
Vol.:(0123456789)

Machine Learning
https://doi.org/10.1007/s10994-021-06069-5

1 3

A taxonomy of weight learning methods for statistical
relational learning

Sriram Srinivasan1 · Charles Dickens1 · Eriq Augustine1 · Golnoosh Farnadi2 ·
Lise Getoor1

Received: 27 June 2020 / Revised: 18 August 2021 / Accepted: 7 September 2021
© The Author(s) 2021

Abstract
Statistical relational learning (SRL) frameworks are effective at defining probabilistic mod-
els over complex relational data. They often use weighted first-order logical rules where
the weights of the rules govern probabilistic interactions and are usually learned from data.
Existing weight learning approaches typically attempt to learn a set of weights that maxi-
mizes some function of data likelihood; however, this does not always translate to optimal
performance on a desired domain metric, such as accuracy or F1 score. In this paper, we
introduce a taxonomy of search-based weight learning approaches for SRL frameworks that
directly optimize weights on a chosen domain performance metric. To effectively apply
these search-based approaches, we introduce a novel projection, referred to as scaled space
(SS), that is an accurate representation of the true weight space. We show that SS removes
redundancies in the weight space and captures the semantic distance between the possi-
ble weight configurations. In order to improve the efficiency of search, we also introduce
an approximation of SS which simplifies the process of sampling weight configurations.
We demonstrate these approaches on two state-of-the-art SRL frameworks: Markov logic
networks and probabilistic soft logic. We perform empirical evaluation on five real-world
datasets and evaluate them each on two different metrics. We also compare them against
four other weight learning approaches. Our experimental results show that our proposed
search-based approaches outperform likelihood-based approaches and yield up to a 10%
improvement across a variety of performance metrics. Further, we perform an extensive
evaluation to measure the robustness of our approach to different initializations and hyper-
parameters. The results indicate that our approach is both accurate and robust.

Keywords Statistical relational learning · Weight learning · Probabilistic graphical
models · Markov logic networks · Probabilistic soft logic · Black-box optimization

Editor: Luc De Raedt

 * Sriram Srinivasan
 ssriniv9@ucsc.edu

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06069-5&domain=pdf

 Machine Learning

1 3

1 Introduction

Statistical relational learning (SRL) frameworks (Richardson and Domingos 2006;
De Raedt and Kersting 2011; Getoor and Taskar 2007) combine the power of graphical
models with probabilistic programming to produce accurate models on complex relational
data. Often these frameworks use first-order logical rules to represent complex relations
and a relational dataset/database to instantiate a probabilistic graphical model. Several SRL
frameworks have been developed in the past years; some of them generate directed graphi-
cal models (Poole 1993; Jaeger 1997; Friedman et al. 1999; Neville and Jensen 2007), and
others generate undirected graphical models (Taskar et al. 2002; Richardson and Domin-
gos 2006; Bach et al. 2017). More frameworks exist that extend existing statistical meth-
ods like logistic regression to relational realm (Mehran Kazemi et al. 2014) and others
that extend logic programming to support probabilistic inference (Sato 1995; Fierens et al.
2015; De Raedt et al. 2007). Of these frameworks, Markov logic networks (MLNs) (Rich-
ardson and Domingos 2006) and probabilistic soft logic (PSL) (Bach et al. 2017) are two
popularly used SRL frameworks in the context of undirected graphical models. Both make
use of weighted first-order logical rules to generate a version of logical Markov random
fields (MRFs). While MLNs use discrete logic to construct a MRF over discrete random
variables, PSL uses soft logic to construct a special kind of MRF over continuous ran-
dom variables in range [0, 1] called a hinge-loss Markov random field (HLMRF). PSL and
MLNs have achieved state-of-the-art results in various domains such as recommender sys-
tems (Kouki et al. 2017; Lalithsena et al. 2017; Choi et al. 2015), bioinformatics (Sridhar
et al. 2016), natural language processing (Ebrahimi et al. 2016; Johnson et al. 2017; Khot
et al. 2015; Beltagy et al. 2013), product search (Alshukaili et al. 2016; Platanios et al.
2017; Srinivasan et al. 2019), fake news detection (Chowdhury et al. 2020) and social net-
work analysis (Farnadi et al. 2017; Chen et al. 2017).

Learning the weights of the rules is one of the key challenges for SRL frameworks that
use logical rules to define their models such as PSL and MLNs since the weighted rules
interact in complex ways and cannot be optimized independently. Because these rules
act as templates to generate the full graphical model, the weights of these rules, i.e., the
parameters of the model, are used in multiple places in the instantiated graphical model,
and the context varies depending on the other rules that have been instantiated. In addition,
the corresponding probability distribution is not easy to compute; specifically, computing
the normalization constant is often intractable.

Typically, the weights of the rules are learned through maximizing some form of likeli-
hood function (Bach et al. 2013; Lowd and Domingos 2007; Singla and Domingos 2005;
Kok and Domingos 2005; Chou et al. 2016; Sarkhel et al. 2016; Das et al. 2016, 2019;
Farabi et al. 2018). This is a well-motivated approach if the downstream objective makes
use of the probability density function directly. However, the objective is to often improve
an external domain metric such as accuracy, F1 for classification, or AUROC for rank-
ing. Several approaches address this issue by augmenting the metric into a loss function
and solving a max-margin problem (Huynh and Mooney 2009, 2010; Bach et al. 2013).
This does not directly optimize the desired metric but instead optimizes a surrogate loss.
Further, such approaches do not easily extend to new metrics as they require deriving new
losses, which may be non-convex and hard to optimize.

In our previous work (Srinivasan et al. 2020b), we introduced the first weight learning
approach based on Bayesian optimization (a search-based approach) for PSL. This was,
to the best of our knowledge, the first application of black-box algorithms for the task of

Machine Learning

1 3

weight learning in a SRL framework. We also introduced a projection for the weights in
PSL which was necessary for an effective search. In this paper, we extend and generalize
our previous work and introduce a new taxonomy of weight learning approaches based on
search strategies. We generalize our projection space and introduce a new sampling strat-
egy that is effective at approximating the projected weight space and is essential for the
success of all search-based weight learning approaches. Further, we extend the scope of
these search-based approaches for weight learning to MLNs. Finally, we perform a com-
plete evaluation of different approaches over multiple datasets and metrics to show the
effectiveness of the search-based approaches in both PSL and MLNs.

We introduce four search-based approaches that are all novel for the task of finding the
best set of weights for a model (weight configuration) in weighted logic-based SRL frame-
works. The key advantage of these approaches is that they directly optimize the chosen
domain performance metric and, unlike other approaches, do not require re-derivation of
the loss function for each metric. Our proposed approaches are based on black-box opti-
mization methods used in learning hyperparameters in other machine learning approaches
(Claesen and De Moor 2015; Bergstra et al. 2011). Our first two approaches random grid
search for weight learning (RGS) and continuous random search for weight learning (CRS
) are based on simple yet powerful search approaches popularly used in tuning hyperpa-
rameters of deep learning models (Bergstra and Bengio 2012). While RGS is simple and its
effectiveness is determined by the specified grid, the effectiveness of CRS is determined
by the new sampling space we introduce in this work. Our next approach, Hyperband for
weight learning (HBWL), is based on the Hyperband algorithm (Li et al. 2018) that effec-
tively distributes resources to perform efficient random search. Hyperband has been shown
to efficiently allocate resources and maximize the search for the best solution. Finally, our
fourth approach, Bayesian optimization for weight learning (BOWL), is based on Gauss-
ian process regression (GPR) (Rasmussen and Williams 2005) in a Bayesian optimization
(BO) (Mockus 1977) framework. BO is an effective approach for optimization of black-box
functions (Lizotte et al. 2007; Martinez-Cantin et al. 2009; Srinivas et al. 2012; Brochu
et al. 2010) and GPR is a non-parametric Bayesian approach that is often used to approxi-
mate arbitrary functions. GPRs have been used extensively for hyperparameter tuning in
machine learning (Snoek et al. 2012).

In order to perform efficient and effective search of weights using these approaches, we
introduce a new parameter search space, which we refer to as scaled space (SS), which is
an accurate representation of the true weight space. We show that SS is both accurate and
complete in representing the weights. Further, we also show that SS takes into account
the impact of model instantiation (also referred to as grounding). As sampling from SS is
challenging, we introduce an approximation of SS which enables us to efficiently sample
weight configurations to perform search-based weight learning.

We develop all our search-based approaches for two powerful SRL frameworks, PSL
and MLNs. We perform our empirical study on both PSL and MLNs to show the effec-
tiveness of search-based approaches. While the applicability and effectiveness of our
approaches are specifically shown for PSL and MLNs in this paper, we note that our
approaches can be easily applied to other SRL frameworks that define a model through a
set of logical rules.

Our contributions in this paper (extending from our previous work (Srinivasan et al.
2020b)) are as follows: (1) we generalize and introduce a new taxonomy of weight learn-
ing approaches in SRL frameworks by reformulating the problem of weight learning as
a black-box optimization problem and introducing four search-based approaches, referred
to as RGS, CRS , HBWL , and BOWL , to perform this optimization; (2) we introduce a

 Machine Learning

1 3

new search space called the scaled space (SS) which we show is an accurate representa-
tion of the true weight space; (3) we introduce an approximation of SS which generalizes
the search-based approaches and simplifies the process of sampling weight configurations
in these methods; (4) we show that the search-based approaches are effective at learning
weights in both PSL and MLNs and that these approaches outperform likelihood-based
approaches on multiple datasets by up to 10%; and (5) finally, we show the scalability of
search-based approaches and perform an elaborate set of experiments to show that, of the
four approaches, BOWL is robust to initializations, acquisition function (process of choos-
ing next best point, explained in Sect. 3.6.2), and the hyperparameter used in the sampling
of weight configurations.

This paper is organized as follows. In Sect. 2, we provide a brief background on MLNs,
PSL, black-box optimization, Bayesian optimization, and Gaussian process regression
which are essential in understanding our approaches. Next, along with a motivating exam-
ple, we introduce our four search-based weight learning approaches for MLNs and PSL in
Sect. 3. Then, in Sect. 4, we introduce our novel projection and its approximation which
are crucial to the success of our approaches. We then extend our approaches to accommo-
date for negative weights in Sect. 5, which is essential to fully support MLNs. In Sect. 6,
we evaluate all of our approaches on several real-world datasets and metrics. Finally, in
Sect. 7 we conclude and discuss potential future work.

2 Background

In this section, we first briefly review two well-known SRL frameworks, Markov logic net-
works (MLNs) (Richardson and Domingos 2006) and probabilistic soft logic (PSL) (Bach
et al. 2017), along with two weight learning approaches for MLNs and three weight learn-
ing approaches for PSL. Finally, we present the required background on black-box opti-
mization and Gaussian process regression (GPR) which serves as the foundation for our
proposed approaches.

2.1 Statistical relational learning

SRL methods such as PSL and MLNs combine the power of probabilistic graphical mod-
els with weighted first-order logical rules to capture relational structure in any domain. A
set of weighted first-order logical rules are instantiated with data D to generate a logical
Markov random field (LMRF). This process is referred to as grounding and every instanti-
ated rule consisting of only ground predicates is called a ground rule. Every ground predi-
cate represents a random variable in the LMRF which may be observed (x) or unobserved
(y) and a ground rule represents a clique potential � in the LMRF. Every potential in the
LMRF is associated with a weight equal to the weight assigned to the logical rule from
which it was instantiated. The weight of a logical rule represents the importance of the
rule in the model. The weighted sum of potentials in the LMRF is referred to as the energy
function � . A LMRF can be formally defined as:

Definition 1 (Logical Markov random fields) Let � = {y1, y2, ..., yn} be n unob-
served random variables, � = {x1, x2, ..., xm} be m observed variables or evidence, and
� = {�1,�2, ...,��} be � potentials describing different logical relations between variables.
The output of a potential function �i(�, �) is a real-valued scalar representing compliance

Machine Learning

1 3

of � and � with �i . Further, let � ∈ {w1,w2, ... ,w�} be a set of weights associated with each
potential. The energy function of a LMRF is defined as:

and the conditional likelihood of a LMRF is defined as:

where Z(�) = ∫
�
exp(ŝ ⋅ E(�|�)) is a normalization constant and ŝ ∈ {1,−1} determines the

sign in the exponent based on if the potential measures satisfaction or dissatisfaction.

To better understand LMRFs and the process of grounding, consider a simple collective
labeling problem:

Example 1 Assume we have a set of users � and a label that can be either true or false
associated with each user, such as if a user Smokes or not. The label for Smokes is observed
for some users (�o) and unobserved for the rest (�u). The task is to infer the labels for �u .
Let the input data be defined over users represented by the variables U, V that can take val-
ues in � . The data includes a social network described by friendship links, Friend(U, V),
and a local predictor that predicts if a user smokes or not based on the user’s features,
LocalPredictor(U). Below is a simple SRL model for collectively inferring labels:

 where w1 and w2 are weights for the rules. The above model is then grounded with
users in � to generate an LMRF. Each ground rule (e.g., w1 : LocalPredictor(}}Bob��) →
Smokes(}}Bob��)) generates a potential function �i . Each ground predicate created by
instantiating the Smokes predicate with users in �u generates a set of unobserved random
variables � and the rest of the ground predicates generate a set of observed random vari-
ables � . Figure 1 shows the resulting graphical model when instantiated over a small social
network of 100 individuals. We can observe here that the graphical model generated, even
with only 100 users and a simple model, tends to be large. This makes all aspects of SRL
(in specific model instantiation, weight learning, and inference) particularly challeng-
ing (Getoor and Taskar 2007; De Raedt and Kersting 2011).

As seen in the example, all the potentials generated by a rule share the same weight. Equa-
tion 1 can therefore be alternatively written as �(���) = ∑r

i=1
[wiΦi(�, �)] , where r is the num-

ber of template rules, wi represents the weight of the ith rule, Φi =
∑

j∈gi
�j(�, �) , and gi is a set

of ground rules generated by the ith rule.
Inference in a LMRF is performed by finding a maximum aposteriori (MAP) estimate of

the random variables � given evidence � . This is performed by maximizing the density func-
tion or equivalently maximizing the energy function in Eq. 1. MAP inference is expressed as:

(1)�(�|�) =
�∑

i=1

wi�i(�, �)s.t., � ∈ {0, 1}n; � ∈ {0, 1}m

(2)P(�|�,�) = 1

Z(�)
exp(ŝ ⋅ �(�|�))

w1 ∶ LocalPredictor(U) → Smokes(U)

w2 ∶ Smokes(U) ∧ Friend(U,V) → Smokes(V)

(3)argmax
�

P(�|�) = argmax
�

ŝ ⋅ �(�|�)

 Machine Learning

1 3

MLN and PSL make specific choices in LMRF to generate a Markov network and a hinge-
loss Markov random field (HL-MRF), respectively. Next, we first describe the choices
made by MLNs and then PSL, along with weight learning approaches commonly used by
both.

2.2 Markov logic networks

MLNs (Richardson and Domingos 2006) use boolean logic and use discrete random vari-
ables in the LMRF. Potential functions � are indicator functions that have a value of one if
the ground rule is satisfied and zero otherwise. A potential in MLN is of the form:

where ni(⋅, ⋅) is the satisfaction of the ith ground rule. Since the potentials measure the sat-
isfaction of the ground rules, the ŝ is set to one and the MAP inference objective in MLNs
can be expressed as a weighted count of the number of satisfied ground rules:

Many implementations of MLNs exist (Noessner et al. 2013; Shavlik and Natarajan 2009;
Niu et al. 2011; Venugopal et al. 2016; Islam et al. 2018). In this paper we are interested
in understanding how different weight learning techniques effect the quality of predictions,
rather than the efficiency of inference. However, it is important to note, that due to the non-
convexity of MAP inference in MLNs a global solution is not guaranteed and the quality of
MAP estimates can have consequences on the effectiveness of weight learning techniques.
In Sect. 6, we use Tuffy (Niu et al. 2011) for empirical evaluations as this framework has

(4)�i(�, �) = ni(�, �)

(5)argmax
�

P(�|�) = argmax
�

�(�|�)

(6)= argmax
�

�∑

i=1

wini(�, �)

Fig. 1 Factor graph produced
by grounding the example SRL
model with synthetic data for 100
users. The blue nodes are users
who smoke, red nodes are users
who do not smoke, grey nodes
are the rest of the grounded
atoms and the black nodes are
potentials. Here we see that the
resulting factor graph, even for
this simple case, is large, com-
plex, and highly connected

Machine Learning

1 3

been widely applied and validated as state-of-the-art. MAP inference in Tuffy is performed
using the WalkSAT algorithm (Kautz et al. 1996; Niu et al. 2011). WalkSAT proceeds by
iteratively flipping atom values that would result in a more satisfied world.

Here we focus on the discriminative framework of weight learning for MLNs where a
training dataset is partitioned into an unobserved random variable set � and a non-empty
evidence set � . Richardson and Domingos (2006) originally proposed a generative learning
framework where the evidence set is empty, however, the discriminative approach consist-
ently outperformed this approach (Singla and Domingos 2005).

2.2.1 Maximum‑likelihood estimation

Maximum-likelihood estimation (MLE) based approaches for weight learning minimize
the negative conditional log-likelihood (CLL) of a training dataset. Lowd and Domingos
(2007) discuss multiple methods for solving the MLE problem including gradient descent,
contrastive divergence, diagonal newton, and conjugate gradient. Recent efforts for scaling
discriminative MLE weight learning reduce the search space (Farabi et al. 2018) by lever-
aging symmetries to speed up (Ahmadi et al. 2012; Van Haaren et al. 2015) or approximate
the inference subproblem (Sarkhel et al. 2016; Das et al. 2016, 2019). For this discussion
and for later experiments, we use the diagonal Newton method (DN) as the representative
MLE weight learner as it was found to be the among the most effective for MLE weight
learning in MLNs (Lowd and Domingos 2007) and is the default optimizer for Tuffy (Niu
et al. 2011).

A Newton-based approach reaches the global minimum by multiplying the gradient
with the inverse of the Hessian at every iteration:

where � is the Hessian, � is the gradient w.r.t. � , and t is the iteration number. Since com-
puting the Hessian can be expensive and infeasible, a diagonal Newton method is used
as an approximation for the Hessian. The Hessian of the negative CLL is the covariance
matrix of the CLL, this is approximated through samples generated using MC-SAT (Poon
and Domingos 2006). The final update for the weight of a logical rule at each iteration is
given by:

where Ni =
∑

j∈gi
nj(�, �) , gi is a set of ground rules generated by the ith rule, �� is expecta-

tion w.r.t. the weights and � is the step size.

2.2.2 Large‑margin estimation

Large-margin estimation (LME), also referred to as max-margin estimation, focuses on
maximizing the MAP state rather than producing accurate probabilistic models (Huynh
and Mooney 2009, 2010). The intuition motivating large-margin weight learning is that
the ground-truth state � should have energy lower than any alternate state �̃ by a wide mar-
gin that is defined by a loss function L. The objective function to find the optimal set of
weights is given by:

�t+1 = �t −�−1�

(7)wi = wi − �
��(Ni) − Ni

��(N
2
i
) − (��(Ni))

2

 Machine Learning

1 3

 where L is a loss function such as the L1 distance between � and �̃ , � is a slack vari-
able, and C > 0 is a user-specified parameter. Equation 8 is then solved by performing a
cutting-plane approach for structural support vector machines (Joachims et al. 2009) or
Frank-Wolfe optimization (Lacoste-Julien et al. 2013). Both of the mentioned methods of
optimization require repeatedly solving two argmax subproblems:

1. Prediction: argmax� �
TΦ(�, �)

2. Separation: argmax�̃ L(�, �̃) + �TΦ(�̃, �)

An approximate solution to the prediction subproblem can be found using any MAP
inference technique, e.g., WalkSAT. Then separation can be viewed as augmented
MAP inference and is typically performed using the same solver. For instance, when
L is the L1 distance between � and �̃ , then L can be represented by n new potentials
{��+1,��+2, ...,��+n} where ��+i is the 0, 1 indicator function for whether yi equals ỹi.

2.3 Probabilistic soft logic

PSL (Bach et al. 2017), unlike MLNs, uses soft logic and relaxes random variables to
be in the range [0, 1]. Specifically, PSL uses Łukasiewicz logic to generate potentials
which take the form of hinges. For example, a → b corresponds to the hinge potential
max(a − b, 0) , and a ∧ b corresponds to max(a + b − 1, 0) (see Bach et al. (2017) for full
details). Notice that this interpretation is equivalent to Boolean logic when the random
variables are 0 or 1, and for other values, it is a measure of truth or satisfaction. From
this perspective, a potential function � is the distance to satisfaction of a ground rule. A
hinge potential in PSL is of the form:

where �i is a linear function and di ∈ {1, 2} provides a choice of two different loss func-
tions, di = 1 (i.e., linear) and di = 2 (i.e, quadratic). Since the potential functions in PSL
measure distance to satisfaction, ŝ in (2) is set to −1 . Further, weights in PSL are positive
and real, i.e., wi ∈ ℝ

+ . The MAP inference in PSL is expressed as:

A key advantage of using PSL is that the inference objective is convex. This enables the
use of efficient convex optimization procedures, such as alternating direction method of
multipliers (ADMM) (Boyd et al. 2011). Hence, given known weights, inference in PSL
can be performed at scale enabling predictions on very large real-world datasets (Srini-
vasan et al. 2020a). Unfortunately, the task of learning the rule weights from training data
is not as efficient; although, as we will see in Sect. 3, having tractable MAP inference is
still helpful.

(8)
�∗ = argmin

�

1

2
||�||2 + C𝜉

s.t.∀�̃ ∶ �T (Φ(�̃, �) − Φ(�, �)) ≤ −L(�, �̃) + 𝜉

(9)�i(�, �) = max(�i(�, �), 0)
di s.t., � ≤ � ≤ � ; � ≤ � ≤ �

(10)argmax
�

P(�|�) = argmin
�

�(�|�)

Machine Learning

1 3

There are three primary approaches used to perform weight learning in PSL: Maxi-
mum Likelihood Estimation (MLE), Maximum Pseudolikelihood Estimation (MPLE), and
Large-Margin Estimation (LME) (Bach et al. 2013).

2.3.1 Maximum likelihood estimation (MLE)

This approach maximizes the log-likelihood function with respect to the weights of the
rules based on the training data. The partial derivative of the log of the likelihood function
given in Eq. 2 for PSL with respect to wq for q ∈ {1,… , r} is:

 where � = {w1, ...,wr} and �� is expectation w.r.t. the weights. It is infeasible to compute
the expectation, hence to make the learning tractable a MAP approximation is used that
replaces the expectation in the gradient with the corresponding values in the MAP state.
This approach is a structured variant of the voted perceptron algorithm (Collins 2002).

2.3.2 Maximum pseudolikelihood estimation (MPLE)

An alternative approach that maximizes the pseudolikelihood function is given by:

where n is the number of random variables and MB(yi) is the Markov blanket of yi (Besag
1975). Equation 12 is maximized using a gradient ascent based approach and the derivative
of the log-pseudolikelihood function with respect to wq is given by:

 where i ∈ �j implies that variable yi participates in the potential �j . Using a Monte Carlo
approach this derivative can be computed in linear time in the size of �.

2.3.3 Large‑margin estimation (LME)

The LME formulation and high-level approach for optimization in PSL is the same as for
MLNs. The difference lies in the fact that random variables are continuous in PSL and this
results in an infinite number of constraints in the LME formulation. Further the prediction
and separation subproblems are:

1. Prediction: argmin� �
TΦ(�, �)

2. Separation: argmin�̃ �
TΦ(�̃, �) − L(�, �̃)

The solver used for the prediction and separation subproblems is one of the optimiza-
tion algorithms implemented for PSL inference, e.g., ADMM. Notice the separation

(11)
�logP(�|�)

�wq

= ��

[
Φq(�, �)

]
− Φq(�, �)

(12)P∗(�|�) =
n∏

i=1

P∗(yi|MB(yi), �)

(13)
�logP∗(�|�)

�wq

=

n∑

i=1

�yi|MB

[∑

j∈gq∶i∈�j

�j(�, �)
]
− Φq(�, �)

 Machine Learning

1 3

subproblem objective is a difference of convex functions and is hence non-convex. Thus a
local optimal solution will be found.

In our empirical evaluation, we compare our approach with the above discussed weight
learning approaches for PSL and MLNs. Next we briefly discuss black-box optimization,
Bayesian optimization, and Gaussian process on which we base our approaches.

2.4 Black‑box optimization

Black-box optimization is a well studied technique, especially in the context of hyperpa-
rameter tuning (Bergstra and Bengio 2012; Shahriari et al. 2016).

Definition 2 (Black-box optimization) Given a black-box function 𝛾(�̃) ∶ ℝ
d
→ ℝ , where

d is the input dimension, the task of finding an �̃ that yields the optimal value for 𝛾(�̃) is
called black-box optimization.

The goal of black-box optimization is to find the best possible value for �̃ that optimizes
the function 𝛾(�̃) . This is often paired with a predefined constraint on usable resources
(generally number of epochs or time). While this process can be embarrassingly parallel
for some approaches, the general strategy can be defined sequentially. The basic approach
for black-box optimization is to define a search space, choose a point �̃ , evaluate 𝛾(�̃) to
update a model, and repeat this process until the resources have been exhausted. In the
end, the �̃ with the best 𝛾(�̃) is returned. The procedure is summarized in Algorithm 1.
While the process of selection of �̃ and evaluation of 𝛾(�̃) on different points can be simple
and made to run in parallel for algorithms like RGS, CRS , and HBWL introduced in this
paper (Sect. 3), other algorithms like BOWL (also introduced in this paper) use the Bayes-
ian optimization (BO) framework and employ a Gaussian process to approximate � and
assume a serial setup to ensure optimal selection of the next point on which to evaluate.

In the context of BO, various strategies have been proposed to choose the next point to
evaluate given the previous evaluations (Srinivas et al. 2010; Kushner 1964; Mockus 1977;
Thompson 1933). Each strategy is encoded through an acquisition function � . The objec-
tive of these strategies is to minimize the number of epochs required to find the best solu-
tion. A simple black-box Bayesian approach iteratively obtains a point to explore from the
acquisition function � using the prior distribution; then the function � is evaluated to obtain
a new outcome at that point which is then used to update the posterior. Gaussian process
regression (GPR) is a non-parametric Bayesian approach which is effective in performing
black-box optimization in a BO framework.

Algorithm 1: Black-box optimization via search
Result: x̃∗ : point with the best value for γ(·)

1 X̃ = search space;
2 while stopping criteria not met do
3 choose a x̃ ∈ X̃;
4 update the model of choice with (x̃, γ(x̃));
5 update x̃∗ if current γ(x̃) is better than previous value or based on the model
6 end

Machine Learning

1 3

2.4.1 Gaussian process regression

A Gaussian process (GP) (Rasmussen and Williams 2005) describes a distribution over a
function space and is fully characterized by a mean function �0 and a covariance matrix
� =

[
Ki,j

]
 . More formally, consider a finite set of s inputs, �̃ = �̃1∶s . Then, for any input

�̃i ∈ �̃ , let gi = 𝛾(�̃i) represent the function � evaluated at �̃i . In GPR, we assume a prior
distribution over � = g1∶s that is jointly Gaussian, specifically, the prior distribution over
� can be expressed as � ∼ N(�,�) , where mi = 𝜇0(�̃i) . To allow for a more general set-
ting with noisy function evaluations, let ỹi be the noisy output of the function 𝛾(�̃i) , i.e.,
ỹi = 𝛾(�̃i) + 𝜖 , where � is Gaussian N(0, �) noise. As the prior and noise are both Gaussian,
if the vector �̃ = [ỹi] of function evaluations at a set of points �̃ is observed, then the likeli-
hood of the noisy function evaluation at new point �̃s+1 is also jointly Gaussian. Hence, the
posterior distribution over ỹs+1 given �̃ can be expressed as ỹs+1|�̃ ∼ N(𝜇s(�̃s+1), 𝜎s(�̃s+1))
where

 and Ks+1 is the vector of covariances between the new input �̃s+1 and every observed input
�̃i ∈ �̃ . Assuming one has a method for computing covariances between any two points in
the input space, then the posterior mean and variance of the noisy output of the function
� at any point can be computed using the above expressions. In GPR, a kernel function,
k(⋅, ⋅) , is used, and it plays the crucial role of defining the covariance between points in
the input space, i.e., Ki,j = �

[
(𝛾(�̃i) − 𝜇0(�̃i))(𝛾(�̃j) − 𝜇0(�̃j))

]
= k(�̃i, �̃j) . Consequentially,

k encodes assumptions about the function the GP is defining a distribution over. The choice
of kernel function is often the key to finding the best approximation of the true function.

2.4.2 Kernel functions

In its most generic form, a kernel function, k(⋅, ⋅) , is any mapping of two inputs from a
space X to ℝ . For a valid GP, the choice of kernel function must correspond to an inner
product in some inner product space. Formally, for any two inputs �, �� ∈ X , k(⋅, ⋅) is equal
to the inner product of the inputs after being mapped to an inner product space H via a
transformation Ψ ∶ X → H , i.e.,

where

Requiring that a kernel, k(⋅, ⋅) , corresponds to an inner product ensures that the matrix
defined by the inputs �̃1,⋯ , �̃s ∈ X and the kernel, namely the Gram matrix � = [Ki,j]
where Ki,j = k(�̃i, �̃j) , is positive semi-definite, and hence can be used as a covariance
matrix. Kernels with this property are referred to as positive semi-definite kernels or covar-
iance functions.

There is a suite of positive semi-definite kernels that have been proposed in the litera-
ture, each equipped with different properties that may be more or less suited for a problem
domain (Genton 2001; Rasmussen and Williams 2005; Schölkopf and Smola 2002). For

𝜇s(�̃s+1) = 𝜇0(�̃s+1) + KT
s+1

(� + 𝜎2�)−1(y − m)

𝜎s(�̃s+1) = Ks+1,s+1 − KT
s+1

(� + 𝜎2�)−1Ks+1

k ∶ X × X → ℝ, (�, ��) ↦ k(�, ��)

(14)k(�, ��) = ⟨Ψ(�),Ψ(��)⟩H

 Machine Learning

1 3

instance, the stationary class of kernels, which includes the widely used squared expo-
nential (employed in later Sect. 3.6) and Matérn class of kernels (Matérn 1960) assumes
the covariance between inputs is translation invariant. More formally, stationary kernels
assume that for some vector v ∈ X , k(�̃i, �̃j) = k(�̃i + v, �̃j + v) . Another common assump-
tion is that of rotational invariance. This property is held by a class of kernels called dot
product kernels, which only depend on the inputs �̃i, �̃j through �̃i ⋅ �̃j . One example of a
dot product kernel is the inhomogeneous polynomial kernel k(�̃i, �̃j) = (𝜎2

0
+ �̃i ⋅ �̃j).

Commonly, a domain will not satisfy the assumptions made by a standard kernel.
Rather, it is necessary to design a specialized covariance function for the setting. At a high
level, two approaches for designing covariance functions that meet a set of desired prop-
erties for a problem are: (1) proposing a novel positive semi-definite kernel function or
(2) creating a new kernel from existing covariance functions through positive semi-definite
preserving operations (Genton 2001). In this paper, we employ the second approach. Spe-
cifically, we leverage the fact that a covariance function defined over a real-valued projec-
tion of the input space is also a covariance function. More concretely, suppose E is an ℝp

-valued function on X and k̃ is a covariance function on ℝp ×ℝ
p , then

is a covariance function. The projection for the input space, E , is designed to meet the
assumptions made by the kernel, k̃ , that is applied to the output. For instance, as previously
mentioned, stationary kernels assume the covariance between two inputs is strictly a func-
tion of their Euclidean distance. While it is common for this assumption to be incorrect,
stationarity can be achieved via a projection that warps the input space to more closely
meet this property. If k̃(�, ��) is a dot product kernel, a different projection would be nec-
essary to satisfy the rotational invariance assumption. In Sect. 4.2 we propose a projec-
tion over the weight space that allows the use of stationary kernels for our weight learning
application.

3 Search‑based approaches for weight learning

As mentioned earlier, commonly used approaches for rule weight learning in SRL are gen-
erally based on maximizing a likelihood function. In this section, we first give a motivating
example that highlights the issues with likelihood-based approaches and then we propose
four search-based approaches to learn weights in SRL frameworks. Note that, for concise-
ness, we assume weights are constrained to be non-negative and introduce a simple method
for adapting search-based learning algorithms to support negative weights in Sect. 5.

3.1 Motivating example

Consider our simple collective classification model, Example 1, applied to a toy dataset
with 100 users. Figure 2 shows the performance of the model in PSL as we vary the rule
weights logarithmically from 10−6 to 1.0. Figure 2a shows AUROC and Fig. 2b shows
the log-likelihood of the model. Lighter shades (yellow) represent a high value and
darker shades (dark blue) represent a low value. We observe that the AUROC is maxi-
mized when the first rule’s weight is 0.1 and the second rule’s weight is 10−6 . However,
the likelihood is not maximized at these weights. For this simple model and dataset, we

(15)k(�, ��) = k̃(E(�), E(��))

Machine Learning

1 3

observe that the likelihood is not well correlated with the AUROC. While this behavior
is shown using PSL, a similar outcome can be observed when using MLN models as
well.

3.2 Problem definition

Consider a LMRF-based SRL model with r rules where each rule i ∈ {1… r} is associ-
ated with a non-negative weight wi ∈ ℝ+ . Grounding all the rules with data D yields a
set of m observed random variables � = {x1,… , xm} , n unobserved random variables
� = {y1,… , yn} , and � potentials � = {�1,�2,… ,��} . All unknown random variables are
associated with corresponding ground truth �∗ = {y∗

1
,… , y∗

n
} used to compute evaluation

metrics. Let � = {w1,… ,wr} be the vector representing the set of rule weights, i.e., the
weight configuration. Next, let �(�, �∗) ∶ (�, �∗) → ℝ be a problem-specific evaluation
metric (e.g., accuracy, AUROC, or F-measure) and let �(�) ∶ � ↦ �(argmaxy P�(�|�), �∗)
where P�(�|�) is the distribution function of the SRL model (2) parameterized by � .
Then the objective of search-based weight learning can be expressed as finding the set
of weights that maximize the function � which represents the true metric function � , i.e.,
argmax� �(�).

In order for the search-based weight learning objective function, �(�) , to be well
defined, it is necessary that a unique solution to the inference problem exists and is found
exactly. This condition is satisfied for L2 regularized PSL MAP inference as the problem
becomes strongly convex and obtaining a high accuracy solution, i.e. a solution that is
nearly the global optimal, is practical to find. For MLNs it is usually not true that a unique
optimal solution exists, and even if it does, MAP inference for MLNs is NP-hard and only
an approximate solution is typically found. Despite this, in Sect. 6 we show that search-
based weight learning methods for MLNs still tend to perform well in practice.

In order to solve the search based optimization problem argmax�(�(�)) , we introduce
four approaches based on hyperparameter search methods from other areas of machine
learning. The first two approaches are based on random grid search and continuous
search used in deep learning (Bergstra and Bengio 2012), the next approach is based on

(a) (b)

Fig. 2 Heat map for AUROC and log-likelihood for the model in Example 1. The lighter color indicates
higher values and higher values are desired for both metrics

 Machine Learning

1 3

the Hyperband algorithm used in statistical machine learning (Li et al. 2018), and the last
is based on BO with GPR used for hyperparameter tuning in deep learning (Snoek et al.
2012).

3.3 Random grid search for weight learning

A straightforward search-based approach to weight learning is an exhaustive exploration
over a set of weight configurations � generated through a user-specified grid of weights.
The user-specified grid to generate weight configurations � is typically constructed by
specifying a finite collection of v values V = {V0,⋯ ,Vv} that can be assigned as weights
for each of the rules, e.g., V = {0.01, 0.1, 1.0} . If a model contains r rules, then we can
define � to be the r-ary Cartesian product of V, � = V ×⋯ × V , defining a grid with
the intersections representing different weight configurations. Then, for each configuration
� ∈ �̃ , �(�) is evaluated after performing MAP inference in the SRL model. Finally, the
weight configuration with the highest �(�) is selected.

However, a comprehensive grid search is usually infeasible due to the combinatorial
explosion in the size of the grid; if a model contains r rules where each rule can take on
one of v possible values, then |�| = vr . Thus, to make the approach tractable (as men-
tioned in Algorithm 2), we uniformly draw t unique samples from � to stay within an
established budget of resources; this approach is referred to as random grid search for
weight learning (RGS). It is important to ensure that the resources are used to evaluate dis-
tinct weight configurations, therefore at the time of sampling we ensure that every weight
configuration chosen has a possibility of yielding a distinct solution. In Sect. 4, we show
how two weight configurations that look distinct can yield the same solution at the time of
MAP inference (and hence for the value of � as well) and how we can identify and avoid
wasting resources on such inherently identical weight configurations. Therefore, to ensure
uniqueness of weight configurations explored, we keep track of a set �explored which con-
tains all the weight configurations explored so far and the configurations that are inherently
the same as an explored weight configuration and sample new weight configuration from
� ⧵�explored .

Algorithm 2: Random grid search for weight learning
Result: w∗ : weight configuration with best evaluation metric among samples

1 W = set of weight configurations from the user-defined weight grid;
2 t = maximum number of weight configurations to explore;
3 Wexplored = weight configurations explored so far;
4 for iter ∈ {1, . . . , t} do
5 wnext = Random(W \Wexplored);
6 perform MAP inference to compute γ(wnext);
7 ∀ẇ ∈ W such that γ(ẇ) = γ(wnext), add to Wexplored ;
8 if γ(wnext) > γ(w∗) then
9 w∗ = wnext;

10 end
11 end

Machine Learning

1 3

3.4 Continuous random search for weight learning

A primary drawback of RGS is the need to define a grid over the space which captures
weights that will lead to a good model. While specifying a grid might seem straightfor-
ward, several unique properties of the weight space makes the process of specifying the
right grid non-trivial (details in Sect. 4). Further, specifying grids can easily result in unex-
pected biases. For instance, one may be tempted to simply define a grid of evenly spaced
points in a unit hypercube. However, this leads to a sampling bias towards configurations
with moderate ratios which might not be ideal (more details in Sect. 4.4).

Continuous random search for weight learning (CRS) is similar to RGS in that, rather
than exploring the entire space, t weight configurations are chosen for evaluation and the
highest performing configuration is returned. The difference is that CRS does not define
a discrete grid of weights but samples continuously from the search space. Therefore, it
is crucial for the search space to be an accurate representation of the true weight space. In
this approach (as mentioned in Algorithm 3), we sample t weight configurations from a r
dimensional Dirichlet distribution and return the weight configuration with the best value
obtained for the � function. In Sect. 4.4, we discuss in detail on why using a Dirichlet dis-
tribution to sample weights is an appropriate choice. For CRS the Dirichlet distribution is
parametrized by a r-dimensional hyperparameter A ∈ ℝ

r
+
 , which can be tuned to obtain the

best approximation of the space based on the application and prior knowledge.

Algorithm 3: Continuous random search for weight learning
Result: w∗ : weight configuration with best evaluation metric among samples

1 t = maximum number of weight configurations to explore;
2 Wexplore ∼ Dirichlet(A)t, t distinct samples from a Dirichlet distribution;
3 forwnext ∈ Wexplore do
4 perform MAP inference to compute γ(wnext);
5 if γ(wnext) > γ(w∗) then
6 w∗ = wnext;
7 end
8 end

3.5 Hyperband for weight learning

So far, the search-based methods we have discussed iteratively select a set of t weight con-
figurations to explore, �explore , from a set of weight configurations, � and then run infer-
ence until completion for each �i ∈ �explore in order to calculate �(�i) . Then the weight
configuration �∗ = argmax�i∈�explore

�(�i) is chosen as the model weights. Ideally, in these
methods, we want t to be as large as possible, as increasing the number of weight configu-
rations explored can potentially improve the �(�∗) obtained. However, it is generally infea-
sible to have a large t due to limited resources. In order to maximize our gain with the lim-
ited resources, we make use of a practical observation that the weight configurations which
initially show a slow rate of improvement during inference will tend to converge to a poor
�(⋅) evaluation. For instance, let �1 and �2 be two weight configurations for a SRL model.
If MAP inference for both the weight configurations takes t̂ iterations to converge to the
final solution and results in 𝛾(�1) > 𝛾(�2) , then it is highly likely that the �(⋅) computed by
interrupting the MAP inference at t̂

ŝ
 number of iterations, where ŝ > 1 , will still result in

 Machine Learning

1 3

𝛾(�1) > 𝛾(�2) . Therefore, running MAP inference to convergence for all weight configura-
tions could be wasteful. By early termination of unpromising weight configurations a larger
number of configurations can be explored resulting in a better overall solution. This idea
has been exploited in other areas of machine learning to tune hyperparameters and is
referred to as Hyperband (Li et al. 2018). Here, we adapt this approach in the context of
weight learning and refer to it as Hyperband for weight learning (HBWL).

HBWL allows for more exploration while still operating within a budget (generally
time or iterations) through adaptive resource allocation and early-stopping. To understand
how the algorithm operates, we will first describe SuccessiveHalving, a critical subroutine
of HBWL , and then describe how SuccessiveHalving is used in HBWL . SuccessiveHalv-
ing (as mentioned in Algorithm 4) requires two input parameters, namely t the total num-
ber of weight configurations we wish to explore and B the total number of iterations for
MAP inference.1 Initially t configurations �explore = {�1,⋯ ,�t} are sampled from the
search space � . Then, SuccessiveHalving proceeds in rounds. At the start of each round, a
fraction of the budget (b =

B

t
) is allocated to the t weight configurations to perform MAP

inference and compute � �(⋅, b) where � �(⋅, b) is the evaluation metric computed after b itera-
tions of MAP inference. Finally, the weight configurations are ranked based on � �(⋅, b) , the
bottom half of the weight configurations are removed, and |�explore| is reduced to t

�
 where

𝜂 > 1 is the proportion of configurations to be removed (for classic SuccessiveHalving
� = 2). This process is repeated for multiple rounds until only one weight configuration
remains which is chosen as the �∗.

The hyperparameters B and t of SuccessiveHalving can trade-off between having a
large number of weight configurations with a small amount of resource allocated to each
configuration (a.k.a. exploration), or a small number of weight configurations with a large
amount of resource allocated to each weight configuration (a.k.a. exploitation). The best
trade-off between exploration and exploitation is typically unknown. HBWL (as men-
tioned in Algorithm 5) extends SuccessiveHalving by trying several possible values for
the t

B
 ratio to choose the best explore exploit trade-off. The possible values for t

B
 are con-

structed strategically from the two user provided parameters for HBWL , R̂ , the maximum
amount of resource that can be allocated to a single weight configuration, and � ∈ (1,∞) ,
the proportion of weight configurations to be removed in each round of SuccessiveHalv-
ing. Each complete execution of SuccesiveHalving in HBWL is referred to as a bracket.
Every bracket is parameterized by the values (t, B, s) that are constructed uniquely for each
bracket using R̂ and � , where s is the number of initial configurations being tested in that
bracket. HBWL chooses a bracket size of s = ⌊log𝜂(R̂)⌋ + 1] and decrements it every round
until one. Finally, the weight configuration with the best value for function � is returned.

1 Note that, for simplicity, in the algorithm we overload B to be number of iterations in MAP inference
in the first round instead of maximum number of iterations. The maximum number of iterations in Algo-
rithm 4 is B�log� (t) , where � is a parameter defined in HBWL which represents the proportion of weights
removed every round in SuccessiveHalving.

Machine Learning

1 3

Algorithm 4: SuccessiveHalving
Result: w∗, γ∗ : weight configuration with the best evaluation metric and the metric value γ(·)

1 B = number of iterations in MAP inference for first round;
2 η = the proportion of weight configurations to be removed in each round;
3 Wexplore = weight configurations to be evaluated;
4 t = |Wexplore|;
5 b = B ;
6 iter = 0;
7 while t > 1 do
8 iter++ ;
9 ∀w ∈ Wexplore perform MAP inference with max iterations set to b;
10 if argmaxw∈Wexplore

γ′(w, b) > γ∗ then
11 γ∗ = maxw∈Wexplore

γ′(w, b);
12 w∗ = argmaxw∈Wexplore

γ′(w, b);
13 end
14 t = � t

η
�;

15 b = Bηiter ;
16 Wexplore = topt(Wexplore), ;
17 // topt ranks Wexplore based on γ′ and returns top t weights;
18 end

Algorithm 5: Hyperband for weight learning
Result: w∗ : weight configuration with best evaluation metric

1 R̂ = maximum number of resources to be allocated;
2 η = the proportion of weight configurations to be removed in each round;
3 smax = �logη(R̂)�, maximum bracket size;
4 γ∗ = −∞, the best γ value obtained so far;
5 for s ∈ {smax, smax − 1, · · · , 1} do
6 t = � (smax+1)ηs

(s+1) �;
7 B = R̂η−s;
8 Wexplore ∼ Dirichlet(A)t, t distinct samples from a Dirichlet distribution;
9 ws, γs = SuccessiveHalving(B,Wexplore);
10 if γs > γ∗ then
11 γ∗ = γs;
12 w∗ = ws;
13 end
14 end

3.6 Bayesian optimization for weight learning

Next, we introduce BOWL (Bayesian Optimization for Weight Learning), which uses GPR
to perform weight learning in the BO framework.2 Previously discussed approaches make
no assumptions about the search space and the evaluation function (�). They randomly
sample weight configurations from the search space and evaluate the function � . This

2 Note that, while BO can refer to many different approaches, in this paper we loosely refer to a specific
way of using GPR in BO framework to learn weights as BOWL .

 Machine Learning

1 3

process can be made more efficient by assuming that the metric obtained by two weight
configurations �1 and �2 are likely to be similar (�(�1) ≈ �(�2)) if the distance between
them is small. This implies that when searching the space we can make use of previous
observations and either explore more diverse weight configurations or exploit and choose
weight configurations closer to previous configurations that performed well. This is exactly
the goal of the new approach that we introduce here, BOWL . Next we explain BOWL and
our choices for both the kernel function in GPR and the acquisition function in BO which
are key in determining the method’s performance.

A high-level sketch of BOWL is as follows: first, a weight configuration � ∈ � is cho-
sen using an acquisition function � (discussed in Sect. 3.6.2). Next, inference is performed
using the current weight configuration � , and �(�) is computed. Then the GPR is updated
with � and �(�) . Finally, after t iterations, the weight configuration that resulted in the
highest value for � is returned. See Algorithm 6 for details. As mentioned earlier, there are
two primary components of BOWL that need to be defined: the kernel function used in
GPR and the acquisition function �.

Algorithm 6: Bayesian optimization for weight learning
Result: w∗ : weight configuration with best evaluation metric among samples

1 W = Dirichlet(A);
2 t = maximum number of weight configurations to explore;
3 for iter ∈ {1, . . . , t} do
4 wnext = argmaxw∈W α(w); α//an acquisition function chosen from Section 3.6.2;
5 perform MAP inference to compute γ(wnext);
6 update GPR with γ(wnext);
7 if γ(wnext) > γ(w∗) then
8 w∗ = wnext;
9 end

10 end

3.6.1 Kernel function

In this work we employ the squared exponential kernel, kSE , over a r′ dimensional projec-
tion of the weight space, E ∶ ℝ

r
+
→ ℝ

r�:

 where �̃� is the amplitude parameter and � is the characteristic length-scale parameter of
kSE . Leveraging the fact that input projections preserve the positive semi-definiteness of
the kernel (15), we have that k is a valid covariance function. Furthermore, the parameters
of kSE have the same interpretation for k. The scaling factor � affects the smoothness of the
approximation (the larger the value, the more smooth the approximation) and the number
of iterations required to explore the space. We choose � such that a reasonable exploration
of the space is possible in t iterations. The value of �̃� is chosen based on the range of the
metric being learned.

As mentioned in Sect. 2.4.2, the squared exponential kernel is a stationary kernel. In
fact, the kernel can be written as a function of only the absolute value of the Euclidean dis-
tance of its inputs. Kernels with this property are called isotropic, or radial basis functions

(16)k(�i,�j) = kSE(E(�i), E(�j)) = �̃� ⋅ exp{
‖E(�i) − E(�j)‖22

2𝜌2
}

Machine Learning

1 3

(Rasmussen and Williams 2005). The isotropic stationarity property is not typically
observed in practice for weight configurations. However, this assumption can be satisfied
in the projected weight space defined by the function E . Ideally, the weight space projec-
tion should be such that if the distance between two projected weight configurations is zero
then the output of the function � should be equal. Further, as the distance between the two
projected weight configurations increases, the correlation between the output of the � func-
tion should go to zero. In Sect. 4.2, we introduce a projection for the weights and show that
if distances measured in the projected space are zero, then the output of the � function is
the same. This indicates better correlation among function values and distances measured
in the projected space.

The squared exponential kernel makes a smoothness assumption on � . Specifically, it
assumes that � is infinitely differentiable at every point in its domain. While this might seem
restrictive, we argue that this is a reasonable assumption in the context of weight learning in
SRL. To do this, we constrain ourselves to only those metrics (�(�, �∗)) that are smooth with
respect to the random variables (such as MSE). Note, our assumption is that the function � is
smooth as a function of weight configurations � and not the random variables � . Hence, it is
non-trivial to prove smoothness of � . However, with the above constraint on the possible met-
rics, we know that if a small change in � leads to a small change in � , then the function � is
also smooth. This directly leads to the conditioning of the problem. If a problem is well-con-
ditioned then our assumption about the smoothness of � is precise. If the problem is ill-condi-
tioned then this assumption fails to hold and the function learned in BOWL could be a poor
approximation of � . Further, in practice we observe that small changes in weights generally
do not affect the � function significantly which indicates smoothness. Even though we assume
�(�, �∗) is a smooth function to justify the squared exponential kernel, in our empirical evalu-
ation we observe this is effective even on non-smooth evaluation functions such as accuracy.

3.6.2 Acquisition function

Another crucial component of our algorithm is the acquisition function � . The func-
tion � determines the next weight configuration on which to evaluate the function � , i.e.,
�next = argmax�∈� �(�) . The evaluation of � updates the distribution described by the under-
lying GP of BOWL . We would like to explore a variety of weights to allow BOWL to
develop a complete picture of the weight learning objective � while also exploiting previous
observations to target promising regions of the weight space. To achieve this, we consider four
well studied acquisition functions in the context of BO.

Upper confidence bound (UCB) (Srinivas et al. 2010): is an optimistic policy with prov-
able cumulative regret bounds. The acquisition function can be written as:

where � and � are the mean and variance predicted by the GP and � ≥ 0 is a hyperparam-
eter set to achieve optimal regret bounds.

Thompson sampling (TS) (Thompson 1933): is an information-based policy that consid-
ers the posterior distribution over the weights � . The acquisition function can be written as:

where p̃ are samples obtained from the distribution computed at the point �.

�(�) = �(�) + � ⋅ �(�)

𝛼(�) = p̃(�)

p̃(�) ∼ N(𝜇(�), 𝜎(�))

 Machine Learning

1 3

Probability of improvement (PI) (Kushner 1964): is an improvement-based policy that
favors points that are likely to improve an incumbent target � . The acquisition function can be
written as:

where F is the standard normal cumulative distribution function and � is set adaptively to
the current best observed value for �.

Expected improvement (EI) (Mockus et al. 1978): is an improvement-based policy simi-
lar to PI. Instead of probability, it measures the expected amount of improvement. The acquisi-
tion function can be written as:

where F is the probability density function of a standard normal distribution function.

3.7 Efficiency of search‑based approaches

In practice, it is inefficient to use search-based approaches for high-dimensional problems.
For instance, GPR has been shown to work best when the number of dimensions is less
than 50 (Wang et al. 2016). This makes weight learning an ideal use case for search-based
approaches, because typically SRL models have just tens of rules and most often the num-
ber of rules does not exceed 50.

The success of all of the search-based weight learning approaches discussed so far
rely on the weight configurations, �explore , being an accurate representative sample of the
weight space. Furthermore, for BOWL , the distances measured between weight configu-
rations should correlate to the MAP estimates of the corresponding parameterizations of
the LMRF distribution. In the next section, we first show that the weight space in both
PSL and MLN are redundant and weight configuration distances do not correlate to dis-
tances in MAP estimates. Next, assuming positive weights for rules, we introduce a novel
projection that address these challenges. Finally, we also provide an efficient strategy to
approximately sample from the projected space ensuring the effectiveness of the search-
based approaches introduced.

4 Efficient space to search for weights

The weights of a SRL model consisting of r rules is represented via a vector in an r-dimen-
sional space and is referred to as original space (OS). However, this is an inefficient space
to perform weight learning using a search-based approach. This is because there exists
many weight configurations which yield the same solution when performing MAP infer-
ence in SRL models. The main reason for this is because weights in SRL models are rela-
tive and scale invariant at the time of MAP inference. We can show that any SRL model
with weights in ℝ can be re-scaled with a positive constant c̃ without any change to the
solution obtained through the objective in Eq. 3. This shows that weights in SRL models
are scale invariant when performing MAP inference.

𝛼(�) = ℙ(𝛾(�) > 𝜏) = F

(
𝜇(�) − 𝜏

𝜎(�)

)

�(�) =

{
(�(�) − �)F

(
�(�) − �

�(�)

)
+ (�(�))F

(
�(�) − �

�(�)

)}

Machine Learning

1 3

Theorem 1 Consider any SRL model with r rules and weights � = {w1,… ,wr} such that
for all i = 1,⋯ , r , wi ∈ ℝ

+ (wi ∈ ℝ for MLN). For all weight configurations c̃ ⋅ � where
c̃ > 0 , the solution obtained for � by performing MAP inference using weights � and c̃ ⋅ �
are the same, i.e., argmax� ŝ ⋅ �(�|�,�) = argmax� ŝ ⋅ �(�|�, c̃ ⋅ �).

Proof The MAP inference objective generated by using weights c̃ ⋅ � can be written as:

 ◻

Since in our search-based approaches we optimize with respect to a user-defined evalu-
ation metric, and this function depends only on the random variables obtained by MAP
inference, we have that the user-defined evaluation metric function is also scale invariant.

4.1 Challenges in the original space

OS for weights has two fundamental challenges for search-based approaches: (1) OS is
redundant and (2) the distance between weights in OS does not translate to true correlation
of the MAP solution obtained by using these weights. The redundancy of space is clear
from Theorem 1 as the weights on any line intersecting origin in OS will have the same
solution. As a result, the Euclidean distance, �i,j , between two weight configurations, �i
and �j , can be extremely large and still yield the exact same solution. The example below
clearly illustrates this phenomenon:

Example 2 Consider a model with two rules � = {w1,w2} . Let us assume three pos-
sible weight configurations for this problem: �1 = {0.1, 0.1} , �2 = {1.0, 1.0} , and
�3 = {0.1, 0.0001} . Assuming that the number of groundings for both rules are the same,
the weights of the rules in �1 and �2 indicate that both rules are equally important and
lie on a line intersecting origin, while in �3 the first rule is 1000 times more important
than the second rule and is not on the same line. This results in the function � producing
the same output for �1 and �2 , and potentially a different value for �3 . Based on this, the
weight configuration �3 should be significantly different from the weight configurations �1
and �2 , while �1 and �2 should be similar. Unfortunately, the Euclidean distances meas-
ured between the weight configurations, �1,2 = 1.27 , �1,3 = 0.09 , and �2,3 = 1.34 , do not
behave in this manner. The distance �1,2 is much larger than distance �1,3 . Therefore, some
of the search-based approaches such as BOWL would incorrectly infer that the function
value of �(�1) is more correlated with �(�3) than �(�2) . However, as argued above, we
want the opposite behavior.

argmax
�

ŝ ⋅ �(�|�, c̃ ⋅ �) = argmax
�

ŝ ⋅

𝜄∑

i

c̃ ⋅ wi𝜙i(�, �)

= argmax
�

c̃ ⋅ ŝ ⋅

𝜄∑

i

wi𝜙i(�, �)

= argmax
�

c̃ ⋅ ŝ ⋅ �(�|�,�)

= argmax
�

ŝ ⋅ �(�|�,�)

 Machine Learning

1 3

It is important to note that the redundancy illustrated in the example is an inherent prop-
erty of the OS, and will also arise when using metrics alternative to the Euclidean dis-
tance. In fact, any metric that is not scale invariant will be redundant with respect to the
MAP inference problem. Certainly there are distance measures such as the cosine similar-
ity metric which are scale invariant. Measuring distances between weight configurations
using their cosine would resolve the scale dependence redundancy of the OS, however,
this metric may still struggle with the second challenge of distances not translating to true
correlations between MAP solutions. Indeed, one part of this challenge is overcoming the
redundancies of the OS, but another is the being robust to the number of groundings of the
rules. In this section we introduce a new projection for weight configurations such that the
standard Euclidean distance is both not redundant with respect to the scale dependence of
MAP inference and is not effected by the number of groundings of the rules, resulting in a
metric that is more representative of the true correlation of weights. For BOWL , this pro-
jection supports the application of isotropic kernels.

For the remainder of this section we assume weights of the rules to be positive. While
this does not restrict PSL which supports only positive weights, it does constrain MLNs
which support negative weights. However, it has been shown that a negative weighted
rule in MLNs can be replaced with a negated rule and positive weight with the same
magnitude. Further in Sect. 5, we show negative weight learning can be supported by
search-based approaches.

4.2 Scaled space

In order to perform efficient and effective search, we define a new space for the weight
configurations called scaled space (SS). SS is a projection of weights onto a relative
space. We use the ratio of weights between the rules to define the relative importance
of weights in the configuration. This projection eliminates redundancies due to scale
invariance and results in distances that more closely correspond to the actual correlation
between the weight configurations. Formally, we define SS as:

Definition 3 Given a set of weights � = {w1,… ,wr} ∈ (0,∞]r , SS E is a projection
defined on � such that E(�) ∈ ℝ

(r−1) is given by:

Given the definition of SS, we next define the distance between two weight configu-
rations in SS.

Definition 4 The distance between two weight configurations �i and �j , Δi,j , in SS is
defined as:

Given the definition of SS, we can now show how SS addresses the two challenges
mentioned for OS. We first show that any weight configuration on a line intersecting
the origin in OS will be represented by the same point in SS. This eliminates the redun-
dancy that exists in OS. Next we show that in SS a distance of zero (Δi,j = 0) between
two weight configurations �i and �j , implies that the two weight configurations yield

(17)E(�) = {∀r
i=2

(ln(wi) − ln(w1))}

(18)Δi,j = ||E(�i) − E(�j)||22

Machine Learning

1 3

the same MAP inference solution. Hence SS yields a more accurate representation of
distances between weight configurations.

Theorem 2 Given two weight configurations �1 and �2 , if �1 = c ⋅ �2 , i.e., �1 and �2 lie
on a line intersecting the origin in OS then the resultant value in SS will be the same, i.e.,
E(�1) = E(�2)

Proof Given, �1 = c ⋅ �2 implies:

E(�1) by definition is given by {∀r
i=2

(ln(w1,i) − ln(w1,1))} . By replacing w1,i with cw2,i we
get:

Therefore, if �1 = c ⋅ �2 then E(�1) = E(�2) . ◻

Theorem 3 Given two weight configurations �1 and �2 , if E(�1) = E(�2) (i.e., Δ1,2 = 0)
then the solution obtained for � by optimizing Eq. 3 with both the weight configurations are
the same.

Proof Let �1 = {w1,1,… ,w1,r} , �2 = {w2,1,… ,w2,r} and E(�1) = E(�2) . As the two
weight configurations are the same in SS, the equality can be written as:

 Since w1,1 ∈ (0, 1] and w2,1 ∈ (0, 1] are constants, the resulting optimization problems are
equivalent:

 Therefore, if the distance between two weight configurations is 0 in SS, then the solutions
of their corresponding SRL model by optimizing Eq. 3 are the same. ◻

Theorem 2 shows that SS overcomes redundancies due to scale invariance of MAP
inference and Theorem 3 proves the distances in SS are a more accurate representation
of correlation than OS. These theorems show that SS is a more efficient space for weight
learning using search-based approaches. Note that in the definition of SS we use the weight
of the first rule to compute the projection. This choice is arbitrary and can be switched to
any rule without affecting the space.

Example 3 (Continued) Consider our earlier example. The weights and the distances
of our running example in SS E using Eqs. 17 and 18 are: E(�1) = {0} , E(�2) = {0} ,
E(�3) = {6.907} , Δ1,2 = 0 , Δ1,3 = 47.7 , and Δ2,3 = 47.7.

w1,i = c ⋅ w2,i;i ∈ 1,… , r

E(�1) = {∀r
i=2

(ln(w2,i) − ln(w2,1))} = E(�2)

ln(�1) − ln(w1,1) = ln(�2) − ln(w2,1)

�1 =
w1,1

w2,1

�2

argmax
y

ŝ ⋅ �(�|�,�1) = argmax
y

w1,1

w2,1

ŝ ⋅ �(�|�,�2)

= argmax
y

ŝ ⋅ �(�|�,�2)

 Machine Learning

1 3

A drawback of SS is that it does not support a weight of zero for any rule in the model.
This means that all rules in the configuration must participate in the model. However, in
practice, we mitigate this by using SS only to measure distances between weight configura-
tions and add a small positive value � to all weights. In order to generate weight configura-
tions for the search, we sample from a hypersphere in OS which has similar properties as
SS. We discuss this in detail in the Sect. 4.4.

4.3 The effect of varied number of groundings in the scaled space

Our discussion on SS so far has made a very important simplifying assumption, that
the number of groundings for each rule in the model is the same. However, the num-
ber of groundings produced by different rules are seldom the same and the number of
groundings produced by a rule has an impact on the inference of the random variables.
The weight associated with each rule is repeated for each ground instance of that rule.
This leads to the weight of each rule having varied influence on the minimization of the
energy function. For instance, if a model has two equally weighted rules, but one rule
produces 10 times more groundings than the other, then that rule implicitly becomes 10
times more important in the model.

Next we show that while the number of groundings has an impact on the solution
obtained by SRL models, it does not impact the correctness of SS. We can modify the
weights to accommodate the number of groundings of the rules in the model. Consider a
model with r rules and let � = {�1,… , �r} be the number of groundings for each of the r
rules. We define a grounding factor � for each rule. For rule z, the grounding factor
�z =

�z

max(�)
 , where � = {�1,… , �r} is the vector of grounding factors. Therefore, the true

weight associated with the zth rule is �z ⋅ wz and the grounding adjusted weight configu-
ration can be represented as an element-wise product between � and � , i.e., �̃ = � ⊙ � .
The distance between two weight configurations i and j in OS can be re-written as
||�̃i − �̃j||22 . Similarly the distance in SS can be re-written as ||E(�̃i) − E(�̃j)||22 . How-
ever, the scaling factor � does not affect the distance in SS as � is constant for both
weight configurations and cancels when computing the distance leaving the distance in
SS unchanged.

Theorem 4 Given two weight configurations �i and �j , a set of grounding factors
of � , and grounding adjusted weight configurations �̃i = � ⊙ �i and �̃j = � ⊙ �j ,
the distance measured between both (�i,�j) and (�̃i, �̃j) in SS are equal, i.e.
||E(�i) − E(�j)||22 = ||E(�̃i) − E(�̃j)||22.

Proof To prove the above theorem we consider the difference between the weight configu-
rations E(�̃i) − E(�̃j):

 Since E(�̃i) − E(�̃j) = E(�i) − E(�j) , the distances are also equal. ◻

E(�̃i) − E(�̃j) = (ln(� ⊙ �i) − ln(𝜅1 ⋅ wi,1)) − (ln(� ⊙ �j) − ln(𝜅1 ⋅ wj,1))

= (ln(�i) − ln(wi,1)) − (ln(�j) − ln(wj,1))

= E(�i) − E(�j)

Machine Learning

1 3

Theorem 4 shows that the distance measured between two weight configurations in SS
is robust while considering the size of their groundings.

4.4 Sampling weight configurations for search

Most search-based approaches work by sampling weight configurations in order to explore
and search for a set of weights with the best evaluation score. In order to do this effectively,
we must ensure that the samples generated for exploration are representative of the space.
While one could sample points from the SS directly, this introduces three challenges. First,
as mentioned earlier, points in SS cannot represent rules with zero weight. Second, to
perform MAP inference weights need to be in OS and there is a one-to-many mapping
between SS and OS. Third, sampling uniformly from the SS would require defining mini-
mum and maximum ratio hyperparameters which would bound the search space and be
potentially non-intuitive to set. It is much simpler to sample configurations in the OS and
measure distances in the SS. Further, we will see that this approach leads to a set of easy
to use hyperparameters that give the modeler a principled method for concentrating the
weight search to regions of interest.

One straightforward approach to sampling weight configurations is to uniformly points
from the positive orthant of a unit hypercube in OS and then project the points onto SS to
measure distances. The approach can be summarized as:

where Unif generates uniform random numbers between [0, 1]r . Since, the influence of
weights in SRL models are scale invariant for MAP inference, we can ensure all possible
weight configurations that can be represented in the ℝ+r can be represented in [0, 1]r . How-
ever, the main problem with this approach is that the resulting configurations will have a
low spread in SS as OS has many redundancies. Specifically, the projection will result in
more probability mass around configurations with ratios near 1. This is not desirable as we
would prefer to have a uniform/large spread of possible weight configurations in SS.

As mentioned earlier, MAP inference in SRL models are scale invariant and hence
weights along a line passing through the origin, 0, in OS are equivalent, i.e., the direc-
tion of a vector starting at the origin in OS is sufficient to represent all weight configura-
tions in SRL models. This implies that the weight configurations obtained by sampling
from the surface of an r-dimensional unit hypersphere in the positive quadrant represents
all possible weight configurations in OS. Therefore, uniformly sampling from the surface
of this hypersphere (we only refer to the positive orthant of the unit hypersphere) is a close
approximation of SS. It is trivial to show that Theorem 2 and 3 apply to this space (full
proofs are in "Appendix"). However, Theorem 4 does not hold true for this space. This is
because the grounding factor generally does not preserve the orientation of the vector, and
as a result will modify the distances in this space (full proof shown in "Appendix"). There-
fore, we treat the hypersphere as an approximation of SS and sample weight configurations
from the hypersphere but compute distances in SS. Uniform samples of weight configura-
tions from the surface of the hypersphere can be obtained by first sampling points from
a standard multivariate-normal distribution and projecting the values to the hypersphere
(Muller 1959; Marsaglia 1972) (since we want samples only from the positive orthant we
project all samples on to this orthant by taking the absolute value):

� ∼ Unif([0, 1])r

 Machine Learning

1 3

� is a r-dimensional zero vector and � is an r-dimensional identity matrix.
While uniform sampling from the surface of a hypersphere ensures that every orienta-

tion of the weight vector is equiprobable, in practice this might not always be desirable.
The primary reason for this is that for any weight configuration sampled from the hyper-
sphere, if we choose two weights wi < wj the P(wi

wj

< 0.1) ≈ 0.11 (assuming r = 2). This
implies that the ratio between weights will be typically be close to 1 which is not always
ideal as we would expect the evaluation metric to show larger variance with larger ratios.
In order to circumvent this, we propose another sampling strategy which gives full control
over the distribution of the weight configurations. We sample from an r-dimensional Dir-
ichlet distribution which generates samples from the probability simplex and then project
the samples onto the surface of the positive orthant of the r-dimensional unit hypersphere.
There is a one-to-one mapping between the points on the probability simplex and the posi-
tive surface of the hypersphere, i.e., all possible weight configurations can be generated by
this procedure. The concentration hyperparameter, A of the Dirichlet distribution can be
modified to generate samples concentrated towards the center (near equally valued weights)
or the poles (extreme ratios) or anywhere in between. The sample generation process is as
follows:

where A ∈ R+r is the hyperparameter that defines the Dirichlet distribution. The visuali-
zation of different densities obtained using different A in three dimensions is shown in
"Appendix" along with its impact on the empirical evaluation in Sect. 6.3.2.

5 Accommodating negative weights in Markov logic networks

In this section we discuss how the sampling strategy discussed in Sect. 4.4 is modified for
MLNs to accommodate negative weights when using CRS , HBWL , and BOWL . Since
the Dirichlet distribution samples from the probability simplex, the weights sampled are
strictly non-negative. To introduce the possibility of negative weights, we first sample
weight configurations from the Dirichlet distribution and then randomly select an orthant
in the r-dimensional Euclidian space. This random selection of an orthant has the same
effect as independently flipping the sign of each weight in the sampled configuration so
every orthant is equiprobable. We further apply the positive scale invariance property for
weight configurations to ensure the uniqueness of samples. While no sampling is needed
for RGS in MLNs, we ensure uniqueness of explored configurations by projecting the val-
ues onto a unit hypersphere instead of SS. In order to use BOWL in MLNs, instead of
computing distance in SS, we compute the Euclidean distances of the weight configura-
tions by projecting the weights onto the hypersphere.3

� ∼ N(�, �)

� = | �

||�|| |

(19)� ∼ Dirichlet(A)

3 Note this may lead to over generalization of the function as two points might be very close to each other
but have significantly different outcome on the � function (as mentioned in Example 2).

Machine Learning

1 3

6 Empirical evaluation

In this section, we evaluate the search-based approaches for weight learning on various
real-world datasets. We investigate four research questions through our experiments:

Q1 How do search-based approaches perform on real-world datasets compared to the exist-
ing methods?

Q2 Which search-based approach performs better weight learning in SRL?
Q3 Are search-based approaches scalable?
Q4 Are search-based approaches robust?

In order to answer these questions we selected five real-world datasets from different
domains for which SRL models have promising results (Bach et al. 2017; Kouki et al.
2015).4 Details of these datasets are as follows:

Jester: contains 2,000 users and 100 jokes (Goldberg et al. 2001). The task is to predict
user’s preference to jokes.

LastFM: contains 1,892 users and 17,632 artists. The task is to recommend artists to
users by predicting the ratings for user-artist pairs.

Citeseer: contains 2,708 scientific documents, seven categories, and 5,429 directed cita-
tions. The task is to assign a category to each document.

Cora: is similar to Citeseer dataset, but contains 3,312 documents, six categories and
4,591 directed citations.

Epinions: contains 2,000 users and 8,675 directed links which are positive and negative
trust links between users. The task is to predict the trust relation.

We evaluate the three search-based methods (RGS, CRS , and BOWL) for both
MLNs and PSL, and HBWL for PSL only. While the implementation of RGS, CRS
, and BOWL are efficient to run for both MLNs and PSL (more details in Sect. 6.2),
HBWL with MLNs on our datasets is not as efficient and each experiment was estimated
to take over a month. While the search-based approaches have been fully integrated into
PSL codebase, for MLNs, we implement search-based methods as wrappers, i.e., we use
an external script to generate weights and use Tuffy to perform MAP inference. Because
of this, in HBWL , the SuccessiveHalving step requires regrounding of the same model
many times, substantially increasing the time required to run. We use MLE , MPLE , and
LME as baseline non-search-based methods for PSL and use LME (implemented in PSL)
and DN (implemented in Tuffy), as the non-search-based baseline for MLN. The LME
implementation for both MLN and PSL is optimized using Frank-Wolfe optimization. The
prediction and separation subproblems of LME is performed with WalkSAT for MLNs and
with ADMM for PSL. As MLNs are discrete, we perform evaluations only on the three
discrete datasets, Citeseer, Cora, and Epinions. For each dataset we use two domain appro-
priate evaluation metrics. We report MSE and AUROC for the Jester and LastFM datasets,
categorical accuracy (CA) and F1 for the Cora and the Citeseer datasets, and AUROC and
F1 for the Epinions dataset.

4 Models, code, and data: https:// github. com/ linqs/ srini vasan- mlj20.

https://github.com/linqs/srinivasan-mlj20

 Machine Learning

1 3

6.1 Performance analysis

To address [Q1] and [Q2], we compare the performance of all search-based approaches
RGS, CRS , HBWL , and BOWL with MLE , MPLE , and LME in PSL and DN and
LME in MLN on several metrics. For the datasets, we use the 8 folds generated by Bach
et al. (2017) for Citeseer, Cora, Epinions and Jester and 5 folds generated by Kouki et al.
(2015) for LastFM and perform cross validation. In RGS , we use the PSL distribution’s
default set of possible weight values V = {0.001, 0.01, 0.1, 1, 10} , while for MLNs we use
V ∪ −V . For CRS , HBWL , and BOWL , we specify each dimension of A to be 0.05
for PSL (more experiments with different values can be found in Sect. 6.3.2) and 0.1 for
MLNs. Note, while we require non-zero weights for the use of SS in BOWL , we do not
explicitly choose a lower bound for the weights, i.e., the SS parameter � is set to 0, as the
probability of sampling a weight of 0 from a Dirichlet distribution is 0. In HBWL for PSL,
R̂ represents the number of iterations of ADMM inference and is set to the default value
of 25000 and similarly � is set to 4. For RGS, CRS , HBWL , and BOWL , the maximum
number of weight configurations to explore in order to approximate the user-defined evalu-
ation metric function is set to t = 50 . Although in our experiments we show that the best
metric value is usually obtained at t < 25 (especially for BOWL , this is likely because the
function we intend to learn has several flat regions). We also use a stopping criterion for
BOWL which terminates the exploration if the standard deviation at all sampled weight
configurations is less than 0.5. MLE , MPLE , LME , and DN are allowed to run for 100
iterations or until convergence whichever is smaller. For LME in both PSL and MLN, the
parameter C is set to 1. For BOWL , we use UCB as our acquisition function with � = 1
to favor modest exploration. However in Sect. 6.3.3 we show that similar performance can
be obtained with PSL by using the other acquisition functions discussed in Sect. 3.6.2.
Other hyperparameters that we use for BOWL are: �̃� = 0.5, 𝜌 = 1 , and the mean function
is a constant 0.5. We set the value of � to 1.0 after exploring different values in [105, 10−5]
using a validation set, and we set �̃� to 0.5 as our metrics are mostly in the range [0, 1].

Tables 1, 2, 3, and 4 show the comparison between search-based approaches and other
methods across the different datasets for both PSL and MLN respectively. We first analyze
the performance results of PSL in Tables 1 and 2. Here we show search-based approaches
are consistently among the best performing methods across all the datasets and metrics.
Notably, BOWL is the best or within one standard deviation from the best performing

Table 1 Mean and standard deviation of mean square error (MSE), AUROC, and F1 performance of PSL
weight learning methods on Jester, LastFM, and Epinions

The best scoring methods are shown in bold

Jester LastFM Epinions

MSE AUROC MSE AUROC F1 AUROC

MLE 0.053 (2.3e−4) 0.731 (1.4e−3) 0.061 (1.5e−3) 0.548 (3.2e−3) 0.712 (1.2e−2) 0.811 (1.5e−2)

MPLE 0.068 (5.6e−4) 0.700 (1.5e−3) �.��� (6.6e−4) 0.552 (2.4e−3) 0.711 (1.2e−2) 0.792 (2.3e−2)

LME 0.063 (4.4e−4) 0.702 (1.6e−3) 0.061 (5.7e−4) 0.549 (2.0e−3) 0.712 (1.2e−2) 0.807 (3.0e−2)

RGS 0.053 (5.6e−4) �.��� (5.8e−3) 0.061 (2.0e−3) 0.574 (1.2e−3) 0.711 (1.2e−2) �.��� (2.0e−2)

CRS 0.053 (1.3e−3) 0.744 (1.2e−2) 0.062 (3.3e−3) 0.572 (6.5e−3) 0.712 (1.2e−2) 0.797 (2.0e−2)

HBWL �.��� (5.9e−4) 0.756 (6.6e−3) 0.064 (2.8e−3) 0.556 (6.6e−3) 0.711 (1.4e−2) 0.810 (1.6e−2)

BOWL 0.053 (6.4e−4) 0.761 (5.0e−3) 0.063 (1.5e−3) �.��� (3.7e−3) �.��� (1.1e−2) 0.780 (2.1e−2)

Machine Learning

1 3

method on all datasets and metrics other than LastFM MSE. For the Epinions and Cora
datasets, there is no large difference among all approaches on both metrics. However, on
the Citeseer dataset, all search-based approaches perform better than other approaches
on CA. An interesting observation is that on the Citeseer dataset, the weights found by
MLE and LME perform about as well (within one standard deviation) as search-based
approaches on F1 but not on CA. This can potentially be because the optimal weights for
F1 are more aligned with maximum likelihood weights in this special case. This further

Table 2 Mean and standard deviation of categorical accuracy (CA) and F1 performance of PSL weight
learning methods on Citeeseer and Cora

The best scoring methods are shown in bold

Citeseer Cora

CA F1 CA F1

MLE 0.835 (1.5e−4) 0.283 (6.4e−2) 0.881 (1.7e−2) 0.404 (8.5e−2)

MPLE 0.837 (7.6e−4) 0.293 (3.3e−2) 0.888 (3.1e−2) 0.439 (2.1e−2)

LME 0.838 (8.6e−3) 0.303 (3.5e−2) �.��� (4.0e−3) 0.442 (2.1e−2)

RGS 0.844 (2.8e−3) 0.321 (1.1e−2) 0.888 (4.1e−3) 0.438 (1.9e−2)

CRS 0.844 (2.6e−3) �.��� (1.3e−2) 0.887 (3.9e−3) 0.437 (1.8e−2)

HBWL �.��� (3.0e−3) 0.321 (1.3e−2) 0.888 (3.9e−3) 0.438 (1.8e−2)

BOWL 0.844 (2.1e−3) 0.319 (1.5e−2) �.��� (3.8e−3) �.��� (1.8e−2)

Table 3 Mean and standard deviation of categorical accuracy (CA) and F1 performance of MLN weight
learning methods on Citeeseer and Cora

The best scoring methods are shown in bold

Citeseer Cora

CA F1 CA F1

DN 0.829 (2.0e−3) 0.267 (1.5e−2) 0.867 (3.1e−3) 0.339 (2.1e−2)

LME 0.820 (5.6e−3) 0.214 (1.5e−2) 0.864 (5.2e−3) 0.311 (2.9e−2)

RGS 0.827 (2.8e−3) 0.251 (1.1e−2) 0.865 (2.8e−3) 0.333 (2.8e−2)

CRS 0.829 (1.6e−3) 0.253 (1.7e−2) 0.866 (6.0e−3) 0.343 (1.5e−2)

BOWL �.��� (2.6e−3) �.��� (1.1e−2) �.��� (3.5e−3) �.��� (1.7e−2)

Table 4 Mean and standard
deviation of F1 and AUROC
performance of MLN weight
learning methods on Epinions

The best scoring methods are shown in bold

Epinions

F1 AUROC

DN 0.704 (1.2e−2) 0.608 (3.7e−2)

LME 0.704 (1.3e−2) 0.577 (1.7e−2)

RGS 0.708 (1.2e−2) 0.689 (3.5e−2)

CRS �.��� (1.0e−2) �.��� (1.7e−2)

BOWL 0.710 (1.1e−2) 0.659 (2.8e−2)

 Machine Learning

1 3

strengthens our motivation to directly optimize for the evaluation metric rather than the
likelihood. In LastFM, BOWL is significantly better than all other approaches on AUROC,
however, RGS and the non-search based approaches outperform BOWL in the MSE met-
ric on LastFM. One reason for likelihood-based approaches to perform better in LastFM
MSE could be because the rating values mentioned in LastFM was constructed by fitting a
negative binomial distribution (Kouki et al. 2015). This could potentially imply that maxi-
mizing the likelihood in PSL could directly lead to minimizing the MSE in this special
and partially synthetic case. Overall, as mentioned earlier, search-based approaches per-
form better than other approaches and in general even the worst performing search-based
method is better than likelihood-based approaches (like in Jester and LastFM AUROC).
These experiments clearly show that search-based approaches are better suited for weight
learning in PSL. Further, of the search-based weight learning approaches BOWL most
consistently performs the best. This is because BOWL performs smart exploration of
weight space to approximate the evaluation function.

Next, in Tables 3 and 4 we analyze the performance of the MLN weight learning meth-
ods on all datasets and metrics. We again see that search-based methods achieved the best
performance for every dataset and metric. Except for F1 score in the Cora dataset, where
DN performs as well as RGS, the non-search based methods, DN and LME perform
worse than search-based approaches on all datasets and metrics. This observation further
supports the use of search-based weight learning methods across SRL frameworks. Similar
to the PSL experiments, BOWL most consistently outperforms its alternatives. BOWL is
either the best method and or within one standard deviation from the best method on all but
the Epinions dataset when evaluating the AUROC metric. The reason for poor performance
of BOWL in Epinions with AUROC could be because Epinions has the largest number of
rules (20 rules) compared to all other datasets. Further, since distances for BOWL in MLN
are computed in OS, the covariance function used to approximate the AUROC is not ideal
for the weight space, potentially leading to a poor exploration strategy. On the same data-
set for F1 BOWL performs nearly as well as CRS which is the best. This indicates that
the approximation of the evaluation function through BOWL is dependent on the function
being approximated as well.

6.2 Scalability

In this section, we compare the runtimes of MLE , MPLE , LME , RGS, CRS , HBWL
, and BOWL in PSL to measure the scalability of search-based approaches and address
[Q3]. We do not compare runtimes of experiments with Tuffy. This is because the search-
based approaches are implemented as wrappers around the MLN framework. Hence, the
runtime numbers of different approaches will not be a fair comparison.5 The number of
parameters to learn in PSL and MLN is equal to the number of rules in the model and the
data size translates to the number of groundings generated by the model. Figure 3a shows
the number of groundings generated by each of the datasets along with the number of rules
in each model. The Jester dataset produces the largest number of groundings (∼1M) using
seven rules and the Epinions dataset produces the least number of groundings (∼14K)
using the largest model (20 rules).

5 Even though we reground the model every iteration for search-based methods in Tuffy, the search-based
approaches were at least two times faster than DN in Citeseer and Cora datasets and due to early-stopping,
BOWL in MLN was at least 5 times than DN .

Machine Learning

1 3

Figure 3b shows the average runtimes measured accross all folds for all approaches on
all datasets. Runtimes for some approaches depend on number of groundings while some
others depend on number of rules. The runtime for MPLE primarily depends on number
of groundings and as the number of groundings increases the runtime also increases by
a factor of ∼45 from Epinions to Jester dataset. The time taken to run LME depends not
only on the number of groundings, but also the complexity of finding the margin. There-
fore, the runtime of LME on the LastFM dataset is higher than the Jester dataset. MLE ,
RGS, CRS , HBWL , and BOWL depend on number of groundings through the time taken
to perform inference on larger models. Since inference in PSL is efficient due to its con-
vex objective, these approaches can scale better with the number of groundings compared
to the other approaches. Further, inference time in PSL depends on both the number of
groundings (which affects per iteration cost in solving) and ease of solving the optimiza-
tion (which affects the number of iterations required to converge). This can be observed

Jester LastFM Citeseer Cora Epinions
104

105

106
13.83

12.84

10.4 10.62

9.58

Datasets

N
u
m
b
er

of
G
ro

u
n
d
in
gs

(l
og

sc
al
e) 7 5 10 10 20

Number of rules

(a) Groundings generated by different datasets.

7 5 10 10 20

101

102

103

104

Number of rules

T
im

e
in

S
ec

on
d
s
(l
og

sc
al
e) MLE

MPLE

LME

RGS

CRS

HBWL

BOWL-SS

Jester LastFM Citeseer Cora Epinions

1M 400K 33K 41K 14K
Number of groundings

(b) Time to learn vs. # of rules and groundings in datasets.

Fig. 3 Analyzing the scalability of different approaches on the number of rules and groundings. With num-
ber of iterations fixed, search-based approaches scale better with both the number of rules and groundings

 Machine Learning

1 3

when we compare runtimes of the above mentioned five methods on the Epinions data-
set and Cora dataset. The time taken to run Epinions is two times greater for MLE even
though the number of groundings of Epinions is three times smaller. Overall, MLE has the
largest increase in runtime (∼150 fold increase) from Cora to Jester dataset. The runtimes
of search-based approaches also depend on the number of evaluations (or resources allo-
cated) they are allowed. For a good approximation of the evaluation function the number
of evaluation points required increases exponentially with number of rules in the model.
Since we fix the maximum number of iterations to 50 for all models, it does not affect our
approaches. Specifically, the runtimes of BOWL across datasets does not vary as much as
other approaches. BOWL has the smallest increase in runtime (∼3 fold) between the Cora
and Jester datasets across all methods. This is because BOWL has a constant overhead
for performing updates in the GP and retrieving the best next set of weight configurations.
This also ensures bad weights that converge poorly are chosen less often (as they are likely
to yield poor evaluation metric value), hence making it efficient and scalable with number
of groundings. Overall, search-based approaches can scale with a large number of ground-
ings and produce the best results on the evaluation metric function.

6.3 Robustness

To address [Q4], we ran three sets of experiments: the first experiment is to check how
robust search-based methods are w.r.t. different initializations, the second is to evaluate the
robustness of CRS , HBWL , and BOWL to the hyperparameter A from the Dirichlet dis-
tribution, and the third experiment is to test the effects of choosing an acquisition function
on the performance of BOWL .

6.3.1 Varied initialization

For the first experiment, we perform weight learning with all four search-based
approaches using 30 random initializations and report the mean and standard deviation
(std) of a metric per dataset in Table 5. Note that for this experiment we use UCB as our
acquisition function in BOWL . Further, we use only one fold (of the eight folds) per
dataset as we intend to measure the variance introduced by different initialization. In

Table 5 The table shows the mean and standard deviation of the metrics obtained by running search-based
approaches with varied initialization

BOWL is the least affected by initialization

Datasets Varied initializations

RGS CRS HBWL BOWL

Jester (MSE) 0.053 (0.001) 0.053 (0.001) 0.052 (0.001) 0.053 (0.001)
LastFM (MSE) 0.067 (0.008) 0.067 (0.006) 0.065 (0.002) 0.067 (0.006)
Citeseer (F1) 0.319 (0.007) 0.321 (0.007) 0.322 (0.008) 0.320 (0.007)
Cora (F1) 0.412 (0.006) 0.409 (0.005) 0.411 (0.005) 0.411 (0.005)
Epinions (F1) 0.714 (0.002) 0.713 (0.002) 0.714 (0.002) 0.716 (0.001)

Machine Learning

1 3

Table 5, the standard deviation is very small for all methods on the Jester dataset. Then
on Citeser, Cora, and Epinions, the standard deviation across different folds, shown in
Tables 1 and 2, is much higher than it is across random initializations, indicating robust-
ness to initialization. Finally, on the LastFM dataset, on all approaches except HBWL ,
there is a standard deviation larger than the standard deviation across folds obtained in
Table 1. This is likely because HBWL explores more weight configurations using smart
resource allocation. We can conclude that while the search-based approaches are rea-
sonably robust to initialization, this can depend on the dataset and the number of weight
configurations they are allowed to try.

6.3.2 Impact of hyperparameter A

Here we evaluate the robustness of CRS , HBWL , and BOWL to the hyperparameter A
in the Dirichlet distribution when sampling for the weight configurations. We chose four
different values for A = {10, 1, 0.1, 0.01} and evaluated on one discrete dataset, Citeseer,
and one continuous dataset, Jester. For Citeseer, we use CA as the evalaution metric
and MSE for the Jester dataset. We evaluate the three approaches, CRS , HBWL , and
BOWL , that are impacted by A in PSL. Table 6 shows the metrics obtained for different
values of A on both datasets and all methods. The effect of A on the Citeseer datasest is
minimal in all methods. This is likely because the CA function w.r.t. weights is reason-
ably flat and small changes in weights have minimal impact. Therefore as long as there
is at least one sampled point in a region, it is sufficient to get an optimal value and thus
all approaches seem robust. Next, considering the Jester dataset, we see the parameter A
has a large impact on CRS and HBWL . For a value of A = 0.1 , CRS and HBWL per-
form the best, then, as it is increased to 10, both approaches produce the worst MSE
value. This is because the space generated by the Dirichlet distribution using these
parameter values is not representative of the true weight space for these two approaches.
The impact of A is smaller on HBWL than CRS as HBWL explores more weight con-
figurations via smart exploration. Finally,BOWL is shown to be robust to the parameter
A as it uses an acquisition function to choose the next point.

Table 6 The mean and standard deviation of the performance of different search-based approaches with
varying the A parameter in the Dirichlet distribution

Datasets Methods A = 10 A = 1 A = 0.1 A = 0.01

Citeseer - CA CRS 0.844 (2.8e−3) 0.844 (2.3e−3) 0.843 (2.4e−3) 0.844 (2.6e−3)

HBWL 0.843 (2.3e−3) 0.844 (2.3e−3) 0.843 (2.4e−3) 0.843 (2.3e−3)

BOWL 0.844 (2.3e−3) 0.844 (3.0e−3) 0.845 (2.1e−3) 0.843 (2.1e−3)

Jester - MSE CRS 0.064 (1.8e−3) 0.054 (5.6e−4) 0.053 (9.4e−4) 0.056 (2.2e−3)

HBWL 0.061 (1.4e−3) 0.053 (6.8e−3) 0.052 (3.0e−4) 0.054 (5.4e−4)

BOWL 0.053 (2.3e−4) 0.053 (4.0e−4) 0.053 (7.3e−4) 0.053 (2.3e−4)

 Machine Learning

1 3

6.3.3 Impact of acquisition function in BOWL

Our third experiment measures the robustness of BOWL to different acquisition func-
tions. In Table 7 we compare the performance of BOWL using four different acquisi-
tion functions, UCB, TS, PI, and EI, for all five datasets in PSL (one metric per dataset).
On all datasets and metrics, BOWL is relatively robust to acquisition function and per-
forms similarly for all.

Finally, based on these experiments we observe that BOWL is the most robust to
initialization, hyperparameter, and acquisition function and produces the best evaluation
metric.

7 Conclusion and future work

In this paper, we introduced four approaches to learn weights in SRL: continuous ran-
dom search, random grid search, Hyperband, and BOWL . To the best of our knowl-
edge this, together with our prior work (Srinivasan et al. 2020b), is the first applica-
tion of black-box algorithms for the task of weight learning in SRL. We proposed a
novel projection that results in an efficient search over the best weight configuration
that maximizes a user-defined evaluation metric. And finally, we showed that search-
based approaches improved performance across several metrics on a variety of different
real-world datasets. There are many avenues for expanding our work, including examin-
ing SRL approaches other than MLNs and PSL, avoiding full grounding, exploration of
additional kernel functions, and structure learning. Here, we evaluated our new weight
learning on two well-known SRL frameworks, MLNs and PSL; while we believe our
approaches are generic enough to apply to other SRL frameworks, the effect of our pro-
posed search-based approaches on the performance of other frameworks remains open
for exploration. Further, to perform weight learning using search-based approaches, the
SRL model needs to be fully grounded. There are a variety of approaches for avoiding
full grounding (Sarkhel et al. 2015, 2016) that would be interesting to integrate into our
approach. In addition, the performance of GP is highly dependent on the kernel function
used. Therefore, in BOWL , which uses GP, an exploration of different kernels could
further improve the performance. Finally, another enticing direction for future work is
to apply search-based algorithms for identifying accurate dependency structures of SRL
models, i.e., structure learning. Similar to weight learning, many existing approaches
to structure learning aim to maximize a likelihood-based objective (Kok and Domingos

Table 7 The table shows the
effect of metrics obtained by
using different acquisition
function with BOWL

BOWL is unaffected by both acquisition functions

Datasets Different acquisition functions

UCB TS PI EI

Jester (MSE) 0.053 0.055 0.053 0.053
LastFM (MSE) 0.065 0.065 0.066 0.067
Citeseer (F1) 0.324 0.323 0.323 0.323
Cora (F1) 0.440 0.437 0.442 0.439
Epinions (F1) 0.711 0.712 0.713 0.713

Machine Learning

1 3

2005; Mihalkova and Mooney 2007; Natarajan et al. 2012; McCallum 2003; Shu et al.
2010). Extending the search-based methods proposed in this work to optimize problem-
specific metrics rather than likelihood-based objectives may improve structure learning
performance.

A. Appendix: Surface of a unit hypersphere as search space

Here, we discuss the effectiveness of the surface of a unit hypersphere as the search
space in weight learning. To show that this is a reasonable space to sample weights from
we need to show: first, the surface of the hypersphere is complete and non-redundant
and second, if two weight configurations in OS are represented by the same weight con-
figurations on the hypersphere then the solution obtained for � by both the weight con-
figurations are the same. Every weight configuration given in OS can be easily projected
on to the hypersphere in the following way:

where ||�||2 is the L-2 norm of the vector.

Theorem 5 Every weight configuration � in OS has an equivalent weight configuration �̃
on the hypersphere such that argmax� ŝ ⋅ �(�|�,�) = argmax� ŝ ⋅ �(�|�, �̃).

Proof From Theorem 1 we know that weights are scale invariant when performing MAP
inference and this implies that the magnitude of the vector generated by a weight configu-
ration does not affect the solution obtained when performing inference in PSL and MLNs.
This implies that all r-dimensional unit vectors in the positive quadrant is sufficient to rep-
resent all possible weight configuration for MAP inference in PSL and MLNs. All unit
vectors can be represented using the surface of a hypersphere. Therefore, surface of an
r-dimensional hypersphere removes redundancies of OS and is complete. ◻

Theorem 6 Given two weight configurations �1 and �2 such that the projection H of the
weight configurations are equal, i.e., H(�1) = H(�2) , then the optimization solution
obtained for � by performing inference is the same.

Proof This is easy to show as the definition of the projection defined in Eq. 20 is very
similar to the projection defined in Theorem 1. The weights are simply rescaled and there-
fore, by definition and from Theorem 1, it is clear to see that if H(�1) = H(�2) then
argmax� ŝ ⋅ �(�|�,�1) = argmax� ŝ ⋅ �(�|�,�2) . ◻

This shows that the projection on to the surface of a unit hypersphere has properties
similar to SS. However, these two are not entirely equivalent as the grounding factor �
plays an important role in the actual impact of weights at the time of inference. While
SS is ideal and distances between weights are preserved even after adjusting for ground-
ing, the distances are not preserved after adjusting for grounding.

(20)H(�) =
�

||�||2

 Machine Learning

1 3

Theorem 7 Given two weight configurations �1 and �2 and their grounding adjusted
weights � ⋅ �1 and � ⋅ �2 (an element-wise dot), the distance between the two weights
before and after grounding adjustment are not the same, i.e., ||�1 − �2|| ≠ � ⋅ �1 − � ⋅ �2.

Fig. 4 Visualization of Dirichlet
distribution with different A of a
model with three rules. Visuali-
zation shown both in OS and SS

(a) (b)

(d)(c)

(e) (f)

(h)(g)

Machine Learning

1 3

Therefore, we can conclude that while the surface of a hypersphere does not have all
the properties of SS it is a reasonable approximation of SS and weights can be samples
from the hypersphere.

A.1. Density of samples generated by projecting points from probability simplex

While sampling from a hypersphere with different densities can be tricky one easy way
to do this is to sample from a Dirichlet distribution which samples from the probability
simplex and project the values on to the sphere. The Dirichlet distribution accepts the
hyperparameter A ∈ ℝ

+r which controls the spread of the distribution. It is easy to see
that every point on a probability simplex can be uniquely projected on to a hypershpere.
Here in Fig. 4 we visualize the distribution generated by using different values of A for
a model with three rules. We vary the value of alpha form all 10s to all 0.001 and plot
the projection on to a sphere which is in OS on the left and SS (which is 2-dimensional
space) on the right. We can observe that as the value of A is reduced the samples in OS
are getting concentrated to the poles and in SS we see the samples spread wider and
choosing larger ratios. We can choose this value based on our application. For instance
when the task is to perform rule pruning, it is more desirable for the ratio of weights to
be more extreme and hence choose a small value for A and if the task is to fine tuning
weights without making large changes, then a higher value of A might be more suitable.

Acknowledgements This work was partially supported by the National Science Foundation Grants CCF-
1740850, CCF-2023495, and IIS-1703331. Golnoosh Farnadi was supported by postdoctoral scholarships
from IVADO through the Canada First Research Excellence Fund (CFREF) grant.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Ahmadi, B., Kersting, K., & Natarajan, S. (2012). Lifted online training of relational models with stochas-
tic gradient methods. In European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases.

Alshukaili, D., Fernandes, A. A. A., & Paton, N. W. (2016). Structuring linked data search results using
probabilistic soft logic. In The International Semantic Web Conference.

Bach, S. H., Broecheler, M., Huang, B., & Getoor, L. (2017). Hinge-loss Markov random fields and proba-
bilistic soft logic. Journal of Machine Learning Research, 18, 109:1-109:67.

Bach, S. H., Huang, B., London, B., & Getoor, L. (2013). Hinge-loss Markov random fields: Convex infer-
ence for structured prediction. In The Conference on Uncertainty in Artificial Intelligence.

Beltagy, I., Chau, C., Boleda, G., Garrette, D., Erk, K., & Mooney, R. (2013). Montague meets Markov: Deep
semantics with probabilistic logical form. In Second Joint Conference on Lexical and Computational
Semantics.

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine
Learning Research, 13, 281–305.

Bergstra, J. S., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyper-parameter optimization.
In The Neural Information Processing Systems.

http://creativecommons.org/licenses/by/4.0/

 Machine Learning

1 3

Besag, J. (1975). Statistical analysis of non-lattice data. Journal of the Royal Statistical Society, 24,
179–195.

Boyd, S. P., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization and statistical
learning via the alternating direction method of multipliers. Foundations and trends. Machine Learning.

Brochu, E., Brochu, T., & de Freitas, N. (2010). A Bayesian interactive optimization approach to procedural
animation design. In The ACM Special Interest Group on Computer Graphics and Interactive Techniques.

Chen, H., Ku, W., Wang, H., Tang, L., & Sun, M. (2017). Scaling up Markov logic probabilistic inference
for social graphs. IEEE Transactions on Knowledge and Data Engineering, 29(2), 433–445.

Choi, J., Choi, C., Lee, E., & Kim, P. (2015). Markov logic network based social relation inference for per-
sonalized social search. In New trends in computational collective intelligence (pp. 195–202). Springer.

Chou, L., Sarkhel, S., Ruozzi, N., & Gogate, V. (2016). On parameter tying by quantization. In The Associa-
tion for the Advancement of Artificial Intelligence.

Chowdhury, R., Srinivasan, S., & Getoor, L. (2020). Joint estimation of user and publisher credibility for
fake news detection. In The Conference on Information and Knowledge Management.

Claesen, M., & De Moor, B. (2015). Hyperparameter search in machine learning. arXiv: 1502. 02127.
Collins, M. (2002). Discriminative training methods for hidden Markov models: Theory and experiments

with perceptron algorithms. In Empirical Methods in Natural Language Processing.
Das, M., Dhami, D. S., Kunapuli, G., Kersting, K., & Natarajan, S. (2019). Fast relational probabilistic

inference and learning: Approximate counting via hypergraphs. In The Association for the Advance-
ment of Artificial Intelligence.

Das, M., Wu, Y., Khot, T., Kersting, K., & Natarajan, S. (2016). Scaling lifted probabilistic inference and
learning via graph databases. In SIAM International Conference on Data Mining.

De Raedt, L., & Kersting, K. (2011). Statistical relational learning. In Encyclopedia of machine learning
(pp. 916–924). Springer.

De Raedt, L., Kimmig, A., & Toivonen, H. (2007). Problog: A probabilistic prolog and its application in
link discovery. In The International Joint Conference on Artificial Intelligence.

Ebrahimi, J., Dou, D., & Lowd, D. (2016). Weakly supervised tweet stance classification by relational boot-
strapping. In Empirical Methods in Natural Language Processing.

Farabi, K. M. A., Sarkhel, S., & Venugopal, D. (2018). Efficient weight learning in high-dimensional untied
mlns. In Society for Artificial Intelligence and Statistics.

Farnadi, G., Bach, S. H., Moens, M., Getoor, L., & Cock, M. D. (2017). Soft quantification in statistical
relational learning. Machine Learning Journal.

Fierens, D., Van den Broeck, G., Renkens, J., Shterionov, D., Gutmann, B., Thon, I., Janssens, G., & De
Raedt, L. (2015). Inference and learning in probabilistic logic programs using weighted boolean for-
mulas. Theory and Practice of Logic Programming, 15(3), 358–401.

Friedman, N., Getoor, L., Koller, D., & Pfeffer, A. (1999). Learning probabilistic relational models. In The
International Joint Conference on Artificial Intelligence.

Genton, M. (2001). Classes of kernels for machine learning: A statistics perspective. Journal of Machine
Learning Research, 2, 299–312.

Getoor, L., & Taskar, B. (2007). Introduction to statistical relational learning. The MIT Press.
Goldberg, K., Roeder, T., Gupta, D., & Perkins, C. (2001). Eigentaste: A constant time collaborative filter-

ing algorithm. Information Retrieval Journal, 4, 133–151.
Huynh, T. N., & Mooney, R. (2009). Max-margin weight learning for Markov logic networks. In The ACM

Special Interest Group on Knowledge Discovery and Data Mining.
Huynh, T. N., & Mooney, R. J. (2010). Online max-margin weight learning with Markov logic networks. In

The Association for the Advancement of Artificial Intelligence.
Islam, M. M., Mohammad Al Farabi, K., Sarkhel, S., & Venugopal, D. (2018). Scaling up inference in mlns

with spark. In Big data.
Jaeger, M. (1997). Relational Bayesian networks. In The Conference on Uncertainty in Artificial Intelligence.
Joachims, T., Finley, T., & Yu, C.-N.J. (2009). Cutting-plane training of structural svms. Machine Learning

Journal, 77, 27–59.
Johnson, K., Lee, I., & Goldwasser, D. (2017). Ideological phrase indicators for classification of political

discourse framing on twitter. In Workshop on NLP and Computational Social Science (NLP+CSS) at
Association for ComputationalLinguistics. https:// aclan tholo gy. org/ venues/ nlpcss/.

Kautz, H., Selman, B., & Jiang, Y. (1996). A general stochastic approach to solving problems with hard and
soft constraints. In The Satisfiability Problem: Theory and Applications.

Khot, T., Balasubramanian, N., Gribkoff, E., Sabharwal, A., Clark, P., & Etzioni, O. (2015). Exploring
Markov logic networks for question answering. In Empirical Methods in Natural Language Processing.

Kok, S., & Domingos, P. (2005). Learning the Structure of Markov Logic Networks. In The International
Conference on Machine Learning.

https://arxiv.org/abs/1502.02127
https://aclanthology.org/venues/nlpcss/

Machine Learning

1 3

Kouki, P., Fakhraei, S., Foulds, J., Eirinaki, M., & Getoor, L. (2015). Hyper: A flexible and extensible prob-
abilistic framework for hybrid recommender systems. In RecSys.

Kouki, P., Pujara, J., Marcum, C., Koehly, L. M., & Getoor, L. (2017). Collective entity resolution in famil-
ial networks. In The IEEE International Conference on Data Mining.

Kushner, H. J. (1964). A new method of locating the maximum point of an arbitrary multipeak curve in the
presence of noise. Journal of Basic Engineering, 86(1), 97–106.

Lacoste-Julien, S., Jaggi, M., Schmidt, M., & Pletscher, P. (2013). Block-coordinate Frank–Wolfe optimiza-
tion for structural svms. In The International Conference on Machine Learning.

Lalithsena, S., Perera, S., Kapanipathi, P., & Sheth, A. P. (2017). Domain-specific hierarchical subgraph
extraction: A recommendation use case. In Big data.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., & Talwalkar, A. (2018). Hyperband: A novel bandit-
based approach to hyperparameter optimization. Journal of Machine Learning Research, 18, 1–52.

Lizotte, D., Wang, T., Bowling, M., & Schuurmans, D. (2007). Automatic gait optimization with Gaussian
process regression. In The International Joint Conference on Artificial Intelligence.

Lowd, D., & Domingos, P. (2007). Efficient weight learning for Markov logic networks. In The ACM Spe-
cial Interest Group on Knowledge Discovery and Data Mining.

Marsaglia, G. (1972). Choosing a point from the surface of a sphere. Annals of Mathematical Statistics,
43(2), 645–646.

Martinez-Cantin, R., de Freitas, N., Brochu, E., Castellanos, J. A., & Doucet, A. (2009). A Bayesian explo-
ration–exploitation approach for optimal online sensing and planning with a visually guided mobile
robot. Autonomous Robots, 27(2), 93–103.

Matérn, B. (1960). Spatial variation. Springer.
McCallum, A. (2003). Efficiently inducing features of conditional random fields. In The Conference on

Uncertainty in Artificial Intelligence.
Mehran Kazemi, S., Buchman, D., Kersting, K., Natarajan, S., & Poole, D. (2014). Relational logistic

regression. In The Association for the Advancement of Artificial Intelligence.
Mihalkova, L., & Mooney, R. (2007). Bottom-up learning of Markov logic network structure. In The Inter-

national Conference on Machine Learning.
Mockus, J. (1977). On Bayesian methods for seeking the extremum and their application. In IFIP congress.
Mockus, J., Tiesis, V., & Zilinskas, A. (1978). The application of Bayesian methods for seeking the

extremum. In Towards Global Optimisation.
Muller, M. E. (1959). A note on a method for generating points uniformly on n-dimensional spheres. Com-

munications of the ACM, 2(4), 19–20.
Natarajan, S., Khot, T., Kersting, K., Gutmann, B., & Shavlik, J. (2012). Gradient-based boosting for statis-

tical relational learning: The relational dependency network case. Machine Learning Journal
Neville, J., & Jensen, D. (2007). Relational dependency networks. Journal of Machine Learning Research,

8, 653–692.
Niu, F., Ré, C., Doan, A., & Shavlik, J. W. (2011). Tuffy: Scaling up statistical inference in Markov logic

networks using an rdbms. Very Large Data Bases, 4, 373–384.
Noessner, J., Niepert, M., & Stuckenschmidt, H. (2013). Rockit: Exploiting parallelism and symmetry for

map inference in statistical relational learning. In The Association for the Advancement of Artificial
Intelligence.

Platanios, E., Poon, H., Mitchell, T. M., & Horvitz, E. J. (2017). Estimating accuracy from unlabeled data:
A probabilistic logic approach. In The Neural Information Processing Systems.

Poole, D. (1993). Probabilistic horn abduction and Bayesian networks. Artificial Intelligence, 64, 81–129.
Poon, H., & Domingos, P. (2006). Sound and efficient inference with probabilistic and deterministic depend-

encies. In The Association for the Advancement of Artificial Intelligence.
Rasmussen, C. E., & Williams, C. K. I. (2005). Gaussian processes for machine learning (adaptive compu-

tation and machine learning). The MIT Press.
Richardson, M., & Domingos, P. M. (2006). Markov logic networks. Machine Learning Journal, 62(1–2),

107–136.
Sarkhel, S., Singla, P., & Gogate, V. (2015). Fast lifted map inference via partitioning. In The Neural Infor-

mation Processing Systems.
Sarkhel, S., Venugopal, D., Pham, T. A., Singla, P., & Gogate, V. (2016). Scalable training of Markov

logic networks using approximate counting. In The Association for the Advancement of Artificial
Intelligence.

Sato, T. (1995). A statistical learning method for logic programs with distribution semantics. In Interna-
tional Conference on Logic Programming.

Schölkopf, B., & Smola, A. (2002). Learning with kernels: Support vector machines, regularization, optimi-
zation, and beyond. MIT Press.

 Machine Learning

1 3

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., & de Freitas, N. (2016). Taking the human out of the
loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1), 148–175.

Shavlik, J., & Natarajan, S. (2009). Speeding up inference in Markov logic networks by preprocessing to
reduce the size of the resulting grounded network. In The International Joint Conference on Artificial
Intelligence.

Shu, J., Lao, N., & Xing, E. (2010). Grafting-Light: Fast, Incremental Feature Selection and Structure
Learning of Markov Random Fields. In The ACM Special Interest Group on Knowledge Discovery and
Data Mining.

Singla, P., & Domingos, P. (2005). Discriminative training of Markov logic networks. In The Association for
the Advancement of Artificial Intelligence.

Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian optimization of machine learning algo-
rithms. In The Neural Information Processing Systems.

Sridhar, D., Fakhraei, S., & Getoor, L. (2016). A probabilistic approach for collective similarity-based drug–
drug interaction prediction. Bioinformatics, 32(20), 3175–3182.

Srinivas, N., Krause, A., Kakade, S., & Seeger, M. (2010). Gaussian process optimization in the bandit set-
ting: No regret and experimental design. In The International Conference on Machine Learning.

Srinivas, N., Krause, A., Kakade, S. M., & Seeger, M. W. (2012). Information-theoretic regret bounds for
Gaussian process optimization in the bandit setting. IEEE Transactions on Information Theory, 58,
3250–3265.

Srinivasan, S., Augustine, E., & Getoor, L. (2020a). Tandem inference: An out-of-core streaming algo-
rithm for very large-scale relational inference. In The Association for the Advancement of Artificial
Intelligence.

Srinivasan, S., Farnadi, G., & Getoor, L. (2020b). BOWL: Bayesian optimization for weight learning in
probabilistic soft logic. In The Association for the Advancement of Artificial Intelligence.

Srinivasan, S., Rao, N., Subbian, K., & Getoor, L. (2019). Identifying facet mismatches in search via micro-
graphs. In The Conference on Information and Knowledge Management.

Taskar, B., Abbeel, P., & Koller, D. (2002). Discriminative probabilistic models for relational data. In The
Conference on Uncertainty in Artificial Intelligence.

Thompson, W. (1933). On the likelihood that one unknown probability exceeds another in view of the evi-
dence of two samples. Biometrika, 25(3–4), 285–294.

Van Haaren, J., Van den Broeck, G., Mert, W., & Davis, J. (2015). Lifted generative learning of Markov
logic networks. Machine Learning Journal.

Venugopal, D., Sarkhel, S., & Gogate, V. (2016). Magician: Scalable inference and learning in Markov
logic using approximate symmetries. UofM, Memphis: Technical report.

Wang, Z., Hutter, F., Zoghi, M., Matheson, D., & De Freitas, N. (2016). Bayesian optimization in a billion
dimensions via random embeddings. Journal of Artificial Intelligence Research, 55(1), 361–387.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

Sriram Srinivasan1 · Charles Dickens1 · Eriq Augustine1 · Golnoosh Farnadi2 ·
Lise Getoor1

 Charles Dickens
 cdickens@ucsc.edu

 Eriq Augustine
 eaugusti@ucsc.edu

 Golnoosh Farnadi
 farnadig@mila.quebec

 Lise Getoor
 getoor@ucsc.edu

1 UC Santa Cruz (CSE), Santa Cruz, CA, USA
2 Mila, Universite de Montreal, Montreal, QC, Canada

	A taxonomy of weight learning methods for statistical relational learning
	Abstract
	1 Introduction
	2 Background
	2.1 Statistical relational learning
	2.2 Markov logic networks
	2.2.1 Maximum-likelihood estimation
	2.2.2 Large-margin estimation

	2.3 Probabilistic soft logic
	2.3.1 Maximum likelihood estimation (MLE)
	2.3.2 Maximum pseudolikelihood estimation (MPLE)
	2.3.3 Large-margin estimation (LME)

	2.4 Black-box optimization
	2.4.1 Gaussian process regression
	2.4.2 Kernel functions

	3 Search-based approaches for weight learning
	3.1 Motivating example
	3.2 Problem definition
	3.3 Random grid search for weight learning
	3.4 Continuous random search for weight learning
	3.5 Hyperband for weight learning
	3.6 Bayesian optimization for weight learning
	3.6.1 Kernel function
	3.6.2 Acquisition function

	3.7 Efficiency of search-based approaches

	4 Efficient space to search for weights
	4.1 Challenges in the original space
	4.2 Scaled space
	4.3 The effect of varied number of groundings in the scaled space
	4.4 Sampling weight configurations for search

	5 Accommodating negative weights in Markov logic networks
	6 Empirical evaluation
	6.1 Performance analysis
	6.2 Scalability
	6.3 Robustness
	6.3.1 Varied initialization
	6.3.2 Impact of hyperparameter
	6.3.3 Impact of acquisition function in BOWL

	7 Conclusion and future work
	Acknowledgements
	References

