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Topological properties of multilayer magnon insulators
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Two-dimensional magnetic insulators can be promising hosts for topological magnons. In this study, we
show that ABC-stacked honeycomb lattice multilayers with alternating Dzyaloshinskii-Moriya interaction (DMI)
reveal a rich topological magnon phase diagram. Based on our band-structure and Berry curvature calculations,
we demonstrate jumps in the thermal Hall behavior that corroborate with topological phase transitions triggered
by adjusting the DMI and interlayer coupling. We connect the phase diagram of generic multilayers to a bilayer
and a trilayer system. We find an even-odd effect among the multilayers where the even layers show no jump in
thermal Hall conductivity, but the odd layers do. We also observe the presence of topological proximity effect
in our trilayer. Our results offer new schemes to manipulate Chern numbers and their measurable effects in
topological magnonic systems.
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I. INTRODUCTION

The discovery of two-dimensional magnetic crystals in
the past few years [1–6] has raised the prospect of realiz-
ing topologically protected magnons (spin-wave excitations)
[7,8]. Since topological materials exhibit robustness against
disorder [9–11], compared with their electronic counterpart,
the existence of topologically protected magnonic edge states
can potentially lead to the realization of much lower power
consumption spintronic devices [12–21] and applications in
quantum information science [22]. Recently, it has been
theoretically predicted [20,23,24] and experimentally demon-
strated [21,25] that it is possible to harbor topological magnon
edge states in realistic geometrically frustrated magnets. At
present various materials have the potential to host topological
magnonic states [20,21,24,26–28], including the honeycomb
magnetic halide CrI3 [26], and spin-1/2 Heisenberg antiferro-
magnets Na3Cu2SbO6 [27] and β-Cu2V2O7 [28]. In addition
to the honeycomb lattice, topological magnon excitations have
been proposed to exist in the kagome magnet system Cu
(1-3, benzenedicarboxylate) (1-3, bdc) [29] and the square
lattice geometry [30]. Topological phase transitions induced
by the magnetic proximity effect in CrI3/SnI3/CrI3 trilayer
have been proposed [31]. The Einstein-de Haas effect of topo-
logical magnons has also been predicted [32].

A topological magnon insulator (TMI) is the bosonic ana-
log of the quantum spin Hall state [33–35]. This phase is
fundamentally different from topological magnetic insulators
wherein topological electronic insulators are doped with mag-
netic 3d atoms [36]. The topological origins of the bosonic
TMI phase can be traced to spin-orbit coupling interaction
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which manifests itself in the form of Dzyaloshinskii-Moriya
interaction (DMI) [25] and/or pseudodipolar interaction
[37–40]. Typically, the later interaction occurs in compounds
with heavy ions, a class of material which is beyond the scope
of our current investigation [8].

The experimental realization of monolayer, bilayer, and
few-layer CrI3 with tunable magnetic properties [1,41–44]
provides materials science motivation to pursue a study of
few-layer coupled bosonic topological magnon systems. It has
been shown that protected magnon states in the AB-stacked
bilayer honeycomb propagate in the same (opposite) direction
for ferromagnetically (antiferromagnetically) coupled layers
[45]. Furthermore, Andreas et al. [12] demonstrated through
numerical calculations that the edge currents are robust again
weak disorder compared with the bulk current in normal
metal/TMI/normal metal heterostructures.

We investigate the thermal transport properties of ferro-
magnetically coupled TMI multilayers with different DMI
strength in adjacent layers, as shown in Fig. 1. Such topo-
logically distinct layers lead to the possibility of observing
several TMI phases. The presence of the DMI in a magnetic
system without inversion center will create band gaps in the
magnon dispersion relation [20] and impart nontrivial topo-
logical nature to the system. The topological texture of these
bands gives rise to a nonvanishing Berry curvature. The phys-
ical consequence is a nonzero topological invariant (Chern
number and winding number) that directly influences thermal
Hall conductivity [20,46]. The emergence of TMI phases is
characterized by jumps in the thermal Hall conductance that
are analogous to the electrical Hall conductance jumps in
quantum Hall systems.

Using spin-wave theory we compute the topological band
structure and its edge states, Chern number, and transverse
thermal hall conductance κxy behavior. We show that the mul-
tilayer supports a rich phase diagram which can be explored
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FIG. 1. Trilayer configuration, band structure, and edge states. (a) Lattice crystal structure with ferromagnetic spin ordering. Spin sites
A (B) are denoted with red (blue) spheres. J denotes intralayer nearest-neighbor ferromagnetic Heisenberg exchange interaction. Dτ denotes
the layer specific next-nearest-neighbor DMI, where τ ∈ (1, 2, 3) indexes the layer. Although we show distinct DMIs for each layer, for
our calculations we take D1 = D3 (the reasoning is explained in the main text). Jz denotes the interlayer Heisenberg exchange interaction.
(b)–(c) Bulk bands (solid dashed lines) with edge states (thin blue lines) for the trilayer plotted along ky = 0. The parameters are J = 2Jz =
4D1 = 4D3, D2/D1 = −0.426, and D2/D1 = 0.34, respectively.

by tuning the strength of the intermediate layer’s DMI (D2

in Fig. 1) relative to the top and the bottom layers or by
adjusting the interlayer interaction strength Jz. We investi-
gate and discuss the variation in thermal Hall conductance
with changing interlayer DMI strength ratio D2/D1 and for
different interlayer coupling relative to the DMI interaction
Jz/D1. Furthermore, we show that the physics of a few-layered
topological multilayer has its own characteristic transport
properties. The presence of an uncompensated topological
layer in odd layered configuration leads to nontrivial behavior
in the thermal Hall conductance behavior. As a result, we
show that there is an odd-even layering effect which manifests
itself as a jump or not in the transverse thermal Hall conduc-
tance behavior. Additionally, the trilayer exhibits a topological
proximity effect which can be induced by external pressure.
Overall, we put forward the design and characterization of a fi-
nite number of layered topological magnon insulator systems
(odd or even) with several interesting effects directly related
the topology of the system.

This article is organized as follows: In Sec. II we present
the model and the method. In Sec. III we perform the topolog-
ical characterization of our multilayer. In Sec. IV we present
our thermal Hall response results of the multilayer system.
Finally, in Sec. V we present our conclusions.

II. MODEL AND METHOD

We analyze an ABC-stacked multilayer honeycomb lattice,
which is consistent with the low temperature (rhombohedral)
experimental structure of CrI3 [6,47]. To connect with con-
ventional experimental sandwich structures, the DMI strength
alternates between two values (for example, D1 = D3 and D2

in Fig. 1). The individual layers are chosen to be ferromagnet-
ically aligned, which is consistent with bulk and odd layered
CrI3 [1,42]. While experimental evidence suggests that even-
layered CrI3 shows a net antiferromagnetic configuration in

the ground state [42], it has also been demonstrated that
transition to the ferromagnetic state can be induced by using
external pressure [43,44]. Later, we show that the trilayer
forms the basic building block for all odd-layered configura-
tions (five, seven, etc.) while the bilayer is the basic building
block of all even-layered structures (four, six, etc.).

We model our two-dimensional multilayer ferromagnetic
(FM) topological insulator using the Heisenberg exchange
term HFM and the DMI term HDMI. To model our few-layer
system we add an interlayer interaction Hint to stack the
monolayers, as seen in Fig. 1(a). The generic multilayer
Hamiltonian can be written as

H = HFM + HDMI + Hint, (1)

where the individual terms are given by the following expres-
sions:

HFM = −
∑
〈α,β〉

L∑
τ=1

JτSτ,α · Sτ,β, (2a)

HDMI =
∑

〈〈α,β〉〉

L∑
τ=1

Dτ ẑ · (Sτ,α × Sτ,β ), (2b)

Hint = −
∑
α,β

L−1∑
τ=1

Jτ,τ+1
α,β Sτ+1,α · Sτ,β . (2c)

In the above equations, τ indexes the layer, α and β index
the sublattice degrees of freedom, Jτ is the intralayer fer-
romagnetic exchange, Sτ,α is the site-specific spin moment,
Dτ is the next-nearest-neighbor DMI, and Jτ,τ+1

α,β is the fer-
romagnetic interlayer exchange. In our ABC-stacked trilayer
honeycomb lattice {α, β} ∈ {A,B}, τ ∈ {1, 2, 3}, Jτ = Jτ ′ ≡
J , D1 = D3 �= D2, and Jτ,τ+1

B,A = Jz with all other Jτ,τ+1
α,β = 0.

The interlayer interaction depends on the stacking arrange-
ment. Our choice of magnetic interaction (exchange and DMI)
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parameters is guided either by the CrI3 [26] system or is based
on the choice of physically reasonable model parameters.
While magnetic anisotropy plays an important role in the mag-
netic ordering of two-dimensional (2D) magnets such as CrI3,
its contribution to the magnonic band structure serves to raise
or lower the energy of each band by an equal amount. No new
band crossings are observable as a result of this interaction, so
it is omitted to simplify the model.

Next, we apply linear spin-wave theory transforma-
tion to Eqs. (2) and Fourier transform the Hamiltonian.
Thus, the momentum space Hamiltonian can be writ-
ten as H = ∑

k �
†
kH(k)�k, with the basis vector �

†
k =

(b†
A,1,k, b

†
B,1,k, . . . , b

†
A,L,k, b

†
B,L,k ). Specifically, for our trilayer

configuration the Hamiltonian takes the form

H(k) =
⎛
⎝A1(k) B(k) 0
B†(k) A2(k) B(k)

0 B†(k) A3(k)

⎞
⎠, (3)

where Ai(k) and B(k) are 2 × 2 matrices that describe the
intralayer and interlayer interactions, respectively. Note that,
for an L-layered system the Hamiltonian matrix would be
2L × 2L in dimensions. The intralayer interaction Ai(k) is
given by

Aτ (k) =
(

�τ
A + DτSm(k) −JS f (k)
−JS f ∗(k) �τ

B − DτSm(k)

)
, (4)

where �τ
α = 3JS + θτ

α JzS, implying θ1
A = θ3

B = 0 and θ1
B =

θ2
A = 1 = θ2

B = 1 = θ3
A = 1. The explicit interlayer coupling

expression is given by

B(k) =
(−JAAS f ∗(k) −JABS f (k)

−JBAS −JBBS f ∗(k)

)
=

(
0 0

−JzS 0

)
, (5)

where f (k) = ∑
i e

−ik·	δi is the nearest-neighbor structure
factor. The lattice position vectors 	δi are given by 	δi ∈
{(0,−1), (

√
3/2, 1/2), (−√

3/2, 1/2)}. The antisymmetric
next-nearest-neighbor structure factor corresponding to the
DMI term is given by m(k) = ∑

i 2 sin(k · ρi ) where 	ρi ∈
{(

√
3, 0), (−√

3/2, 3/2), (−√
3/2,−3/2)}.

The trilayer bulk and edge configuration band structure is
shown in Figs. 1(b) and 1(c). The TMI band structure with
edge states has differences from its electronic counterpart.
Inspecting Figs. 1(b) and 1(c) we observe some interesting
differences between our bosonic TMI and an electronic or
magnetic TI. While the gap and edge states are approximately
around zero energy for fermionic systems, in the bosonic case
the gap is located at a higher energy. Furthermore, from the
nature of the edge states we get a hint that the two panels
belong to different topological phases. In fact, under appro-
priate external tuning the trilayer can undergo a topological
phase transition (TPT) from Fig. 1(b) to Fig. 1(c). To track
these TPTs we employed a methodical approach of searching
for band-gap closings. We computed gap closings specifically
at the high symmetry ±K = (±4π/3

√
3, 0) in the Brillouin

zone. At this momentum point, the nearest-neighbor structure
factor f (k) becomes zero. This eliminates the contribution
of our strongest interaction J . Thus, the energy scale of the
problem is governed by D1, leaving D2 and Jz as the tuning
parameters by which we can explore the various topological
phases of our system.

We define a multilayer tuning ratio δ = D2/D1. This will
serve as a control knob to study TPTs. As we show later,
the δ = 1 configuration is of particular interest because of
its feasibility to be naturally realized in an experimental
setup. The Chern numbers are rearranged at a TPT. Since
the interband edge states are a consequence of these Chern
numbers, a change in them implies that the number of edge
states will alter across a transition. This is clearly visible in
Figs. 1(b) and 1(c). For example, the number of interband
edge states in Fig. 1(b) is one, while in Fig. 1(c) the number is
three. The main physical property that emerges from the TMI
phase is the existence of these chiral magnonic edge states
which contribute to the nonvanishing thermal Hall conductiv-
ity [25,45,46,48–50]. In the next section, we will study the
nature of these TPTs in more detail.

III. TOPOLOGICAL CHARACTERIZATION

The trilayer topological phase diagram is shown in Fig. 2
. For convenience, the phases are color coded so that we
can compare the two Figs. 2(a) and 2(b). The result depends
on two interaction ratios: one is δ and the other Jz/D1. The
feasibility of tuning Jz using pressure has already been exper-
imentally demonstrated in a hexagonal lattice system [43,44].
Based on our studies, we show that there can be further
motivation to tune the DMI interactions, too. For suitable
parameter ranges we observe a quantum Hall behavior in
our proposed bosonic system. To track the TPTs we compute
the energy eigenvalues at the ±K high-symmetry points. The
analytical expression for the energy eigenvalues calculated at
+K yields

E (3)
η =

⎧⎪⎨
⎪⎩

3J
2 + (−1)η+1 3

√
3

2 D1 η = 1, 2
3J
2 + Jz

2 + (−1)η+1
 + 3
√

3
4 D1(1 − δ) η = 3, 4

3J
2 + Jz

2 + (−1)η+1
 − 3
√

3
4 D1(1 − δ) η = 5, 6,

(6)

where E (3)
η are the trilayer eigenvalues and we have defined

2
 = [J2
z + 27D2

1(1 + δ)2]1/2. Eigenvalues for the system
solved at −K result in the same solutions as above, except
with a sign change which relabels η = 3, 4 to η = 5, 6 and
vice versa. Just for comparison purposes, we list the energy
solutions for the bilayer problem in Appendix A, see Table II.
Next, the TPTs are obtained from the real solutions of E (3)

i =
E (3)

j with i �= j using the above expressions. The topological
phase boundaries can be defined as

δn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

6
√

3+3 Jz
D1

6
√

3+ Jz
D1

, n = 5 where δ5 ∈ (1, 3)

1, n = 4
6
√

3−3 Jz
D1

6
√

3− Jz
D1

, n = 3 where δ3 /∈ (1, 3)

−J2
z

27D2
1
, n = 2 where δ2 ∈ (−∞, 0)

−1, n = 1.

(7)

The number n signifies the boundaries of the different phases.
In the limit of zero interlayer interaction we can set Jz = 0. In
this case there are three phase boundaries separated by δn =
−1, 0, and 1.
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FIG. 2. Topological phase diagram of a trilayer. (a) Each phase is separated by gap closings corresponding to the δn represented by the
solid black lines. In this parameter range there are six distinct phases shown. Dashed lines represent directions in which the thermal Hall effect
is analyzed. (b) Energy eigenvalues of the system at ±K as a function of D2/D1. The ratio Jz/D1 = 2, corresponds to the vertical dashed line
in panel (a). The Chern number for each band associated with the eigenvalue is indicated in the legend.

In Fig. 2 we plot the six different phases based on the above
solutions. The phase diagram depends on the ratio of D2/D1

(which can be positive or negative) versus Jz/D1 variation.
When δ is positive the DM interactions are aligned in the
same direction. In this regime of the tuning parameters we find
four phases (marked as 3–6 in the phase diagram). Whereas,
when δ is negative, there are three phases (marked as 1–3 in
the phase diagram). Furthermore, around the δ = 0 line (FM
middle layer) an interesting behavior happens. This phase
boundary between two and three varies as J2

z /D2
1. Hence,

when Jz < D1 (weak) the middle layer retains its nontopo-
logical behavior because the phase boundary mildly deviates
from the δ = 0 line. However, for Jz > D1 (strong) D2 de-
viates from zero to acquire a nonzero value. Thus, the FM
layer starts to obtain a topological nature. We interpret this
to be a signature of topological proximity effect displayed
by the multilayer which can be experimentally realized by
applying pressure [43,44]. For positive δ and for high Jz > D1

we find that there are multiple phases into which the trilayer
can transition. These phases can be classified based on Chern
numbers, as we describe next and which are calculated from
the Berry curvature in the following ways: For the Berry
curvature calculation, we employ the following equation:

�xy
n (k) = −2

∑
m �=n

Im

[ 〈n| ∂H(k)
∂kx

|m〉 〈m| ∂H(k)
∂ky

|n〉
[En(k) − Em(k)]2

]
, (8)

obtained from standard perturbation theory approach [10].
The Berry curvature calculation will be used later to compute
the thermal Hall conductance. The Chern number is then

calculated as

Cn = 1

2π

∫
BZ

�xy
n (k)dkxdky. (9)

In Fig. 2(b) we show the variation of the energy eigenval-
ues for δ at Jz/D1 = 2 (shown as a dashed vertical line). This
ratio choice is motivated by the CrI3 experimental parame-
ters reported in Ref. [26], where Jz/D1 ≈ 2. We notice that
the energy eigenvalues interchange indicating the presence of
potential TPTs verified by the reordering of Chern numbers.
The values for the Chern numbers given in Table I can be
generated by ordering the Chern numbers of each eigenvalue
from the lowest to highest energy within each shaded phase.
In our multilayer system there are contributions from several
underlying bulk bands which can support topologically pro-
tected edge states. The Chern numbers determine the character
of these edge states based on the winding number, defined as
the partial sum νi = ∑i

1Ci. The winding number determines

TABLE I. Chern numbers, the net number of edge states, and the
number of edge states in the large gap for each phase labeled as they
appear in Fig. 2(b).

Phase C (Chern numbers) ν3 ν̄ = ∑
n νn

1 [−1,+3, −1, −3, +1, +1] 1 −1
2 [+3,−1, −1, +1, −3, +1] 1 7
3 [+3,−1, +1, −1, −3, +1] 3 9
4 [+3,−1, +1, −3, −1, +1] 3 7
5 [+3,+1, −1, −3, +1, −1] 3 11
6 [+1,+3, −1, −3, +1, −1] 3 9
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FIG. 3. Phase diagram of the even and odd layered heterostruc-
tures. Solid (dashed) lines in the even layered phase diagram
correspond to topological phase transitions associated with gap clos-
ings at +K (−K ) in the Brillouin zone.

the number and chirality of the edge states which lie between
the ith and (i + 1)st bulk band. These states (as mentioned
earlier) lie above the zero of energy.

If we adopt a fermionic classification scheme for the tri-
layer, then, based on the winding number calculation ν3 =
C1 +C2 +C3, we should have only two phases. The first two
phases will have a winding number in the large gap between
the lower and upper grouping of bands of ν3 = 1. The last
four will have ν3 = 3 as documented in Table I. The band
crossing just below δ = 0 also accounts for the winding num-
ber ν3 change demonstrated by the number of topological
edge states seen in the large gap between Figs. 1(b) and 1(c).
However, we find that there are six distinct topological phases
in Fig. 2(a) with five transitions. So, in order to correctly
identify all distinct topological bosonic phases we need to
track the unique ordering of Chern numbers on either side
of the topological phase boundary. We use this classification
scheme to distinguish the different phases.

In Fig. 3 we show the generic phase diagram for any even-
or odd-layered structure. These phase diagram plots serve as
a guide to how we can explore the parameter space to study
the thermal Hall behavior. We note that band crossings are a
necessary, but not a sufficient condition for TPTs. Thus, to
verify the existence of TPTs we explicitly compute the Chern
numbers for each band in the gapped state for the required
parameter set. If the Chern numbers rearranged themselves
or changed values when the system became gapless under a
parameter change, then we identified this band crossing as a
TPT. While for the bi- and the trilayer each band crossing does
in fact amount to a TPT, higher layer numbers do not always
show this behavior. Therefore, carefully verifying that each
crossing corresponds to a TPT is important.

The edge states are the main source of novel phenomena
in our multilayered system. Thus, determining the total num-
ber of edge states present within each phase is important to
accurately characterize the physical response of each TPT.
We do this by taking the sum of the winding numbers νn,
which are already partial sums of the Chern numbers. For our
multilayers this can be expressed as

ν̄ =
2L∑
n=1

νn =
2L∑
n=1

(2L − n)Cn, (10)

which are reported in the fourth column of Table I for the
trilayer.

To illustrate this concept, we provide an example of the
determination of ν̄ for phase 1 of the trilayer. First, to de-
termine the total number and chirality of the edge states in
this phase, we calculate the winding numbers using the Chern
numbers from Table I, given asC1 = −1,C2 = +3,C3 = −1,
C4 = −3, C5 = +1, C6 = +1. Therefore, the winding num-
bers are

ν1 = C1 = −1 = −1,

ν2 = C1 +C2 = ν1 + 3 = +2,

ν3 = C1 +C2 +C3 = ν2 − 1 = +1,

ν4 = C1 +C2 +C3 +C4 = ν3 − 3 = −2,

ν5 = C1 +C2 +C3 +C4 +C5 = ν4 + 1 = −1,

ν6 = 0.

(11)

These numbers represent the number and chirality of the edge
states that lie between each consecutive bulk band, with the
knowledge that, for all systems, the final winding number is
always zero. Therefore, by summing these numbers together,
we get an idea about the net contribution of all the edge
states present in that particular topological phase. For phase
1, this summation gives ν̄ = −1 + 2 + 1 − 2 − 1 = −1, in
agreement with the value reported in the table. This process is
repeated for each phase as the Chern numbers are rearranged.
A comparison of each phase’s net number of edge states has
been made to understand the discontinuous behavior which
may appear as a result of the TPT.

IV. THERMAL HALL EFFECT

Thermal Hall conductance is a useful response function to
accurately characterize the topological nature of 2D magnonic
materials [23,46,49] and is given by

κxy = − k2
BT

(2π )2h̄

∑
n

∫
BZ

c2(ρ)�xy
n (k)dkxdky, (12)

with c2(ρ) = (1 + ρ)(ln 1+ρ

ρ
)2 − (ln ρ)2 − 2Li2(−ρ), where

kB is the Boltzmann constant, h̄ is the Planck’s constant, T
is the temperature, ρ is the Bose-Einstein distribution, and
Li2(ρ) is the polylogarithm function. We notice that the mag-
nitude of the conductance is governed by both the weight
function c2(ρ), where ρ is the Bose-Einstein distribution, and
the Berry curvature as calculated in Eq. (8). While the Berry
curvature is primarily a function of the variables Jz/D1 and
D2/D1, c2(ρ) is a function of temperature T . Figure 2(a)
shows the parameter values of Jz/D1 and D2/D1 over which
we explore the topological properties of the multilayer. Thus,
we can ask the question at what value of the temperature
should the conductance be evaluated such that the nontrivial
(if any) nature of the TPTs may be accurately captured? Be-
cause each band in our energy spectrum has a nonvanishing
Chern number, and therefore a nontrivial Berry curvature, for
every phase considered in our parameter space we would like
to ensure that c2(ρ) captures their contribution. This can be
achieved by taking T as high as possible below the thermal
disordering temperature of the multilayer. That is, we will
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FIG. 4. Thermal Hall conductance variation with Dzyaloshinskii-Moriya interaction and interlayer coupling. (a) κ
xy
lim as a function of Jz/D1

with D2/D1 = −0.1481, such that the transition occurs between phases 2 and 3 at Jz/D1 = 2. (b) D2/D1 = 0.5322 such that the transition
occurs between phases 3 and 4. (c) D2/D1 = 1.3227 such that the transition occurs between phases 6 and 5. (d) κ

xy
lim as a function of D2/D1

for the trilayer (solid red) and bilayer (dashed red). Both graphs are divided by the number of layers to normalize their contributions. The
parameters are S = 1

2 and J = 2Jz = 4D1. Vertical dashed lines indicate the TPT points δn that separate each phase. The phases 1–6 as shown
in Fig. 2 are ordered left to right.

take the high-temperature limit as a figure of merit, with the
caveat that within this approximation spin-wave modes have
not become completely thermally disordered to transition to a
paramagnetic region. The high enough temperature ensures
that every band has an equal occupancy as per the Bose-
Einstein distribution. Therefore, in order to characterize the
thermal Hall conductance response of our system we will use
the high-temperature limit of Eq. (12) given by (see derivation
in Appendix B) [46]

κ
xy
lim = kB

(2π )2h̄

∑
n

∫
BZ

En(k)�xy
n (k)dkxdky. (13)

In practice, the high-temperature limit is bounded by the
magnetic ordering temperature of the system. For the case of
2D CrI3, the Curie temperature is 45 K [1]. For this work we
assume the magnetic ordering is mainly determined by J and
the tuning of Jz and D does little to effect this.

In Fig. 4 we show how the conductance varies as the system
evolves through its topological phases. These TPTs can be
explored by either tuning Jz/D1 or D2/D1. First, we plot phase
changes as a function of Jz/D1 in Figs. 4(a)–4(c). Each TPT
is associated with a jump in the conductance, reminiscent
of the quantum anomalous Hall effect present in electronic
systems [51]. The relative increase or decrease in magnitude
of the conductance due to these jumps can be explained by
considering the number of edge states available on either side
of the transition. Generally, more edge states yield a higher
magnitude of the conductance, while fewer edge states result
in a lower contribution to the magnitude. This is particularly
observable in Fig. 4(b), where the conductance shows a sharp
decrease in magnitude. This can be explained by the differ-
ence in ν̄ between phases three and four, as shown in Table I.
On the left side of the transition, phase three hosts nine differ-
ent edge states, while on the right side of the transition phase
four hosts seven, thus a difference of two. This decrease in
available edge states coincides with the decrease in magnitude
of the conductance, because fewer edge states are available
to transport thermal energy. Furthermore, intuitively, we can
conclude that the conductance is sensitive to both the Berry
curvature, from which ν̄ is derived by way of the Chern num-
bers, as well as the energy spectrum simultaneously. Thus, the

exact value of the jump will depend on the rearrangement of
the energy spectrum of the bands across the phase transition
in addition to the change in the Chern numbers.

In Fig. 4(d) we plot the conductance as the system passes
through a multitude of TPTs by varying D2/D1 for the bilayer
and the trilayer. The general trend is that the magnitude of
the conductance increases as D2 increases. For both layers the
jumps can be characterized by ν̄, as done before. The relative
increase or decrease in magnitude of the conductance at each
TPT coincides directly with the relative increase or decrease
of the number of edge states within each phase. To compare
the results of the bilayer to the trilayer, we divided the conduc-
tance of each by the number of layers present in the system to
determine the per-layer contribution to the conductance. The
number of jumps for the bilayer is different compared with
the trilayer. We can attribute this fact to the differences in the
topological phase diagram of the two systems. As shown in
Fig. 3, the bilayer displays seven TPTs while the trilayer has
only five. This is a consequence of the symmetries imposed
upon the system by the choice of the stacking arrangement,
explained below. In particular, we observe that the bilayer
shows no TPT at the isotropic δ = 1 point, but the trilayer
does. By exploring this particular value of δ for different
layering numbers L, we were able to determine the general
nature of the TPT in even- and odd-layered structures with
regards to the thermal conductance.

In Fig. 5 we show the conductance response at δ = 1
for a set of few-layer systems, ranging from the bi- to the
heptalayer. It is clear that the even-numbered layers show no
jump in conductance, while the odd-numbered layers do. To
highlight the sharpness of the jump across the TPT, for the
odd layers, we chose a denser set of points near δ = 1. From
Figs. 5(b), 5(d), and 5(f) it is clear that the jump gets sharper
as L increases. Thus, within the limit of a few-odd layered
systems, this effect is real and will survive. For even layers
beyond L = 2, band-gap closings do occur for the same values
of δ as the odd layers. However, these gap closings do not
correspond to TPTs.

The generalization of these results from the bi- and trilayer
to any layer can be shown by inspecting the analytically
solved eigenvalues at ±K . For L layers, the Hamiltonian
at ±K can be reduced to L + 1 independent subspaces
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FIG. 5. Thermal Hall conductance near δ = 1 for L = 2 to L = 7 multilayers. (a)–(f) Plots (a)–(f) are labeled by their value of L, as shown
in the plots. Even-layered systems (top row) show no jump in the conductance, in contrast with odd-layered structures (bottom row) which
show a clear jump. Red circles indicate the rhombohedral stacking variation, while blue squares show the monoclinic dependence

containing two 1 × 1 subspaces and L − 1 2 × 2 subspaces,
which can be solved for their eigenvalues. Since the layers
within each multilayer are structured such that their DMI
strength alternates between the values of D1 and D2, the 2 × 2
subspaces will also repeat according to this pattern. Thus,
beyond L = 3 no unique subspaces occur, and subsequently
no unique eigenvalues will be found. Therefore, the only dis-
tinguishable feature between multilayers will be the solution
of the (L + 1)st subspace, a 1 × 1 subspace which depends
on the DMI value of the Lth layer, D1 (odd L) or D2 (even L).
By this reasoning we can categorize every multilayer by its
evenness or oddness. This generalization is shown in more
detail in Appendix A.

The even-odd effect displayed in Figs. 4(d) and 5 is a
result of the intrinsic spin orientation and the stacking direc-
tion which is imposed upon the structure by the choice of
stacking arrangement. The cartoon picture of bi- and trilayer
arrangements shown in Fig. 6 demonstrates this principle. In
the case of the odd-layered configuration, the presence of a
mirror symmetry imposed by the stacking arrangement works
to preserve the invariance of the system under a time-reversal
(TR) operation, which flips the spin orientations, as well as
exchanging +K and −K in the Brillouin zone. This ensures
that any gap closings must happen at +K and −K simultane-
ously. In contrast, even-layered configurations do not display
this mirror symmetry, and therefore their solutions will not
necessarily be TR invariant. Therefore the even-layered con-
figurations will host a higher number of topological band
crossings as the crossings at +K and −K must be considered
separately.

Finally, we note that recent Raman results suggest that
room-temperature mechanically exfoliated few-layer samples
of CrI3 retain their monoclinic structure even beyond the

rhombohedral structural transition associated with the bulk
material [52]. In rhombohedral stacking, each layer is asso-
ciated with a shift of a (the unit-cell length) in the y direction.
In monoclinic stacking, the layers are shifted by a/3 in the
x direction. In Figs. 5(a) and 5(b) we show the results of the
κ
xy
lim for the monoclinic bi- and trilayer. In comparison with

the rhombohedral case, neither multilayer shows a jump at
D1/D2 = 1. This means that the odd-layered rhombohedral
multilayers are the only configurations which show a jump at
this parameter value. This indicates that the jump behavior is
not universal.

FIG. 6. Bilayer (a) and its time-reversed (TR) partner (b), along
with the trilayer (c) and its TR partner (d). Each layer is labeled and
colored by its Dzyaloshinskii-Moriya interaction term. The arrows
within each layer denote the orientation of the spins. The time-
reversal operation T flips the direction of the spin to produce a
TR heterostructure. The stacking direction is denoted by the large
vertical black arrow to the left or right of the heterostructure.
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TABLE II. Eigenvalues of the L = 2 Hamiltonian evaluated at ±K .

+K −K

E1 3JS − 3
√

3D1S 3JS + 3
√

3D1S

E2 JzS + 3JS − 3
√

3
2 D1S(1 − δ) + S
 JzS + 3JS + 3

√
3

2 D1S(1 − δ) + S


E3 JzS + 3JS − 3
√

3
2 D1S(1 − δ) − S
 JzS + 3JS + 3

√
3

2 D1S(1 − δ) − S

E4 3JS + 3

√
3D2S 3JS − 3

√
3D2S

V. CONCLUSION

In summary, we have studied the topological response of
a multilayer configuration of hexagonal lattices stacked on
top of each other in an ABC arrangement. Our calculation en-
compasses two different multilayer scenarios as characterized
by their DMI interactions only. While in general there may
also be a pseudodipolar interaction term in the Hamiltonian,
this term is not important for the class of systems considered
here, and is therefore left for future study. We can have an
all TMI system or another in which there is a combination
of TMI-FM-TMI layers. For each of these setups, the ob-
served topological phase transitions (manifested as jumps in
the thermal Hall behavior) can be tuned by changing either
the interlayer exchange interaction or DMI parameters. In
an all-TMI configuration the trilayer displays a jump in its
thermal Hall conductance, while the bilayer does not. This
even-odd jump response holds true beyond the bi- and trilayer.
Thus, we propose a topological asymmetry layer experiment
(TALE). By performing a TALE one can decide whether an
asymmetric (even layered) or symmetric (odd layered) has
been fabricated during the layering process. Such an exper-
iment could potentially offer device fabrication physicists an
additional means to characterize few-layered topological mul-
tilayer systems, besides the standard available methods [4].
We observe several topological phase transitions which are
experimentally feasible since Jz could be tuned ex situ through
various methods [43,44] allowing a continuous measurement
through the TPT. The possibility to observe topological prox-
imity effect and the presence of jumps distinguishing odd and
even layers makes few-layered bosonic topological magnon
systems an exciting playground to verify and apply fundamen-
tal concepts.

Note added. Recently, the authors have become aware of
a similar work wherein multilayers of dissimilar DMI were
shown to host novel topological states in the form of chiral
hinge magnons [53].
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APPENDIX A: TOPOLOGICAL CHARACTERIZATION

Determination of TPTs is done by analyzing band cross-
ings at the high-symmetry points ±K = (± 4π

3
√

3
, 0) in the

Brillouin zone. By using the facts that f (±K ) = 0 and
m(±K ) = ∓3

√
3, we can simplify the Hamiltonian and de-

termine the eigenvalues analytically. In this case, Eq. (4)
becomes,

Aτ (±K ) =
(

�τ
A ∓ 3

√
3DτS 0

0 �τ
B ± 3

√
3DτS)

)
, (A1)

and Eq. (5) remains unchanged. The general form of the
Hamiltonian evaluated at k = ±K can be written as

HL(±K ) =

⎛
⎜⎜⎜⎜⎜⎝

h(L)
1

. . .

h(L)
η

. . .

h(L)
L+1

⎞
⎟⎟⎟⎟⎟⎠, (A2)

resulting in L + 1 subspaces. The Hamiltonian can be reduced
to two 1 × 1 (h(L)

1 and h(L)
L+1 in the above equation) and L − 1

2 × 2 subspaces. Due to the alternating nature of our multi-
layers, the subspaces will likewise alternate resulting in the

TABLE III. Eigenvalues of the L = 3 Hamiltonian evaluated at ±K . Notice that the solutions of +K are the same as those of −K , but
relabeled.

+K −K

E1 3JS − 3
√

3D1S 3JS + 3
√

3D1S

E2 JzS + 3JS − 3
√

3
2 D1S(1 − δ) + S
 JzS + 3JS + 3

√
3

2 D1S(1 − δ) + S


E3 JzS + 3JS − 3
√

3
2 D1S(1 − δ) − S
 JzS + 3JS + 3

√
3

2 D1S(1 − δ) − S


E4 JzS + 3JS + 3
√

3
2 D1S(1 − δ) + S
 JzS + 3JS − 3

√
3

2 D1S(1 − δ) + S


E5 JzS + 3JS + 3
√

3
2 D1S(1 − δ) − S
 JzS + 3JS − 3

√
3

2 D1S(1 − δ) − S

E6 3JS + 3

√
3D1S 3JS − 3

√
3D1S
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FIG. 7. Eigenvalues of the (a)–(c) L = 4 and the (d)–(f) L = 5 structure along ky = 0 for values of δ around one (isotropic point). The y
axis represents energy in units of J .

following general forms:

h(L)
1 = 3JS ∓ 3

√
3D1S,

h(L)
2l =

(
3JS + JzS ± 3

√
3D1S −JzS

−JzS 3JS + JzS ∓ 3
√

3D2S

)
,

h(L)
2l+1 =

(
3JS + JzS ± 3

√
3D2S −JzS

−JzS 3JS + JzS ∓ 3
√

3D1S

)
,

h(L)
L+1 = 3JS ± 3

√
3DLS,

(A3)
where the 2 × 2 subspaces are determined by the value of η

being even or odd. Eigenvalues for the bi- and trilayer systems
are reported in Tables II and III. Due to the repetition of the
subspaces, no eigenvalues at ±K beyond the L = 3 system
are found which are unique. Therefore, the main difference
between even- and odd-layered multilayers is determined by
the value of DL (D1 for odd L and D2 for even L), which de-
cides the eigenvalue for the h(L)

L+1 subspace. In Fig. 7 we report

the eigenvalues for the four- and five-layer configurations near
the isotropic point D2/D1 = 1.

APPENDIX B: THERMAL HALLWEIGHT FUNCTION

The transport properties of our heterostructure was charac-
terized by the thermal Hall conductance [49]

κxy = − k2
BT

(2π )2h̄

∑
n

∫
BZ

c2(ρ)�xy
n (k)dkxdky, (B1)

with c2(ρ) = (1 + ρ)(ln 1+ρ

ρ
)2 − (ln ρ)2 − 2Li2(−ρ), where

kB is the Boltzmann constant, h̄ is Planck’s constant, T is
the temperature, n indexes the bands, ρ is the Bose-Einstein
distribution, and Li2(ρ) is the polylogarithm function. The
weight function c2(ρ) favors low-lying energy bands at low
temperatures, while some of the topological phase boundaries
in our system are defined by band crossings which occur
at the higher end of our energy spectrum. To characterize
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the topological phase diagram using the thermal conductance
we must ensure the contribution of each band in the energy
spectrum. Therefore, we opt to employ the high-temperature
limit of the conductance. To find the high-temperature limit
κ
xy
lim we write the above equation as

κ
xy
lim = lim

T→∞
κxy = lim

T→∞

− k2
B

(2π )2 h̄

∑
n

∫
BZ c2(ρ)�xy

n (k)dkxdky

1/T
.

(B2)
Since limT→∞ c2(ρ) = π2

3 and Cn = 1
2π

∫
BZ �n

xy(k)dkxdky,
the numerator becomes

lim
T→∞

− k2
B

(2π )2h̄

∑
n

∫
BZ

c2(ρ)�xy
n (k)dkxdky

= − k2
B

(2π )2h̄

π2

3

∑
n

2πCn = 0, (B3)

where we have used the fact that
∑

n Cn = 0. Additionally,
since limT→∞(1/T ) = 0, we can apply l’Hôpital’s rule such
that

lim
T→∞

κxy = lim
T→∞

k2
BT

2

(2π )2h̄

∑
n

∫
BZ

∂c2(ρ)

∂T
�xy

n (k)dkxdky.

(B4)

To determine the partial derivative ∂c2(ρ)
∂T , remember that

c2(ρ) = (1 + ρ)(ln 1+ρ

ρ
)2 − (ln ρ)2 − 2Li2(−ρ). If we define

β = e
E (k)
kBT , ρ = 1/(β − 1), (B5)

the derivative of the first term with respect to temperature
becomes

∂

∂T
(1 + ρ)

(
ln

1 + ρ

ρ

)2

= E (k)β

kBT 2
[ρ2(ln β )2

− 2(1 + ρ)(ln β )β−1]. (B6)

The second term gives us

∂[−(ln ρ)2]

∂T
= −E (k)β

kBT 2
[2ρ(ln ρ)]. (B7)

To determine the partial derivative of the third term we use the
definition Li2(z) = ∑∞

k=1
zk

k2 to obtain

∂

∂T
[−2Li2(−ρ)] = E (k)β

kBT 2
[2ρ ln (1 + ρ)]. (B8)

Combining all the terms yields,

∂c2(ρ)

∂T
= E (k)β

kBT 2
[ρ2(ln β )2 − 2(1 + ρ)(ln β )β−1

− 2ρ(ln ρ) + 2ρ ln (1 + ρ)]

= E (k)β

kBT 2
[ρ2(ln β )2 − 2(1 + ρ)(ln β )β−1

+ 2ρ(ln β )]. (B9)

Next, using the following limit expressions,

lim
T→∞

β = 1, lim
T→∞

ρ = ∞,

lim
T→∞

ln β = 0, lim
T→∞

ρ(ln β ) = 1.
(B10)

we have

lim
T→∞

T 2 ∂c2(ρ)

∂T

= lim
T→∞

{
T 2 E (k)β

kBT 2
[ρ2(ln β )2 − 2(1 + ρ)

× (ln β )β−1 + 2ρ(ln β )]

}
= E (k)

kB
. (B11)

Thus we have the final expression as

κ
xy
lim = kB

(2π )2h̄

∑
n

∫
BZ

En(k)�xy
n (k)dkxdky. (B12)
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