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ABSTRACT

We propose a penalized likelihood framework for estimating multiple precision matrices from di�erent
classes. Most existing methods either incorporate no information on relationships between the precision
matrices or require this information be known a priori. The framework proposed in this article allows for
simultaneous estimation of the precisionmatrices and relationships between the precisionmatrices. Sparse
and nonsparse estimators are proposed, both of which require solving a nonconvex optimization problem.
To compute our proposed estimators, we use an iterative algorithm which alternates between a convex
optimizationproblemsolvedbyblockwise coordinatedescent anda k-means clusteringproblem.Blockwise
updates for the sparse estimator require computing an elastic net penalized precision matrix estimation
problem, whichwe solve using a proximal gradient descent algorithm.We prove that this subalgorithm has
a linear rate of convergence. In simulation studies and two real data applications, we show that ourmethod
can outperform competitors that ignore relevant relationships between precision matrices and performs
similarly to methods which use prior information often unknown in practice. Supplementary materials for
this article are available online.
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1. Introduction

Many applications in statistics andmachine learning require the
estimation of multiple, possibly related, precision matrices. For
example, to perform classi�cation using quadratic discriminant
analysis (QDA), a practitionermust estimate two ormore preci-
sion matrices, see, for example, Chapter 4 of Friedman, Hastie,
and Tibshirani (2001). Similarly, it is o�en of scienti�c interest
to estimate multiple Gaussian graphical models when the same
variables aremeasured on subjects frommultiple classes, see, for
example, Guo et al. (2011).

In this work, the data (x1, y1), . . . , (xn, yn) are assumed to be
a realization of n independent copies of the random pair (X,Y)

such that Y has support C = {1, . . . ,C} and
(X|Y = c) ∼ Np

(
μ∗c,�

−1
∗c
)
, c ∈ C,

where μ∗c ∈ R
p and �∗c ∈ S

p
+ are unknown, and S

p
+ denotes

the set of p × p symmetric, positive-de�nite matrices. Let nc =∑n
i=1 1(yi = c) be the sample size for the cth class, let x̄c =

n−1
c

∑n
i=1 xi1(yi = c) be the observed sample mean for the cth

class, and let

Sc = 1

nc

n∑

i=1

(xi − x̄c)(xi − x̄c)
T1(yi = c), c ∈ C,

be the sample covariance matrix for the cth class, where 1(·)
is the indicator function. De�ne � = {�1, . . . ,�C}. A�er
pro�ling over the means and class probabilities, negative two
times the log-likelihood (ignoring constants) is

g(�) =
∑

c∈C
nc{tr(Sc�c) − log det(�c)}. (1)
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A natural estimator of �∗c, when it exists, is the maximum
likelihood estimator S−1

c . In settings where the maximum like-
lihood estimator does not exist, for example, when p > nc, a
practitioner could instead estimate the �∗c’s separately using
penalized normalmaximum likelihood (Pourahmadi 2011; Fan,
Liao, and Liu 2016). Sparsity inducing penalties are especially
popular in penalized normal maximum likelihood (Yuan and
Lin 2007; d’Aspermont, Banerjee, and Ghaoui 2008; Friedman,
Hastie, and Tibshirani 2007; Rothman et al. 2008;Witten, Fried-
man, and Simon 2011) because a zero in the (j, k)th entry of
�∗c implies the conditional independence of the jth and kth
variables (given all other variables) in the cth class. However
when the precisionmatrices are similar across classes, for exam-
ple, when the �∗c’s share sparsity patterns, jointly estimating
the �∗c’s can be more e�cient than methods that estimate each
precision matrix separately.

Many methods exist for estimating multiple precision matri-
ces under the assumption of shared structures (e.g., sparsity
patterns) across classes. For example, Guo et al. (2011), Honorio
and Samaras (2010), and Chiquet, Grandvalet, and Ambroise
(2011) proposed to use a hierarchical penalty, L1,∞-norm
penalty, and group-lasso penalty, respectively, to encourage
zeroes in the same entries of estimates of the �∗c’s. Chiquet,
Grandvalet, and Ambroise (2011) also proposed an estimator
which replaces the class-wise sample covariance with a linear
combination of the class-wise sample covariance and pooled
sample covariance in the L1-penalized normal maximum
likelihood criterion. Hara and Washio (2011) assumed each
precision matrix can be decomposed into the sum of a class-
speci�c matrix and sparse matrix which is shared across classes.
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The problem of estimating multiple precision matrices is
sometimes characterized as “multi-task structure learning” for
networks (Niculescu-Mizil and Caruana 2007; Argyriou et al.
2008; Honorio and Samaras 2010; Gonçalves et al. 2014).

Most relevant to the method proposed here, Danaher, Wang,
and Witten (2014) proposed the fused graphical lasso estimator
(FGL)

argmin
�c∈Sp+,c∈C

⎧
⎨
⎩g(�) + λ1

∑

c∈C
‖�c‖1 + λ2

∑

(j,k)∈C×C

‖�j − �k‖1

⎫
⎬
⎭ ,

where ‖A‖1 =
∑p

j=1

∑p
k=1 |Aj,k|. The �rst FGL penalty, con-

trolled by positive tuning parameter λ1, promotes elementwise
sparsity separatelywithin classes. The second penalty, controlled
by λ2, promotes elementwise equality jointly across classes. For
su�ciently large values of the tuning parameter λ2, the FGL
estimates of the �∗c’s will have exactly equivalent sparsity pat-
terns. Price, Geyer, and Rothman (2015) proposed a compu-
tationally e�cient alternative to FGL, called ridge fusion (RF),
which used squared Frobenius normpenalties in place of the L1-
norm penalties in FGL. Price, Geyer, and Rothman (2015) also
investigated FGL and RF as methods for �tting the QDAmodel.
These approaches for �tting theQDAmodel are related to Fried-
man (1989), who proposed regularized discriminant analysis
(RDA). The RDA approach estimates multiple precision matri-
ces forQDAusing a linear combination of the sample covariance
matrices for each class and the pooled sample covariancematrix
across all the classes. Bilgrau et al. (2020) generalized thework of
Price, Geyer, andRothman (2015) to estimatemultiple precision
matrices sharing a common target matrix.

Joint estimation procedures such as those proposed byDana-
her, Wang, and Witten (2014) and Price, Geyer, and Rothman
(2015) can perform well when all C precision matrices are
similar. However, there are settings when FGL and RF may
perform unnecessary or inappropriate shrinkage. Notice, the
second part of the ridge fusion penalty proposed by Price, Geyer,
and Rothman (2015) can be rewritten as

1

2C

∑

(j,k)∈C×C

‖�j − �k‖2F =
∑

l∈C
‖�l − �̄‖2F ,

where �̄ = 1

C

∑

c∈C
�c

and ‖A‖2F = tr(ATA) is the squared Frobenius norm. This for-
mulation suggests that FGL and RF can be viewed as shrinking
all precisionmatrices toward a commonprecisionmatrix. Regu-
larization of this typemay be problematic if there are substantial
di�erences in the population precision matrices across classes.
For instance, consider the case that there are two groupings (i.e.,
clusters) of the C classes denoted D1 and D2, where D1 ∩ D2

is empty and D1 ∪ D2 = C. Suppose the (j, k)th entry of �∗c,
[�∗c]j,k = 0 for c ∈ D1, but [�c]j,k 	= 0 for c ∈ D2 for many
j 	= k. This type of scenario may occur when the variables are
the expression of p genes belonging to some pathway and the
classes represent certain disease subtypes. Two subtypes may
have similar gene-gene dependence, which are distinct from
the another subtype (e.g., controls). In these settings, FGL may
perform poorly since sparsity patterns are only shared within a

subset of classes. If such clusters were known a priori, it may be
preferable to apply FGL or RF to the groups separately, but when
groupings are unknown, they must be estimated from the data.

Methods proposed byZhu, Shen, andPan (2014) and Saegusa
and Shojaie (2016) addressed this issue of FGL and RF. The
structural pursuit method proposed by Zhu, Shen, and Pan
(2014) allows for heterogeneity in precision matrices using
the truncated lasso penalty of Shen, Pan, and Zhu (2012) to
promote elementwise equality and shared sparsity patterns
across prede�ned groups of precision matrices. The method
proposed by Saegusa and Shojaie (2016), known as LASICH,
allows for heterogeneity of precisionmatrices through the use of
a graph Laplacian penalty which incorporates prior information
about how di�erent classes’ sparsity patterns are related. Since
such prior information is o�en not available in practice,
the authors propose the HC-LASICH method: a two-step
procedure which �rst uses hierarchical clustering to estimate
relationship between precision matrices, then uses this estimate
to apply the LASICH procedure. Peterson, Stingo, and Vannucci
(2015) addressed this problem from a Bayesian perspective by
employing a spike and slab prior on parameters characterizing
precision matrix relatedness. In somewhat related work, Ma
and Michailidis (2016) proposed the joint structural estimation
method to use prior information on shared sparsity patterns
in a two-step procedure that �rst estimates the shared sparsity
pattern and then estimates the precision matrices based on the
shared sparsity constraints. More recently, Jalali, Khare, and
Michailidis (2019) extended the work of Ma and Michailidis
(2016) to the case where prior information on edge relationships
need not be known. Jalali, Khare, and Michailidis (2019) used
a Bayesian approach that incorporates a multivariate Gaussian
mixture distribution on all possible sparsity patterns.

The joint estimation of multiple precision matrices has
also been of interest in the model-based clustering and semi-
supervised model-based clustering literature (Ban�eld and
Ra�ery 1993; Fraley and Ra�ery 2002; Ruan, Yuan, and Zou
2011; Zhou, Pan, and Shen 2009; Xie, Pan, and Shen 2008;
McNicholas and Murphy 2008). In these applications, some or
all of the class labels (y1, . . . , yn) are unobserved. Price, Geyer,
and Rothman (2015) extended the RF and FGL methods to the
semi-supervised model-based clustering problem. Similarly,
Gao et al. (2016) applied the non-convex structural pursuit
penalty of Zhu, Shen, and Pan (2014) in the context of model-
based clustering. More recently, Hao et al. (2018) proposed to
estimate multiple graphical models using the SCAN method,
which simultaneously estimates the parameters associated with
multiple Gaussian graphicalmodels using a group-lasso penalty.

In this article, we propose a penalized likelihood frame-
work for simultaneously estimating the C precision matrices
and how the precision matrices relate to one another. Like
FGL and RF, our method can exploit the similarity of preci-
sion matrices belonging to a group, but avoids the unneces-
sary shrinkage of FGL or RF when groups di�er. Unlike some
existing methods, the proposed method does not require any
prior information about the relationships between the classes,
nor does it require clustering to take place before estimation
of the precision matrices. We study the use of our estimator
for QDA and Gaussian graphical modeling in settings where
there are groupings of classes which share common dependence
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structures. Computing our estimator is nontrivial since the
objective function we minimize is discontinuous. To overcome
this challenge, we propose an iterative algorithm, in which we
alternate between updating groupings and updating precision
matrix estimates. As part of our algorithm for the sparse esti-
mator we propose (see Section 2), we must solve an elastic net
penalized precision matrix estimation problem. To do so, we
propose a graphical elastic net iterative shrinkage thresholding
algorithm (GEN-ISTA). We prove this GEN-ISTA has a linear
convergence rate and characterize the set to which the solu-
tion belongs. We provide R implementations of our proposed
methods, as well as scripts to reproduce all simulations and
data examples, at https://github.com/bprice2652/cluster_fusion_
precision.

2. Joint EstimationWith Cluster Fusion Penalties

2.1. Methods

De�ne (D1, . . . ,DQ) to be an unknown Q element partition of
the set C. For convenience, we will refer to Dq as the qth cluster.
Let λ1 > 0, λ2 ≥ 0, and the positive integer Q be user de�ned
tuning parameters.

For any set B de�ne card(B) as the cardinality of B. The �rst
estimator we will investigate is the cluster ridge fusion estimator
(CRF), which is de�ned as

(�̂CRF, D̂CRF) = argmin
�c∈Sp+,c∈C,D1,...,DQ

{
g(�) + λ1

2

∑

c∈C
‖�c‖2F

+λ2

2

Q∑

q=1

1

card(Dq)

∑

c,m∈Dq

‖�c − �m‖2F

⎫
⎬
⎭ .

(2)

We refer to the penalty associated with λ2 as the cluster fusion
penalty, which promotes similarities in precision matrices that
are in the same cluster. The ridge fusion method (RF) proposed
by Price, Geyer, and Rothman (2015) can be viewed as a special
case of (2) when Q = 1.

We also propose a sparsity inducing version of the estimator,
the precision cluster elastic net (PCEN), which is de�ned as

(�̂PCEN, D̂PCEN) = argmin
�c∈Sp+,c∈C,D1,...,DQ

{
g(�) + λ1

∑

c∈C
‖�c‖1

+λ2

2

Q∑

q=1

1

card(Dq)

∑

c,m∈Dq

‖�c − �m‖2F

⎫
⎬
⎭ .

(3)

When λ2 = 0, �̂PCEN is equivalent to estimating theC precision
matrices separately with L1-penalized normal maximum likeli-
hood.

In our proposed estimators, the cluster fusion penalty is used
to promote similarity in precision matrices that are in the same
cluster, while estimating precision matrices in di�erent clusters
separately from one another. When estimating Gaussian graph-
ical models, PCEN promotes elementwise similarity between
precisionmatrices in the same cluster, in turn promoting similar

sparsity patterns within the same cluster. This di�ers from other
methods, for example, FGL proposed by Danaher, Wang, and
Witten (2014), which penalize the absolute value of entrywise
di�erences across all precision matrices.

Unlike the FGL fusion penalty, the squared Frobenius norm
fusion penalty will not lead to exact entrywise equality between
estimated precisionmatrices—even those belonging to the same
cluster. However, the squared Frobenius normpenalty facilitates
fast computation and more importantly, an e�cient search for
clusters using existing algorithms for k-means clustering.

The cluster fusion penalty used in this work was �rst pro-
posed in the context in univariate response linear regression
by Witten, Shojaie, and Zhang (2014) to detect and promote
similarity in e�ect sizes. More recently, Price and Sherwood
(2018) used this type of cluster fusion penalty in multivariate
response linear regression to detect and promote similarity in
�tted values.

If D1, . . . ,DQ were known, then Equations (2) and (3) could
be rewritten as

�̃CRF = argmin
�c∈Sp+,c∈C

{
g(�) + λ1

2

∑

c∈C
‖�c‖2F

+λ2

2

Q∑

q=1

1

card(Dq)

∑

c,m∈Dq

‖�c − �m‖2F

⎫
⎬
⎭ , (4)

�̃PCEN = argmin
�c∈Sp+,c∈C

{
g(�) + λ1

∑

c∈C
‖�c‖1

+λ2

2

Q∑

q=1

1

card(Dq)

∑

c,m∈Dq

‖�c − �m‖2F

⎫
⎬
⎭ . (5)

The optimization in Equation (4) can be identi�ed asQ separate
ridge fusion estimation problems (Price, Geyer, and Rothman
2015). The optimization in Equation (5) is also separable over
theQ clusters, and in Section 3.3 we propose a block coordinate
descent algorithm to solve Equation (5).

A reviewer pointed out if C = n, the problem we are
considering is related to clustering (of subjects). However, we
assume each class has its own distinct mean vector, so to apply
our method to the clustering problem, one may also have to
perform some type of fusion or regularization of class means.
We leave extensions of our method to model-based clustering
as a direction for future research.

2.2. Tuning Parameter Selection for CRF and PCEN

We propose selecting tuning parameters, including the number
of clusters, for both CRF and PCEN using validation likelihood
with V-fold cross-validation. A similar approach was proposed
by Price, Geyer, and Rothman (2015) for RF, which is a gen-
eralization of its use in the single precision matrix estimation
problem (Huang et al. 2006). The data are randomly split intoV
subsets, dividing each of the C classes as evenly as possible. Let

(v) index subjects belonging to the vth subset and let �̂
(λ1,λ2,Q)
c(−v)

be an estimator of�∗c with the vth subset removed using tuning
parameters (λ1, λ2,Q). The validation likelihood score is then
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calculated as

VL(λ1, λ2,Q) =
V∑

v=1

∑

c∈C
nc(v)

{
tr
(
Sc(v)�̂

(λ1,λ2,Q)
c(−v)

)

− log det
(
�̂

(λ1,λ2,Q)
c(−v)

)}
. (6)

The tuning parameters are selected as the (λ1, λ2,Q) combina-
tion minimizing VL(λ1, λ2,Q) over a grid of candidate values.
In the case of PCEN, if not enough data is available for cross-
validation or computational time is a concern, then an infor-
mation criterion, such as AIC fromDanaher, Wang, andWitten
(2014), could be used.

3. Computation

3.1. Overview

The objective functions in Equations (2) and (3) are discontinu-
ous (and nonconvex) with respect toD1, . . . ,DQ because chang-
ing cluster membership results in discrete changes in the objec-
tive function. However, in Equations (4) and (5),D1, . . . ,DQ are
�xed so that the objective functions are both convexwith respect
to �. To compute both CRF and PCEN, we propose an algo-
rithm that iterates between solving forD1, . . . ,DQ with� �xed,
and then solving for�withD1, . . . ,DQ �xed. This procedure is
similar to those of Witten, Shojaie, and Zhang (2014) and Price
and Sherwood (2018) which iterate between k-means clustering
and solving an optimization with �xed clusters. Similar to Price
and Sherwood (2018), we are able to exploit the embarrassingly
parallel structure of the optimization when solving for � with
D1, . . . ,DQ �xed. We describe both algorithms in the following
subsections.

3.2. Cluster Ridge Fusion Algorithm

Assume λ1 > 0, λ2 ≥ 0, and Q ∈ {1, 2, . . . ,C}. We propose the
following iterative algorithm to solve Equation (2):

1. Initialize �̃
1

CRF = {�̃1
1, . . . , �̃

1
C} as a set of diagonal matrices

where the jth diagonal element of �̃1
k is ([Sk]j,j)−1.

2. For w = 2, 3, 4, . . . , repeat the steps below until the iterates
D̃w−1
1 , . . . , D̃w−1

Q are equivalent to D̃w
1 , . . . , D̃

w
Q.

(a) Holding �̃
w−1

CRF �xed, obtain thewth iterate of (D̃1, . . . , D̃Q)

with

(D̃w
1 , . . . , D̃

w
Q) = argmin

D1,...,DQ

×

⎧
⎨
⎩

Q∑

q=1

1

card(Dq)

∑

c,m∈Dq

‖�̃w−1
c − �̃w−1

m ‖2F

⎫
⎬
⎭ . (7)

This is equivalent to solving the well-studied k-means
clustering optimization problem on C vectors of dimen-
sion p2 (Witten, Shojaie, and Zhang 2014).

(b) Holding (D̃w
1 , . . . , D̃

w
Q) �xed, obtain the wth iterate of the

precision matrices with

�̃
w

CRF = argmin
�c∈Sp+,c∈C

{
g(�) + λ1

2

∑

c∈C
‖�c‖2F

+λ2

2

Q∑

q=1

1

card(D̃w
q )

∑

c,m∈D̃w
q

‖�c − �m‖2F

⎫
⎪⎬
⎪⎭
.

(8)

This is identical to the optimization in Equation (4) and
can be solved with Q parallel RF estimation problems,
with the qth objective function taking the form

∑

c∈Dq

[
nc{tr(Sc�c) − log det(�c)} + λ1

2
‖�c‖2F

]

+ λ2

2card(Dq)

∑

c,m∈Dq

‖�c − �m‖2F .

To protect against the k-means clustering update in 2(a)
from selecting a local optima, our implementation uses 100
random starts, and selects the clustering which gives the lowest
objective function value (Hartigan andWong 1979; Krishna and
Murty 1999). Note that k-means clustering is just one approach
to solving the optimization in (7). When C and Q are small,
one could use an exhaustive search to solve (7). The complete
CRF algorithm, including details for (b), can be found in the
Supplementary Material.

3.3. Precision Cluster Elastic Net Algorithm

For the PCEN estimator, we propose to use the same iterative
procedure as in Section 3.2. The algorithm iterates between a k-
means clustering algorithm and a blockwise coordinate descent
algorithm which uses the graphical elastic net iterative so�-
thresholding algorithm (GEN-ISTA) to obtain new iterates of the
precision matrices at each iteration.

Again, let λ1 > 0, λ2 ≥ 0, and Q ∈ {1, 2, . . . ,C} be �xed.
Formally, the iterative algorithm is as follows:

1. Initialize �̃
1

PCEN = {�̃1
1, . . . , �̃

1
C} as a set of diagonal matri-

ces where the jth diagonal element of �̃1
k is ([Sk]j,j)−1.

2. For w = 2, 3, 4, . . . , repeat the steps below until the iterates
D̃w−1
1 , . . . , D̃w−1

Q are equivalent to D̃w
1 , . . . , D̃

w
Q.

(a) Holding �̃
w−1

PCEN �xed obtain the wth iterate of (D̃1, . . . ,

D̃Q) with

(D̃w
1 , . . . , D̃

w
Q) = argmin

D1,...,DQ

Q∑

q=1

1

card(Dq)

×
∑

c,m∈Dq

‖�̃w−1
c − �̃w−1

m ‖2F . (9)

(b) Holding (D̃w
1 , . . . , D̃

w
Q), obtain the wth iterate of the pre-

cision matrix estimates with
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�̃
w

PCEN = argmin
�c∈Sp+,c∈C

{
g(�) + λ1

∑

c∈C
‖�c‖1

+λ2

2

Q∑

q=1

1

card(D̃w
q )

∑

c,m∈D̃w
q

‖�c − �m‖2F

⎫
⎪⎬
⎪⎭
.

(10)

Just as in the CRF Algorithm, to protect against selecting a
local optima in the k-means clustering update in 2(a), our imple-
mentation uses 100 random starts, and selects the clustering
which gives the lowest objective function value.

The update in Equation (10) is a nontrivial convex opti-
mization problem. As noted previously, Equation (10) can be
separated intoQ separate optimization problems, where the qth
optimization is

argmin
�c∈Sp+,c∈Dq

⎛
⎝
⎡
⎣∑

c∈Dq

nc{tr(Sc�c) − log det(�c)}

⎤
⎦

+λ1
∑

c∈Dq

‖�c‖1 + λ2

2card(D̃w
q )

∑

c,m∈Dq

‖�c − �m‖2F

⎞
⎠ . (11)

Since the Dq’s are �xed, we propose to solve Equation (11)
using blockwise coordinate descent where each �c is treated as
a block. That is, for each Dq, we update one �c for c ∈ Dq with
all other �c′ for c

′ ∈ Dq held �xed. The objective function for
the �c blockwise update, treating all other �c′ , c

′ ∈ Dq \ {c} as
�xed is

nc

⎛
⎝tr

⎡
⎣
⎧
⎨
⎩Sc − λ2

nccard(Dw
q )

⎛
⎝ ∑

c′∈Dw
q \{c}

�c′

⎞
⎠
⎫
⎬
⎭�c

⎤
⎦

− log det(�c)

⎞
⎠+ λ1‖�c‖1 +

λ2(card(D
w
q ) − 1)

2card(Dw
q )

‖�c‖2F .

(12)

Hence, by de�ning

S̃c =

⎧
⎨
⎩Sc − λ2

nccard(Dw
q )

⎛
⎝ ∑

c′∈Dw
q \{c}

�c′

⎞
⎠
⎫
⎬
⎭ , γc1 = λ1

nc
,

γc2 =
λ2(card(D

w
q ) − 1)

2nccard(Dw
q )

,

the argument minimizing (12) can be expressed

argmin
�c∈Sp+

{
tr(S̃c�c) − log det(�c) + γc1‖�c‖1 + γc2‖�c‖2F

}
,

(13)
which is the elastic net penalized normal maximum likelihood
estimation criterion. To compute Equation (13), we propose the
GEN-ISTA, an elastic net variation of the algorithm proposed
by Rolfs et al. (2012), called G-ISTA, which was used to solve
problems like (13) with γc2 = 0. Iterative shrinkage thresh-
olding algorithms (ISTAs) are a special case of the proximal
gradient method, which are commonly used to solve penalized

likelihood optimization problems. We refer the reader to Beck
and Teboulle (2009) and Polson, Scott, and Willard (2015) for
more on iterative shrinkage thresholding algorithms and proxi-
mal algorithms, respectively.

This approach uses a �rst-order Taylor expansion to derive
a majorizing function of the objective in Equation (13). Let
f (�c) ≡ tr(S̃c�c) − log det(�c) + γc2‖�c‖2F and let �̃c be the
previous iterate of�c. Because∇f is Lipschitz over compact sets

of S
p
+ (see Lemma 2), we have that

f (�c) ≤ f (�̃c) + tr[(�c − �̃c)
′∇f (�̃c)] + 1

2t
‖�c − �̃c‖2F ,

(14)

for su�ciently small step size t, with equality when �c = �̃c.
Thus, we can majorize f with the right-hand side of Equation
(14): using this inequality and that∇f (�c) = S̃c−�−1

c +2γ2c�c,
we have

f (�c) ≤ − log det(�̃c) + tr[�̃c(S̃c + γc2�̃c)] (15)

+ tr[(�c − �̃c)
′(S̃c − �̃−1

c + 2γc2�̃c)]

+ 1

2t
‖�c − �̃c‖2F .

Letting gt(�c; �̃c) denote the right-hand side of Equation (15),
for all �c with t su�ciently small,

f (�c) + γc1‖�c‖1 ≤ gt(�c; �̃c) + γc1‖�c‖1, (16)

so that at �̃c, the right-hand side of Equation (16) is a majorizer
of Equation (13). Thus, to solve Equation (13), we use an iter-
ative procedure: given the previous iterate �̃c, we construct
gt(�c; �̃c), then we minimize gt(�c; �̃c) + γc1‖�c‖1 to obtain
the new iterate. This choice of majorizer is convenient since the
new optimization problem simpli�es to the proximal operator
for the L1-norm because

argmin
�c∈Sp

{
gt(�c; �̃c) + γc1‖�‖1

}

= argmin
�c∈Sp

{
1

2
‖�c − Zc,t‖2F + tγc1‖�c‖1

}
,

where Zc,t = �̃c − t(S̃c − �̃−1
c + 2γc2�̃c) and S

p denotes the set
of p×p symmetricmatrices. In the following subsection, we will
show that there always exists a step size such that the solution to
the proximal operator above is positive de�nite, and hence, the
iterates remain feasible for Equation (13).

To summarize, we propose the GEN-ISTA, which updates
from iterate k to iterate k + 1 with

�(k+1)
c = argmin

�∈Sp

{
1

2
‖�c − �(k)

c + t{S̃c − (�(k)
c )−1

+ 2γc2�
(k)
c }‖2F + tγc1‖�c‖1

}

= S

(
�(k)

c − t{S̃c − �−1(k)
c + 2γc2�

(k)
c }, tγc1

)
, (17)

where for a p × p matrix A and η > 0, S(A, η) is the ele-
mentwise so�-thresholding operator such that [S(A, τ)]j,k =
sign(Aj,k)max(|Aj,k|−τ , 0). To select t for use in Equation (17),
we use a backtracking line search. For the step to be accepted,
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we check a descent condition and check that �
(k+1)
c ∈ S

p
+.

If both conditions are not met, a smaller step size t must be
used. The steps for implementing GEN-ISTA with backtracking
line search can be found in the Supplementary Material. In
Section 3.4 we show that for a prespeci�ed t, which is a function
of S̃c, γc2, and p, that this update will always be contained in

S
p
+. The complete algorithm for PCEN can be found in the

Supplementary Material.
As previouslymentioned, theG-ISTA algorithmproposed by

Rolfs et al. (2012) is a special case of the GEN-ISTA algorithm
when γc2 = 0, but there are substantial di�erences. In particular,
Rolfs et al. (2012) only considered the case where S̃c is a sym-
metric, nonnegative-de�nitematrix, but in our application there
is no guarantee that S̃c is nonnegative de�nite. In Section 3.4
we demonstrate the role of γc2 in the rate of convergence and
the choice of appropriate step size, t. The elastic net penalized
normal likelihood precision matrix estimation problem was
also studied by Atchadé, Mazumder, and Chen (2019), who
proposed a stochastic gradient descent algorithm for solving
Equation (13) with p very large and S̃c being a sample covariance
matrix.

3.4. Convergence Analysis of GEN-ISTA Algorithm

In this section we will discuss the convergence of the GEN-ISTA
subroutine proposed in the previous section. Our approach to
convergence analysis is based on that of Rolfs et al. (2012), but
in our application, wemust address that the inputmatrix S̃c may
be inde�nite. We show that despite the generality of the input
matrix, our proximal gradient descent scheme is guaranteed to
converge at a linear rate and that the maximum step size is
a function known quantities. Speci�cally, we show that there
exists a worst case contraction constant, δ ∈ (0, 1), such that

‖�(k+1)
c − �∗

c ‖F ≤ δ‖�(k)
c − �∗

c ‖F ,
where �∗

c is the solution to Equation (13). In our case δ is a
function of S̃c, γc2, and p. We will show that as γc2 increases, δ
approaches 0. Throughout this section, for a p× pmatrix A, let
ρ1(A) ≥ ρ2(A) ≥ · · · ≥ ρp(A) denote the ordered eigenvalues
of A. All proofs can be found in the Supplementary Material.

We �rst will show that �∗
c is contained in a compact subset

of S
p
+.

Lemma1. If γc1 > 0, γc2 > 0, and�∗
c is the solution to Equation

(13), then αI � �∗
c � βI, where

α−1 = .5

(
ρ1(S̃c) + γc1p +

√
(ρ1(S̃c) + γc1p)2 + 8γc2

)

and

β−1 = .5

(
ρp(S̃c) − γc1p +

√
(ρp(S̃c) − γc1p)2 + 8γc2

)
.

Our bounds are distinct from those in Rolfs et al. (2012)
as theirs do not allow for S̃c which is inde�nite. Notably, the
α we obtain is the same as that in Atchadé, Mazumder, and
Chen (2019), although the β we obtain is distinct, again owing
to the inde�niteness of S̃c. Next, we establish that the Lipschitz
continuity of the gradient of Equation (13), which we used to
construct the majorizing function (14).

Lemma 2. If αI � �A,�B � βI such that 0 < α < β < ∞,

then ‖▽f (�A) − ▽f (�B)‖F ≤ √
p
(

1
α2 + 2γc2

)
‖�A − �B‖F .

Hence,▽f (�) = S̃c−�−1+2γc2� is Lipschitz on any compact

subset of S
p
+.

The combination of Lemmas 1 and 2 give us necessary and
su�cient conditions to apply Theorem 3.1 of Beck and Teboulle
(2009) to Equation (13) to obtain a sublinear convergence rate
between iterates of the objective function.

Next, we present a lemma that ensures that there always exists
a step size parameter t such that the iterates of the algorithm are

contained in a compact subset of S
p
+. The result of Lemma 3 is

similar to those in Rolfs et al. (2012) and Atchadé, Mazumder,
and Chen (2019).

Lemma 3. Let γc1 > 0, γc2 > 0, and de�ne α and β as in

Lemma 1. If t ≤ α2

2α2γc2+1
, then the iterates of the proposed

algorithm satisfy αI � �
(k)
c � b′I for all k where b′ = ‖�∗

c ‖2 +
‖�(0)

c − �∗
c ‖F ≤ β + √

p(β − α).

Finally, we present a result establishing the linear conver-
gence rate for our algorithm.

Theorem 1. Let α and β be as de�ned in Lemma 1. Then for

constants γc1 > 0, γc2 > 0, and t ≤ α2

2α2γc2+1
the iterates of our

algorithm converge linearly with a rate of

δ = 1 − 2

[
1 + 2γc2 + α−2

2γc2 +
{
β + √

p(β − α)
}−2

]−1

< 1.

Theorem 1 establishes the linear convergence of our pro-
posed ISTA algorithm. Furthermore, these results show how γc2
in�uences the convergence of the algorithm, and the optimal
solution bounds. In particular, for a �xed γc1, as γc2 gets larger,
the rate approaches 0. From a practical perspective, these results
suggest that we could �x the step size parameter t and avoid the
backtracking line search when p is large because α and γc2 can
be calculated directly at each iteration.

4. Gaussian Graphical Modeling Simulation Studies

4.1. Overview

In our �rst set of simulations, we focus on both estimation
accuracy and sparsity detection in Gaussian graphical modeling
using PCEN. We generate data from C = 4 classes or C = 6
classes, where the cth class is generated from Np(0,�

−1
∗c ) and

p ∈ {20, 50, 100}. By construction, the sparsity patterns of �∗1
and �∗2 will be nearly equivalent; as will the sparisty patterns
of �∗3 and �∗4. However, the sparsity patterns of �∗1 and �∗2
will be distinct from the sparsity patterns of�∗3 and�∗4. When
six classes are present we set �∗5 = �∗6.

We compare two versions of PCEN, PCEN-2 and PCEN-3
(i.e., (3) with Q = 2 and Q = 3, respectively) to the fused
graphical lasso (FGL, Danaher,Wang, andWitten 2014), graph-
ical lassowith the same tuning parameter for all classes (Glasso),
the cooperative lasso (Coop-Lasso; Chiquet, Grandvalet, and
Ambroise 2011), and two versions of the method proposed by
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Saegusa and Shojaie (2016) which we call LASICH-OR and
LASICH-PR (denoting “oracle” and “practical”, respectively).
The method proposed by Saegusa and Shojaie (2016) requires
the network information between the classes to be known before
�tting the precisionmatrices (i.e., “oracle” information), though
it may be estimated using hierarchical clustering. In this simu-
lation, a network where the edges are {(1, 2), (1, 3), (2, 4), (3, 4)}
is used. The di�erence between LASICH-OR and LASICH-PR
is that LASICH-OR applies weights of 10−3 to the edges in the
set {(1, 3), (2, 4)} while LASICH-PR weights all edges equally.
Thus, this can be considered a “best-case” version of the HC-
LASICH method. In the case when C = 6 we add the edges in
the set {(1, 5), (3, 5), (2, 4), (4, 6), (5, 6)}, with the edge weight of
10−3 applied in the case of LASICH-OR to all of the edges added
with the exception of the edge (5, 6). Tuning parameters for each
of the methods are investigated based a subset of (λ1, λ2) ∈
{10−10, 10−9.9, . . . , 109.9, 1010} × {10−3, 10−1, 101} unless oth-
erwise speci�ed. The R implementation of the cooperative lasso
estimator (simone on CRAN) could only be used to obtain
relatively sparse estimates of the �∗c. We report those in our
simulation results.

To evaluate performance of each estimator, we measure
the true positive rate across all C classes, which we de�ne
as
∑C

c=1

∑
(j,k) 1([�∗c]j,k 	= 0 ∩ [�̂c]j,k 	= 0)/

∑C
c=1

∑
(j,k)

1([�∗c]j,k 	= 0), where �̂c is an estimate of �∗c.
In addition, we also report the sum of the Frobenius norm

squared error which is de�ned as
∑C

c=1 ‖�∗c − �̂c‖2F . We com-
pare these metrics to the number of nonzero elements across
all �̂c (c = 1, . . . ,C) as a way to measure the level of the total
sparsity of the estimates. A full analysis of the ability of PCEN to
detect the correct clustering for a given set of tuning parameters
and timing analysis are contained in the Supplementary Mate-
rial of this manuscript.

In each replication, the training data consist ofn independent
draws from each of the class distributions. We investigate three
di�erent settings each based on Erdős-Rényi graphs. Through-
out the settings we consider, we de�ne E(A, p) to be a p × p
matrix whereA is an adjacencymatrix associatedwith an Erdős-
Rényi graph. To generate the elements of E(A, p), we randomly
assign each of the nonzero elements of A a value from the set
(−0.7,−0.5) ∪ (0.5, 0.7). Each o� diagonal element is normal-
ized by 1.5 times the row sum of the matrix, and each diagonal
element is set to 1. The matrix is then scaled such that the
associated variance of each of the p variables is 1. Furthermore,
we de�neR(A,�∗,V) to be a p×pmatrix that is generated using
the adjacency matrixA, such that nonzero elements are equal to
the corresponding value in �∗ plus a randomly selected value
from the setV . The o�-diagonal elements are normalized by 1.5
times the row sum of thematrix, the diagonal elements are set to
1. Finally, the entire matrix is normalized such that the variance
of each variable is 1. Similar data-generating mechanisms have
been used in Danaher, Wang, and Witten (2014) and Saegusa
and Shojaie (2016).

4.2. Two Clusters, Block Erdős-Rényi Graphs

We �rst compare PCEN-2 and PCEN-3 to competing methods
under block Erdős-Rényi graphs. Each (p, λ1, λ2) described in
Section 4.1 is replicated 50 times with n = 200 and C = 4.

In this setting, we generate �∗1 to be block diagonal with each
block of size p/2 × p/2. The �rst block is generated using U =
E(A1, p/2), and the second is generated using L = E(A2, p/2)
where A1 and A2 are adjacency matrices associated with inde-
pendent Erdős-Rényi graphs with p/2 edges. Using �∗1, we
generate�∗2 such that it is block diagonal with block size p/2×
p/2. We de�ne the upper block of �∗2 as R (A3, L, (−.01, .01)),
and the lower block to be R (A4,U, (−.01, .01)) where A3 is the
adjacency matrix A1 with four edges removed. Similarly A4 is
the adjacency matrix A2 with four edges removed. Hence, �∗1
and �∗2 have nearly equivalent sparsity patterns minus eight
nonzero entries in �∗1 which are zero in �∗2.

To generate�∗3 we randomly select p/2 variables and de�ne
this set of variables as s1 and de�ne s2 = {1, . . . , p} \ s1.
The submatrix of �∗3 corresponding to the indices in s1
are generated such that G = E(A5, p/2) and submatrix of
�∗ corresponding to the indices in s2 is generated such that
H = E(A6, p/2), whereA5 andA6 are independent Erdős-Rényi
graphswith p/2 edges. The submatrices of�∗4 corresponding to
the indices in s1 and s2 are generated usingR (A7,G, (−.01, .01))
and R (A8,H, (−.01, .01)), respectively. The adjacency matrices
A7 and A8 are the same as A5 and A6, respectively, with 4
randomly selected edges removed in each.

The results in panels (a) and (b) of Figure 1 are average
log sum of squared Frobenius norm error and the average true
positive rate as the number of nonzero elements in the estimated
precision matrices varies with p = 100. The results for the case
of p = 20 and p = 50 can be found in the Supplementary
Material. The results in panels (a) and (b) of Figure 1 suggest
that PCEN-2 can preform as well or better than competitors
in terms of Frobenius norm error and graph recovery. Notably,
for some tuning parameters, PCEN-2 outperforms LASICH-
OR both in terms of log sum of squared Frobenius norm and
TPR, even though LASICH-OR knows the relations between
precision matrices a priori. Investigating further in the p = 100
case, we �nd that this corresponds to situationswhere the group-
ings are identi�ed correctly in every replication. In cases where
p = 20 and p = 50 PCEN-2 performs the best compared to
other methods when it is able to detect the correct groupings of
precision matrices. For every value of p when the proportion of

nonzero elements in �̂ is small, PCEN-2 and PCEN-3 perform
similarly regardless of the true number of groups. Nonetheless,
the minimum Frobenius norm achieved by either method is
always achieved by that with the correct number of clusters.
Further analysis of the cluster detection can be found in the
Supplementary Material.

In the Supplementary Material, we present additional sim-
ulation results examining the e�ect of sample size and λ2 on
the performance of PCEN-2. Brie�y, as one would expect, as the
sample size increases, the performance of PCEN-2 improves. In
general, as λ2 increases, the performance also improves.

4.3. Two Clusters, Block Diagonal Erdős-Rényi Graphs

In contrast to the data-generating models in Section 4.2, in
these simulations we consider settings where all four precision
matrices have a high degree of shared sparsity with high
probability. We generate �∗1 such that it is block diagonal
with each block size of p/2 × p/2. The �rst block is generated
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Figure 1. Results for the simulation setting described in (a)–(b) Section 4.2, (c)–(d) Section 4.3, and (e)–(f ) Section 4.4 when p = 100. In (a)–(d), there are Q = 2 clusters,
and in (e)–(f ), there are Q = 3 clusters. Each line represents the average of 50 replications of the denoted method when λ2 is �xed, and λ1 varies. Note that LASICH-OR
and LASICH-PR use exact and approximate information about the true clusters in estimation, respectively.

using U = E(A1, p/2), and the second block is generated
from L = E(A2, p/2) where A1 and A2 are adjacency matrices
associated with independent Erdős-Rényi graphs, with p/2
edges. Using �∗1 we generate �∗2 such that it is block
diagonal with block size p/2 × p/2. We de�ne the upper
block of �∗2 as R (A3, L, (−.01, .01)), and the lower block to
be R (A4,U, (−.01, .01)) where A3 is the adjacency matrix A1

with four edges removed. Similarly A4 is the adjacency matrix
A2 with p/10 edges removed. Next,�∗3 is generated in a similar
way to �∗1, and �∗4 is generated from �∗3 in the same fashion
�∗2 is generated from �∗1. By generating precision matrices in

this way, entries not in the upper or lower block submatrix are
zero in all four precision matrices.

The results in panels (c) and (d) of Figure 1 are average
log sum of squared Frobenius norm error and the average true
positive rate as the number of nonzero elements in the precision
matrices varying with p = 100 and n = 200. The results
for the case of p = 20 and p = 50 can be found in the
SupplementaryMaterial. These results show a similar pattern to
the results from the simulation studies in Section 4.2. For certain
values of λ1, which control the number of nonzero entries in
thematrices �̂, PCEN-2 is competitive in Frobenius norm error
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and graph recovery with the all other methods, most notably
LASICH-OR. In the case of p = 100, this corresponds to values
of the tuning parameters where PCEN-2 is able to correctly
identify the groupings of precision matrices. When p = 20
and p = 50, this is when groupings of precision matrices are
correctly identi�ed and estimates are sparse. Further analysis on
cluster detection can be found in the Supplementary Material.
As mentioned, LASICH-OR has oracle knowledge of the true
relationships between precision matrices, while PCEN is esti-
mating the relationships as well as the precision matrices.

4.4. Three Clusters, Block Diagonal Structures

In the �nal setting, we assume a data-generating model where
six precision matrices are divided into three groups. We gen-
erate �∗1 such that it is block diagonal with each block size of
p/2 × p/2. The �rst block is generated using U = E(A1, p/2),
and the second block is the identity matrix, where A1 is an
adjacency matrix from an Erdős-Rényi, with p/2 connections.
Using �∗1 we generate �∗2 such that it is block diagonal with
block size p/2 × p/2. We de�ne the upper block of �∗2 as
R (A3, L, (−.01, .01)), and the lower block to be the identity
where A3 is the adjacency matrix A1 with four edges removed.
Next, �∗3 is generated in a similar way to �∗1 and �∗4 is
generated from �∗3 in the same fashion �∗2 is generated from
�∗1. We generate �∗5 = �∗6 such that they are equivalent to
the precision matrix from class 1 described in Section 4.3.

The results in panels (e) and (f) Figure 1 are average log sum
of squared Frobenius norm error and the average true positive
rate as the number of nonzero elements in the precisionmatrices
varying with p = 100 and n = 200. The results for the case
of p = 20 and p = 50 can be found in the Supplementary
Material. Results exhibit a similar pattern to the results dis-
played in Sections 4.2 and 4.3. For certain values of the tuning
parameters, PCEN-3 is competitive in estimation and graph
recovery with the other methods, speci�cally LASICH-OR. As
p increases, we see the estimation and graph recovery of PCEN
decreases relative to LASICH-OR, but is still competitive with
other competitors. Again, this can be attributed to LASICH-OR
having oracle information and its use of the group penalty which
exploits similar sparsity patterns across all precision matrices.
As in Sections 4.2 and 4.3, PCEN-3 performs the best with
respect to Frobenius norm error and graph recovery when it
is able to identify the true relationships between the precision
matrices for all p. A full analysis of cluster recovery can be found
in the Supplementary Material.

5. QDA Simulations Studies

Since CRF produces nonsparse estimates of multiple precision
matrices, it is not appropriate for Gaussian graphical modeling,
but is a natural estimator for QDA. Hence, in this section, we
study CRF as a method for �tting the QDAmodel. We generate
data from C = 4 classes, where predictors for the cth class are
generated from Np(μ∗c,�∗c) with p ∈ {20, 50}. The training
data consists of 25 independent realizations from each class.
Tuning parameters are selected using 5-fold cross-validation
maximizing the validation likelihood.Wemeasure classi�cation
accuracy to compare methods. To quantify classi�cation accu-
racy, we generate an independent testing set consisting of 500
observations from each of the C = 4 classes.

In addition to CRF, RF, and RDA (Friedman 1989), we
include two methods which have oracle knowledge of the
population parameters: Oracle, which uses �∗c and μ∗c in the
classi�cation rule; and TC (for “true covariance”), which uses
�∗c and the samplemeans in the classi�cation rule. These oracle
methods provide a benchmark for classi�cation accuracy in
these data. We omit the sparse methods discussed in Section 4
as we study a class of dense precision matrices in this particular
simulation study. For further discussion on the di�erences
between L1 and ridge-penalized precision matrix estimators in
QDA, we refer the reader to Price, Geyer, and Rothman (2015)
and references therein.

We consider a situation where each of the two clusters has
a distinct structure and precision matrices in both clusters are
dense. For 100 independent replications, we generate Z3 ∈
R
100×p where each row is an independent realization of Np(0, I)

and let V3 be the right singular vectors of Z3. We then let
�∗1 = VT

3 H3V3 and �∗2 = VT
3 H4V3 where H3 and H4 are

diagonal matrices with the jth element equal to D(1000, 100, j)
and D(999, 99, j), respectively. De�ne the (j, k)th element of
(�∗3)j,k = 1(j = k) + 0.45 · 1(|j − k| = 1) and (�∗4)j,k =
1(j = k) + ρ · 1(|j − k| = 1) where 1(·) is the indicator
function. We consider (p, ρ) ∈ {20, 50} × {0.40, 0.47, 0.50}.
Finally, we set all elements of μ∗1 = 20 log(p)/p, μ∗2 =
−10 log(p)/p, μ∗3 = 10 log(p)/p, and μ∗4 = −20 log(p)/p.
A similar data generating model was used in Price, Geyer, and
Rothman (2015). We expect CRF to perform well in this setting
as it should be able to identify the distinct clusters, while RDA
and RF implicitly assume similar structures across all precision
matrices.

Table 1 presents a comparison of the classi�cation error rate,
and demonstrates that CRF out performs RDA and RF for every
(p, ρ) combination. Interestingly, in the case that p = 20, CRF

Table 1. Results of simulation described in Section 5 comparing classi�cation error rates and standard errors of CRF, RDA, RF and the two oracle methods for (p, ǫ) ∈
{20, 50} × {1.0}.

p = 20 p = 50

RF CRF RDA Oracle TC RF CRF RDA Oracle TC

ρ = 0.40
0.237 0.106 0.237 0.015 0.108 0.238 0.130 0.238 0.005 0.075
(0.001) (0.003) (0.001) (0.002) (0.013) (0.001) (0.002) (0.001) (0.000) (0.010)

ρ = 0.47
0.238 0.113 0.237 0.015 0.090 0.238 0.130 0.238 0.005 0.075
(0.002) (0.004) (0.001) (0.002) (0.012) (0.001) (0.002) (0.001) (0.002) (0.010)

ρ = 0.50
0.238 0.111 0.236 0.103 0.108 0.238 0.130 0.238 0.005 0.075
(0.002) (0.004) (0.001) (0.002) (0.012) (0.001) (0.002) (0.001) (0.002) (0.010)
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performs nearly as well as TC, which uses the true covariance
matrices. Moreover, when p = 20 CRF is able to recover the
true grouping of precisions matrices in 28% of replications for
ρ = 0.40, 54% of replications for ρ = 0.47, and 62% of
replications for ρ = 0.50 respectively. In all cases where the
correct grouping was not identi�ed, Q = 3 was selected, and
the precision matrices for class 1 and 2 were placed in the same
group. In the case of p = 50, CRF is able to recover the true
grouping of precision matrices in all replications for each (ρ, p)
combination.

In the Supplementary Material, we provide additional simu-
lation study settings and results under clustered, dense, and ill-
conditioned precision matrices.

6. Data Examples

6.1. Gene Expression from Pulmonary Hypertension

Patients

Cheadle et al. (2012) collected gene expression pro�les of 30
idiopathic pulmonary arterial hypertension patients (IPAH),
19 systemic sclerosis patients without pulmonary hypertension
(SS w/o PH), 42 scleroderma-associated pulmonary arterial
hypertension patients (SPAH), 8 systemic sclerosis patients with
interstitial lung disease and pulmonary hypertension, and 41
healthy individuals, for a total of 140 individuals from �ve
distinct groups. The collected gene expression pro�les consist
of data from 49,576 probes. We scaled each probe to have
a median of 256 and then performed a log2 transformation.
Next, we scaled and centered the log transformed data to have
mean zero and a standard deviation of one. Our analysis was
focused on 132 individuals (C = 4), excluding the 8 systemic
sclerosis patients with interstitial lung disease and pulmonary
hypertension, and 132 gene expression probes. The 132 probes

we used were selected by running a one-factor ANOVA for each
probe, using disease type as the factor, and then selecting the 132
probes with the smallest p-values.

A�er this processing, we �t the PCEN model to the normal-
ized data. The PCEN shrinkage tuning parameters were selected
to promote sparsity in the graph and similarity between the
graphs based on AIC and interpretability, similar to the proce-
dure of Danaher, Wang, andWitten (2014). We investigated the
use ofQ = 2 andQ = 3 clusters for these data. In both settings,
PCENwas able to di�erentiate between the controls and patients
with hypertension. In the case of two clusters, IPAH, SPAH and
SS w/o PH are placed into a cluster while the control group is
isolated in the second cluster. In the case of three clusters IPAH
and SS w/o PH are placed into a cluster, while SPAH and the
control group are both their own cluster of size one.

Figure 2 displays the corresponding network structures
found using PCEN with Q = 3, representing the graph
with the lowest AIC. A similar plot for Q = 2 is displayed
in the Supplementary Material. In Figure 2, the blue edges
represent probes that are related andwere only found in patients
diagnosed with IPAH, while light blue edges correspond to
related probes found only in patients diagnosed with SPAH.
Red edges denote relationships between probes that could be
found in patients who were diagnosed with SPAH and those
patients who were diagnosed with IPAH. Purple edges denote
relationships between probes that could be found in patients
who were diagnosed with SPAH and those patients who were
diagnosed with IPAH and those who were diagnosed with SS
w/o PH. Table 2 presents the number of edges that appear in
only IPAH and SPAH, and then the edges that are present in
both graphs.

At �rst inspection, the results between the cases of Q = 3,
shown in Figure 2, and Q = 2, presented in the Supplementary
Material, appear similar, but there are very notable di�erences.

Figure 2. Resulting network comparison from PCEN applied to the pulmonary hypertension patients data using Q = 3 clusters.
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Table 2. A comparison of network di�erences produced by PCEN using 2 and 3
clusters for the pulmonary hypertension patients data.

IPAH SPAH IPAH and SPAH All Groups Total

PCEN 2 Clusters 594 343 412 688 2037
PCEN 3 Clusters 867 102 290 942 2201

NOTE: The values in the table are the number of edges that are present only in IPAH,
SPAH, or are present in both.

Table 3. Classi�cation results from the Libras Data example.

Method CRF RDA Ridge Ridge Fusion

Error rate 13/60 20/60 51/60 49/60

When Q = 3 and SPAH belongs to its own cluster, we see
that the number of shared edges between all groups is larger
when compared to the same metric using Q = 2. The other
di�erences, which are quanti�ed in Table 2, can be attributed to
the changing cluster structure and may have important biologi-
cal implications. In the Supplementary Material, we provide the
graphs associated with the graphical lasso and cooperative lasso,
where tuning parameters were chosen using AIC. This shows
that cooperative lasso produces a much more sparse graph than
the othermethods. The graphical lasso produces a similar graph
structure to PCEN, but with more edges in the graph and PCEN
is able to detect di�erent similarities in the graph.

6.2. Libras Data Example

To further demonstrate the useful of our proposed method, we
apply CRF to a classi�cation problem based on the Libras data
set from the UCI Machine Learning repository (Dheeru and
Taniskidou 2017). These data contain 15 classes, each of which
corresponds to a videoed hand movement of Brazilian sign
language. Each handmovement was recorded at 45 distinct time
frames and the coordinates on an x−y plane were documented,
which results in 90 predictor variables for the hand movement.
Each of the 15 classes has 24 observations for a total of 360
observations. Training was done using 20 randomly selected
observations from each class, and testing was done on the four
remaining observations. Our test and training sets are available
in the supplementarymaterial.We compare fourmethods: CRF,
RF, ridge penalized normal likelihood precision matrix estima-
tion, and RDA. The ridge penalized normal likelihood precision
matrix estimator is equivalent to CRF with λ2 = 0. Tuning
parameters were selected by �ve-fold cross-validationmaximiz-
ing a validation likelihood for all likelihood based methods. In
the case of CRF, the number of clusters was chosen from the
set of integers ranging from 2 to 10. For the non-likelihood
method, RDA, we selected tuning parameters by �ve-fold cross-
validation minimizing the misclassi�cation rate.

Table 3 contains the classi�cation error rate for each of the
�ve methods on the testing data. The CRFmethod outperforms
the other methods in terms of classi�cation rate and detects two
clusters, with one cluster containing 14 of the classes and the
other containing the horizontal zig–zag class. Further investiga-
tion shows that for CRF 9 out of 15 of the classes had a CER
of 0. For comparison, results presented by Li and Liu (2018)
show that using modern machine learning methods with a

training sample size of 240 observations produced CER that
varied between 0.20 and 0.53, with the best method on aver-
age being 0.31. This work also showed that for these data, as
the number of training samples increased the average CER
decreased. Our results are consistent with these �ndings.
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