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ABSTRACT: Native mass spectrometry (MS) has become a versatile tool for characterizing high-mass complexes and meas-
uring biomolecular interactions. Native MS usually requires resolution of different charge states produced by electrospray
ionization to measure the mass, which is difficult for highly heterogeneous samples that have overlapping and unresolvable
charge states. Charge detection-mass spectrometry (CD-MS) seeks to address this challenge by simultaneously measuring the
charge and m/z for isolated ions. However, CD-MS often shows uncertainty in the charge measurement that limits the resolu-
tion. To overcome this charge state uncertainty, we developed UniDecCD (UCD) software for computational deconvolution of
CD-MS data, which significantly improves the resolution of CD-MS data. Here, we describe the UCD algorithm and demonstrate
its ability to improve CD-MS resolution of proteins, megadalton viral capsids, and heterogeneous nanodiscs made from natu-
ral lipid extracts. UCD provides a user-friendly interface that will increase the accessibility of CD-MS technology and provide

a valuable new computational tool for CD-MS data analysis.

INTRODUCTION:

Since the introduction of electrospray ionization-mass
spectrometry (ESI-MS), deconvolution of the charge and
mass dimensions of mass spectra has been a critical step in
their analysis.! Because ESI-MS of peptides and proteins
produces ions with multiple charges, measuring the mass
requires first assigning the charge states. The most direct
way to assign charge states in ESI-MS is from the isotope
distribution, which leverages the known mass spacing be-
tween isotopologues. For larger proteins or spectra without
isotopic resolution, the charge state distribution pattern can
be used to assign the charge states. However, for protein
complexes that are very large or very polydisperse, overlap
between the charge states can create unresolvable data
where individual charge states cannot be assigned.

To address this challenge, charge detection-mass spec-
trometry (CD-MS) seeks to simultaneously measure the m/z
ratio and the charge for isolated ions using a charge sensi-
tive detector. CD-MS was first performed on custom-built
instruments,?’ but conventional Orbitrap detectors have
been recently applied for CD-MS by measuring the image
current per single ion, which expands the potential reach of
the technology.8-14 CD-MS is uniquely suited for mass analy-
sis of large and/or polydisperse proteins and protein

complexes, including vaccine and gene therapy delivery ve-
hicles.10.15-16

The primary limitation of CD-MS analysis, as noted in sev-
eral recent reports, is uncertainty in the charge measure-
ment.10-11 Although great advancements have been made in
CD-MS measurements with Orbitraps, the standard devia-
tions of the charge measurements are still 1-3 charges,
which cause significant uncertainties in the mass.10-11 Cus-
tom instruments have achieved the highest charge resolu-
tion with uncertainties less than a single charge, but charge
resolution can still limit the measurements in some
cases.2517

Here, we address this challenge in charge uncertainty
with UniDecCD (UCD), which provides the first deconvolu-
tion algorithm for CD-MS data. UCD builds on our widely
used UniDec software for deconvolution of ESI-MS data and
translates the UniDec algorithm to CD-MS data. As a graph-
ical software package, it provides an open-source, cross-
platform, and vendor-neutral interface for CD-MS data anal-
ysis and visualization that taps into the wide range of data
processing and analysis tools available in UniDec, such as
smoothing, background subtraction, binning, and tools for
peak assignment and integration. As a deconvolution algo-
rithm, UCD enables fast deconvolution of two-dimensional
CD-MS data to computationally reduce the uncertainties in

1



charge assignment, which dramatically improves the accu-
racy of CD-MS data from Orbitrap detectors. We demon-
strate the utility of CD-MS deconvolution with protein com-
plexes, lipid nanodiscs, and adeno-associated viral (AAV)
capsids.

METHODS:

Materials and methods for protein, viral capsid, and nano-
disc sample preparation as well as conventional native MS
analysis parameters are provided in the Supplemental
Methods.

CD-MS Analysis. CD-MS was performed on a Q-Exactive
HF quadrupole-Orbitrap mass spectrometer equipped with
ultra-high mass range (UHMR) modifications (Thermo
Fisher Scientific, Bremen). For all CD-MS data sets, the res-
olution was set to 240,000, which is a transient time of 512
ms, and the noise threshold was set to 0. CD-MS data sets
were collected for 2-15 minutes. Typically, each CD-MS rep-
licate contained at least 5,000 ions after filtering. Ion injec-
tion times varied from 0.06-512 ms between samples to de-
crease or increase the number of ions in the Orbitrap to
achieve sufficiently low ion levels for CD-MS, as previously
described.!? Additional instrument settings are provided in
Table S1.

For CD-MS analysis of MSP1D1(-), alcohol dehydrogen-
ase (ADH), and bovine serum albumin (BSA) nitrogen was
used as the collision gas and the trapping gas pressure was
set to 0.1-1. Low m/z detector optimization and low m/z
transfer optics were used for BSA and MSP1D1(-). For ADH,
low m/z detector optimization was used with high m/z
transfer optics. Interestingly, it was crucial to use the cor-
rect m/z detector optimization for proteins with different
m/z.1f the wrong detector optimization was used, we found
that the single ion data was biased towards either higher or
lower S/N values. ADH, which had a range of 5,300-6,000
m/z, required low m/z detector optimization and samples
with higher m/z required high m/z detector optimization.
However, this may be different between instruments. Pro-
teins were analyzed with a spray voltage of 1100 V and a
m/z range of 1,000-8,000, 2,000-10,000, or 3,000-10,000
m/z. 30 V of HCD voltage was used for BSA to remove ad-
ducts.

DPPC, E. coli, and brain nanodiscs required a trapping gas
pressure setting of 1, high m/z detector optimization, high
m/z transfer optics, and a m/z range of 2,000-25,000 m/z
was used for natural lipid extract nanodiscs. For DPPC
nanodiscs, a m/z range of 6,000-25,000 m/z was used, and
the source fragmentation was set to 50 V. For E. coli nano-
discs and brain nanodiscs, the source fragmentation was
lowered to 30 V to retain more single ions.

GroEL and AAV particles were analyzed with argon as the
collision gas. For GroEL, the trapping gas pressure varied
from 5-7 to achieve sufficient single-ion levels. For AAV
particles, the m/z range was set to 5,000-45,000, the HCD
voltage was set to 200 V, the spray voltage was set to 2200-
2600 V, and the trapping gas setting varied from 8-10. De-
tailed deconvolution settings are provided in the Support-
ing Methods and Table S2.

UCD Software. UCD is available as a module of the open-
source UniDec software package in version 5.0.0
(https://github.com/michaelmarty/UniDec). UCD was pro-
grammed in Python 3 and uses a Model-Presenter-View ar-
chitecture. The UCD engine (CDEng.py) can be used via com-
mand line or scripts for automated processing. It relies pri-
marily on the NumPy and SciPy libraries,'8-1% but the core
deconvolution algorithm has been written to also use CuPy,
a CUDA-based GPU-accelerated library, when it is availa-
ble.2? The GPU acceleration increased the speed of the de-
convolution by a factor of 5-20 in our preliminary tests. The
UCD presenter (CDPres.py) coordinates between the engine
and specific GUI components such as the control panel,
menu, and main window. The UCD engine and presenter in-
herit classes from the UniDec presenter and engine and re-
use much of the same code, including key classes for peaks,
data, and configuration parameters. Thus, users familiar
with UniDec will find the same design and functions with
UCD. The primary difference is that conventional UniDec
has the core deconvolution algorithm programmed in par-
allelized C, whereas UCD has the core deconvolution algo-
rithm in Python. Using linearized data and GPU-acceleration
has enabled UCD to be developed in Python to make it more
accessible at a reasonable speed. The UCD algorithm is bro-
ken into two main parts: data processing and deconvolu-
tion. A schematic overview of the algorithm is provided in
Figure S1.

UCD Data Processing. We will begin by describing the
data processing algorithm. First, data is imported from the
provided file path. UCD currently supports Thermo Raw
(Windows only), mzML, zipped mzML, text, CSV, binary, and
NumPy compressed data formats. For text, CSV, binary, and
NumPy compressed data, it assumes a format where the
first column is the m/z values, the second column are the
intensities, and the third column is the optional scan num-
ber, which can be left out. For Thermo Raw and mzML data,
the m/z, intensities, and scan numbers are imported di-
rectly from the data. They also import the injection time.
The intensities in the Thermo data need to be corrected by
multiplying by the injection time in units of seconds, as pre-
viously described.'® Importantly, for all data types, the data
needs to be supplied in centroid mode. If needed, MSCon-
vert can be used to convert Thermo data from profile to cen-
troid prior to opening with UCD.?! After importing the data,
UCD saves the three columns (m/z, intensity, and scans) to
a NumPy array. This array is then saved as a NumPy com-
pressed binary file so that it can be quickly read if the data
is reopened.

Finally, the noise level is measured. In the Orbitrap, the
main component of the noise is amplifier electrical noise,??
23 and it is far more abundant than the chemical noise from
ions. We tested several different ways to calculate the noise,
including the median noise and the pre-calculated noise in-
cluded in the Raw file.1! However, we found that the most
consistent definition of the noise was the highest peakin the
second derivative of the noise intensity distribution above
the median, which captures the upper edge of the noise dis-
tribution (Figure S2). The lower end of the noise values
tended to shift with m/z, which made the median noise shift
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as the m/z range was changed. The upper edge of the noise
values was more constant and reliable for calibration.

The next step in data processing is filtering the data array
to remove unwanted ions. These steps largely follow the
procedure outlined by Heck and coworkers.1? First, ions are
filtered by their m/z within a specific range. Next, ions are
removed if their centroids are too close together within the
same scan. Finally, ions are filtered by their intensity range.
We have defined the intensity filtering by charge states be-
cause this is more intuitive for users. The intensity range is
calculated from the user-supplied charge range based on
the intensity/charge or signal-to-noise/charge slope pa-
rameter (see below).

After ion filtering, the intensity values for each ion are
converted to charge states. There are two options for charge
state conversion. The first is to divide the intensities by the
slope of the charge vs. intensity plot. Heck and coworkers
found the slope to be 12.51 intensity/charge, and we have
observed similar slope values in some of our data.!® How-
ever, we found that changing some instrumental parame-
ters such as m/z range can affect the observed slope. To cor-
rect for these changes, the slope can be calculated as inten-
sity/(charge * noise) or signal-to-noise/charge.?? Here, the
intensity values are divided by the slope times the noise to
get the charge. For non-Orbitrap instruments, different
slopes can be used, or the charge can be calculated prior to
importing into UCD. In this case, a slope of 1 will return the
same charge values unaltered.

Next, the list of ions with m/z and z values are pooled with
a two-dimensional histogram to get a 2D array of ion counts
as a function of m/z and z. The linear bin size for the histo-
gram can be set for both dimensions, but the default bin size
for the charge dimension is 1 to give each bin an integer
charge value. The charge bin can be set to a non-integer
such as 0.1, but the smooth charge states feature currently
requires an integer charge bin of 1. The histogram array can
then be processed with several techniques, including 2D
Gaussian smoothing, intensity thresholding, and back-
ground subtraction. Finally, the processed histogram array
is then converted from an m/z vs. z array into a resampled
mass vs. charge array. The resampling of m/z into mass can
be done via interpolation or integration, and the linear bin
size for the mass sampling is set by the user. Finally, the
mass vs. charge array is summed along the charge axis to
produce the final mass distribution. After the final zero-
charge mass distribution is assembled, the plots show the
m/z vs. charge array, the charge distribution, the m/z distri-
bution, and the mass distribution. The mass vs. charge array
can also be plotted.

UCD Deconvolution Algorithm. After data processing,
CD-MS data can be deconvolved with a Bayesian deconvolu-
tion algorithm analogous to the conventional UniDec algo-
rithm.?# At the core is a Richardson-Lucy deconvolution al-
gorithm.2426 Here, the user defines a 2D “point spread func-
tion”, which specifies how much an ideal delta function of
ions would spread in the instrument in both the m/z and z
dimensions. The charge spread function can be measured
by analyzing a well-resolved protein where we can confi-
dently assign a given m/z range to a single charge state, and

tools in UCD allow the user to select specific charge states
and fit them to Gaussian, Lorentzian, or split Gaussian/Lo-
rentzian functions. The width of the point spread function
can be set to 0 in either dimension to assume no spreading
in either m/z or z. Setting both to 0 will turn off Richardson-
Lucy deconvolution altogether. The Richardson-Lucy de-
convolution uses an iterative series of convolutions to re-
move the point spread function out of the data and has the
effect of narrowing 2D peak widths within the data.

Because the charge state is already known from the CD-
MS measurement, the Richardson-Lucy deconvolution
alone can be sufficient for achieving a good deconvolution.
However, other components of the UniDec algorithm can
also be useful in improving the deconvolution. One of the
core components of the original UniDec algorithm is the
smoothing of the charge state distribution, which is essen-
tial for assigning charge states in conventional native MS
data without isotopic resolution.z* In UCD, a similar smooth-
ing of charge state distribution was implemented. Assuming
spectra should have a smooth charge state distribution, this
feature increases the intensity of charge states with support
from neighboring charge states and decreases the intensity
of those with neighboring charge states that have lower in-
tensity. Although not essential, it significantly improves the
quality of the deconvolution when distinct charge states are
visible. A similar smoothing can be applied in the mass di-
mension where known mass spacings are expected, which
is beneficial for spectra from lipid nanodiscs where peaks
are separated by the mass of the lipid. However, charge and
mass smoothing may be less useful for highly unresolved
and heterogeneous species, where they could produce arti-
facts if not used carefully.

Finally, two additional deconvolution tactics are availa-
ble. A SoftMax function can be applied to favor a single
charge state per m/z value.?” Unlike conventional UniDec
deconvolution, lower SoftMax beta parameters of 1 or 5
were more useful. Also, point smoothing can be applied to
smooth the intensities in each charge state among neighbor-
ing points.?8 In total, there are five potential approaches
used during deconvolution: Richardson-Lucy deconvolu-
tion, charge state smoothing, mass smoothing, point
smoothing, and artifact suppression via SoftMax. Each of
these can be used or not used in combination with the oth-
ers, and the performance of each is largely analogous to con-
ventional UniDec. Following deconvolution, the core histo-
gram array is modified to include the deconvolved histo-
gram array, and the deconvolved m/z vs. z histogram is con-
verted to mass vs. z as described above. Additional mathe-
matical details on the algorithm are provided in the sup-
porting information.

RESULTS:

Calibration of Orbitrap CD-MS Data. Our overall goal
was to use computational deconvolution to reduce the
charge uncertainty in CD-MS data. Previous publications
have shown that the charge uncertainty is most likely due
to collisions or dephasing of ions in the Orbitrap from ion-
ion repulsion in the Orbitrap.1223 First, we set out to cali-
brate our Orbitrap mass analyzer for CD-MS data collection.
In the Orbitrap, a single ion’s image current is directly
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Figure 1. UCD resolves CD-MS of GroEL similarly to conventional native MS. Conventional native MS of GroEL with A) the raw
mass spectrum, B) deconvolved charge vs. m/z, and C) deconvolved mass spectrum with UniDec. CD-MS of GroEL with D) one
representative scan of single ions with S/N on the y-axis and the noise level indicated as a red dashed line, E) histogram of charge
vs. m/z based on the raw data, and F) mass distribution for the raw CD-MS data, which shows significant uncertainty. In contrast,
G) the UCD deconvolved charge vs. m/z and H) the deconvolved CD-MS mass distribution show single charge state resolution.

proportional to its charge, and prior studies have shown
they scale linearly.1013 We therefore set out to create a cali-
bration plot, similar to Worner et al.,1? that would convert a
single ion’s intensity to charge. We analyzed a variety of
well-resolved protein complexes ranging from 22-801 kDa
with CD-MS and plotted their signal intensity vs. their
known charge states from their native mass spectra. How-
ever, we found that the signal intensity/charge slope in our
Orbitrap was variable due to different instrument parame-
ters that were required between different samples (Figure
S3A). This variability could be reduced to an acceptable fit
by limiting the m/z range to a narrow window around the
analyte of interest (Figure S4), but this approach would be

limited for samples with ions spread across a wider range
of m/z values.

Therefore, similar to Makarov and coworkers,!! we used
the signal-to-noise (S/N) ratio rather than the raw intensity
to measure the charge,?? which internally controls for any
unexpected deviations in the injection time. Here, the noise
level likely serves as an internal correction for the injection
time or other instrumental settings that may affect the ab-
solute intensity per second that is reported. For our S/N ra-
tio, as described above, we defined the noise as the peak of
the second derivative of the intensity distribution above the
median noise level, which quantifies the upper edge of the
noise distribution (Figure S2). We found that this definition
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Figure 2. UCD deconvolution of CD-MS data from MSP1D1(-) (A-C), BSA (D-F), and ADH (G-I). Each row shows the (4, D, G)
raw mass spectrum of one scan of single ions with S/N on the y-axis, (B, E, H) charge vs. m/z histogram after deconvolution, and
(C, F, 1) deconvolved mass distribution in black overlayed with the raw mass distribution without UCD in green.

of noise was consistent across the m/z spectrum, unlike the
median and lower end of the noise distribution, which var-
ied across the m/z range and were thus susceptible to
changing when the m/z range was adjusted. Our calibration
yielded a slope 0of 0.2083 S/N per charge (Figure S3B). How-
ever, it would be best for users to perform their own cali-
bration because there may be variability instrument to in-
strument, drift over time, and variability due to different
transient times and different Orbitrap sizes.

To compare the raw intensity and S/N calibration meth-
ods, we measured the root mean square deviation (RMSD)
between the median measured charge values from our
standards and the fit charge values from the calibrations
(Figure S4). We found that the signal intensity to charge
conversion with a narrow m/z range had an average RMSD

of 1.38 e, and the S/N to charge conversion had a slightly
lower RMSD of 0.71 e, indicating a moderately more accu-
rate fit for this data set.

Deconvolution Improves Charge Precision. After we
had a reliable calibration to convert S/N to charge, we in-
corporated the UCD deconvolution algorithm. Although the
charge can be directly measured with CD-MS, we found that
the raw CD-MS data gave typical charge state standard de-
viations of around 2 charges. For example, although GroEL
gave nicely resolved charge states when analyzed with con-
ventional native MS (Figure 1A-C), the raw CD-MS data had
a standard deviation of +2.2 charges (as seen by the vertical
spread in Figure 1E). These uncertainties caused multiple
artifact mass peaks due to incorrect charge assignments
(Figure 1F).
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By applying Richardson-Lucy deconvolution and charge
state smoothing, deconvolution with UCD removed the
charge state uncertainty from the CD-MS data, and we were
able to resolve single charge states of GroEL (Figure 1G). In
essence, UCD removed the point spread function to reduce
the charge state uncertainty from around 2 charges to al-
most 0. The removal of the charge state uncertainty re-
moved the artifact mass peaks and resulted in a single mass
peak for GroEL that matched the conventional native mass
spectrum (Figure 1H and 1C). Even with no charge state un-
certainty, the peaks are slightly broader than their conven-
tional native MS counterparts, and we expect that this loss
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of m/z resolution is due to frequency drifting of ions over
the longer transient times used for CD-MS.23

We then tested UCD on other proteins and protein com-
plexes with known charge states: MSP1D1(-), BSA, and
ADH. With UCD deconvolution, we were able to remove the
charge uncertainty from the CD-MS spectra and confidently
assign single charge states for MSP1D1(-), BSA, and ADH
(Figure 2). The raw CD-MS data (shown in green in Figure
2) showed multiple artifact mass peaks because each charge
state had a standard deviation of around 2 charges. UCD re-
moved the charge state uncertainty and gave single mass

DPPC Nanodiscs

5
Z

8000 1 1000
m/z

L 05,19
817
O15

8000 11000

/z
‘m

1007 _raw

=ucCD

0

AAAAA

and M&L .

190

150 170
Mass (kDa)

Brain Nanodiscs

O

S/N

8000 11000 8000 11000
m/z m/z
100, oy, 15BKDa J
—-UCD FWHM: 42 kDa
% FWHM: 16 kDa

100 120 140 160 180 200 220 240
Mass (kDa)

Figure 3. Systems with overlapping charge states measured by CD-MS and deconvolved using UCD. A) AAV viral capsids, B) DPPC
nanodiscs, C) E. coli nanodiscs, and D) brain nanodiscs. Each panel (A-D) has a representative scan of single ions (top left), their
total deconvolved charge vs. m/z histogram (top right), their deconvolved mass spectrum (bottom) with the raw CD-MS data in
green and the UCD deconvolved mass distribution in black. The FWHM values are indicated for raw CD-MS in green and decon-
volved in black. The center of the mass and FWHM are listed for a single replicate, and the text indicates the average across three
replicate samples.



peaks that corresponded to the correct mass for each pro-
tein that matched their conventional native MS data (Figure
S5).

It is also possible to remove the charge uncertainty with
the charge bin setto 0.1, and the Richardson-Lucy algorithm
gives similar results independent of the charge binning (Fig-
ure S6). However, the charge state smoothing, which cur-
rently requires a charge bin of 1, is necessary to fully re-
move the uncertainty. These data demonstrated that the ad-
dition of the UCD deconvolution provided precise assign-
ment of charge states that gave more confident mass assign-
ments for CD-MS data.

Deconvolution of AAV particles. After we validated our
UCD deconvolution method on proteins with well-resolved
charge states, we began measuring the charge of samples
with increasing complexity to test the algorithm on com-
plexes with unresolved charge states. First, we measured
the mass of empty AAV capsids, which are used as gene
therapy delivery systems.?%-30 AAV capsids are complex, and
itis currently difficult to measure small differences between
capsids. Recently, important progress has been made with
characterizing differences between empty capsids, partially
filled, and filled capsids with CD-MS,1%16 and we wanted to
test UCD with a basic AAV capsid system. Without UCD de-
convolution, from the raw CD-MS data we found that the
AAV capsids had an average mass 0of 3.81 + 0.01 MDa (stand-
ard deviation from the average mass), which matched the
expected mass of 3.78-3.84 MDa (Figure 3A). The expected
mass is calculated based on the 60-mer stoichiometry of the
three AAVS8 viral proteins as 1:1:10, and similar masses
have been previously reported.'¢31-32 The width of the mass
distribution is likely caused by slight deviations in the
1:1:10 stoichiometry. With UCD, we found an average mass
distribution of 3.82 + 0.02 MDa (also n=3). An F-test showed
no statistical difference in the standard deviation of the
mean, so the deconvolution algorithm did not significantly
impact the accuracy or precision of the measured mass.

However, UCD significantly improved the resolution of
the CD-MS measurement. The mass distribution for the AAV
capsids from the raw CD-MS data had an average FWHM of
274 kDa. UCD deconvolution lowered the average FWHM to
144 kDa (Figure 3A). In this case, we did not use the charge
state smoothing with this unresolved data to avoid intro-
ducing artifacts. Instead, we simply used Richardson-Lucy
deconvolution with point spread function extrapolated
based on the GroEL data. This data shows that UCD can de-
convolve and improve the resolution of CD-MS data ob-
tained from high-mass, heterogeneous complexes that are
not resolvable by conventional native MS.

CD-MS of Nanodiscs. We next analyzed DPPC nanodiscs
with CD-MS to test UCD with a complex sample with well-
resolved but overlapping charge states. By adding the mass
smoothing function from UniDec into UCD, we were able to
deconvolve DPPC nanodiscs with resolved lipid mass peaks,
similar to the conventional native MS data (Figure 3B and
S$7-9), demonstrating excellent mass resolution. However,
the average FWHM of the mass peaks were somewhat larger
in the CD-MS measurements than the conventional native
MS measurements (18.6 kDa vs. 10.5 kDa), which likely

reflects some residual uncertainty in the charge measure-
ment not removed during deconvolution.

We next set out to study nanodiscs made from natural li-
pid extracts. Mixed lipid nanodiscs can be resolved by native
MS if the lipids are close in mass or resonant,?833 but natural
lipid membranes have many lipids with different masses,
making them essentially impossible to resolve with conven-
tional native MS. As expected, nanodiscs made with lipids
from E. coli polar extract and porcine brain polar extract
showed broad and unresolvable humps with conventional
native MS. With CD-MS, we found their charge and mass val-
ues were similar to well-resolved DPPC nanodiscs (Figure
3C-D), but the mass distributions were very broad. Using
UCD with only the Richardson-Lucy deconvolution (no
charge or mass smoothing) significantly reduced the width
of the mass distribution, resulting in a polydispersity simi-
lar to the well-resolved DPPC nanodiscs (Figure 3C-D).

Although we could not resolve the individual lipid mass
peaks in natural lipid nanodiscs, the intact mass distribu-
tion gave useful information on their size and polydisper-
sity that helped to optimize their assembly. Using the opti-
mized assembly conditions, E. coli nanodiscs had a center of
mass of 166.0 + 4.1 kDa (standard deviation of the average
mean from three replicates), and brain nanodiscs had a cen-
ter of mass of 152.8 + 3.8 kDa (Figure 3C, 3D, and S10). Por-
cine brain lipid extract nanodiscs had a lower center of mass
compared to DPPC nanodiscs (152.8 + 3.8 kDa vs. 161.9 +
3.6 kDa), which indicated looser lipid packing compared to
DPPC nanodiscs. E. coli nanodiscs were slightly larger but
not statistically different than DPPC nanodiscs. Interest-
ingly, the average FWHM of the mass distributions of E. coli
(20.2 kDa) and brain (15.4 kDa) nanodiscs matched control
DPPC nanodiscs (18.6 kDa). The close similarities in the
measured FWHM of the mass distributions between the
DPPC nanodiscs and natural lipid extract nanodiscs demon-
strates the ability of UCD to improve the precision of com-
plex CD-MS data and shows a similar polydispersity be-
tween natural and synthetic lipid nanodiscs.

Overall, UCD deconvolution greatly improved the resolu-
tion of E. coli and brain nanodiscs by reducing their charge
uncertainty. Natural lipid extract nanodiscs provide a more
native environment to study membrane proteins and have
been used for obtaining structures of membrane proteins
with cryo-electron microscopy.3* CD-MS aided by UCD pro-
vides a useful technique for the precise characterization of
the mass and polydispersity of natural lipid nanodiscs that
greatly helps in optimizing nanodisc assembly.

CONCLUSIONS:

Here, we have demonstrated that computational decon-
volution reduces the charge uncertainty and allows single
charge state resolution of CD-MS data. We first showed that
UCD is a reliable method for measuring the charge states of
known proteins. We then used UCD to measure the charge
and mass of AAV viral particles that were not resolvable
with conventional native MS. Finally, UCD allowed the reso-
lution of nanodiscs made with E. coli and brain lipid extract,
providing the first native MS-based measurement of natural
membrane nanodiscs.



Rising advancements in CD-MS technology such as selec-
tive temporal overview of resonant ions (STORI) plots and
frequency tracking promise to further increase the resolu-
tion gained with Orbitrap-based CD-MS and will also con-
tribute to reducing the charge state uncertainty.'#23 How-
ever, these approaches do not currently provide single
charge state resolution, so we anticipate that UCD will be
highly valuable for this type of data as well. Even for cus-
tom-built instruments where single charge state resolution
is achievable and deconvolution is unnecessary,3*> UCD pro-
vides an easy-to-use interface for CD-MS data analysis and
visualization. It also enables CD-MS users to take advantage
of the suite of auxiliary analysis tools in UniDec for peak as-
signment, intensity extraction, and other quantitative anal-
ysis methods.

Overall, UCD provides an open-source, graphical CD-MS
data analysis and deconvolution software that will advance
the use of CD-MS for studying complex, high-mass, and het-
erogeneous samples and will push the boundaries of what
problems can be solved by MS.
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