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ABSTRACT

Drawing on an analogy to critical phenomena, it was shown that the Nikuradse turbulent friction factor (f,) measurements in pipes of radius
R and wall roughness r can be collapsed onto a one-dimensional curve expressed as a conveyance law f,Re'/* = g,(y), where Re is the bulk
Reynolds number and y = Re’/*(r/R). The implicit function g, (.) was conjectured based on matching two asymptotic limits of f,. However,
the connection between g, (.) and the phenomenon it proclaims to represent—turbulent eddies—remains lacking. Using models for the wall-
normal velocity spectrum and return-to-isotropy for pressure-strain effects to close a co-spectral density budget, a derivation of g,(.) is
offered. The proposed method explicitly derives the solution for the conveyance law and provides a physical interpretation of y as a dimen-
sionless length scale reflecting the competition between the viscous sublayer thickness and characteristic height of roughness elements.
Applications of the proposed method to other published measurements spanning roughness and Reynolds numbers beyond the original

Nikuradse range are further discussed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0069705

I. INTRODUCTION

A recent analogy between critical phenomena and turbulent
flows was proposed to describe the turbulent friction factor f, in
pipes.”” The f; is a dimensionless measure of the total frictional loss
along the longitudinal distance (x, along the pipe length) defined as

(2R) 9P (2R)gS,

= (1)
1 Ix T,

—p,U? —-U
2Pf b 5 b

fi =

and is presumed to vary with the bulk Reynolds number
(Re = 2RU,,/v) and relative roughness of the wall (r/R), where g is
the gravitational acceleration, Uj, is the bulk or time and cross-area-
averaged velocity, r is a measure of the wall roughness commonly
related to the statistics of protrusions from the pipe wall, R is the pipe
radius, v is the kinematic viscosity, pris the fluid density, and S, is the
friction slope that can be related to the driving force—the mean pres-
sure gradient (pfg)flf)P/ Ox.° Using the measured value of f, the
weighty experiments by Nikuradse™ on regular roughness elements

identified two limiting flow regimes—hydrodynamically smooth and
tully rough based on competing mechanisms between /R and a length
scale measuring the thickness of the viscous sublayer (L, ~ 1 where 1
is the Kolmogorov micro-scale). In the hydrodynamically smooth case
(ie, r/L, < 1), f; = ApRe /4 where A, = 0.316 (labeled as the
Blasius scaling) whereas in the fully rough regime (r/L, > 1),
fi = As(r/R)l/ ? where A; = 0.14 (labeled as the Strickler scaling).
Exploiting an analogy developed to infer the thermodynamic proper-
ties of ferromagnets near critical temperatures, the Nikuradse’s f; data
were shown to collapse (albeit imperfectly) onto a single curve labeled
here as NG06."” In the derivation of NG06, two limiting regimes
occurring for r/R — 0 (analogous to an external magnetic field con-
trol) and Re™! — 0 (analogous to inverse temperature near its critical
state), respectively, have been exploited. The NGO6 f, was shown to be
mathematically described by’

const.,

23— oo,

x =0,

fi =Re Vigy(y), withg,(y) = { )

Phys. Fluids 33, 105127 (2021); doi: 10.1063/5.0069705
Published under an exclusive license by AIP Publishing

33, 105127-1


https://doi.org/10.1063/5.0069705
https://doi.org/10.1063/5.0069705
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0069705
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0069705&domain=pdf&date_stamp=2021-10-28
https://orcid.org/0000-0002-5840-4417
mailto:shuolin.li@duke.edu
mailto:gaby@duke.edu
https://doi.org/10.1063/5.0069705
https://scitation.org/journal/phf

Physics of Fluids

where = Re>*(r/R) and g,(.) is an implicit function satisfying two
asymptotic properties: when y — 0, Eq. (2) yields f; ~ Re”'/* (the
Blasius scahng) whereas at sufficientl y large Re, g,(x) becomes
Re'/*(r/R)'* resulting in f, ~ (r/R)"/* (the Strickler scaling). The
outcome of Eq. (2) is a monotonic curve along which all the
Nikuradse data collapse as shown in Fig. 1.

The collapse of all Nikuradse data when representing f;Re'/* as a
function of y may indicate the existence of a critical phenomenon in
the turbulent friction factor."” The NG06 stimulated other theories
and a combination of variables derived from hydrodynamic stability
analysis for laminar flow.”"

1/4

0 Other approaches for deriving f; and
refinements to NG06 have exploited the so-called spectral link in tur-
bulent flows"”'*'>!'"*! summarized by

ft X Jw ETKE (k)dk7 (3)

1/1,

where k is the wavenumber or the inverse eddy size, [, = r + L,, and
Eqxe(k) is the spectrum of the turbulent kinetic energy (TKE). This
relation was tested using soap film experiments where Egxp(k) was
manipulated to scale as k=% (for 3D turbulence) or k3 (for 2D tur-
bulence) as discussed elsewhere.'”**' Another corollary improve-
ment to NGO6 rooted in Eq. (3) was the intermittency corrections to
phenomenological models for Erxg(k).”' When such intermittency
corrections are accounted for in Ergg(k), a revised NGO6 that better
describes the otherwise imperfect fit was reported. The collapse of the
Nikuradse data onto a single (albeit in a restricted range of /R — Re)
curve is appealing because it offers a diagnostic description of the s0-
called transitional regime between smooth and fully rough cases' or
other similarity variants on it.”” That transitional flow regimes in f;
exhibiting rich scaling laws are now opening up new vistas to other
analogies in physics and statistical mechanics'® though no contact
with Navier-Stokes turbulence or approximation to it has been offered
to date.

This work explains g,(y) and derives its generalization for steady
and axially uniform turbulent pipe flows using standard turbulence

0.065 —{a)
0.06
0.055 |
0.05 |
0.045 |
= 0.04

0.035
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arguments. The theoretical tactic employs a co-spectral budget (CSB)
model that makes contact with an approximated Navier-Stokes
equation for the near-wall turbulent stress in spectral space.”””"** The
outcome is an analytical formulation linking an externally specified
wall-normal energy spectrum to the turbulent stress (via the CSB
model), and upon scale-wise integration yields an expression for f;
analogous in form to Eq. (3). This expression includes a bridge
between local variables formulated on a plane positioned at a wall dis-
tance z, that scales with /, and bulk flow variables reflecting the overall
geometry and flow rate in the pipe.”” The proposed model is shown to
collapse the expanded f; data onto a single curve whose shape is explic-
itly derived from the CSB model with all similarity constants linked to
standard constants in turbulence theories. Other mechanisms not
explicitly treated such as intermittency corrections’' (or other similar-
ity variants™) to the wall-normal velocity spectrum, non-local spectral
transfer across scales in energy and stresses, non-linear return-to-isot-
ropy representations for pressure-velocity interactions, or bottle-necks
in the energy cascade can all be accommodated in this framework and
their effects tracked onto an NG06-type curve but they are not explic-
itly considered here.

Il. THEORY
A. Definitions

The flow is assumed to be stationary and longitudinally homoge-
neous driven by a constant mean pressure gradient within a pipe of
radius R and cross-sectional area A,. The pipe wall is uniformly cov-
ered with regular roughness elements having a protrusion amplitude r
similar to the Nikuradse experiments [see Fig. 2(a)]. Defining z
= R — y as the normal distance to the pipe boundary, y as the distance

from the pipe center, U" = U(z)/u, as the dimensionless mean
velocity profile, u. = /7,/p; as the friction velocity, , as the wall

stress, pr as the fluid density, the bulk (ie., time and cross-sectional
area-averaged) velocity can be determined from

2,5 .
o r/R=1/507
O r/R=1/252
O r/R=1/126
2r| o rR=11/60
O r/R=1/30.6
r/R=1/15
< - - CSB(c_=0.3
8157 (=03)
o - — CSB(c.=0.6)
o P
I ~ - CSB(c,=1.2)
= 1
S
05}
(b)
0 ! ! !
10° 10" 102 10° 10*

= (r/R)Re**

FIG. 1. The original Nikuradse diagram and its NGOG representation with f;Re'/* expressed as an unknown function of 7. The coefficient ¢y, = 0.61 can be determined when

combining Blasius and Strickler scaling relations.”
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FIG. 2. (a) The formulation of the CSB model at z, /I, > 1 but below the log-region. (b) Schematic of the wall-normal velocity spectrum E,, (k) of a turbulent rough pipe as a
function of wavenumber k. The dashed red line represents commonly observed E,, (k) that can be partitioned into three subranges: an energetic range (integral scale), inertial
range, and viscous dissipation range. The solid lines show different models for this spectrum. A plausibility check on the assumed E, (k) shape can be made using an integral

constraint shown in Eq. (15).

1 (R
U= | voda. @
Ay Jo
where dA; = 2mydy. For this setup, the mean longitudinal momentum
balance reduces to a balance between the mean pressure gradient and
the stress gradient given by
OP _19(yt)

Ox y Oy

; ()

where 7(y) is the total shear stress at radial distance y from the pipe
center. Integrating with respect to y yields

() = (‘;—I;) Z+an ©)

where C; is determined so that at y=0 (ie, center of the pipe),
7(0) = 0 due to symmetry, thereby resulting in

w(y) = (%)% &)

, T 1R 8P> R 1, ,
=22 —_" =) ==g5, =-fU 8

Defining

and decomposing 7(y) into a turbulent 7, and a viscous ,, contribu-
tion leads to the variation in total stress with distance from the wall as

r(z)z‘cﬂr‘cm:ro(lf%), 9)

where 1, = p;vI'(z) and ['(2) = dU/dz.

B. The co-spectral budget model

The CSB model is now formulated at a wall-normal distance z
= z, below the region where the onset of a logarithmic mean velocity
profile for UT = U(z)/u. is expected (Fig. 2). Hence, the effective
eddy size I, impacting momentum exchange at z, need not scale with
z"”' but with r or L, (= 517/2) depending on whether the flow is rough
or smooth. To accommodate rough and smooth pipe flow conditions,

we define I, = r + L, as before,”'” where n = (1/3/6)1/4, and € is a

local turbulent kinetic energy dissipation rate evaluated at z,. A justifi-
cation for summing r and L, is that resistances to momentum
exchanges between a moving fluid and a stationary wall in the com-
bined layer are additive, and resistances scale linearly with layer thick-
nesses. The following constraints on the choice of z. are now enforced:
zi/l, > 1 and 14(z.) /7, ~ 1, where 1;(z.) is the turbulent stress at z,
labeled hereafter as 7. for notational convenience. Selecting z. to be
sufficiently distant from the boundary also minimizes wall-blocking
effects impacting U" in the buffer region.”” For a rough pipe, the z, is
still expected to be in the roughness sublayer (RSL) whereas in a turbu-
lent smooth pipe, z, is in the upper region of the buffer layer.”*

The CSB model links 7. to eddy sizes at z, using 7./ Py
=—uw = fooo F,(k)dk, and F,,(k) defines the co-spectrum
between 1’ and w' at k (or inverse eddy-size)—u' and w’ are the turbu-
lent longitudinal and wall-normal velocity components, respectively;
primed quantities are excursions from the mean state; and and over-
line implies averaging over coordinates of statistical homogeneity
(usually surrogated to time averaging). The terms governing the time
evolution of the co-spectral budget at z, are”"*

OF (k)
ot

= Puy(k) + Tuw(k) + [Tuy(k) — Dy (K)], (10)

where P,,,(k) = T'(z)E, (k) is the turbulent stress production term at
wavenumber k due to the presence of a mean velocity gradient I,
E, (k) is the energy spectrum of the wall-normal velocity component,
Tuw(k) is a scale-wise transfer of momentum and satisfies
Jo Tuw(k)dk = 0, 7, (k) is a pressure-velocity de-correlation term
commonly modeled using return-to-isotropy principles, and D, (k)
= 20k*F,,,(k) is a viscous dissipation term also responsible for de-
correlating #/' from w'. Stationarity is assumed throughout and closure
models for my, (k) and T,, (k) are needed. For maximum simplicity
and to ensure a recovery of F,, (k) oc k~7/3 in the so-called inertial
subrange (ISR), T, (k) =0 is assumed (and justified later on).
Adopting a linear Rotta scheme revisgezdl fgg )isotropization of the pro-

duction at any k, 7, (k) is closed by

nuw(k) = 7CR Fuw(k) - CIPuw(k)7 (11)

1
(k)
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where Cp =~ 1.8 and C; = 3/5" are the Rotta and isotropization of

production constants, and (k) = [K*Ex(k)]"/* is a local
wavenumber-dependent relaxation time scale’”” based on a
Kolmogorov spectrum Ej, (k). Other possibilities that include non-
local energy transfer can be accommodated using t, (k). For example, a
non-local closure for the energy flux is the Heisenberg model'® that

can be re-cast as t,(k) ' = 1/ f: P*Epoi(p)dp.”’ There are issues with

the Heisenberg model related to the directional energy transfer and
equipartition of energy that have already been identified and dis-
cussed.” For this reason, the focus here is maintained on the simpler
t,(k) = [kK*Exoi(k)] /2. The t,(k) becomes unbounded as k — 0,
necessitating additional constraints at large scales. One possible con-
straint is to set t,(k) = t,(k.) when k/k. < 1 where k. = 1/R is the
smallest inverse length scale over which E,,,, (k) energy transfer occurs
downscale. The two destruction terms in the CSB model, the Rotta
component of 7,,,(k) and viscous destruction D, (k), are compared
at small scales (or large k) using

2Uk*F,, (k) 2

_ _“ 4/3
= (k)6 (R) ~ e (12)

®(k)
where the role of P,,, (k) has been ignored at large k for simplicity.
When kn < 1, the viscous dissipation is negligible (D (k) ~ 0) com-
pared with the Rotta term. However, as k7 > 1, the viscous term dom-
inates and ® '(k) ~ 0. Adopting the aforementioned closure
schemes, the co-spectrum at k is derived as

E, (k). (k)
Dk)+1

1-G

Fy(k) = Cr (13)

I'(z.)

The co-spectrum must be integrated across all k to yield 7, needed in
the determination of f. To evaluate F,,(k), the shape of E,, (k) is
required and discussed in Fig. 2.

The E,, (k) in the ISR is given by the Kolmogorov spectrum
Eroi(k) = Cole(z)*k™5/3,  where C, = (24/55)C,, is  the
Kolmogorov constant for the wall-normal velocity component’
related to the Kolmogorov constant for the turbulent kinetic energy
spectrum (C, = 1.5). Deviations from Ey, at other scales are specified
as follows: (i) an exponential cutoff, f, = exp [-p( CRCI))3/ x1
when k < k., where ff =2.1, to resolve the viscous dissipation
range;' > (ii) two piece-wise functions for the energetic range.” The
Eu(k) is

Eror(ko)kc PP if 0 < k < k.
Ey(k) = Epor(ko) if k. <k<k, (14)
Erot(K)fy otherwise,

where k. =1/R, k, =1/l,,and k, = 1/n are three characteristic
wavenumbers that mark the key transitions in E,,, (k) as related to
pipe radius, characteristic eddy scale in the RSL, and the viscous length
scale,”””**""> and several theories constrain p to lie between 2
(Saffman spectrum) and 4 (Batchelor spectrum). The p remains uncer-
tain though various turbulence theories suggest a numerical value of
p=2 (Saffman spectrum), p=8/3 (von Karmdn spectrum), or p=4
(Batchelor spectrum) reviewed elsewhere.”” All theories agree that
p>1 to ensure that as k — 0, both E,,, (k) — 0 and (dE,,,(k)/dk)
~ kP~' — 0. Not withstanding this uncertainty in p, its precise

scitation.org/journal/phf

numerical value does not alter the scale-wise integrated outcome. A
plausibility check on the assumed shape of E,,,, (k) is conducted using
the integral constraint 02, = [ E,,,,(k)dk, yielding

2/3
o ~ 163~ 2P (lﬁ) —0.69(1) " |u2, (15)
p+1\R I,

where a balance between the production and dissipation of TKE yields
€(z.) =~ u*T'(z.) and T(z.) = u,/l,. Equation (15) predicts a
maximum a,,/u, = v/1.63 = 1.28 sufficiently close to the reported
1.1 — 1.25 range in near-neutral atmospheric flows, open channels,
and pipes.q’z("H’%‘}T

Equation (13) can be further analyzed for the much-studied ISR
and is shown to be consistent in both scaling law and similarity coeffi-
cients with accepted theories and experiments.’”* For example, in the
ISR, ®(k) < 1, and the co-spectrum reduces to

Fuw(k) — \/C_D(l ;:RCI) l—-(z*)[e(z*)]l/3k77/3, (16)

consistent with well-accepted co-spectral theories predicting k~7/3
scaling.”*"” The emerging constants /C, (1 — C;)/Cg = 0.18 are also
close to the accepted similarity constant reported in laboratory and
field experiments as well as direct numerical simulations (= 0.15) dis-
cussed elsewhere.”””"*** These findings indirectly support setting
Tyuw(k) = 0 for all k as a first-order approximation in two ways: (i) its
expected zero value in the ISR is needed to recover the k7/* scaling
and (ii) T, (k) must satisfy the integral constraint f(fc Tyuw(k)dk =0
by definition. In the case of Ey,(k), the transfer of energy across scales
shapes the energy cascade and is thus necessary for obtaining the
k°/3 scaling in the ISR. The inclusion of the transfer term in the
energy cascade [indirectly specified by E,,, (k)] but not in the CSB
may appear paradoxical. This is not so as the role and significance of
the transfer terms are quite different when analyzing scale-wise energy
and scale-wise stress budgets." Last, when I'(z) = 0, F,, (k) = 0 at all
k. Hence, a finite I'(z.) is necessary to maintain a finite co-spectrum
atall kand f; > 0.

Returning to the determination of f;, upon inserting Eq. (14) into
(13) yields the near-bed shear stress in terms of f; (= 81../p,Uy) as

2 % ke ko
.M _ Q(Z*) J k7p72/3k75/3kpdk + J k75/3k72/3dk
8 A, 0 c o k. 0

ke o0
+ J k~"/dk + B, J K3 K13 exp (—ﬁkn)dk] . (17)
ks ke

where A, = Cp/[v/Co(1 — Cp)] &= 5.58, B, = (5% /2)Cg/C, = 6.20,
and &(z.) = l"(z*)[e(z*)]l/ ?. The four integrand functions are contri-
butions to the turbulent stress arising from the two energetic, inertial,
and dissipation ranges, respectively.

Ill. RESULTS
A. Linking local and bulk variables

The terms I'(z.) and €(z, ) needed in &(z,) are defined at z, and
must be linked to bulk variables to complete the CSB model for f,.
These are commonly estimated as™’

Uy Uy,—0 w U;’

F(z*):l—:c, T e(z*):—*:tff,?, (18)
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where ¢(z,) and ¢,(z.) are unknown positive coefficients that
link local to bulk variables given by ¢ =u./U, and ¢,
= (z/t*/U;,)(R/lo)l/3 = ¢,(R/1,)". A bulk dissipation proportional to
UZ/R is compatible with upper limits set by prior variational
analysis."’ Clearly, ¢; and ¢, cannot be individually constant and must
vary with f.”” The interest here is not in their individual variations but
in their product. Increasing [, increases ¢, (more dissipation for the
same Uy, or flow rate) but decreases c; because U, overestimates U(z,),
thus making their product less sensitive to I, as shown elsewhere.””

For guessing a c;cy, several possibilities exist including the use of
complete and incomplete similarity or covariate analysis.” Another
naive possibility is to assume c;c, varies with the primary variable
R/l, and proceed to select a minimal ¢,c, at a given R/I, (e.g., analo-
gous to drag deduction). By definition, cic, ~ (u./Us)*(R/ 1),
With s = R/l,, assuming Gy (s) = (u./U,)” and minimizing ¢,c, at a
given s leads to

d Gi(s)  1psd
%(ctcp) = |30 +s'/ %Gf(s) =0. (19)

The solution of Eq. (19) is Gf(s) = b,s~!/?, where b, is a constant
independent of s = R/I,. This argument is congruent with complete
similarity theory in the limit of very large R/I, but cannot be correct
for all R/I,. Accepting momentarily a constant ¢;c, at its minimal
value, f; can be linked to r/R and Re at any finite R/, using

~30(crcp) A AN k\ ' k,
U [Y“’)(ko) *(E) *C"(z;) 5| @

where

_12p+38 1 4\3/% (8/3)
e = 15(p+1)’ C=5 1! Lo\ 7305 )
I,.(.) is the Gamma function and C, =~ 0.146. For p =2 — 4,
Y(p) ~ 0.72 — 0.75 and variations in p are hereafter ignored. The two
extreme cases, Strickler and Blasius scaling are now evaluated. In a
rough pipe where r/L, > 1, DS(k) can be ignored and k.
= k,(r/n) — oo allowing the ISR to extend to k, — occ. In the limit

of /R < 1, the leading order term in Eq. (20) is

30 12
ﬁ ~ A—Cpct (E) . (21)

Hence, the Stickler scaling requires (i) a constant ¢p¢; (= AsA/30
~ 0.026 to recover the Nikuradse data), (ii) r/L, > 1, and (iii)
r/R < 1. Likewise, when r/L, < 1 so that |, & L,, the inertial sub-
range commences at k, and rapidly terminates into a dissipation range
since k,/k, < 1. The viscous cutoff effects become important when
k > k, revising Eq. (20) to

30D, '7) v 30Dz 3jap 14
~~ cicy | = = ¢c/*Re /%, (22)
ft Ay t P<R 2—1/4An p

where D, = v/5—C, /5 ~ 1.68, (R/n)"/* = (che/2)1/4. The Blasius
scaling requires c:c; Y [=27Y44,A,/(30D;) ~ 0.0294 for the
Nikuradse data] not to vary with Re (or equivalently c;c, not to vary
with R/I, when I, = L, as before). Equation (20) allows to separate the
effects of turbulent exchanges of momentum at z, from relations

scitation.org/journal/phf

between local (at z,) and bulk variables (encoded in c;c;) when evalu-
ating f; or NGO6. Prior knowledge of either ¢;c, or f; is required to
overcome a circular argument discussed elsewhere.” However, the
merit of using ¢;c, is that the contribution of momentum exchange to
the friction factor can be now separated explaining the origin of rela-
tive length scale R/I, in existing f; formulations.

B. Solution of the implicit function in NGO6

The study objective, which is to derive the g,(y) in NG06 for the
Nikuradse data (r/R < 1) and regular roughness, can now be addressed.
The g, () can be made explicit when rearranging Eq. (20) to yield

3/4 3/4 B
& (1)=(cq) > [(C") x+5 C[(Z") 745

2
(23)

where y = Re’/*(r/R) derived from y = (2/cp)3/4(r/17). Now, Eq.
(23) explains why the Nikuradse data imperfectly collapse along a
unique curve when plotting f;Re'/* vs Re*/*(r/R) under the restrictive
assumption of constant CtCp. Thus, the main novelty here is to show
that the g,(x) in NGO6 can be linked to an approximated
Navier-Stokes equation (i.e., the CSB model) provided c;c, is constant
at minimal value, which is the sought result. The solution of Eq. (23) is
also presented in Fig. 1 where ¢, = 2(D;A,/A;)" ~ 0.6 and can be
directly derived when combining the Strickler and Blasius scaling laws.
Moreover, a sensitivity analysis was conducted by setting ¢, = 0.3,1.2
to find the best fit between Eq. (23) and the Nikuradse dataset.
Figure 1 shows that setting c,, as constant (accepting Blasius and Strickler
scaling laws simultaneously) can indeed replicate the NGO6 result to a
leading order, but further investigations are needed when y < 20.

IV. DISCUSSION
A. Extension to micro-scale and large-scale roughness

1/3

)

Moving beyond the widely used Nikuradse data range for
r/R < 0.1 and for regular roughness elements, the following discus-
sion is presented to assess the plausibility of extending the implicit
function g,(y) to two extreme cases as shown in Fig. 3: (i) a hydrody-
namically smooth regime or the micro-scale roughness
r/R€[107°,107°] from Hi-Reff'' superpipe experiments (the
Oregon and Princeton’””” are assumed smooth though no /R mea-
surements were reported) and (ii) a large-scale roughness regime
/R € [0.1,0.2] from pipes roughened with single layers of sand."”
The reported friction factor data'” (runs R4 and R5) in their original
Table I were employed. These two runs can still be approximated as
regular roughness with /R not too large so that the prior conditions
imposed on z, for the use of the CSB can still be enforced.

B. Estimation of c;cp

To extend the proposed model and without invoking further ad
hoc assumptions on the local flow structure, a “naive” but direct
approach is to revise the constant ¢, ¢, assumption that seems only
applicable to the Nikuradse range.”'” When inferring U,, the log-law
is assumed to populate U™ over extensive portions of the pipe area at
intermediate to high Re. The log-law overestimates U" in the buffer
region (for smooth pipes) or the roughness sublayer (in rough pipes)
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but underestimates U in the wake-region.”' Thus, its area-integrated
form from I, to R may be less sensitive to such deviations and provides
a leading order guess as to whether c;c, is constant or variable. With
this idealized U" representation, it follows that ¢, L~ U, [t
= (1/x)In (R/l,) + B,, where B, is an integration constant of order
unity and x is the von Kirmin constant.”” For this ¢, and
¢ = c(R/1y) 13 their product can now be estimated as

R\*[1. /R -2
Cicp = E ;lnz + B,| .

Increasing R/I, increases both the numerator and denominator
thereby making their ratio less sensitive to R/I, as expected. However,
a near constant c;c, emerges when noting that for large but finite
R/l,, In(R/1l,) =~ A,(R/,)" with n, = 1/6 for the range covered by
R/l, in many experiments.”* To elaborate, the limiting case for large
R/, is considered and this case leads to

0o~ i logllog (R/l)] 1
* 7 Ril,—oc log (A,) +log (R/1,)  log(R/L,)’

(29)

(25)

when applying 'Hopital’s rule. The n, = 1/log (R/l,) appears inde-
pendent of A,, but weakly depends on R/, as shown from a similar
argument using asymptotic covariance analysis.” In general,
n, — 1/log (R/l,) for very large R/I, and cannot be a constant. To
explore the plausibility of setting c;c, a constant beyond the Nikuradse
experiments, other predictions from the virtual Nikuradse™ equation
(VN), the Moody diagram summarized by the approximate von
Kérmén equation,” and the aforementioned micro-scale and large-
scale roughness data are employed and discussed in Fig. 4.

Figure 4 shows that ¢;c, does not vary appreciably with r/R for
small-scale roughness (r/R < 0.1) consistent with the range of appli-
cability.”” However, as /R increases to 0.2, c;c, increases leading to a
breakdown in the Strickler scaling. This breakdown originates from
estimates of £(z.) when using bulk variables and not in the particulars
of momentum exchange by turbulent eddies at z. re3presented by the
CSB model. Likewise, for the Blasius scaling the c,cp/ 4 (or cscp inde-
pendent of R/L,) remains flat for a restricted range of Re € [10*, 10]
but increases significantly with increasing Re.

With modeled ¢;c, provided in Eq. (24), a representation of
extended Nikuradese diagram with additional micro-scale and
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Prandtl and von Kérmén equations (or the Colebrook-White formula when added), and the blue line features predictions from the virtual Nikuradse (VN) curve.

large-scale roughness data is also shown in Fig. 3. Figure 3 shows that
all these f; data reasonably collapse along a one-dimensional curve
(predicted from CSB) when plotted against [, /R. This finding indicates
that [, /R is a characteristic length scale that describes f; in all regimes
as alluded to in earlier studies.”” Similar to the data collapse strategy
that NG06 employed, an apparent curve can also be derived when
plotting f; - (I,/R) vs I, /R, where f; - (I,/R) can be understood physi-
cally as a “roughness friction factor” noting that f;(l,/R)
= 241,S,/U. The improved data collapse from the f; - (I,/R) repre-
sentation is partly connected to self-correlation because the abscissa
and ordinate now share the same variable (/,/R) that span several
orders of magnitude. Likewise, the NG06 representation also suf-
fers from similar self-correlation through Re, which varies over
several orders of magnitude as well. This finding confirms the
applicability of the proposed CSB model at the two extremes of
(I,/R) albeit models for ¢,c, are required as deviations from a con-
stant product value are expected. These deviations are connected
to how the bulk variables relate to local mean velocity gradient and
TKE dissipation rate at z, instead of how eddies transport momen-
tum to pipe walls at z,.

V. CONCLUSION

An explicit solution for the NG06 conveyance equation for
friction factor, originally conjectured from analogies to the critical
phenomenon, was derived from a CSB model. The CSB model
employs standard turbulent theories and a commonly accepted
wall-normal velocity spectrum. The model closes the pressure—
velocity de-correlation term using a linear Rotta scheme based on
linear return-to-isotropy with adjustments due to isotropization of
the production term. Moving beyond and above the CSB model,
the extension of CSB prediction is also discussed in terms of
micro-scale roughness and large-scale roughness experiments that
were not covered by the original Nikuradse range. The analysis
shows that all the turbulent friction factor data collected so far can
be approximately collapsed onto a single curve. However, the work
here shows that much of the uncertainty originates from how local
to bulk variables are related instead of the mechanics of momen-
tum exchange with the pipe walls.
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