CD-MS data had 
a standard deviation of ±2.2 charges (as seen by the vertical 
spread in Figure 1E). These uncertainties caused multiple 
artifact mass peaks due to incorrect charge assignments 
(Figure 1F).  

 

Figure 2. UCD deconvolution of CD-MS data from MSP1D1(–) (A–C), BSA (D–F), and ADH (G–I). Each row shows the (A, D, G) 
raw mass spectrum of one scan of single ions with S/N on the y-axis, (B, E, H) charge vs. m/z histogram after deconvolution, and 
(C, F, I) deconvolved mass distribution in black overlayed with the raw mass distribution without UCD in green.  
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By applying Richardson-Lucy deconvolution and charge 
state smoothing, deconvolution with UCD removed the 
charge state uncertainty from the CD-MS data, and we were 
able to resolve single charge states of GroEL (Figure 1G). In 
essence, UCD removed the point spread function to reduce 
the charge state uncertainty from around ±2 charges to al-
most 0. The removal of the charge state uncertainty re-
moved the artifact mass peaks and resulted in a single mass 
peak for GroEL that matched the conventional native mass 
spectrum (Figure 1H and 1C). Even with no charge state un-
certainty, the peaks are slightly broader than their conven-
tional native MS counterparts, and we expect that this loss 

of m/z resolution is due to frequency drifting of ions over 
the longer transient times used for CD-MS.23 

We then tested UCD on other proteins and protein com-
plexes with known charge states: MSP1D1(–), BSA, and 
ADH. With UCD deconvolution, we were able to remove the 
charge uncertainty from the CD-MS spectra and confidently 
assign single charge states for MSP1D1(–), BSA, and ADH 
(Figure 2). The raw CD-MS data (shown in green in Figure 
2) showed multiple artifact mass peaks because each charge 
state had a standard deviation of around 2 charges. UCD re-
moved the charge state uncertainty and gave single mass 

 
Figure 3. Systems with overlapping charge states measured by CD-MS and deconvolved using UCD. A) AAV viral capsids, B) DPPC 
nanodiscs, C) E. coli nanodiscs, and D) brain nanodiscs. Each panel (A–D) has a representative scan of single ions (top left), their 
total deconvolved charge vs. m/z histogram (top right), their deconvolved mass spectrum (bottom) with the raw CD-MS data in 
green and the UCD deconvolved mass distribution in black. The FWHM values are indicated for raw CD-MS in green and decon-
volved in black. The center of the mass and FWHM are listed for a single replicate, and the text indicates the average across three 
replicate samples.  
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peaks that corresponded to the correct mass for each pro-
tein that matched their conventional native MS data (Figure 
S5).   

It is also possible to remove the charge uncertainty with 
the charge bin set to 0.1, and the Richardson-Lucy algorithm 
gives similar results independent of the charge binning (Fig-
ure S6). However, the charge state smoothing, which cur-
rently requires a charge bin of 1, is necessary to fully re-
move the uncertainty. These data demonstrated that the ad-
dition of the UCD deconvolution provided precise assign-
ment of charge states that gave more confident mass assign-
ments for CD-MS data.  

Deconvolution of AAV particles. After we validated our 
UCD deconvolution method on proteins with well-resolved 
charge states, we began measuring the charge of samples 
with increasing complexity to test the algorithm on com-
plexes with unresolved charge states. First, we measured 
the mass of empty AAV capsids, which are used as gene 
therapy delivery systems.29-30 AAV capsids are complex, and 
it is currently difficult to measure small differences between 
capsids. Recently, important progress has been made with 
characterizing differences between empty capsids, partially 
filled, and filled capsids with CD-MS,10,16 and we wanted to 
test UCD with a basic AAV capsid system. Without UCD de-
convolution, from the raw CD-MS data we found that the 
AAV capsids had an average mass of 3.81 ± 0.01 MDa (stand-
ard deviation from the average mass), which matched the 
expected mass of 3.78-3.84 MDa (Figure 3A).  The expected 
mass is calculated based on the 60-mer stoichiometry of the 
three AAV8 viral proteins as 1:1:10, and similar masses 
have been previously reported.16,31-32 The width of the mass 
distribution is likely caused by slight deviations in the 
1:1:10 stoichiometry. With UCD, we found an average mass 
distribution of 3.82 ± 0.02 MDa (also n=3). An F-test showed 
no statistical difference in the standard deviation of the 
mean, so the deconvolution algorithm did not significantly 
impact the accuracy or precision of the measured mass.  

However, UCD significantly improved the resolution of 
the CD-MS measurement. The mass distribution for the AAV 
capsids from the raw CD-MS data had an average FWHM of 
274 kDa. UCD deconvolution lowered the average FWHM to 
144 kDa (Figure 3A). In this case, we did not use the charge 
state smoothing with this unresolved data to avoid intro-
ducing artifacts. Instead, we simply used Richardson-Lucy 
deconvolution with point spread function extrapolated 
based on the GroEL data. This data shows that UCD can de-
convolve and improve the resolution of CD-MS data ob-
tained from high-mass, heterogeneous complexes that are 
not resolvable by conventional native MS.  

CD-MS of Nanodiscs. We next analyzed DPPC nanodiscs 
with CD-MS to test UCD with a complex sample with well-
resolved but overlapping charge states. By adding the mass 
smoothing function from UniDec into UCD, we were able to 
deconvolve DPPC nanodiscs with resolved lipid mass peaks, 
similar to the conventional native MS data (Figure 3B and 
S7–9), demonstrating excellent mass resolution. However, 
the average FWHM of the mass peaks were somewhat larger 
in the CD-MS measurements than the conventional native 
MS measurements (18.6 kDa vs. 10.5 kDa), which likely 

reflects some residual uncertainty in the charge measure-
ment not removed during deconvolution.  

We next set out to study nanodiscs made from natural li-
pid extracts. Mixed lipid nanodiscs can be resolved by native 
MS if the lipids are close in mass or resonant,28,33 but natural 
lipid membranes have many lipids with different masses, 
making them essentially impossible to resolve with conven-
tional native MS. As expected, nanodiscs made with lipids 
from E. coli polar extract and porcine brain polar extract 
showed broad and unresolvable humps with conventional 
native MS. With CD-MS, we found their charge and mass val-
ues were similar to well-resolved DPPC nanodiscs (Figure 
3C–D), but the mass distributions were very broad. Using 
UCD with only the Richardson-Lucy deconvolution (no 
charge or mass smoothing) significantly reduced the width 
of the mass distribution, resulting in a polydispersity simi-
lar to the well-resolved DPPC nanodiscs (Figure 3C–D).  

Although we could not resolve the individual lipid mass 
peaks in natural lipid nanodiscs, the intact mass distribu-
tion gave useful information on their size and polydisper-
sity that helped to optimize their assembly. Using the opti-
mized assembly conditions, E. coli nanodiscs had a center of 
mass of 166.0 ± 4.1 kDa (standard deviation of the average 
mean from three replicates), and brain nanodiscs had a cen-
ter of mass of 152.8 ± 3.8 kDa (Figure 3C, 3D, and S10). Por-
cine brain lipid extract nanodiscs had a lower center of mass 
compared to DPPC nanodiscs (152.8 ± 3.8 kDa vs. 161.9 ± 
3.6 kDa), which indicated looser lipid packing compared to 
DPPC nanodiscs. E. coli nanodiscs were slightly larger but 
not statistically different than DPPC nanodiscs. Interest-
ingly, the average FWHM of the mass distributions of E. coli 
(20.2 kDa) and brain (15.4 kDa) nanodiscs matched control 
DPPC nanodiscs (18.6 kDa). The close similarities in the 
measured FWHM of the mass distributions between the 
DPPC nanodiscs and natural lipid extract nanodiscs demon-
strates the ability of UCD to improve the precision of com-
plex CD-MS data and shows a similar polydispersity be-
tween natural and synthetic lipid nanodiscs.   

Overall, UCD deconvolution greatly improved the resolu-
tion of E. coli and brain nanodiscs by reducing their charge 
uncertainty. Natural lipid extract nanodiscs provide a more 
native environment to study membrane proteins and have 
been used for obtaining structures of membrane proteins 
with cryo-electron microscopy.34 CD-MS aided by UCD pro-
vides a useful technique for the precise characterization of 
the mass and polydispersity of natural lipid nanodiscs that 
greatly helps in optimizing nanodisc assembly.   

CONCLUSIONS: 
Here, we have demonstrated that computational decon-

volution reduces the charge uncertainty and allows single 
charge state resolution of CD-MS data. We first showed that 
UCD is a reliable method for measuring the charge states of 
known proteins. We then used UCD to measure the charge 
and mass of AAV viral particles that were not resolvable 
with conventional native MS. Finally, UCD allowed the reso-
lution of nanodiscs made with E. coli and brain lipid extract, 
providing the first native MS-based measurement of natural 
membrane nanodiscs.  
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Rising advancements in CD-MS technology such as selec-
tive temporal overview of resonant ions (STORI) plots and 
frequency tracking promise to further increase the resolu-
tion gained with Orbitrap-based CD-MS and will also con-
tribute to reducing the charge state uncertainty.14,23 How-
ever, these approaches do not currently provide single 
charge state resolution, so we anticipate that UCD will be 
highly valuable for this type of data as well. Even for cus-
tom-built instruments where single charge state resolution 
is achievable and deconvolution is unnecessary,35 UCD pro-
vides an easy-to-use interface for CD-MS data analysis and 
visualization. It also enables CD-MS users to take advantage 
of the suite of auxiliary analysis tools in UniDec for peak as-
signment, intensity extraction, and other quantitative anal-
ysis methods.   

Overall, UCD provides an open-source, graphical CD-MS 
data analysis and deconvolution software that will advance 
the use of CD-MS for studying complex, high-mass, and het-
erogeneous samples and will push the boundaries of what 
problems can be solved by MS. 
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