

1 First-principles model of optimal 2 translation factors stoichiometry

3 Jean-Benoît Lalanne^{1,2,†} and Gene-Wei Li^{1*}

*For correspondence:
gwli@mit.edu (GWL)

Present address: [†]Department of
Genome Sciences, University of
Washington, Seattle, WA 98105,
USA.

4 ¹Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139,
5 USA; ²Department of Physics, Massachusetts Institute of Technology, Cambridge, MA
6 02139, USA

7

8 **Abstract** Enzymatic pathways have evolved uniquely preferred protein expression stoichiometry
9 in living cells, but our ability to predict the optimal abundances from basic properties remains
10 underdeveloped. Here we report a biophysical, first-principles model of growth optimization for
11 core mRNA translation, a multi-enzyme system that involves proteins with a broadly conserved
12 stoichiometry spanning two orders of magnitude. We show that predictions from maximization of
13 ribosome usage in a parsimonious flux model constrained by proteome allocation agree with the
14 conserved ratios of translation factors. The analytical solutions, without free parameters, provide
15 an interpretable framework for the observed hierarchy of expression levels based on simple
16 biophysical properties, such as diffusion constants and protein sizes. Our results provide an
17 intuitive and quantitative understanding for the construction of a central process of life, as well as a
18 path toward rational design of pathway-specific enzyme expression stoichiometry.

19

20 **Introduction**

21 A universal challenge faced by both evolution and synthetic pathway creation is to optimize the
22 cellular abundance of proteins. This abundance optimization problem is not only multidimensional
23 – often involving several proteins participating in the same pathway – but also under systems-wide
24 constraints, such as limited physical space (*Klumpp et al., 2013*) and finite nutrient inputs (*You*
25 *et al., 2013*). The complexity of this problem has prevented rational design of protein expression for
26 pathway engineering (*Jeschek et al., 2017*). Fundamentally, being able to predict the optimal and
27 observed cellular protein abundances from their individual properties would reflect an ultimate
28 understanding of molecular and systems biology.

29 Evolutionary comparison of gene expression across microorganisms suggests that basic prin-
30 ciples governing the optimization problem may exist. We recently reported broad conservation
31 of relative protein synthesis rates within individual pathways, even under circumstances in which
32 the relative transcription and translation rates for the homologous enzymes have dramatically
33 diverged across species (*Lalanne et al., 2018*). Moreover, distinct proteins that evolved convergently
34 towards the same biological function also displayed the same stoichiometry of protein synthesis
35 in their respective species. These results suggest that the determinants of optimal in-pathway
36 protein stoichiometry are likely modular and independent of detailed biochemical or physiological
37 properties that differ across clades. However, the precise nature of such determinants remains
38 unknown.

39 Translation of mRNA into proteins is a central pathway required for cell growth and therefore
40 serves as an entry point for establishing a quantitative model of growth-optimized in-pathway
41 stoichiometry. As a group, the total amount of translation-related proteins per cell mass linearly
42 increases with growth rate in most conditions (*Scott et al., 2010; Dai et al., 2016; Schaechter*

43 *et al., 1958*), a relationship considered a bacterial ‘growth law’. In addition to ribosomes which
44 have well-coordinated synthesis of subunits (*Nomura et al., 1984*), the translation pathway is
45 comprised of nearly 100 protein factors involved in facilitating ribosome assembly, translation
46 initiation, elongation, and termination (*Marintchev and Wagner, 2004; Dever and Green, 2012;*
47 *Rodnina, 2018*). The intracellular abundances of these factors vary over 100-fold (*Pedersen et al.,*
48 *1978; Li et al., 2014*), and their ratios are often maintained in different growth conditions and
49 across different species (*Lalanne et al., 2018*). What dictates the observed stoichiometry among
50 translation factors is less understood. Early studies predicted expression of the highly expressed
51 elongation factor Tu (EF-Tu) relative to the ribosome (*Klumpp et al., 2013; Ehrenberg and Kurland,*
52 *1984*) by maximizing translational flux per unit proteome. More recently, expression of several
53 other components involved in the elongation step (ribosomes, tRNA, mRNA, EF-Tu, and EF-Ts) was
54 predicted by minimizing the total mass of the components at a fixed translational flux (*Hu et al.,*
55 *2020*). The selective pressure on expression levels remains to be determined for most members of
56 the translation machinery, including initiation and termination factors that are much more lowly
57 expressed and often assumed to be non-limiting.

58 Here we sought to derive an intuitive model to understand the quantitative abundance hierarchy
59 (Figure 1B) among the core translation factors (tLFs), which have well-characterized functions (Table 1,
60 schematic in Figure 1A). Our goal is not to exhaustively model the heterogeneous movement of
61 ribosomes on the transcriptome (*Shaw et al., 2003; Reuveni et al., 2011; Subramaniam et al., 2014;*
62 *Dykeman, 2020*) or to include as many details of the underlying molecular steps as possible (*Hu*
63 *et al., 2020; Vieira et al., 2016*). Instead, we coarse-grained global translation into a cycle that
64 consists of sequential steps with interconnected fluxes that depend on core tLFs concentrations.
65 At steady-state cell growth, all individual fluxes are matched and the overall rate of ribosomes
66 completing the full translation cycle is proportional to cell growth. By solving for the maximum
67 flux under proteome allocation constraints, we obtained analytical solutions for the optimal factor
68 concentrations, which agree well with the observed values. The ratios of optimal concentrations
69 depend only on simple biophysical parameters that are broadly conserved across species. For
70 instance, elongation factor EF-G is predicted to be more abundant than initiation and termination
71 tLFs by a multiplicative factor of $\approx \sqrt{\text{average number of codons per protein}} \approx 14$, whereas EF-Tu is
72 predicted to be more abundant than EF-G by a factor of $\approx \sqrt{\text{number of different amino acids}} \approx 4$.
73 These results, arising from the optimization procedure and generic properties of the translation
74 cycle, provide rationales for the order-of-magnitude expression of these important enzymes.

75 **Results**

76 **Problem statement and model formulation**

77 Our overall goal is to determine the growth-optimizing proteome allocation for the core translation
78 factors. Conceptually, varying tLF concentrations has two opposing effects on cell proliferation. At
79 the biochemical level, high tLF expression can facilitate growth by allowing more efficient usage of
80 ribosomes. At the systems level, increased tLF expression can nonetheless limit growth by reducing
81 the number of ribosomes and other proteins that can be produced. The tradeoffs between various
82 tLFs and ribosomes create a multidimensional optimization problem.

83 We solve this multidimensional problem by treating translation as a dynamical system, in which
84 ribosomes cycle through initiation, elongation, and termination. The resulting flux drives cell
85 growth. During steady-state growth, every interlocked step of the translation cycle must have the
86 same ribosome flux that is specified by the growth rate. We show that at the growth optimum,
87 concentrations for distinct tLFs can be solved independently. The resulting analytical solutions can
88 be expressed in terms of the growth rate and simple biophysical parameters.

Table 1. Brief description of the function of core translation factors considered. For reviews of mRNA translation, see (Rodnina, 2018; Chen et al., 2016).

Step	Factor	Function
Initiation	IF1	Initiation factor 1: binds to 30S ribosome subunits to facilitate initiator tRNA binding (Laursen and Sørensen, 2005; Gualerzi and Pon, 2015).
Initiation	IF2	Initiation factor 2: ribosome-dependent GTPase interacting with 30 ribosome subunits, ensures correct binding of initiator tRNAs (Laursen and Sørensen, 2005; Gualerzi and Pon, 2015).
Initiation	IF3	Initiation factor 3: prevents premature docking of 50S ribosomal subunits (Laursen and Sørensen, 2005; Gualerzi and Pon, 2015).
Elongation	EF-Tu	Elongation factor Tu: binds to charged tRNAs to form ternary complexes, brings charged tRNAs to empty ribosome A sites. (Weijland et al., 1992; Agirrezabala and Frank, 2009; Andersen et al., 2003)
Elongation	aaRS	tRNA synthetases: charge tRNAs with cognate amino acids (Ibba and Dieter, 2000; Pang et al., 2014).
Elongation	EF-G	Elongation factor G: catalyzes translocation steps of the ribosome after peptide bond formation (Andersen et al., 2003; Agirrezabala and Frank, 2009).
Elongation	EF-Ts	Elongation factor Ts: nucleotide exchange factor for EF-Tu (Agirrezabala and Frank, 2009; Andersen et al., 2003).
Termination	RF1/RF2	Peptide chain release factors 1 and 2: recognize stop codon and hydrolyze the completed protein. RF1 recognizes UAA, UAG, and RF2 UAA, UGA (Bertram et al., 2001).
Termination	RF4	Ribosome recycling factor: catalyzes the dissociation of ribosome subunits following peptide chain release in translation termination (Bertram et al., 2001).

89 Cell growth driven by tIF-dependent ribosome flux

90 To describe the biochemical effects of tIF concentrations on cell growth, we first introduce a
91 coarse-grained translation cycle time τ_{tl} , or the time it takes for a ribosome to complete a typical
92 cycle of protein synthesis (Figure 1A), which consists of three sequential steps: initiation ("ini"),
93 elongation ("el"), and termination ("ter"). Each of these steps is catalyzed by multiple tIFs. The full
94 translation cycle time is then sum of ribosome transit times at the three steps ($\tau_{tl} = \tau_{ini} + \tau_{el} + \tau_{ter}$),
95 whose dependence on individual tIF concentrations can be quantitatively described through mass
96 action kinetic schemes (schematically depicted in Figure 1A, see Appendices 2, 3, and 4 for details
97 and examples below). We express tIF concentrations in units of proteome fractions (dry mass
98 fraction of a specified protein to the full proteome), denoted by ϕ (Scott et al., 2010) (Materials and
99 Methods, section Conversion between concentration and proteome fraction). Using this notation,
100 the translation cycle time τ_{tl} is a decreasing function of various tIFs concentrations ($\{\phi_{tlF,j}\}$).

101 In addition to its dependency on tIF concentrations, the translation cycle time provides a bridge
102 between the cell growth rate and ribosome concentration. In steady-state growth (Monod, 1949;
103 Scott et al., 2010; Dai et al., 2016), the growth rate of cells and of their protein content (total
104 number of proteins) must be identical, denoted here as λ , as a result of the constant average
105 cellular composition. The protein content grows at a rate determined by the flux of active ribosomes
106 completing the translation cycle, that is N_{ribo}^{act}/τ_{tl} , where N_{ribo}^{act} is the number of active ribosomes
107 per cell, divided by the total number of proteins N_p per cell: $\lambda = N_{ribo}^{act}/\tau_{tl}N_p$. Active ribosomes
108 are defined as those functionally engaged in, and cycling through, the initiation, elongation, and
109 termination reactions of peptide synthesis. Rescaling to the total mass fraction (Materials and
110 Methods, section Conversion between concentration and proteome fraction) of proteome for active
111 ribosomes (ϕ_{ribo}^{act}) yields

$$112 \lambda = \frac{\phi_{ribo}^{act}}{\tau_{tl}} \frac{\langle \ell \rangle}{\ell_{ribo}}, \quad (1)$$

113 where ℓ_{ribo} is the number of amino acids in ribosomal proteins and $\langle \ell \rangle$ is the average number of
codons per protein, weighted by expression levels (Materials and Methods, section Average number

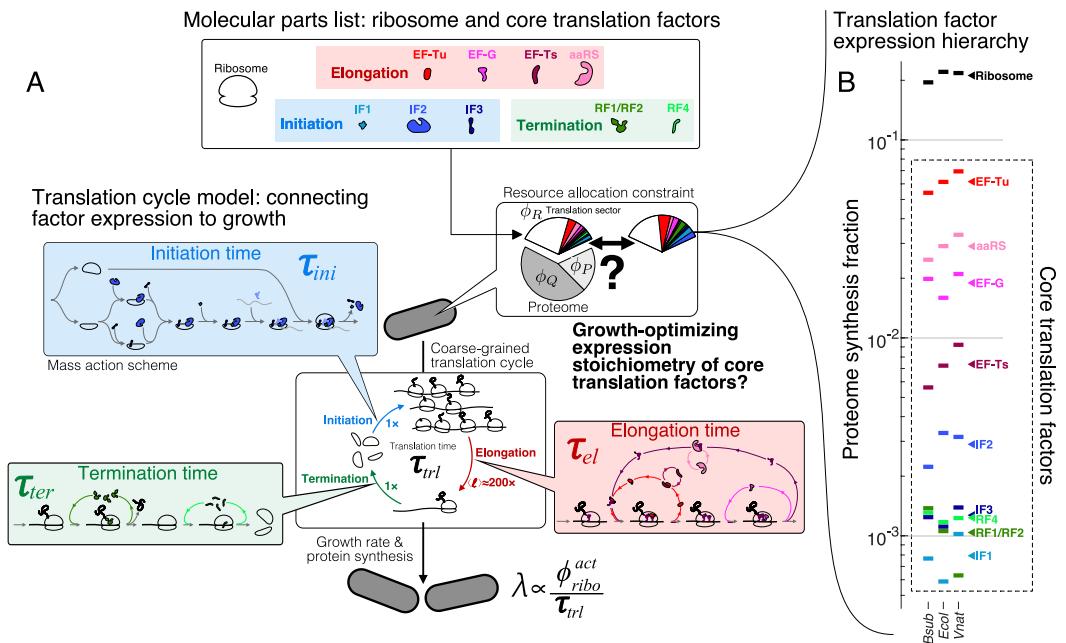


Figure 1. The hierarchy of mRNA translation factor expression stoichiometry. (A) Multiscale model relating translation factor expression to growth rate. The growth rate λ is directly proportional to the active ribosome content ($\phi_{\text{ribo}}^{\text{act}}$) in the cell and inversely proportional to the average time to complete the translation cycle τ_{tr} , consisting of the sum of the initiation (τ_{ini}), elongation (τ_{el}), and termination (τ_{ter}) times. Each of these reaction times are determined by the translation factor abundances. On average, the elongation step is repeated around $\langle \ell \rangle \approx 200x$ to complete a full protein, compared to 1x for initiation and termination. Our framework of flux optimization under proteome allocation constraint addresses what ribosome and translation factor abundances maximize growth rate. (B) Measured expression hierarchy of bacterial mRNA translation factors, conserved across evolution. Horizontal bars mark the proteome synthesis fractions as measured by ribosome profiling (Lalanne *et al.*, 2018) (equal to the proteome fraction by weight for a stable proteome) for key mRNA translation factors in *B. subtilis* (*Bsub*), *E. coli* (*Ecol*), and *V. natriegens* (*Vnat*) and are color-coded according to the protein (or group of proteins) specified. Triangles (\blacktriangleleft) on the right indicate the mean synthesis fraction of the protein in the three species. See Table 1 for a short description of the translation factors considered.

Figure 1-source data 1. Synthesis fractions in (B) can be found in Supplementary File 1.

114 of codons per protein: $\langle \ell \rangle$). The rescaling factor $(\ell_{\text{ribo}}/\langle \ell \rangle \approx 7300/200 = 36.5)$ is approximately
 115 constant across growth conditions (Materials and Methods, section Average number of codons per
 116 protein: $\langle \ell \rangle$). This equation establishes how tIF concentrations affect the growth rate biochemically
 117 via τ_{tr} .

118 We note that equation 1 is a generalized form of the bacterial growth law that relates the
 119 mass fraction of elongating ribosomes to growth rate ($\lambda = \frac{\phi_{\text{ribo}}^{\text{el}} \langle \ell \rangle}{\tau_{\text{el}} \ell_{\text{ribo}}} = \gamma \phi_{\text{ribo}}^{\text{el}}$, where γ is a rescaled
 120 translation elongation rate and $\phi_{\text{ribo}}^{\text{el}}$ is the proteome fraction of actively translating ribosomes (Scott
 121 *et al.*, 2010; Dai *et al.*, 2016; Scott *et al.*, 2014)). This classic growth law was derived by considering
 122 the steady-state flux of peptide bond formation by elongating ribosomes, whereas our model
 123 focuses on the flux of ribosomes that traverse the entire translation cycle, thereby allowing us to
 124 consider the effects of translation factors and ribosomes engaged in additional steps (initiation,
 125 elongation, and termination). For each step, equation 1 can be extended to show that the growth
 126 rate is similarly proportional to the mass fraction of the corresponding ribosomes divided by the
 127 transit time at that step (Materials and Methods, section Equality of ribosome flux in steady-state).

128 Steady-state growth thus imposes the requirement that the growth rate be inversely proportional
 129 to the translation cycle time and proportional to the number of active ribosomes engaged in
 130 the translation cycle (equation 1). Inactive ribosomes, comprised of assembly intermediates,
 131 hibernating ribosomes, or otherwise non-functional ribosomes, have been found to constitute

132 a small fraction ($\approx 5\%$) of the total ribosome pool for fast growth (*Lindahl, 1975; Dai et al., 2016*).
 133 Based on equation 1, both increasing ribosome concentration and increasing tIF concentrations
 134 (which decreases τ_{tl}) can accelerate growth. However, production of ribosomes and tIFs is subject
 135 to competition under a limited proteomic space, which we consider next.

136 Optimization under proteome allocation constraint

137 To model the production cost tradeoff between tIFs and ribosomes, we integrate the flux-based
 138 formulation above with a proteomic constraint. Assuming that components of the translation
 139 machinery together accounts for a fixed fraction of proteome, i.e., the 'translation sector' ϕ_{tl}
 140 (denoted ϕ_R in the context of growth laws (*Scott et al., 2010*)), the proteome fraction for active
 141 ribosomes is related to the proteome fraction for translation factors via

$$\phi_{ribo}^{act} = \phi_{tl} - \phi_{ribo}^{inact} - \sum_i \phi_{tlF,i}. \quad (2)$$

142 Equations 1 and 2, together with the kinetic schemes for each step of the translation cycle,
 143 constitute the core of our model. Combining the biochemical effects (equation 1) and the systems-
 144 level constraints (equation 2) on tIFs, we arrive at a self-contained relationship between growth and
 145 tIF concentrations:

$$\lambda = \frac{\phi_{tl} - \phi_{ribo}^{inact} - \sum_i \phi_{tlF,i} \langle \ell \rangle}{\tau_{tl}(\{\phi_{tlF,i}\}) \ell_{ribo}}, \quad (3)$$

146 where we explicitly express τ_{tl} as a function of $\phi_{tlF,i}$ to reflect the dependence of ribosome transit
 147 times on translation factor abundances. The above relationship (equation 3) allows us to ask: what
 148 is the stoichiometry of tIFs, or partitioning of the translation sector, that maximizes the growth rate
 149 (Figure 1A)?

150 The condition for the optimal TF abundances, i.e., the set of $\phi_{tlF,i}$ that satisfies $(\partial \lambda / \partial \phi_{tlF,i})^* = 0$,
 151 can be obtained by considering the $\phi_{tlF,i}$ as independent variables and taking the derivative of
 152 equation 3 with respect to a specified tIF abundance. Under the assumptions that the translation
 153 sector (ϕ_{tl}) and the proteome fraction for inactive ribosomes (ϕ_{ribo}^{inact}) are both fixed in a given external
 154 nutrient condition, this yields

$$\left(\frac{\partial \tau_{tl}}{\partial \phi_{tlF,i}} \right)^* = -\frac{\langle \ell \rangle}{\ell_{ribo}} \frac{1}{\lambda^*}, \quad (4)$$

155 where the asterisk refers to the growth optimum within our model, i.e., $(\partial \lambda / \partial \phi_{tlF,i})^* = 0$. Hence, under
 156 this framework, the tIF abundances are growth-optimized when the sensitivity of the translation
 157 cycle time to changing the considered tIF abundance $(\partial \tau_{tl} / \partial \phi_{tlF,i})$ reaches a value determined solely
 158 by the growth rate and protein size factors. We emphasize that the derivative above corresponds to
 159 a perturbation scenario in which the tIF abundance is changed while maintaining fixed the total
 160 proteomic resources to the translation sector, as prescribed by our optimization procedure. As
 161 such, it does not correspond an actual perturbation easily realizable experimentally.

162 Although equation 3 and the resulting optimization conditions (equation 4, one for every tIF)
 163 corresponds to a coupled nonlinear system of multiple $\phi_{tlF,i}$, substantial decoupling occurs at the
 164 optimal growth rate. In this situation, most $\phi_{tlF,i}$ are only connected through the resulting growth
 165 rate. The optimization problem is then further simplified by the fact that the translation cycle
 166 consists of sequential and largely independent steps. The translation cycle time τ_{tl} corresponds to
 167 the sum of the coarse-grained initiation, elongation, and termination times, i.e., $\tau_{tl} = \tau_{ini} + \tau_{el} + \tau_{ter}$.
 168 Given that each tIF is involved in a specific molecular step, the sensitivity matrix of these times
 169 to tIF concentration is sparse: $(\partial \tau_j / \partial \phi_{tlF,i})^* = 0$ for most combinations of τ_j and $\phi_{tlF,i}$. This lack
 170 of 'cross-reactivity' expresses that, for example, the initiation time τ_{ini} is unaffected by the tRNA
 171 synthetase concentration. This sparsity only occurs at the optimal expression levels, as the transit
 172 times typically depend on the growth rate (see an example in section Non binding-limited regime
 173 (one stop codon)) and $\partial \lambda / \partial \phi_{tlF,i} \neq 0$ away from the optimum. The optimum condition for factor i

174 then simplifies to:

$$\left(\frac{\partial \tau_j}{\partial \phi_{tlf,i}} \right)^* = -\frac{\langle \ell \rangle}{\ell_{rib} \lambda^*}, \quad (5)$$

175 where j above denotes the translation step(s) that tlf_i participates in. This leads to simplifications
176 that allow the system to be solved analytically in most cases: instead of solving the full system at
177 once, individual reactions within the translation cycle can be considered in isolation. The resulting
178 optimal concentrations are connected via the growth rate λ^* . Interestingly, the optimal stoichiometry
179 among most tlfs is independent of λ^* if the reactions are in the binding-limited regime, as we show
180 below.

181 Case study: Translation termination

182 We first illustrate the process of solving for the optimal tlf concentration for the relatively simple case
183 of translation termination. The principles used here and the form of solutions provide conceptual
184 guideposts for solving other steps of the translation cycle.

185 In bacteria, translation termination (*Bertram et al., 2001*) consists of two distinct, sequential
186 steps: (1) stop codon recognition and peptidyl-tRNA hydrolysis catalyzed by class I peptide chain
187 release factors RF1 and RF2, followed by (2) dissociation of ribosomal subunits from the mRNA, i.e.,
188 ribosome recycling, catalyzed by RF4. We do not explicitly consider the additional factors (e.g., RF3
189 and EF-G) due to their lack of conservation or because they are non-limiting for this specific step
190 (Appendix 2, section Omitted molecular details). RF1 and RF2 have the same molecular functions
191 but recognize different stop codons (*Scolnick et al., 1968*): RF1 recognizes stops UAA and UAG,
192 whereas RF2 recognizes UAA and UGA. For simplicity, we describe here a scenario where RF1 and
193 RF2 have no specificity towards the three stop codons, which allows us to combine them in a single
194 factor (denoted RF1). The model is readily generalized, with similar results, to the case of the two
195 RFs with their specificity towards the three stop codons (Appendix 2, section Full three stop codons
196 model).

197 Under a coarse-grained description, the total ribosome transit time at termination τ_{ter} can be
198 decomposed into a sum of peptide release time and ribosome recycling time. In the treatment
199 below, we consider a regime of binding-limited reactions for simplicity (rapid catalytic rate). A
200 full model with catalytic components can also be solved analytically (Appendix 2, section Non
201 binding-limited regime (one stop codon), Figure 2A). In the binding-limited regime ($k_{cat} \rightarrow \infty$), the
202 peptide release time and ribosome recycling time are inversely proportional to the corresponding
203 tlf concentrations:

$$\tau_{ter} = \frac{1}{k_{on}^{RF1} \phi_{RF1}} + \frac{1}{k_{on}^{RF4} \phi_{RF4}}, \quad (6)$$

204 where the association rate constants k_{on}^i are rescaled by the factor's sizes in proteome fraction units
205 (Materials and Methods, section Conversion between concentration and proteome fraction). The
206 above expression constitutes the solution of the mass action scheme for termination, connecting
207 factor abundances to termination time.

208 The termination time (equation 6) can then be directly substituted into the optimality condition
209 (equation 5) and solved in terms of λ^* :

$$\phi_{RF1}^* = \sqrt{\frac{\ell_{rib} \lambda^*}{\langle \ell \rangle k_{on}^{RF1}}}, \quad \phi_{RF4}^* = \sqrt{\frac{\ell_{rib} \lambda^*}{\langle \ell \rangle k_{on}^{RF4}}}. \quad (7)$$

210 If the reactions are not binding-limited, an additional catalytic term $\propto \lambda^* / k_{cat}$ is added to the
211 minimally required levels above (Appendix 2, section Non binding-limited regime (one stop codon)).
212 The square-root dependence in the optimal RF concentrations emerges from the ϕ_i^{-1} dependence
213 of τ_i , e.g., for ribosome recycling $\tau_{recyc} \propto \phi_{RF4}^{-1}$, which becomes $(\phi_i^*)^{-2}$ upon taking the derivative
214 in the optimality condition (equation 5). The square root is then obtained by solving for ϕ_i^* . A
215 similar square-root dependence has been noted in optimization of the ternary complex and tRNA

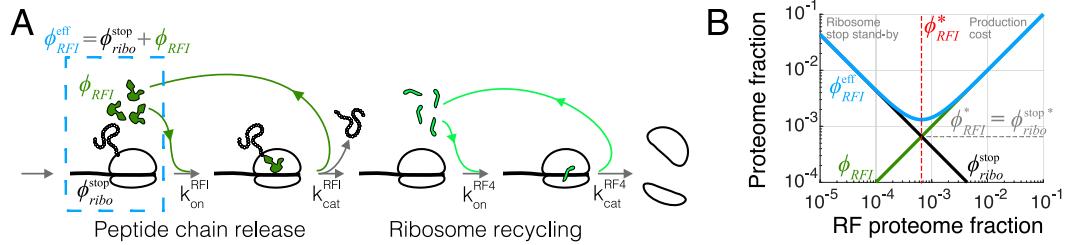


Figure 2. Case study with translation termination (A) Coarse-grained translation termination scheme. (B) Illustration of the minimization of effective proteome fraction corresponding to peptide chain release factors, leading to the equipartition principle.

abundances (*Ehrenberg and Kurland, 1984; Berg and Kurland, 1997*). Analysis of tIF expression across slower growth conditions supports the derived square root dependence (Figure 4-Figure supplement 2). As a result of the square-root, the optimal RF concentrations are weakly affected by biophysical properties such as the association rate constants and protein sizes. In the binding-limited regime above, the ratio of the optimal concentrations between RF1 and RF4 is independent of the growth rate and only depends on the kinetics of binding.

As a side note, the expression for termination time τ_{ter} in equation 6 must be modified in a regime where ribosomes are frequently queued upstream of stop codons. This would occur if the termination rate were slow and approached initiation rates on mRNAs (*Bergmann and Lodish, 1979; Lalanne et al., 2021*). In this regime, queues of ribosomes at stop codons would incur an additional time to terminate. In a general description, the resulting additional termination time can be absorbed in a queuing factor Q : $\tau_{ter}^{full} := \tau_{ter} Q(\tau_{ter})$ (Appendix 1 for derivation and discussion). The resulting nonlinearity would forbid the decoupling in the optimization procedure between RF1 and RF4. Although absolute rates of termination are difficult to measure *in vivo*, translation on mRNAs is generally thought to be limited at the initiation step (*Laursen and Sørensen, 2005*), and consistently, ribosome queuing at stop codons in bacteria is not usually observed (except under severe perturbations, e.g., (*Kavčič et al., 2020; Baggett et al., 2017; Mangano et al., 2020; Saito et al., 2020; Lalanne et al., 2021*)). In the physiological regime of fast termination, the queuing factor converges to 1, yielding simple solutions that depend only on biophysical parameters (equations 7).

235 **Equipartition between tIF and corresponding ribosomes**

236 The optimal tIF concentrations (e.g., equation 7) can also be intuitively derived from another
 237 viewpoint. For each reaction in the translation cycle, we can define an effective proteome fraction
 238 allocated to that process, combining the proteome fractions of the corresponding tIF and the
 239 ribosomes waiting at that specific step. As an example, for the case of peptide chain release factor
 240 (RF1) just treated, the effective proteome fraction includes the release factors and ribosomes with
 241 completed peptides waiting at stop codons (dashed box in Figure 2A), i.e., $\phi_{RF1}^{eff} := \phi_{RF1} + \phi_{ribo}^{stop}$. This
 242 effective proteome fraction corresponds to the total proteomic space associated to a tIF in the
 243 context of the translation cycle.

244 During steady-state growth, the concentration of ribosomes waiting at any specific step of the
 245 translation cycle is equal to the total active ribosome concentration multiplied by the ratio of the
 246 transit time of that step to the full cycle: e.g., here $\phi_{ribo}^{stop} = \frac{\tau_{stop}}{\tau_{tI}} \phi_{ribo}^{act}$, where $\tau_{stop} = 1/(k_{on}^{RF1} \phi_{RF1})$ is the
 247 time to arrival of RF1. Using equation 1 for ϕ_{ribo}^{act} , the effective proteome fraction satisfies:

$$\begin{aligned} \phi_{RF1}^{eff} &:= \phi_{RF1} + \phi_{ribo}^{stop} = \phi_{RF1} + \frac{1}{\phi_{RF1}} \frac{\lambda}{k_{on}^{RF1}} \frac{\ell_{ribo}}{\langle \ell \rangle} \\ &\geq 2 \sqrt{\frac{\lambda}{k_{on}^{RF1}} \frac{\ell_{ribo}}{\langle \ell \rangle}}. \end{aligned} \quad (8)$$

248 In the last line, we used the inequality of arithmetic and geometric means ($a + b \geq 2\sqrt{ab}$) to obtain

249 the minimum of the effective proteome fraction. The equality holds when the two proteome
 250 fractions are equal ($\phi_{RFI} = \phi_{ribo}^{stop}$), which provides the solution for optimal ϕ_{RFI} :

$$\phi_{RFI}^* = \sqrt{\frac{\ell_{ribo}\lambda^*}{\langle \ell \rangle k_{on}^{RFI}}}, \quad (9)$$

251 Hence, we recover equation 7 by minimizing the effective proteome fraction allocated to a given
 252 process in the translation cycle (the above argument applies to the optimal free concentration
 253 in the non-binding limited regime, see Appendix 2, section Non binding-limited regime (one stop
 254 codon) for an example). From this perspective, optimization of the translation apparatus balances
 255 the production cost of the enzyme of interest with the improved efficiency of a having less ribo-
 256 somes idle at that step, Figure 2B. The optimal abundance in our model corresponds to a point
 257 of equipartition: the proteome fraction of free cognate factors equals the proteome fraction of
 258 ribosomes waiting at the corresponding step (Figure 2B).

259 **Case study: Ternary complex and tRNA cycle (EF-Tu and aaRS)**

260 We next consider a more complex step of the translation cycle – elongation – and demonstrate
 261 that the optimality criterion (equation 5) can similarly provide simple analytical solutions in the
 262 physiologically relevant regime. Translation elongation involves multiple interlocked cycles (one
 263 for each chemical species) and enzymes (EF-Tu, EF-G, EF-Ts, aminoacyl-tRNA synthetases (aaRS),
 264 and more). Our simplified kinetic scheme for translation elongation is shown in Figure 3A: charged
 265 tRNAs are brought to ribosomes through a ternary complex (TC), corresponding to a bound tRNA
 266 and EF-Tu. Following tRNA delivery and GTP hydrolysis, EF-Tu is released from the ribosome, and
 267 nucleotide exchange factor EF-Ts recycles EF-Tu back into the active pool, after which EF-Tu can
 268 bind a charged tRNA again and form another TC. At the ribosome, translocation to the next codon
 269 is catalyzed by EF-G, followed by release of uncharged tRNAs. Aminoacyl-tRNA synthetases then
 270 charge tRNAs to complete the elongation cycle.

271 To reduce the complexity due to different tRNA isoacceptors and aaRSs, we self-consistently
 272 coarse-grained the translation elongation cycle to have a single codon (derived in Appendix 3,
 273 section Coarse-grained one-codon model). The resulting model harbors a single effective species for
 274 tRNA, aaRSs, and TCs, respectively. A rescaling factor ($1/n_{aa} \approx 1/20$, estimated in section Estimation
 275 of coarse-grained rates) arises in the procedure to decrease the rates of codon specific reactions
 276 and can be attached to either the respective rate constants or chemical species concentrations.
 277 In our formulation, we choose to rescale the association rate constants such that the coarse-
 278 grained abundance for each effective species corresponds to the sum over all individual codon-
 279 specific components. For example, ϕ_{aaRS} in our coarse-grained model corresponds to the summed
 280 proteome fraction of all aaRSs in the cell, and its association rate constant with the total tRNAs is
 281 rescaled by a factor of $1/n_{aa}$.

282 As a result of this choice of rescaling within our coarse-grained model, there are two classes
 283 of reactions in the elongation cycle that are distinguished by different kinetics: those that were
 284 codon specific (scaled by $1/n_{aa}$) and those that are not. Codon-specific reactions, e.g., aaRS binding
 285 to cognate tRNAs and TC binding to cognate codons, are coarse-grained into one-codon reactions
 286 with reduced association rate constants (marked by # in Figure 3A). By contrast, codon-agnostic
 287 reactions do not incur such a rescaling and are thus much faster. We refer to this as a separation of
 288 timescale between the two classes of reactions (codon-specific vs. codon-agnostic), and note that
 289 this is not a reflection of slower underlying microscopic bimolecular reaction rates, but rather a
 290 result of our choice of variable in the coarse-graining.

291 Similar to translation termination, the factor-dependent ribosome transit time through a single
 292 codon (τ_{aa}) is comprised of two steps, corresponding to binding of the TC and EF-G, respectively
 293 (formal derivation and non binding-limited regime in Appendix 3, section Coarse-grained translation

294 elongation time):

$$\tau_{aa} = \frac{1}{\frac{k_{on}^{TC}}{n_{aa}} \phi_{TC}} + \frac{1}{k_{on}^G \phi_G}. \quad (10)$$

295 The coarse-grained factor-dependent portion of the total translation elongation time in our model
 296 is then given by the single codon time above multiplied by the average number of codons per
 297 protein, i.e., $\langle \ell \rangle \tau_{aa}$. As discussed above, the rescaling of the TC association rate constant by n_{aa}^{-1}
 298 arises as a result of our coarse-graining to a one-codon model (Appendix 3, section Coarse-grained
 299 one-codon model). Note that the ternary complex concentration, ϕ_{TC} , is a nonlinear function of the
 300 concentrations of all elongation factors (including ϕ_G).

301 Despite the complexity of τ_{aa} as a function of the $\phi_{iTF,i}$, the fact that all fluxes are equal in
 302 steady-state allows several steps to be isolated and solved separately (EF-Ts and EF-G, greyed out in
 303 Figure 3A, respectively solved in Appendix 3, sections Optimal EF-Ts abundance and Optimal EF-G
 304 abundance). For example, the approximate binding-limited solution for optimal EF-G concentration
 305 parallels that for termination factors:

$$\phi_G^* \approx \sqrt{\frac{\ell_{ribo} \lambda^*}{k_{on}^G}}. \quad (11)$$

306 Importantly, the optimum for EF-G is larger than the optimum for RFs by a factor $\sqrt{\langle \ell \rangle}$, reflecting
 307 that the typical translation cycle to produce a protein requires $\langle \ell \rangle$ steps catalyzed by EF-G and only
 308 one step for RFs (i.e., $\langle \ell \rangle \tau_{aa}$ enters the optimality condition, equation 5, in contrast to τ_{ter} which is
 309 not multiplied by a scaling factor). The square root dependence arises here for the same reason as
 310 in the case of translation termination (derivative of ϕ^{-1}).

311 In contrast to EF-G and EF-Ts, EF-Tu and aaRS cannot *a priori* be treated in isolation because
 312 the TC is composed of both EF-Tu and charged tRNAs. Still, the separation of timescales within our
 313 coarse-grained model (see Appendix 3, section Interpretation of the sharp separation between aaRS
 314 and EF-Tu limited regimes) simplifies the solution considerably. Indeed, rapid binding of charged
 315 tRNAs to EF-Tu leads to either component being limiting for ternary complex concentration in most
 316 of the aaRS/EF-Tu expression space, leading to two clearly delineated regimes (Figure 3B). In one
 317 regime, charged tRNAs are limiting (low aaRS), whereas EF-Tu is limiting in the other (low EF-Tu).
 318 These regimes are separated by a narrow transition region, whose sharpness is a reflection of the
 319 smallness of the rate rescaling parameter n_{aa}^{-1} (see Appendix 3, section Interpretation of the sharp
 320 separation between aaRS and EF-Tu limited regimes). We term the focal region separating the
 321 two regimes in the aaRS/EF-Tu expression space the "transition line" (see Box 1 for derivation and
 322 additional details).

323 The transition line corresponds to conditions in which EF-Tu and aaRS are co-limiting for TC
 324 concentration. In the EF-Tu limited region, increasing aaRS abundance does not increase ternary
 325 complex concentration: since all EF-Tu proteins are already bound to charged tRNAs, increasing
 326 tRNA charging cannot further increase TC concentration. Conversely, in the aaRS limited region,
 327 increasing EF-Tu abundance does not increase TC concentration: since all charged tRNAs are
 328 already bound by EF-Tu, increasing EF-Tu concentration does not alleviate the requirement for
 329 more charged tRNAs. Given that the optimality condition requires non-zero increase in ternary
 330 complex concentration with increasing factor abundance (equation 5 using τ_{aa} from equation 10),
 331 the optimal EF-Tu and aaRS abundances must be on the transition line.

332 Which point on the transition line corresponds to the optimum? Note that inside the EF-Tu
 333 limited region, the ternary complex concentration is entirely set by the total EF-Tu concentration:
 334 $\phi_{TC} \approx \phi_{Tu}$ (since most EF-Tu proteins are bound by charged tRNAs, Figure 3-Figure supplement 1). As
 335 an approximation resulting from the narrow range of transition region (Figure 3 and Figure 3-Figure
 336 supplement 1), we assume that the EF-Tu limited regime solution $\phi_{TC} \approx \phi_{Tu}$ holds up to very close to
 337 the transition line. Replacing ϕ_{TC} by ϕ_{Tu} in the elongation time equation 10 and substituting in the
 338 optimality condition (equation 5), the approximate optimal abundance for EF-Tu (the full solution

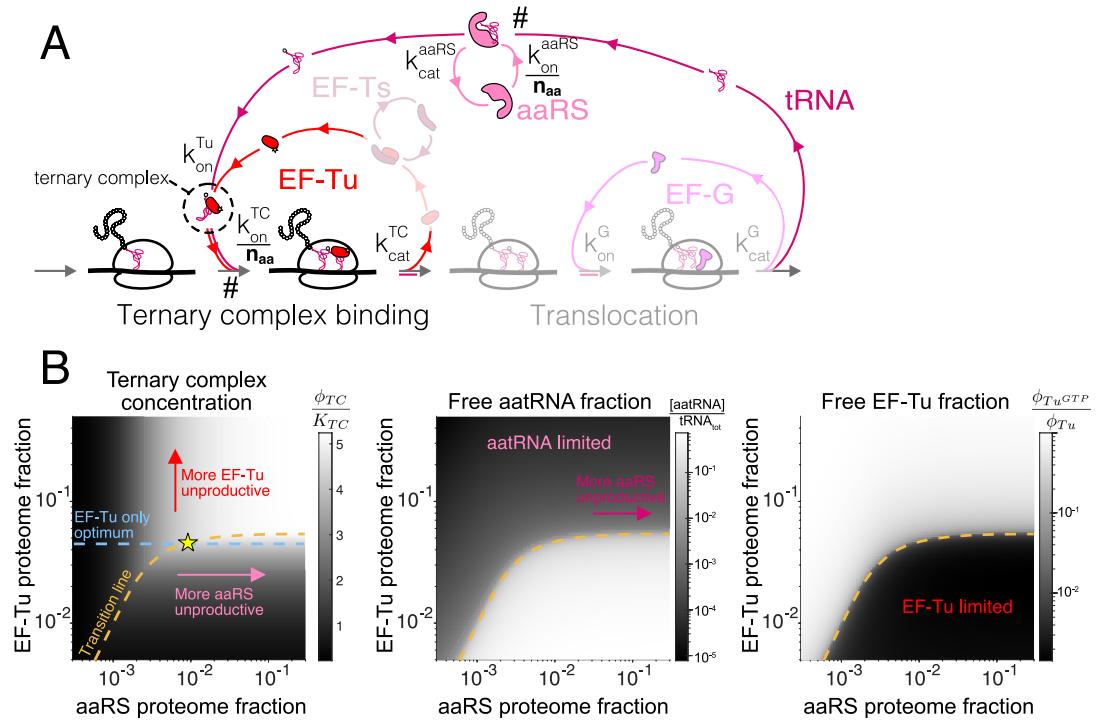


Figure 3. Case study with elongation factors (EF-Tu/aaRS) (A) Schematic of the translation elongation scheme, with the tRNA cycle, involving aminoacyl-tRNA synthetases (aaRS) and EF-Tu. Reactions with a # have their association rate constants rescaled by a factor of $n_{aa}^{-1} \approx 1/20$ through our coarse-graining to a single codon model. Greyed out cycles (EF-Ts and EF-G) can be solved in isolation (Appendix 3, sections Optimal EF-Ts abundance and Optimal EF-G abundance). (B) Exploration of the aaRS/EF-Tu expression space from numerical solution of the elongation model (Appendix 3, section Optimal EF-Tu and aaRS abundances). The transition line (orange) marks the boundary between the EF-Tu limited and aaRS limited regimes. Left panel shows the ternary complex concentration (which is closely related to the elongation rate, equation 10). The ternary complex concentration is scaled by the dissociation constant K_{TC} to the ribosome A site (see equation 39). Middle panel shows the free charged tRNA fraction. Right panel shows the free EF-Tu fraction (ϕ_{Tu}^{GTP} denotes the proteome fraction of EF-Tu GTP that can bind to charged tRNAs to form the ternary complex). The star marks the optimal solution, as described in the text.

Figure 3-Figure supplement 1. Geometrical interpretation of the sharpness of the separation of the aaRS limited and EF-Tu limited regimes.

Figure 3-source code 1. Source code to obtain panel (B) can be found in the associated scripts submitted with this work.

339 includes additional terms from the EF-Ts cycle, section Optimal EF-Tu and aaRS abundances) can
 340 then be obtained in the same way as for translation termination factors:

$$\phi_{Tu}^* \approx \sqrt{\frac{\ell_{ribo} n_{aa} \lambda^*}{k_{on}^{TC}}}. \quad (12)$$

341 Importantly, compared to the solution for EF-G, the above is multiplied by an additional factor
 342 of $\sqrt{n_{aa}}$. This contribution arises from the rescaling of the association rate for the ternary complex
 343 to the ribosome in our coarse-grained one-codon model, increasing the requirement on EF-Tu
 344 abundance.

345 From the necessity for the combined EF-Tu and aaRS solution to fall on the transition line, the
 346 approximate solution for the optimal aminoacyl-tRNA synthetase abundance is then the intersection
 347 (yellow star in Figure 3B) of the transition line with the EF-Tu-only solution described above (dashed
 348 blue line in Figure 3B, derivation of solution in Box 1).

349 For the above derivation to be valid, the total number of tRNAs in the cell must be sufficient to
 350 accommodate all ribosomes (about 2 per ribosome, A- and P-sites) and binding to all EF-Tu (about

351 > 4 per ribosome based on endogenous expression stoichiometry (*Li et al., 2014; Lalanne et al.,*
352 **2018**)). The number of tRNAs per ribosomes in the cell should thus be at least 6x. Remarkably,
353 estimates of this ratio in the cell suggest that this is barely the case (between 6-7 tRNAs/ribosome at
354 fast growth (*Dong et al., 1996*)). Although our model treats the total tRNA abundance as a measured
355 parameter and omits its selective pressure (see (*Hu et al., 2020*) which includes RNA mass in their
356 optimization procedure), the abundance of three core components of the tRNA cycle appear to
357 be at the special point where the transition line plateau, that is set by total tRNA abundance, just
358 crosses the EF-Tu-only optimum (blue line in Figure 3B). At this point, all three components are
359 co-limiting.

424 **Optimal stoichiometry of mRNA translation factors**

425 Analogous to the case studies above, optimal concentrations for all core translation factors can be
426 solved using the optimality condition (equation 5) and their respective kinetics schemes (the case
427 of translation initiation is solved in Appendix 4). The analytical forms of the optimal solutions are
428 shown in Table 2. In the binding-limited regime, the ratios of growth-optimized tIF concentrations
429 are independent of the growth rate (except for aaRS), and are dependent only on basic biophysical
430 parameters, such as protein sizes and diffusion constants.

431 To obtain the numerical values of association rates needed for calculate the optimal tIF sto-
432 ichiometry (Table 2), we rely on a biophysically motivated scaling of the measured association
433 between TC and ribosomes *in vivo*, $\hat{k}_{on}^{TC} = 6.4 \mu\text{M}^{-1}\text{s}^{-1}$ (*Dai et al., 2016*) (\hat{k} denotes the raw associa-
434 tion rate constant in units $\mu\text{M}^{-1}\text{s}^{-1}$, which is different from the rescaled k , see section *Conversion*
435 between concentration and proteome fraction). To our knowledge this is the only measurement
436 of a tIF's association constant in a physiological context. We estimate the association rates for
437 reactions involving other tIFs by scaling \hat{k}_{on}^{TC} by the respective diffusion coefficients of the chemical
438 species, that is for reaction involving species *A* and *B*: $\hat{k}_{on}^{AB}/\hat{k}_{on}^{TC} = (D_A + D_B)/(D_{TC} + D_{rib})$, where D_i
439 is the diffusion constant for the molecular species *i* (see Appendix 5 Table 2). Diffusion constants
440 for several tIFs have been measured experimentally (*Bakshi et al., 2012; Sanamrad et al., 2014;*
441 *Plochowietz et al., 2017; Volkov et al., 2018*), and uncharacterized ones can be estimated using the
442 cubic-root scaling with number of codons per protein from the Stokes-Einstein relation (*Nenninger*
443 *et al., 2010*) (see Appendix 5 Table 1). This approach to arrive at plausible numerical estimates
444 of \hat{k}_{on} 's assumes in particular that reactive radii and orientational constraints are similar for the
445 different reactions (see *Discussion* for additional assumptions). These are strong assumptions
446 which are necessary given the lack of *in vivo* biochemical parameter measurements, and can be
447 relaxed as refined empirical measurements for more physiological association rates become avail-
448 able. Nonetheless, we note that the square-root dependence on these parameters (Table 2) for
449 our predictions makes the numerical values less sensitive to possible tIF-specific effects. For our
450 estimates in fast growth, we take the growth rate λ^* to be the average of the fast-growing species
451 considered, corresponding to a doubling time of 21 ± 1 min (*E. coli*: 21.5 ± 1 min, *B. subtilis*: 21 ± 1
452 min, *V. natriegens*: 19 ± 1 min).

453 The estimated optimal tIF concentrations show concordance with the observed ones, both
454 in terms of the absolute levels and the stoichiometry among tIFs (Figure 4 for fast growth, see
455 Supplementary File 1 for data and Figure 4-Figure supplement 1 for additional growth conditions).
456 A hierarchy of expression levels emerges such that the factors involved in elongation are more
457 abundant compared to initiation and termination factors. The separation of these two classes
458 is driven by the scaling factor $\sqrt{\langle \ell \rangle} \approx 14$ in our analytical solutions, which reflects the fact that
459 the flux for elongation factors is $\langle \ell \rangle \approx 200$ times higher than that for initiation and termination
460 factors. Within each class, the finer hierarchy of expression levels can also be further explained by
461 simple parameters. For example, EF-Tu is predicted to be more abundant than EF-G by a factor of
462 $\sqrt{n_{aa}\ell_{Tu}/\ell_G} \approx 3.3$ (observed ϕ_{Tu}/ϕ_G : *E. coli* 3.9, *B. subtilis* 2.7, *V. natriegens* 3.3). A higher abundance
463 is required for EF-Tu because it is bound to the different tRNAs, which effectively decreases the
464 concentration by a factor of $n_{aa} \approx 20$ (see section *Estimation of coarse-grained rates for derivation*

Box 1. The EF-Tu and aaRS transition line

Within our framework, optimality of translation factors is dictated by how coarse-grained ribosome transit times depend on factors' abundances (equation 4). For elongation factors aaRS and EF-Tu, contribution to the ribosome elongation time ($\tau_{el} = \langle \ell' \rangle \tau_{aa}$) is through the concentration of the ternary complex (equation 10). Obtaining the optimal EF-Tu and aaRS abundance therefore requires solving for the ternary complex concentration as a function of these two variables. The steady-state solution for the ternary complex concentration in the aaRS/EF-Tu expression displays two sharply separated regime (Figure 3B), separated by a narrow transition region (the 'transition line'). As described in the main text, the transition line plays a critical role for identifying the optimal EF-Tu and aaRS abundances within our model. Away from the line, there is an unproductive excess of either factors, viz. either $\partial\phi_{TC}/\partial\phi_{Tu} \approx 0$ or $\partial\phi_{TC}/\partial\phi_{aaRS} \approx 0$. Here, we derive the equation for the transition line. First, we leverage the constraint imposed by the conservation of tRNAs, which in our model is:

$$tRNA_{tot} = [R_\emptyset] + 2[R_{TC}] + 2[R_{tRNA}] + 2[R_G] + [tRNA] + [tRNA:aaRS] + [aatRNA] + [TC].$$

$\propto \lambda/k_{el}^{max}$

Above, $tRNA_{tot}$ corresponds to the total tRNA concentration in the cell. In addition: R_\emptyset : elongating ribosomes with empty A-site, R_{TC} : ribosomes with bound TC, R_{tRNA} : ribosomes with a filled A-site and no bound factor, R_G : ribosomes with bound EF-G, tRNA: free uncharged tRNAs, tRNA:aaRS: tRNA and aaRS complex, aatRNA: free charged tRNAs, and TC: ternary complex. Here, we assume that the elongating ribosomes always have a tRNA in the P-site, and a negligible occupancy in the E-site.

Using the system of equations from the mass action scheme at steady-state (section Translation elongation: optimal solutions), variables in the tRNA conservation equation above can be solved for in terms of the total abundance of EF-Tu and aaRS, the growth rate, and the steady-state ternary complex concentration. We note that the three ribosome species with a filled A site (R_{TC} , R_{tRNA} , and R_G) do not depend on EF-Tu concentration, and can be coarse-grained to a term proportional to λ/k_{el}^{max} , where k_{el}^{max} is the maximal translation elongation rate (not including the TC diffusion contribution) (Dai *et al.*, 2016). In the binding-limited regime, converting to proteome fraction units, and leaving out the EF-Ts contribution without loss of generality (see section Optimal EF-Tu and aaRS abundances for a full treatment), we have:

$$\psi_{tRNA} = \underbrace{\frac{\lambda(\phi_{TC})}{\frac{k_{on}^{TC}}{n_{aa}}\phi_{TC}} + \frac{2\lambda(\phi_{TC})}{k_{el}^{max}}}_{R_\emptyset} + \underbrace{\frac{\lambda(\phi_{TC})}{\frac{k_{on}^{aaRS}}{n_{aa}}\phi_{aaRS}}}_{\text{free uncharged tRNA}} + \underbrace{\frac{\lambda(\phi_{TC})}{\frac{k_{on}^{Tu}}{n_{aa}}\phi_{Tu}^{GTP}} + \frac{\phi_{TC}}{\ell'_{Tu}}}_{\text{free aatRNA}}, \text{ where } \phi_{Tu^{GTP}} := \phi_{Tu} - \phi_{TC}. \quad (13)$$

Above, ψ_{tRNA} is a normalized tRNA concentration (see equation 28). We have explicitly highlighted that the growth rate is dependent on EF-Tu and aaRS only through the ternary complex concentration ϕ_{TC} . From the definition of the elongation time (equation 10), we have $\lambda(\phi_{TC}) \propto \phi_{TC}/(K_{TC} + \phi_{TC})$ (Klumpp *et al.*, 2013; Dai *et al.*, 2016) (definition of K_{TC} in terms of model parameters: supplement, equation 39). Equation 13 is closed and can be solved for ϕ_{TC} at given abundances of EF-Tu (ϕ_{Tu}) and aaRS (ϕ_{aaRS}).

Although equation 13 is non-linear and cannot be solved exactly in general, the separation of timescales in our coarse-grained description simplifies the problem considerably. Indeed, numerical solutions of equation 13 (Figure 3B, section Optimal EF-Tu and aaRS abundances) show that the behavior of TC concentration in the two-dimensional EF-Tu/aaRS expression space is split into two distinct regimes, sharply delineated by a transition line (orange line in Figure 3B, a geometric heuristic explaining the sharp separation between the regimes is presented in Appendix 3, section Interpretation of the sharp separation between aars and EF-Tu limited regimes, Figure 3-Figure supplement 1). Since TC concentration only increases as a function of both aaRS and EF-Tu on the transition line, the optimal solutions for the two factors must fall on it.

An expression for the transition line can be derived. Conceptually, the region of transition between the two regimes has both a low concentration of free EF-Tu molecules ($\phi_{Tu^{GTP}}/\phi_{Tu} \approx 0$) and a low concentration of free charged tRNAs ($[aatRNAs]/tRNA_{tot} \approx 0$). Although no values in the aaRS/EF-Tu expression plane can formally satisfy these two conditions simultaneously, the transition line is specified by setting the free charged tRNA term to 0 and replacing ϕ_{TC} by ϕ_{Tu} (no free EF-Tu) in equation 13. We denote by $(\bar{\phi}_{Tu}, \bar{\phi}_{aaRS})$ points satisfying the resulting requirement, namely (see equation 40 for non binding-limited case):

$$\text{Transition line: } \psi_{tRNA} - \frac{\lambda(\bar{\phi}_{Tu}) n_{aa}}{k_{on}^{TC} \bar{\phi}_{Tu}} - \frac{2\lambda(\bar{\phi}_{Tu})}{k_{el}^{max}} - \frac{\bar{\phi}_{Tu}}{\ell'_{Tu}} := \Delta_{tRNA}(\bar{\phi}_{Tu}) = \frac{n_{aa}\lambda(\bar{\phi}_{Tu})}{k_{on}^{aaRS} \bar{\phi}_{aaRS}}, \quad (14)$$

where we have defined the excess tRNA (Δ_{tRNA}) above. In words, Δ_{tRNA} corresponds to the available tRNAs after the tRNAs sequestered on ribosomes and EF-Tu in the TC are subtracted from the total tRNA budget. At large aars concentrations, the transition line plateaus as a result of the finite total tRNA budget within the cell (Figure 3B, middle panel). The plateau is reached once all tRNAs aaRS are charged: the system is then no longer limited by aaRSs, but by the amount of tRNAs. Using the requirement that the optimum must fall on the transition line and the approximate solution for the EF-Tu optimum, the approximate optimal solution for aaRS is, from equation 14 (section Optimal EF-Tu and aaRS abundances for non binding-limited solution):

$$\phi_{aaRS}^* \approx \frac{n_{aa}\lambda^*}{k_{on}^{aaRS} \Delta_{tRNA}^*}, \text{ where: } \Delta_{tRNA}^* = \psi_{tRNA} - \frac{n_{aa}\lambda^*}{k_{on}^{TC} \phi_{Tu}^*} - \frac{2\lambda^*}{k_{el}^{max}} - \frac{\phi_{Tu}^*}{\ell'_{Tu}} \quad (15)$$

Within our model, the optimal aaRS concentration is thus set by the excess tRNAs at the EF-Tu optimum (Δ_{tRNA}^*).

465 and discussion of why the factor is not equal to the number of different tRNAs). Taken together,
 466 our model offers straightforward explanations for the observed tIF stoichiometry.

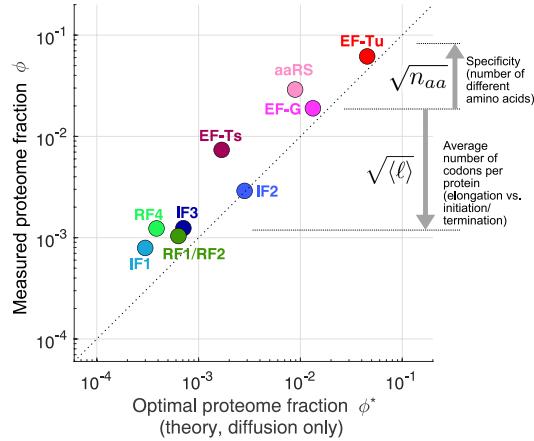


Figure 4. Predicted optimal abundance (no catalytic contribution, $k_{cat} \rightarrow \infty$) versus observed abundance. Measured proteome fractions are the average of *E. coli*, *B. subtilis*, *V. natriegens* (Lalanne et al., 2018). We note that given the sensitivity of the optimal aaRS abundance on the total tRNA/ribosome ratio (visually: yellow star's position in Figure 3B moves rapidly along x-axis upon changes in plateau of transition line), the prediction for aaRS should be interpreted with caution.

Figure 4-Figure supplement 1. Measured and predicted proteome fraction for core translation factors in individual conditions.

Figure 4-Figure supplement 2. Expression stoichiometry of core translation factors in different species and at different growth rates.

Figure 4-source data 1. Data and predicted values can be found in Supplementary File 1 and 2.

467 For a few tIFs, the observed concentrations are 2- to 5-fold higher than the predicted optimal
 468 levels (e.g., EF-Ts, RF4, and IF1 in Fig. 4). A potential explanation is that the corresponding reactions
 469 may not be binding or diffusion-limited, which would lead to a non-negligible fraction of tIFs
 470 sequestered at the catalytic step and thereby require higher total concentrations. Indeed, recent
 471 detailed modeling of the EF-Ts (Hu et al., 2020) cycle estimated only a small fraction (6 to 48%) of its
 472 abundance was in the free form in the cell, consistent with the large deviation we observe for this
 473 factor from our diffusion only prediction. Our optimization model can also be solved analytically
 474 in the non-binding-limited regime (Table 2), with the finite catalytic rate leading to an additional
 475 contribution of the form $\propto \ell \lambda^* / k_{cat}$. However, the numerical values for these solutions are in general
 476 difficult to obtain because the estimates for catalytic rates are sparse and often inconsistent with
 477 estimates of kinetics in live cells. As an example, median estimated aaRS catalytic rates (Jeske
 478 et al., 2019) measured *in vitro* is $\approx 3 \text{ s}^{-1}$, well below the *minimal* value of 15 s^{-1} , required to sustain
 479 translation flux at the measured value (Appendix 5), suggesting substantial deviation between *in*
 480 *vitro* and *in vivo* kinetics. While technically demanding, the fraction of free vs. bound factors can in
 481 principle be determined through live cell microscopy of tagged factors by partitioning the diffusive
 482 states of the tagged enzyme. Using that approach, (Volkov et al., 2018) estimated that EF-Tu was
 483 in its bound state <10% of the time (consistent with our diffusion-limited prediction closed to the
 484 observed value for this factor).

485 Another potential explanation for the observed deviations from our predictions is that the
 486 selective pressure for these tIFs may be lower compared to the more highly expressed tIFs. This
 487 explanation is unlikely both because their stoichiometry are observed to be conserved (Figure 1B,
 488 Figure 4-Figure supplement 2) and given that the expression of other lowly expressed tIFs (e.g.,
 489 RF1, RF2, and individual aaRSs) has been shown to acutely affect cell growth (Lalanne et al., 2021;
 490 Parker et al., 2020). Nevertheless, the deviations from the predicted optimal levels suggest that a

491 more refined model may be required than our first-principles derivation.

492 Discussion

493 Despite the comprehensive characterization of their molecular mechanisms, the 'mixology' for
494 the protein synthesis machineries inside living cells has remained elusive. Here we establish a
495 first-principles framework to provide analytical solutions for the growth-optimizing concentrations
496 of translation factors. We find reasonable agreements between our parameter-free parsimonious
497 predictions and the observed tIF stoichiometry (Figure 4). These results provide simple rationales
498 for the hierarchy of expression levels, as well as insights into several construction principles for
499 biological pathways.

500 An important implication from the agreement between observed stoichiometries and our
501 predictions is that most tIFs are co-limiting for growth. Previous models have focused on expression
502 optimization for the full translation sector, ribosomes (*Scott et al., 2010, 2014; Belliveau et al.,*
503 *2021*), and the abundant elongation factors EF-Tu (*Ehrenberg and Kurland, 1984; Klumpp et al.,*
504 *2013*). In a recent study, Hu and colleagues considered additional RNA components and EF-Ts in
505 their optimization procedure (*Hu et al., 2020*). In line with the conclusions of these previous studies,
506 our results demonstrate that multiple components of the translation machinery, regardless of
507 their observed expression level, are simultaneously co-limiting for cell growth. By virtue of the
508 interlocked translation cycles at steady state, the flux through every cycle must be matched. In our
509 model, the optimality occurs when there are just enough tIFs to support the required flux in every
510 cycle, such that the proteome fraction of free factors equals that of waiting ribosomes at that step
511 (equipartition). If the concentration of any one tIF falls below the optimal point, it becomes the
512 limiting factor for protein synthesis and growth. This result is supported by experimental evidence
513 that slight knockdowns of individual RFs and aaRSs are detrimental to growth (*Parker et al., 2020;*
514 *Lalanne et al., 2021*). Figuratively, the translation apparatus is analogous to a vulnerable supply
515 chain, in which slowdown in any of the steps affects the full output.

516 In the binding-limited regime, the optimal tIF stoichiometry is independent of the specific growth
517 rate (except for aaRS). This is consistent with the observation that relative tIF expression remains
518 unchanged in *E. coli* in conditions with growth rates ranging from 20-min to 2-hr doubling time
519 (*Lalanne et al., 2018; Li et al., 2014*) (Figure 4-Figure supplement 2A).

520 Our results are also consistent with the maintenance of the relative tIF expression across
521 large phylogenetic distances even though the underlying regulation and cellular physiology has
522 diverged (*Lalanne et al., 2018*) (Figure 1B, and additional comparison to slow growing *C. crescentus* in
523 Figure 4-Figure supplement 2A). Under the assumption of diffusion-limited association to estimate
524 parameters, the optimal tIF stoichiometry depends only on simple biophysical parameters, including
525 protein sizes and diffusion constants, that are likely conserved in distant species. It remains to be
526 determined if similar biophysical principles apply to the other pathways that also exhibit conserved
527 enzyme expression stoichiometry.

528 In principle, our model can also make predictions on the growth defects at suboptimal tIF
529 concentrations. However, experimentally testing these predictions will be difficult due to secondary
530 effects of gene regulation that are not considered in our model near optimality. For example, we
531 have recently shown that small changes in RF levels lead to idiosyncratic induction of the general
532 stress response in *B. subtilis* due to a single ultrasensitive stop codon (*Lalanne et al., 2021*). As
533 a result, the growth defect not only arises from reduced translation flux, but is in fact dictated
534 by spurious regulatory connections that are normally not activated when tIF expression is at the
535 optimum. We propose that tIF expression may be set at the optimal levels as our first-principles
536 model suggests but entrenched by connections in the regulatory network. To predict the full
537 expression-to-fitness landscape away from the optimum, a more comprehensive model may be
538 required to take into account all the molecular interactions in the cell (*Karr et al., 2012; Macklin*
539 *et al., 2020*).

540 Our coarse-graining approach has several limitations in its connection to detailed biochemical
 541 parameters. Foremost, coarse-grained association rate constants remain difficult to numerically
 542 estimate, and possibly neglect important features. In particular, given the sparsity of available *in*
 543 *vivo* rate constants, we scaled the measured TC association rate (\hat{k}_{on}^{TC}) by the respective diffusion
 544 coefficients to estimate \hat{k}_{on} for all tIFs reactions. This approach generates more plausible values
 545 than the unrealistic overestimate from Smoluchowski theory (diffusion-limited rate for perfectly
 546 absorbing spheres, see Appendix 5), but however assumes that certain molecular properties of
 547 other modeled reactions are similar. These include the size of the reactive surfaces, orientational
 548 constraints of the bimolecular interaction, and possible non-cognate binding events. We also do
 549 not explicitly consider off-rates in our model. Instead, our parameters correspond to effective rate
 550 constants that account for possible sequential binding and unbinding events, i.e., $\tilde{k}_{on} = k_{on}/n_{bind}$, with
 551 $n_{bind} = k_{cat}/(k_{cat} + k_{off})$. The effective association rate constants in our model thus contain information
 552 about catalytic and possible proofreading steps, which could be tIF-specific and are challenging
 553 to estimate. All of these effects may contribute to the discrepancy between our predicted and
 554 observed tIF concentrations. As more physiological and molecular data become available, these
 555 tIF-specific features could be used to individually refine our estimate for the association rates
 556 constants and our predictions. For example, elaborate calculations from structural data could
 557 account for rotational constraints (Schlosshauer and Baker, 2004), but are beyond the scope of the
 558 present work. Overall, we expect these tIF-specific corrections to be of limited influence on the final
 559 predictions due to the square-root dependence of the optimal expression (Table 2). We further note
 560 that a number of conclusions from our model, such as the factor of $\sqrt{\langle \ell \rangle}$ separating the optimal
 561 abundance of elongation from initiation/termination tIFs, are generic and do not depend on the
 562 specific association rates.

563 Taken together, our model provides the biophysical basis for the stoichiometry of translation
 564 factors in living cells. The first-principles approach complements more comprehensive models that
 565 include many biochemical parameters (Hu et al., 2020; Vieira et al., 2016), while providing intuitive
 566 rationales for the expression hierarchy. We anticipate that our approach will be generalizable to
 567 elucidate or design enzyme stoichiometry of other biological pathways, especially those whose
 568 activities are required for cell growth.

569 Materials and Methods

570 Average number of codons per protein: $\langle \ell \rangle$

We calculate the average number of codons per protein, weighted by expression, as

$$\langle \ell \rangle := \frac{\sum_i e_i \ell_i}{\sum_i e_i}, \quad (16)$$

571 where ℓ_i is the number of codon for the protein product of gene i , and e_i is the protein synthesis rate
 572 (as estimated from ribosome profiling (Li et al., 2014; Lalanne et al., 2018)) for gene i . For a stable
 573 proteome (in fast growing bacteria, the cell doubling time is shorter than the active degradation
 574 of most proteins (Larrabee et al., 1980)), the protein synthesis rate equals to the proteome mass
 575 fraction (Li et al., 2014). Changes in the expression of genes across growth conditions do not lead
 576 to substantial changes in $\langle \ell \rangle$. In *E. coli*, across growth conditions spanning ≈ 20 min doubling time
 577 to ≈ 120 min, $\langle \ell \rangle$ changes by about 20%. Specifically, we find $\langle \ell \rangle = 196, 210$, and 240 in respectively
 578 MOPS complete (≈ 20 min doubling time (Li et al., 2014)), MOPS minimal (≈ 56 min doubling time
 579 (Li et al., 2014)), and NQ1390 forced glucose limitation (≈ 120 min doubling time (Mori et al., 2021)),
 580 based on ribosome profiling data. Here for simplicity, we take $\langle \ell \rangle \approx 200$ throughout.

581 Conversion between concentration and proteome fraction

582 Throughout, we use both units of concentration (molar), denoted as e.g., $[A]$ for protein A , and
 583 proteome fraction, denoted by ϕ_A (Scott et al., 2010). The correspondence between the two is
 584 $\phi_A = [A]\ell_A/P$, where ℓ_A is the number of amino acid in protein A , and P is the in-protein amino

585 acid concentration in the cell. $P \approx 2.6 \times 10^6 \mu\text{M}$, and has a value approximately independent of
 586 growth rate (*Klumpp et al., 2013; Bremer and Dennis, 2008*). This change in units also relates to
 587 how association constants are defined in units of proteome fraction: $\hat{k}_{on}[A] := k_{on}\phi_A$, where the hat
 588 $\hat{\cdot}$ refers to the association constant in usual units of $\mu\text{M}^{-1} \text{s}^{-1}$ (used to connect to empirical data).
 589 Hence, $k_{on} := \hat{k}_{on}P\ell^{-1}$ is the rescaled association rate in units of proteome fraction.

590 Equality of ribosome flux in steady-state

591 In steady-state exponential growth, the ribosome flux in and out of each intermediate state is equal
 592 to the total flux. This results from the fact that no ribosome can accumulate in any intermediate
 593 state. Since the flux out of state i is given by ϕ_{ribo}^i/τ_i , we must have:

$$\frac{\lambda\ell_{ribo}}{\langle\ell\rangle} = \frac{\phi_{ribo}^{act}}{\tau_{trl}} = \frac{\phi_{ribo}^{ini}}{\tau_{ini}} = \frac{\phi_{ribo}^{el}}{\tau_{el}} = \frac{\phi_{ribo}^{ter}}{\tau_{ter}}. \quad (17)$$

594 As a consequence, the proportion of ribosome in each state is equal to the proportion of time
 595 spent at that given step, for example for translation initiation:

$$\frac{\phi_{ribo}^{ini}}{\phi_{ribo}^{act}} = \frac{\tau_{ini}}{\tau_{ini} + \tau_{el} + \tau_{ter}}.$$

596 Protein production flux and growth rate

597 In order to write the mass action kinetic scheme for more complex models, it is useful to recast
 598 our framework in terms of the protein number production flux J , defined as the number of full
 599 length proteins produced per cell volume per unit time. The production of each protein requires a
 600 ribosome to go through the full synthesis cycle, and as such J provides a convenient quantity in
 601 mass action schemes formulated in molar units.

602 In steady-state of exponential growth (*Monod, 1949; Scott et al., 2010; Dai et al., 2016*), there
 603 is a direct relationship between the growth rate λ (defined through $dN/dt = \lambda N$, where N is the
 604 number of cells per unit volume of culture) and the protein production flux J . Explicitly, the protein
 605 mass accumulation rate is λM , where M is the total protein mass per unit volume of culture.
 606 If V is the mean cell volume, then $\lambda M/V = N m_{aa} \langle\ell\rangle J$, where m_{aa} is the mean amino acid mass.
 607 Defining $P := M/(m_{aa}NV)$, the in-protein amino acid concentration per cell (Materials and Methods,
 608 section Conversion between concentration and proteome fraction), the connection between protein
 609 production flux J and growth rate λ is then $J = \frac{P\lambda}{\langle\ell\rangle}$. This relationship will be used to convert between
 610 molar and proteome fraction in some equations below.

611 Summary of optimal solutions

612 Solutions for the factor predicted optimal abundances as a function of effective biochemical
 613 parameters and the growth rate at the optimum, are presented in Table 2. The table breaks down
 614 terms in each solution by categories: direct diffusion term (arising from diffusive search time),
 615 catalytic sequestration, and delay incurred by the diffusion of other proteins in part of the cycle
 616 of the factor of interest. Solutions are listed in terms of on-rate \hat{k}_{on} (units of $\mu\text{M}^{-1}\text{s}^{-1}$). The aaRS
 617 solution follows a different form:

$$\phi_{aaRS}^* = \frac{n_{aa}\ell_{aaRS}\lambda^*}{\hat{k}_{on}^{aaRS} P \Delta_{tRNA}^*} + \frac{\ell_{aaRS}\lambda^*}{k_{cat}^{aaRS}}, \quad (18)$$

$$\text{with } \Delta_{tRNA}^* := \frac{tRNA_{tot}}{P} - \frac{\lambda^*}{k_{on}^{TC}\phi_{TC}^*} - \frac{2\lambda^*}{k_{el}^{max}} - \frac{\phi_{TC}^*}{\ell_{Tu}} - \frac{\lambda^*}{k_{cat}^{aaRS}}, \text{ and } \phi_{TC}^* := \sqrt{\frac{n_{aa}\ell_{ribo}\ell_{Tu}\lambda^*}{\hat{k}_{on}^{TC}P}}.$$

Factor	Diffusion (direct) $\propto \sqrt{\frac{\lambda^*}{P}}$	Diffusion (other) $\propto \sqrt{\frac{\lambda^*}{P}}$	Catalytic sequestration $\propto \lambda^*$
IF1	$\sqrt{\frac{\ell_{ribo}\ell_{IF1}}{\langle \ell \rangle \hat{k}_{on}^{IF1}} \left[1 + \frac{\ell_{IF2} + \ell_{IF3}}{\ell_{ribo}} \right]}$	$\frac{\ell_{IF1}}{\langle \ell \rangle} \sqrt{\frac{\langle \ell \rangle}{\hat{k}_{on}^{50S}}}$	$\frac{\ell_{IF1}}{\langle \ell \rangle} \left(\frac{1}{k_{RNA}} + \frac{1}{k_{cat}^{ini}} \right)$
	$\sqrt{\frac{3}{4}} \sqrt{\frac{\ell_{ribo}\ell_{IF2}}{\langle \ell \rangle \hat{k}_{on}^{IF2}}}$	$\frac{\ell_{IF2}}{\langle \ell \rangle} \left(\sqrt{\frac{\ell_{ribo}\ell_{IF1}}{\langle \ell \rangle \hat{k}_{on}^{IF1}}} + \sqrt{\frac{\langle \ell \rangle}{\hat{k}_{on}^{50S}}} \right)$	$\frac{\ell_{IF2}}{\langle \ell \rangle} \left(\frac{1}{k_{RNA}} + \frac{1}{k_{cat}^{ini}} \right)$
	$\sqrt{\frac{3}{4}} \sqrt{\frac{\ell_{ribo}\ell_{IF3}}{\langle \ell \rangle \hat{k}_{on}^{IF3}}}$	$\frac{\ell_{IF3}}{\langle \ell \rangle} \left(\sqrt{\frac{\ell_{ribo}\ell_{IF1}}{\langle \ell \rangle \hat{k}_{on}^{IF1}}} + \sqrt{\frac{\langle \ell \rangle}{\hat{k}_{on}^{50S}}} \right)$	$\frac{\ell_{IF3}}{\langle \ell \rangle} \left(\frac{1}{k_{RNA}} + \frac{1}{k_{cat}^{ini}} \right)$
EF-G	$\sqrt{\frac{\ell_{ribo}\ell_G}{\hat{k}_{on}^G}}$		$\frac{\ell_G}{k_{cat}^G}$
	$\sqrt{\frac{\ell_{Tu}\ell_{Ts}}{\hat{k}_{on}^{Ts}}}$		$\frac{\ell_{Ts}}{k_{cat}^{Ts}}$
	$\sqrt{\frac{\ell_{ribo}\ell_{Tu}n_{aa}}{\hat{k}_{on}^{TC}}}$	$\sqrt{\frac{\ell_{Tu}\ell_{Ts}}{\hat{k}_{on}^{Ts}}}$	$\ell_{Tu} \left(\frac{1}{k_{cat}^{TC}} + \frac{1}{k_{cat}^{Ts}} \right)$
RF1+RF2	$\sqrt{\frac{\ell_{ribo}\ell_{RF1}(1+\delta)}{\langle \ell \rangle \hat{k}_{on}^{RF1}}}$		$\frac{\ell_{RF1}}{\langle \ell \rangle k_{cat}^{RF1}}$
	$\sqrt{\frac{\ell_{ribo}\ell_{RF4}}{\langle \ell \rangle \hat{k}_{on}^{RF4}}}$		$\frac{\ell_{RF4}}{\langle \ell \rangle k_{cat}^{RF4}}$

Table 2. Compilation of predicted optimal abundances for translation factors. The optimal abundance is the sum of the terms in each row. Columns correspond to contributions of different nature (diffusion of factor itself, diffusion of other factors involved in the factor's cycle, catalytic term). Terms must be multiplied by the common factors indicated in each column's header (\propto). For RF1+RF2, $\delta := 2\sqrt{f_{UAG}f_{UGA}}$ (see section Optimal abundances for RF1/RF2).

618 **Acknowledgments**

619 We thank R. Battaglia, J. Cascino, M. Gill, M. Parker, D. Parker, and G. Schmidt for critical reading
620 of the manuscript, and all members of the Li lab for discussion. This research was supported by
621 NIH grant R35GM124732, the NSF CAREER Award, the Smith Odyssey Award, the Pew Biomedical
622 Scholars Program, a Sloan Research Fellowship, the Searle Scholars Program, the Smith Family
623 Award for Excellence in Biomedical Research; NSERC doctoral Fellowship and HHMI International
624 Student Research Fellowship (to J.-B.L.).

625 **Supplementary Files**

626 **Supplementary File 1:** Proteome synthesis fraction (in %) of core mRNA translation factors for
627 species and growth conditions with fast growth estimated from ribosome profiling data (*Li et al.*,
628 *2014; Lalanne et al., 2018*).

629 **Supplementary File 2:** Diffusion-limited optima predicted for translation factors for fast-growth
630 conditions.

632 **Supplementary File 3:** Proteome synthesis fraction (in %) of core mRNA translation factors for
633 species/conditions with slower growth estimated from ribosome profiling. Ribosome profiling data:
634 *E. coli* (MOPS minimal (*Li et al., 2014*), M9 glucose (*Mori et al., 2021*), *C. crescentus* (*Schrader et al.,*
635 *2014*), with synthesis rates estimated in (*Lalanne et al., 2018*)).

637 **Supplementary File 4:** Diffusion-limited optima predicted for translation factors for slower growth
638 conditions.

641 **References**

642 **Agirrezabala X**, Frank J. Elongation in translation as a dynamic interaction among the ribosome, tRNA,
643 and elongation factors EF-G and EF-Tu. *Quarterly Reviews of Biophysics*. 2009; 42(3):159–200. doi:
644 10.1017/S0033583509990060.

645 **Andersen GR**, Nissen P, Nyborg J. Elongation factors in protein biosynthesis. *Trends in Biochemical Sciences*.
2003; 28(8):434–441. doi: 10.1016/S0968-0004(03)00162-2.

647 **Baggett NE**, Zhang Y, Gross CA. Global analysis of translation termination in *E. coli*. *PLoS Genetics*. 2017; 13(3):1–
648 27. <http://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1006676&type=printable>, doi:
649 10.1371/journal.pgen.1006676.

650 **Bakshi S**, Siryaporn A, Goulian M, Weisshaar JC. Superresolution imaging of ribosomes and RNA polymerase in
651 live *Escherichia coli* cells. *Molecular Microbiology*. 2012; 85(1):21–38. doi: 10.1111/j.1365-2958.2012.08081.x.

652 **Belliveau NM**, Chure G, Hueschen CL, Fisher DS, Theriot JA, Phillips R. Fundamental limits on the rate
653 of bacterial growth and their influence on proteomic composition. *Cell Systems*. 2021; p. 1–21. doi:
654 10.1016/j.cels.2021.06.002.

655 **Berg OG**, Kurland CG. Growth rate-optimised tRNA abundance and codon usage. *Journal of molecular biology*.
1997; 270(4):544–550. doi: 10.1006/jmbi.1997.1142.

657 **Bergmann JE**, Lodish HF. A kinetic model of protein synthesis. Application to hemoglobin synthesis and
658 translational control. *Journal of Biological Chemistry*. 1979; 254(23):11927–11937. <http://www.jbc.org/content/254/23/11927.full.pdf>, doi: 10.1016/s0021-9258(19)86406-2.

660 **Bertram G**, Innes S, Minella O, Richardson JP, Stansfield I. Endless possibilities: Translation termination and
661 stop codon recognition. *Microbiology*. 2001; 147(2):255–269. doi: 10.1099/00221287-147-2-255.

662 **Björk GR**, Hagervall TG. Transfer RNA Modification: Presence, Synthesis, and Function. *EcoSal Plus*. 2014; 6(1).
663 doi: 10.1128/ecosalplus.esp-0007-2013.

664 **Borg A**, Pavlov M, Ehrenberg M. Complete kinetic mechanism for recycling of the bacterial ribosome. *RNA*.
665 2016; 22(1):10–21. doi: [10.1261/rna.053157.115](https://doi.org/10.1261/rna.053157.115).

666 **Bremer H**, Dennis PP. Modulation of Chemical Composition and Other Parameters of the Cell at Different
667 Exponential Growth Rates. *EcoSal Plus*. 2008; <http://ctbp.ucsd.edu/qbio/beemer96.pdf>, doi: 10.1016/0022-
668 2836(72)90190-8.

669 **Chen J**, Choi J, O'Leary SE, Prabhakar A, Petrov A, Grosely R, Puglisi EV, Puglisi JD. The molecular choreography of
670 protein synthesis: translational control, regulation, and pathways. *Quarterly Reviews of Biophysics*. 2016;
671 49:e11. doi: 10.1017/s0033583516000056.

672 **Dai X**, Zhu M, Warren M, Balakrishnan R, Patsalo V, Okano H, Williamson JR, Fredrick K, Wang YP, Hwa T. Re-
673 duction of translating ribosomes enables *Escherichia coli* to maintain elongation rates during slow growth.
674 *Nature Microbiology*. 2016; 2(2):1–9. <http://dx.doi.org/10.1038/nmicrobiol.2016.231>, doi: [10.1038/nmicrobiol.2016.231](https://doi.org/10.1038/nmicrobiol.2016.231).

676 **Dever TE**, Green R. The elongation, termination, and recycling phases of translation in eukaryotes. *Cold Spring
677 Harbor Perspectives in Biology*. 2012; 4(7):1–16. doi: [10.1101/cshperspect.a013706](https://doi.org/10.1101/cshperspect.a013706).

678 **Dong H**, Nilsson L, Kurland CG. Co-variation of tRNA Abundance and Codon Usage in *Escherichia coli* at Different
679 Growth Rates. *Journal of molecular biology*. 1996; 260(5):649–663. doi: [10.1006/jmbi.1996.0428](https://doi.org/10.1006/jmbi.1996.0428).

680 **Dykeman EC**. A stochastic model for simulating ribosome kinetics in vivo. *PLoS computational biology*. 2020;
681 16(2):e1007618. <http://dx.doi.org/10.1371/journal.pcbi.1007618>, doi: [10.1371/journal.pcbi.1007618](https://doi.org/10.1371/journal.pcbi.1007618).

682 **Ehrenberg M**, Kurland CG. Costs of accuracy determined by a maximal growth rate constraint. *Quarterly
683 reviews of biophysics*. 1984; 17:45–80. doi: [10.1080/10643389.2012.728825](https://doi.org/10.1080/10643389.2012.728825).

684 **Elowitz MB**, Surette MG, Wolf PE, Stock JB, Leibler S. Protein mobility in the cytoplasm of *Escherichia coli*. *Journal
685 of Bacteriology*. 1999; 181(1):197–203. doi: [10.1128/jb.181.1.197-203.1999](https://doi.org/10.1128/jb.181.1.197-203.1999).

686 **Gorochowski TE**, Chelysheva I, Eriksen M, Nair P, Pedersen S, Ignatova Z. Absolute quantification of translational
687 regulation and burden using combined sequencing approaches. *Molecular Systems Biology*. 2019; 15(5):e8719.
688 doi: [10.1525/msb.20188719](https://doi.org/10.1525/msb.20188719).

689 **Gualerzi CO**, Pon CL. Initiation of mRNA translation in bacteria: Structural and dynamic aspects. *Cellular and
690 Molecular Life Sciences*. 2015; 72(22):4341–4367. doi: 10.1007/s00018-015-2010-3.

691 **Hu XP**, Dourado H, Schubert P, Lercher MJ. The protein translation machinery is expressed for maximal efficiency
692 in *Escherichia coli*. *Nature Communications*. 2020; 11(1):1–10. <http://dx.doi.org/10.1038/s41467-020-18948-x>,
693 doi: [10.1038/s41467-020-18948-x](https://doi.org/10.1038/s41467-020-18948-x).

694 **Ibba M**, Dieter S. Aminoacyl-tRNA synthesis. *Annu Rev Biochem*. 2000; 69:617–650.

695 **Jeschek M**, Gerngross D, Panke S. Combinatorial pathway optimization for streamlined metabolic engineering.
696 *Current Opinion in Biotechnology*. 2017; 47:142–151. <http://dx.doi.org/10.1016/j.copbio.2017.06.014>, doi:
697 [10.1016/j.copbio.2017.06.014](https://doi.org/10.1016/j.copbio.2017.06.014).

698 **Jeske L**, Placzek S, Schomburg I, Chang A, Schomburg D. BRENDA in 2019: A European ELIXIR core data resource.
699 *Nucleic Acids Research*. 2019; 47(D1):D542–D549. doi: [10.1093/nar/gky1048](https://doi.org/10.1093/nar/gky1048).

700 **Johnson GE**, Lalanne JB, Peters ML, Li GW. Functionally uncoupled transcription-translation in *Bacillus subtilis*.
701 *Nature*. 2020; 585(7823):124–128. doi: [10.1038/s41586-020-2638-5](https://doi.org/10.1038/s41586-020-2638-5).

702 **Karr JR**, Sanghvi JC, MacKlin DN, Gutschow MV, Jacobs JM, Bolival B, Assad-Garcia N, Glass JI, Covert MW.
703 A whole-cell computational model predicts phenotype from genotype. *Cell*. 2012; 150(2):389–401. doi:
704 [10.1016/j.cell.2012.05.044](https://doi.org/10.1016/j.cell.2012.05.044).

705 **Kavčič B**, Tkačík G, Bollenbach T. Mechanisms of drug interactions between translation-inhibiting antibiotics.
706 *Nature Communications*. 2020; 11(1):4013. doi: [10.1038/s41467-020-17734-z](https://doi.org/10.1038/s41467-020-17734-z).

707 **Kennell D**, Riezman H. Transcription and translation initiation frequencies of the *Escherichia coli lac* operon.
708 *Journal of Molecular Biology*. 1977; 114(1):1–21. doi: [10.1016/0022-2836\(77\)90279-0](https://doi.org/10.1016/0022-2836(77)90279-0).

709 **Keseler IM**, Mackie A, Santos-Zavaleta A, Billington R, Bonavides-Martínez C, Caspi R, Fulcher C, Gama-Castro
710 S, Kothari A, Krummenacker M, Latendresse M, Muñiz-Rascado L, Ong Q, Paley S, Peralta-Gil M, Subhraveti
711 P, Velázquez-Ramírez DA, Weaver D, Collado-Vides J, Paulsen I, et al. The EcoCyc database: reflecting new
712 knowledge about *Escherichia coli* K-12. *Nucleic acids research*. 2016; 45(November 2016):gkw1003. doi:
713 10.1093/nar/gkw1003.

714 **Klumpp S**, Scott M, Pedersen S, Hwa T. Molecular crowding limits translation and cell growth. *Proceedings of the National Academy of Sciences of the United States of America*. 2013; 110(42):16754–9. doi:
715 10.1073/pnas.1310377110.

717 **Kumar M**, Mommer MS, Sourjik V. Mobility of cytoplasmic, membrane, and DNA-binding proteins in *Escherichia*
718 *coli*. *Biophysical Journal*. 2010; 98(4):552–559. doi: 10.1016/j.bpj.2009.11.002.

719 **Lalanne JB**, Parker DJ, Li GW. Spurious regulatory connections dictate the expression-fitness landscape of
720 translation factors. *Molecular Systems Biology*. 2021; 17(4):1–23. doi: 10.1525/msb.202110302.

721 **Lalanne JB**, Taggart JC, Guo MS, Herzl L, Schieler A, Li GW. Evolutionary Convergence of Pathway-Specific
722 Enzyme Expression Stoichiometry. *Cell*. 2018; p. 749–761. doi: 10.1016/j.cell.2018.03.007.

723 **Larrabee KL**, Phillips JO, Williams GJ, Larrabee AR. The relative rates of protein synthesis and degradation in a
724 growing culture of *Escherichia coli*. *Journal of Biological Chemistry*. 1980; 255(9):4125–4130.

725 **Laursen BS**, Sørensen HP. Initiation of protein synthesis in bacteria. *Microbiology and Molecular Biology*
726 *Reviews*. 2005; 69(1):101–123. doi: 10.1128/MMBR.69.1.101.

727 **Li GW**. How do bacteria tune translation efficiency? *Current Opinion in Microbiology*. 2015; 24:66–71. <http://dx.doi.org/10.1016/j.mib.2015.01.001>, doi: 10.1016/j.mib.2015.01.001.

729 **Li GW**, Burkhardt D, Gross C, Weissman JS. Quantifying absolute protein synthesis rates reveals principles
730 underlying allocation of cellular resources. *Cell*. 2014; 157(3):624–635. doi: 10.1016/j.cell.2014.02.033.

731 **Lindahl L**. Intermediates and time kinetics of the *in vivo* assembly of *Escherichia coli* ribosomes. *Journal of*
732 *Molecular Biology*. 1975; 92(1):15–37. doi: 10.1016/0022-2836(75)90089-3.

733 **Macklin DN**, Ahn-Horst TA, Choi H, Ruggero NA, Carrera J, Mason JC, Sun G, Agmon E, DeFelice MM, Maayan I,
734 Lane K, Spangler RK, Gillies TE, Paull ML, Akhter S, Bray SR, Weaver DS, Keseler IM, Karp PD, Morrison JH, et al.
735 Simultaneous cross-evaluation of heterogeneous *E. coli* datasets via mechanistic simulation. *Science*. 2020;
736 369(6502). doi: 10.1126/science.aav3751.

737 **Mangano K**, Florin T, Shao X, Klepacki D, Chelysheva I, Ignatova Z, Gao Y, Mankin AS, Vázquez-Laslop N. Genome-
738 wide effects of the antimicrobial peptide apidaecin on translation termination in bacteria. *eLife*. 2020; 9:1–24.
739 doi: 10.7554/eLife.62655.

740 **Margus T**, Remm M, Tenson T. Phylogenetic distribution of translational GTPases in bacteria. *BMC Genomics*.
741 2007; 8:1–18. doi: 10.1186/1471-2164-8-15.

742 **Marintchev A**, Wagner G. Translation initiation: structures, mechanisms and evolution. *Quarterly reviews of*
743 *biophysics*. 2004; 37(3-4):197–284. doi: 10.1017/S0033583505004026.

744 **Milón P**, Maracci C, Filonava L, Gualerzi CO, Rodnina MV. Real-time assembly landscape of bacterial 30S transla-
745 tion initiation complex. *Nature Structural & Molecular Biology*. 2012; 19(6):609–615. doi: 10.1038/nsmb.2285.

746 **Mohammad F**, Green R, Buskirk AR. A systematically-revised ribosome profiling method for bacteria reveals
747 pauses at single-codon resolution. *eLife*. 2019; 8:1–25. doi: 10.7554/eLife.42591.

748 **Monod J**. The Growth of Bacterial Cultures. *Annual Review of Microbiology*. 1949; 3(1):371–394. doi: 10.1146/ann-
749 nurev.mi.03.100149.002103.

750 **Mora L**, Heurgué-Hamard V, De Zamaroczy M, Kervestin S, Buckingham RH. Methylation of bacterial release
751 factors RF1 and RF2 is required for normal translation termination *in vivo*. *Journal of Biological Chemistry*.
752 2007; 282(49):35638–35645. doi: 10.1074/jbc.M706076200.

753 **Mori M**, Zhang Z, Banaei-Esfahani A, Lalanne J, Okano H, Collins BC, Schmidt A, Schubert OT, Lee D, Li G,
754 Aebersold R, Hwa T, Ludwig C. From coarse to fine: the absolute *Escherichia coli* proteome under diverse
755 growth conditions. *Molecular Systems Biology*. 2021; 17(5). doi: 10.1525/msb.20209536.

756 **Nenninger A**, Mastroianni G, Mullineaux CW. Size dependence of protein diffusion in the cytoplasm of Es-
757 *cherichia coli*. *Journal of Bacteriology*. 2010; 192(18):4535–4540. doi: [10.1128/JB.00284-10](https://doi.org/10.1128/JB.00284-10).

758 **Nomura M**, Gourse R, Baughman G. Regulation of the synthesis of ribosomes and ribosomal components.;
759 1984. doi: [10.1146/annurev.bi.53.070184.000451](https://doi.org/10.1146/annurev.bi.53.070184.000451).

760 **Pang YLJ**, Poruri K, Martinis SA. tRNA synthetase: tRNA aminoacylation and beyond. *Wiley Interdisciplinary
761 Reviews: RNA*. 2014; 5(4):461–480. doi: [10.1002/wrna.1224](https://doi.org/10.1002/wrna.1224).

762 **Parker DJ**, Lalanne JB, Kimura S, Johnson GE, Waldor MK, Li GW. Growth-Optimized Aminoacyl-tRNA Synthetase
763 Levels Prevent Maximal tRNA Charging. *Cell Systems*. 2020; 11:1–10. doi: [10.1016/j.cels.2020.07.005](https://doi.org/10.1016/j.cels.2020.07.005).

764 **Pavlov MY**, Freistroffer DV, Heurgué-Hamard V, Buckingham RH, Ehrenberg M. Release factor RF3 abolishes
765 competition between release factor RF1 and ribosome recycling factor (RRF) for a ribosome binding site.
766 *Journal of Molecular Biology*. 1997; 273(2):389–401. doi: [10.1006/jmbi.1997.1324](https://doi.org/10.1006/jmbi.1997.1324).

767 **Pedersen S**, Bloch PL, Reeh S, Neidhardt FC. Patterns of protein synthesis in *E. coli*: a catalog of the amount of
768 140 individual proteins at different growth rates. *Cell*. 1978; 14(1):179–190. doi: [10.1016/0092-8674\(78\)90312-4](https://doi.org/10.1016/0092-8674(78)90312-4).

770 **Plochowietz A**, Farrell I, Smilansky Z, Cooperman BS, Kapanidis AN. In vivo single-RNA tracking shows that most
771 tRNA diffuses freely in live bacteria. *Nucleic Acids Research*. 2017; 45(2):926–937. doi: [10.1093/nar/gkw787](https://doi.org/10.1093/nar/gkw787).

772 **Reuveni S**, Meiljison I, Kupiec M, Ruppin E, Tuller T. Genome-scale analysis of translation elongation with a
773 ribosome flow model. *PLoS Computational Biology*. 2011; 7(9). doi: [10.1371/journal.pcbi.1002127](https://doi.org/10.1371/journal.pcbi.1002127).

774 **Rodnina MV**. Translation in prokaryotes. *Cold Spring Harbor Perspectives in Biology*. 2018; 10(9):1–22. doi:
775 [10.1101/cshperspect.a032664](https://doi.org/10.1101/cshperspect.a032664).

776 **Saito K**, Green R, Buskirk AR. Ribosome recycling is not critical for translational coupling in *E. Coli*. *eLife*. 2020;
777 9:1–37. doi: [10.7554/ELIFE.59974](https://doi.org/10.7554/ELIFE.59974).

778 **Sanamrad A**, Persson F, Lundius EG, Fange D, Gynnå AH, Elf J. Single-particle tracking reveals that free ribosomal
779 subunits are not excluded from the *Escherichia coli* nucleoid. *Proceedings of the National Academy of
780 Sciences of the United States of America*. 2014; 111(31):11413–11418. doi: [10.1073/pnas.1411558111](https://doi.org/10.1073/pnas.1411558111).

781 **Schaechter M**, Maaløe O, Kjeldgaard NO. Dependency on Medium and Temperature of Cell Size and Chemical
782 Composition during Balanced Growth of *Salmonella typhimurium*. *Journal of General Microbiology*. 1958;
783 19(3):592–606. <http://mic.microbiologyresearch.org/content/journal/micro/10.1099/00221287-19-3-592>, doi:
784 [10.1099/00221287-19-3-592](https://doi.org/10.1099/00221287-19-3-592).

785 **Schlosshauer M**, Baker D. Realistic protein-protein association rates from a simple diffusional model neglecting
786 long-range interactions, free energy barriers, and landscape ruggedness. *Protein Science*. 2004; 13(6):1660–
787 1669. doi: [10.1110/ps.03517304](https://doi.org/10.1110/ps.03517304).

788 **Schrader JM**, Zhou B, Li GW, Lasker K, Childers WS, Williams B, Long T, Crosson S, McAdams HH, Weissman JS,
789 Shapiro L. The Coding and Noncoding Architecture of the *Caulobacter crescentus* Genome. *PLoS Genetics*.
790 2014; 10(7). doi: [10.1371/journal.pgen.1004463](https://doi.org/10.1371/journal.pgen.1004463).

791 **Scolnick E**, Tompkins R, Caskey T, Nirenberg M. Release factors differing in specificity for terminator codons.
792 *Proceedings of the National Academy of Sciences of the United States of America*. 1968; 61(2):768–774. doi:
793 [10.1073/pnas.61.2.768](https://doi.org/10.1073/pnas.61.2.768).

794 **Scott M**, Gunderson CW, Mateescu EM, Zhang Z, Hwa T, Gunderson CW, Mateescu EM, Zhang Z, Hwa T. Inter-
795 dependence of Cell Growth Origins and Consequences. *Science*. 2010; 330:1099–1102. doi: [10.1126/science.1192588](https://doi.org/10.1126/science.1192588).

797 **Scott M**, Klumpp S, Mateescu EM, Hwa T. Emergence of robust growth laws from optimal regulation of ribosome
798 synthesis. *Molecular Systems Biology*. 2014; 10(8):747. doi: [10.1525/msb.20145379](https://doi.org/10.1525/msb.20145379).

799 **Shaw LB**, Zia RKP, Lee KH. Totally asymmetric exclusion process with extended objects: a model for protein
800 synthesis. *Physical review E, Statistical, nonlinear, and soft matter physics*. 2003; 68(2 Pt 1):021910. doi:
801 [10.1103/PhysRevE.68.021910](https://doi.org/10.1103/PhysRevE.68.021910).

802 **Subramaniam AR**, Zid BM, O’Shea EK. An integrated approach reveals regulatory controls on bacterial
803 translation elongation. *Cell*. 2014; 159(5):1200–1211. <http://dx.doi.org/10.1016/j.cell.2014.10.043>, doi:
804 [10.1016/j.cell.2014.10.043](https://doi.org/10.1016/j.cell.2014.10.043).

805 **Vieira JP**, Racle J, Hatzimanikatis V. Analysis of Translation Elongation Dynamics in the Context of an Escherichia
806 coli Cell. *Biophysical Journal*. 2016; 110(9):2120–2131. <http://dx.doi.org/10.1016/j.bpj.2016.04.004>, doi:
807 10.1016/j.bpj.2016.04.004.

808 **Volkov IL**, Lindén M, Aguirre Rivera J, leong KW, Metelev M, Elf J, Johansson M. tRNA tracking for direct
809 measurements of protein synthesis kinetics in live cells. *Nature Chemical Biology*. 2018; 14(6):618–626.
810 <http://dx.doi.org/10.1038/s41589-018-0063-y>, doi: 10.1038/s41589-018-0063-y.

811 **Weijland A**, Harmark K, Cool RH, Anborgh PH, Parmeggiani A. Elongation factor Tu: a molecular switch in
812 protein biosynthesis. *Molecular Microbiology*. 1992; 6(6):683–688. doi: 10.1111/j.1365-2958.1992.tb01516.x.

813 **Wittmann HG**. Components of Bacterial Ribosomes. *Annual Review of Biochemistry*. 1982; 51(1):155–183. doi:
814 10.1146/annurev.bi.51.070182.001103.

815 **You C**, Okano H, Hui S, Zhang Z, Kim M, Gunderson CW, Wang YP, Lenz P, Yan D, Hwa T. Coordination of bacterial
816 proteome with metabolism by cyclic AMP signalling. *Nature*. 2013; 500(7462):301–306. doi: 10.1038/nature12446.

817

818 **Zavialov AV**, Hauryliuk VV, Ehrenberg M. Splitting of the posttermination ribosome into subunits by the
819 concerted action of RRF and EF-G. *Molecular Cell*. 2005; 18(6):675–686. doi: 10.1016/j.molcel.2005.05.016.

821 **Coarse-grained transition times: models of ribosome traffic**

822 Our coarse-grained model of ribosome transitions between categories of initiation, elongation,
 823 and termination need to be distinguished from the individual molecular times of the
 824 respective steps in one important regard: ribosome traffic on mRNAs can lead to effective
 825 delays arising from transient queuing. For example, if translation termination is slow and
 826 ribosomes start to pile up and form queues upstream of stop codons on mRNAs, the molec-
 827 ular time of termination (time between ribosome arrival to the stop codon and its recycling
 828 to the free ribosome pool) will not be a correct reflection of the actual termination time of
 829 a ribosome, because of the additional wait time in the queue. A similar argument can be
 830 made for transient queuing forming in the body of genes for elongating ribosomes.

831 We connect these two (molecular and coarse-grained) levels of description by noting
 832 that our mass action schemes relating the translation factor abundance to the times of the
 833 specific steps can be used as input parameters in traffic models of ribosome movement
 834 along mRNAs taking into account possible many-body interactions (e.g., totally asymmetric
 835 exclusion processes (*Shaw et al., 2003; Kavčič et al., 2020*)). Solving these traffic models
 836 can then be used to obtain transition times in our coarse-grained translation cycle model.
 837 As we show below, corrections arising from transient queuing are small (for endogenous
 838 translation factor abundances) based on current estimates the absolute rates of initiation,
 839 elongation, and termination, on individual mRNAs, such that stochastic queuing does not
 840 play a dominant role in determining optimal translation factor expression levels.

841 As a first example, we relate the on-stop codon molecular termination time τ_{ter} , which
 842 we obtain from solving our mass action scheme (see equation 6), to the termination time
 843 in presence of queuing: τ_{ter}^{full} . The difference between the two, as described above, being
 844 related to possible queues upstream of stop codons leading to further delays in the process
 845 of translation termination, and thus to a longer termination time than that of the molecular
 846 on-stop codon termination. The delay factor will be denoted $Q(\tau_{ter})$, defined through:

$$847 \tau_{ter}^{full} := \tau_{ter} Q(\tau_{ter}).$$

848 To derive the expression for the Q factor, note that in steady-state, ribosome numbers in a
 849 given state is directly proportional to the time to transition out of that state. Let m_i be the
 850 mRNA concentration for gene i in the cell, $n_{ter}(\alpha_i, \tau_{ter})$ the number of terminating ribosomes
 851 (including queues if present) on a transcript with per mRNA translation initiation rate (i.e.,
 852 translation efficiency (*Li, 2015*)) α_i , then:

$$853 \tau_{ter}^{full} \propto \sum_i m_i n_{ter}(\alpha_i, \tau_{ter}),$$

854 whereas

$$855 \tau_{ter} \propto \sum_i m_i n_{ter}^{\emptyset Q}(\alpha_i, \tau_{ter}),$$

856 with $n_{ter}^{\emptyset Q}(\alpha_i, \tau_{ter})$ the average number of terminating ribosomes on a transcript with translation
 857 efficiency α_i , assuming no queue upstream of the stop codon. Note that $n_{ter}(\alpha_i, \tau_{ter}) \geq$
 858 $n_{ter}^{\emptyset Q}(\alpha_i, \tau_{ter})$ (the differences being queued ribosomes). Hence, the queuing factor Q is:

$$859 Q(\tau_{ter}) := \frac{\tau_{ter}^{full}}{\tau_{ter}} = \frac{\sum_i m_i n_{ter}(\alpha_i, \tau_{ter})}{\sum_i m_i n_{ter}^{\emptyset Q}(\alpha_i, \tau_{ter})}.$$

Formally, n_{ter} can be obtained by solving a TASEP model (Shaw *et al.*, 2003), but a simplified queue model (Bergmann and Lodish, 1979; Lalanne *et al.*, 2021) disregarding spatial information recapitulates the statistics of queue formation (as verified by full stochastic simulations, data not shown). The state space of the queue model is the number of ribosomes N in the queue. Ribosomes arrive at a rate α (initiation rate on the transcript), and leave at the molecular termination rate τ_{ter}^{-1} . The ribosome arrival rate at the queue is rigorously correct in steady-state, unless the queue becomes large enough to affect the initiation process (fully jammed transcript), or RNA degradation. The stochastic process (away from the jammed state) is then described by: $N \rightarrow N + 1$ at rate α , and $N \rightarrow N - 1$ at rate τ_{ter}^{-1} for $N > 0$. The probability for the queue to have N ribosomes, $P(N)$, can be obtained as the steady-state from the resulting master equation, leading to a geometric series: $P(N) = (\alpha\tau_{ter})^N (1 - \alpha\tau_{ter})$. Hence, the prevalence of higher order queues scales as the ratio of the initiation to termination rate on the transcript. The average queue size, corresponding to $n_{ter}(\alpha_i, \tau_{ter})$, is:

$$n_{ter}(\alpha_i, \tau_{ter}) \approx \begin{cases} \frac{\tau_{ter}\alpha_i}{1 - \tau_{ter}\alpha_i}, & \tau_{ter}^{-1} \geq \alpha_i(1 + \ell_{footprint}\ell_i^{-1}), \\ \frac{\ell_i}{\ell_{footprint}}, & \tau_{ter}^{-1} < \alpha_i(1 + \ell_{footprint}\ell_i^{-1}). \end{cases}$$

Above, the solution of the simple model is truncated at the value where the transcript becomes fully jammed with $\ell_i/\ell_{footprint}$ ribosomes (ℓ_i and $\ell_{footprint}$ being the size of gene i and the size occupied by a ribosome respectively). The no queue ribosome number is simply equal to a model where queues with $N > 1$ do not arise, hence $n_{ter}^{\emptyset Q}(\alpha_i, \tau_{ter}) = \alpha_i\tau_{ter}$. Therefore, the queuing factor, under the stated assumptions (and assuming no transcript is in the jammed state), is

$$Q(\tau_{ter}) \approx \frac{\sum_i m_i \frac{\alpha_i}{1 - \tau_{ter}\alpha_i}}{\sum_i m_i \alpha_i}.$$

Expanding for fast termination gives $Q - 1 = \frac{\tau_{ter}\langle\alpha^2\rangle}{\langle\alpha\rangle}$ as the leading order correction, where the averages are weighted by mRNA levels. The above was derived assuming exponentially distributed initiation and termination times, but could be modified to account for more complex dynamics of the initiation and termination steps.

The queuing factor can be estimated based on absolute measurements of the initiation and termination rates in cells. Kennell and Riezman (Kennell and Riezman, 1977) estimate 3.2 s between initiation events on the *lacZ* mRNA (at 48 min per cell doubling). Bremer and Dennis (Bremer and Dennis, 2008) estimate 1 s per ribosome initiation events at 20 min doubling time. Recent calibrated high-throughput measurements report a genome-wide median of 5.6 s per initiation events (Gorochowski *et al.*, 2019). To our knowledge, estimation of absolute *in vivo* termination rates have not been performed, but we can estimate bounds. Indirect assessment based on steady-state protein production measurements place the fraction of actively elongating ribosome at about 95% (Dai *et al.*, 2016). Assuming (upper bound) that the 5% of non elongating ribosomes are in the process of termination would give a termination time of $5\% \times 11.1\text{ s} \approx 0.6\text{ s}$ (fraction of ribosomes in a given state equal to the ratio of transition times), where we have used that the elongation time of an average protein is about 11.1 s ($200/18\text{ s}^{-1}$) at fast growth (Dai *et al.*, 2016). This upper bound is still much smaller than the reported median initiation time, suggesting that the queuing factor for termination is small. As additional support to the view that translation is far from being termination limited, small that queues at stop codons are only globally observed

909

910

911

912

913

914

915

916

917

918

919

920

921

922

in ribosome profiling upon severe perturbations (*Kavčič et al., 2020; Baggett et al., 2017; Mangano et al., 2020; Saito et al., 2020; Lalanne et al., 2021*).

With regards to translation elongation, transient queuing in the body of gene can also lead to a difference between molecular and coarse-grained transition times in our model. However, the fraction of ribosomes transiently stalled due to this queuing scales as $\alpha\tau_{aa}$ in the low density phase (defined by requirements $\alpha\tau_{ter} < 1$ and $\alpha\tau_{aa} < (1 + \sqrt{\ell_{footprint}})^{-1} \approx 0.25$) of the TASEP model (*Shaw et al., 2003*). Since measured estimates place $\alpha\tau_{aa} \sim 0.01$ (*Dai et al., 2016; Gorochowski et al., 2019*), we do not consider the queuing effect for elongating ribosomes within our optimization framework for elongation factor abundances.

924

Translation termination

925

Omitted molecular details

926

The kinetic scheme presented in Figure 2A does not include some known molecular details of translation termination. For example, GTPase RF3 has been shown to catalyze the release of RF1/RF2 post peptide hydrolysis and to effectively prevent rebinding to empty A site ribosome without peptide (Pavlov *et al.*, 1997). RF3 is not included in our model given our desire for a parsimonious description and due to the absence of identifiable homologs in multiple bacteria (e.g., *B. subtilis*) (Margus *et al.*, 2007). Our scheme aggregates the RF1/RF2 recycling rate with the catalytic rate, and further assume a unidirectional reaction without rebinding (consistent with a lower bound), effectively taking into account the action of RF3. In addition, translocation factor EF-G is known to be implicated in ribosome recycling via translocation post RF4 binding (Zavialov *et al.*, 2005). We assume EF-G's abundance requirement towards the function of termination to be a minor fraction of its total requirement (non-sense to sense codons $\approx 0.5\%$) and to be non-limiting for this step. We thus coarse-grain EF-G's role in ribosome recycling through an effective catalytic rate for RF4, see (Borg *et al.*, 2016) for details of EF-G's involvement in ribosome recycling. As another example of simplification in our coarse-graining, we also do not explicitly model RF1/RF2's post-translational modification by methyltransferase PrmC (Mora *et al.*, 2007). Thus, the activity of the RFs within our description to correspond to the average within a possibly heterogeneous pool of modified and unmodified factors in the cell.

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

Non binding-limited regime (one stop codon)

If translation termination is not diffusion limited, terms corresponding to the finite catalytic times must be included in addition to the diffusive contributions in the termination time (equation 6). Under our simplified scheme (Figure 2A) and with a single stop codons (grouping RF1 and RF2), the molecular termination time is then sum of the four separate times corresponding to distinct events:

$$\tau_{ter} = \frac{1}{k_{on}^{RF1} \phi_{RF1}^{free}} + \frac{1}{k_{cat}^{RF1}} + \frac{1}{k_{on}^{RF4} \phi_{RF4}^{free}} + \frac{1}{k_{cat}^{RF4}}$$

The two novelties compared to the diffusion-limited regime (equation 6) are: (1) addition of the catalytic times k_{cat}^{-1} for the two steps, and importantly (2) the mass action diffusion terms now involve the free concentration of release factors. Generally, the free concentration of the tIFs can be obtained by solving the steady-state solutions of kinetic schemes under constraints imposed by conservation equations. The examples in e.g., sections 2, 2, and 1 below provide the mathematical details associated with the procedure.

Here, the difference between the total and free concentration of release factor arises from the finite catalytic turnover of the enzymes, and corresponds to the concentration of ribosome bound release factors. Given the flux J through the system in steady-state of growth, the concentration of ribosome bound release factor (e.g., for RF4) is J/k_{cat}^{RF4} , which becomes $\frac{\ell_{RF4}\lambda}{\langle \ell \rangle k_{cat}^{RF4}}$ upon converting to proteome fraction. This quantity sets the absolute minimum for the release factor abundance necessary to sustain growth λ for a given k_{cat} . The free concentrations for the release factors are then:

$$\phi_{RF1}^{free} = \phi_{RF1} - \frac{\ell_{RF1}\lambda}{\langle \ell \rangle k_{cat}^{RF1}}, \quad \phi_{RF4}^{free} = \phi_{RF4} - \frac{\ell_{RF4}\lambda}{\langle \ell \rangle k_{cat}^{RF4}}. \quad (19)$$

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

Hence, the final solution for the steady-state termination time as a function of the total abundance of the release factors and growth rate λ is:

$$\tau_{ter} = \frac{1}{k_{on}^{RF1} \left(\phi_{RF1} - \frac{\ell_{RF1} \lambda}{\langle \ell \rangle k_{cat}^{RF1}} \right)} + \frac{1}{k_{cat}^{RF1}} + \frac{1}{k_{on}^{RF4} \left(\phi_{RF4} - \frac{\ell_{RF4} \lambda}{\langle \ell \rangle k_{cat}^{RF4}} \right)} + \frac{1}{k_{cat}^{RF4}}.$$

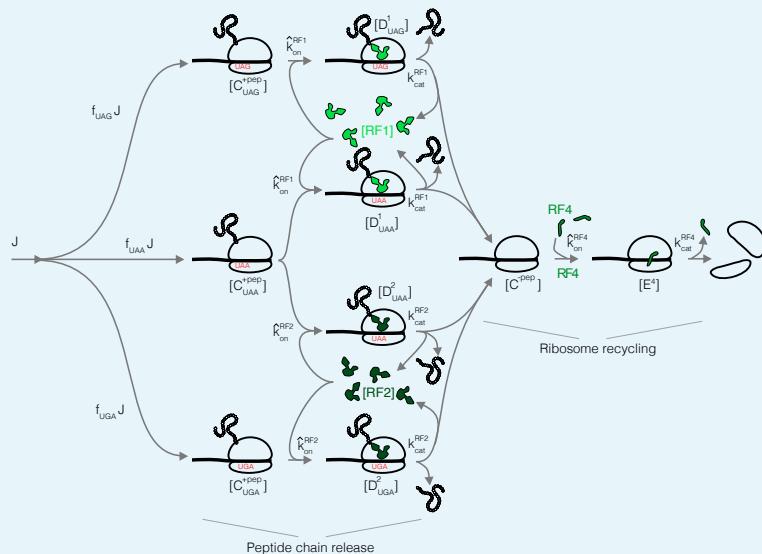
The relationship above, between termination time, total tRF abundance, and growth rate λ closes the solution of the kinetic scheme. Substituting the above in the optimality condition (equation 5) leads to the solution:

$$\phi_{RF1}^* = \sqrt{\frac{\ell_{ribo} \lambda^*}{\langle \ell \rangle k_{on}^{RF1}}} + \frac{\ell_{RF1} \lambda^*}{\langle \ell \rangle k_{cat}^{RF1}}, \quad \phi_{RF4}^* = \sqrt{\frac{\ell_{ribo} \lambda^*}{\langle \ell \rangle k_{on}^{RF4}}} + \frac{\ell_{RF4} \lambda^*}{\langle \ell \rangle k_{cat}^{RF4}}. \quad (20)$$

The additional terms $\propto \lambda^*$ correspond to the contribution to the optimal abundance arising from the finite catalytic rates, no present in the diffusion limited regime (equation 7).

Full three stop codons model

The full model with three different stop codons (UAA, UGA, UAG) and RF1/RF2 with different specificities (RF1: UAA, UAG; RF2: UAA, UGA) can also be solved exactly, leading to a small correction on the summed optimal abundance for RF1 and RF2 of $\sqrt{1 + 2\sqrt{f_{UAG}f_{UGA}}} < 1.05$ (fast growing species considered, where f_{UAG} and f_{UGA} are the fractional fluxes through the RF1 and RF2 stop codons respectively) compared to the single stop codon optimum derived above (ϕ_{RF1}^* , equation 20). We provide details below. With three stop codons, the coarse-grained reaction scheme is shown in Appendix 2 Figure 1. The relevant chemical species and parameters are listed in Appendix 2 Table 1.



991

992

993

994

Appendix 2 Figure 1. Coarse-grained translation termination scheme with three stop codons and RF1/RF2.

Variable	Description
$[C_{UAA}^{+pep}]$	Ribosomes at UAA with peptide chain [μM]
$[C_{UAG}^{+pep}]$	Ribosomes at UAG with peptide chain [μM]
$[C_{UGA}^{+pep}]$	Ribosomes at UGA with peptide chain [μM]
$[D_{UAA}^1]$	Ribosomes at UAA with peptide chain and RF1 bound [μM]
$[D_{UAG}^1]$	Ribosomes at UAG with peptide chain and RF1 bound [μM]
$[D_{UAA}^2]$	Ribosomes at UAA with peptide chain and RF2 bound [μM]
$[D_{UGA}^2]$	Ribosomes at UGA with peptide chain and RF2 bound [μM]
$[C^{-pep}]$	Ribosomes at all stops without peptide chain [μM]
$[E^4]$	Ribosomes at all stops without peptide chain and RF4 bound [μM]
$[RF1]$	Free RF1 [μM]
$[RF2]$	Free RF2 [μM]
$[RF4]$	Free RF4 [μM]
$J^{UAA} = f_{UAA}J$	Ribosome flux through UAA [$\mu M s^{-1}$]
$J^{UAG} = f_{UAG}J$	Ribosome flux through UAG [$\mu M s^{-1}$]
$J^{UGA} = f_{UGA}J$	Ribosome flux through UGA [$\mu M s^{-1}$]
\hat{k}_{on}^{RF1}	On-rate for RF1 [$\mu M^{-1} s^{-1}$]
\hat{k}_{on}^{RF2}	On-rate for RF2 [$\mu M^{-1} s^{-1}$]
\hat{k}_{on}^{RF4}	On-rate for RF4 [$\mu M^{-1} s^{-1}$]
k_{cat}^{RF1}	Catalytic rate for RF1 [s^{-1}]
k_{cat}^{RF2}	Catalytic rate for RF2 [s^{-1}]
k_{cat}^{RF4}	Catalytic rate for RF4 [s^{-1}]
$RF1_{tot}$	Total RF1 [μM]
$RF2_{tot}$	Total RF2 [μM]
$RF4_{tot}$	Total RF4 [μM]

995 **Appendix 2 Table 1.** Chemical species and parameters in three stop codons termination model. The corresponding mass action system of equations for peptide release:

$$\begin{aligned}
 \frac{d[C_{UAA}^{+pep}]}{dt} &= f_{UAA}J - [C_{UAA}^{+pep}](\hat{k}_{on}^{RF1}[RF1] + \hat{k}_{on}^{RF2}[RF1]), \\
 \frac{d[C_{UAG}^{+pep}]}{dt} &= f_{UAG}J - \hat{k}_{on}^{RF1}[C_{UAG}^{+pep}][RF1], \\
 \frac{d[C_{UGA}^{+pep}]}{dt} &= f_{UGA}J - \hat{k}_{on}^{RF2}[C_{UGA}^{+pep}][RF1], \\
 \frac{d[D_{UAA}^1]}{dt} &= \hat{k}_{on}^{RF1}[RF1][C_{UAA}^{+pep}] - k_{cat}^{RF1}[D_{UAA}^1], \\
 \frac{d[D_{UAG}^1]}{dt} &= \hat{k}_{on}^{RF1}[RF1][C_{UAG}^{+pep}] - k_{cat}^{RF1}[D_{UAG}^1], \\
 \frac{d[D_{UAA}^2]}{dt} &= \hat{k}_{on}^{RF2}[RF2][C_{UAA}^{+pep}] - k_{cat}^{RF1}[D_{UAA}^2], \\
 \frac{d[D_{UGA}^2]}{dt} &= \hat{k}_{on}^{RF2}[RF2][C_{UGA}^{+pep}] - k_{cat}^{RF1}[D_{UGA}^2], \\
 \frac{d[RF1]}{dt} &= -\hat{k}_{on}^{RF1}[RF1]([C_{UAA}^{+pep}] + [C_{UAG}^{+pep}]) + k_{cat}^{RF1}([D_{UAA}^1] + [D_{UAG}^1]), \\
 \frac{d[RF2]}{dt} &= -\hat{k}_{on}^{RF2}[RF2]([C_{UAA}^{+pep}] + [C_{UGA}^{+pep}]) + k_{cat}^{RF2}([D_{UAA}^2] + [D_{UGA}^2]). \\
 \end{aligned}$$

998 1000 1001 1002 And for ribosome recycling:

$$\begin{aligned}
 \frac{d[C^{-pep}]}{dt} &= k_{cat}^{RF1}([D_{UAA}^1] + [D_{UAG}^1]) + k_{cat}^{RF2}([D_{UAA}^2] + [D_{UGA}^2]) - \hat{k}_{on}^{RF4}[C^{-pep}][RF4], \\
 \frac{d[E^4]}{dt} &= \hat{k}_{on}^{RF4}[C^{-pep}][RF4] - k_{cat}^{RF4}[E^4], \\
 \frac{d[RF4]}{dt} &= -\hat{k}_{on}^{RF4}[C^{-pep}][RF4] + k_{cat}^{RF4}[E^4].
 \end{aligned}$$

The conservation equations for RF1, RF2 and RF4 are:

$$\begin{aligned}
 RF1_{tot} &= [RF1] + [D_{UAA}^1] + [D_{UAG}^1], \\
 RF2_{tot} &= [RF2] + [D_{UAA}^2] + [D_{UGA}^2], \\
 RF4_{tot} &= [RF4] + [E^4].
 \end{aligned}$$

With a more complex scheme such as the one above, the optimization problem can be solved in three steps. First, we obtain the steady-state concentration of the chemical species. Second, we determine the effective coarse-grained termination time. Finally,

1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
the optimal abundance is found by substituting the termination time in the optimality condition (equation 5), and solving the resulting system of equation.

Steady-state concentrations for RFs

Note that the RF1/RF2 and RF4 completely decouple, and that the solution for RF4 is identical to the one stop codon case solved above (section Non binding-limited regime (one stop codon)). For peptide chain release, the steady-state of the system can be solved by expressing the all chemical species in terms of $[RF1]$, and $[RF2]$:

$$\begin{aligned} [C_{UAA}^{+pep}] &= \frac{f_{UAA}J}{\hat{k}_{on}^{RF1}[RF1] + \hat{k}_{on}^{RF2}[RF2]} \\ [D_{UAA}^1] &= f_{UAA} \frac{J}{k_{cat}^{RF1}} \left(\frac{\hat{k}_{on}^{RF1}[RF1]}{\hat{k}_{on}^{RF1}[RF1] + \hat{k}_{on}^{RF2}[RF2]} \right), \\ [D_{UAA}^2] &= f_{UAA} \frac{J}{k_{cat}^{RF2}} \left(\frac{\hat{k}_{on}^{RF2}[RF2]}{\hat{k}_{on}^{RF1}[RF1] + \hat{k}_{on}^{RF2}[RF2]} \right), \\ [C_{UAG}^{+pep}] &= \frac{f_{UAG}J}{\hat{k}_{on}^{RF1}[RF1]}, \quad [C_{UGA}^{+pep}] = \frac{f_{UGA}J}{\hat{k}_{on}^{RF2}[RF2]}, \quad [D_{UAG}^1] = f_{UAG} \frac{J}{k_{cat}^{RF1}}, \quad [D_{UGA}^2] = f_{UGA} \frac{J}{k_{cat}^{RF2}}. \end{aligned} \quad (21)$$

Substituting these in the conservation equations for RF1 and RF2 leads to a closed system in terms of $[RF1]$ and $[RF2]$:

$$\begin{aligned} RF1_{tot} &= [RF1] \left[1 + f_{UAA} \frac{J}{k_{cat}^{RF1}} \left(\frac{\hat{k}_{on}^{RF1}}{\hat{k}_{on}^{RF1}[RF1] + \hat{k}_{on}^{RF2}[RF2]} \right) \right] + f_{UAG} \frac{J}{k_{cat}^{RF1}}, \\ RF2_{tot} &= [RF2] \left[1 + f_{UAA} \frac{J}{k_{cat}^{RF2}} \left(\frac{\hat{k}_{on}^{RF2}}{\hat{k}_{on}^{RF1}[RF1] + \hat{k}_{on}^{RF2}[RF2]} \right) \right] + f_{UGA} \frac{J}{k_{cat}^{RF2}}. \end{aligned}$$

Under the assumption of identical biochemical properties for RF1 and RF2, namely $k_{cat}^{RF1} = k_{cat}^{RF2} := k_{cat}^{RF}$ and $\hat{k}_{on}^{RF1} = \hat{k}_{on}^{RF2} := \hat{k}_{on}^{RF}$, the total free concentration of RF1 and RF2 simplifies to: $[RF1] + [RF2] = RF1_{tot} + RF2_{tot} - \frac{J}{k_{cat}^{RF}}$, where we used $f_{UAA} + f_{UAG} + f_{UGA} = 1$ (by definition). Using this relation to eliminate $[RF2]$ from the $[RF1]$ equation (and vice-versa), we obtain, upon conversion to proteome fraction:

$$\begin{aligned} \phi_{RF,tot}^{free} &:= \phi_{RF1} + \phi_{RF2} - \frac{\ell_{RF1}\lambda}{\langle \ell \rangle k_{cat}^{RF}}, \\ \phi_{RF1}^{free} &= \chi_{RF1} \phi_{RF,tot}^{free}, \quad \phi_{RF2}^{free} = \chi_{RF2} \phi_{RF,tot}^{free}, \end{aligned} \quad (22)$$

where

$$\begin{aligned} \chi_{RF1} &:= \frac{\phi_{RF1} - \frac{\ell_{RF1}\lambda}{\langle \ell \rangle k_{cat}^{RF}} f_{UAG}}{(\phi_{RF1} - \frac{\ell_{RF1}\lambda}{\langle \ell \rangle k_{cat}^{RF}} f_{UAG}) + (\phi_{RF2} - \frac{\ell_{RF1}\lambda}{\langle \ell \rangle k_{cat}^{RF}} f_{UGA})}, \\ \chi_{RF2} &:= \frac{\phi_{RF2} - \frac{\ell_{RF1}\lambda}{\langle \ell \rangle k_{cat}^{RF}} f_{UGA}}{(\phi_{RF1} - \frac{\ell_{RF1}\lambda}{\langle \ell \rangle k_{cat}^{RF}} f_{UAG}) + (\phi_{RF2} - \frac{\ell_{RF1}\lambda}{\langle \ell \rangle k_{cat}^{RF}} f_{UGA})}. \end{aligned}$$

These constitute the steady-state solutions of the system of equation.

Coarse-grained translation termination time

In order to obtain an expression for the termination time (peptide release portion), needed to determine the optimal RF abundance (i.e., to substitute in equation 5), the peptide chain release contribution arises from the ribosome containing species listed in equation 21, which

1043
1044
1045 sum to (under the assumption of identical biochemical properties for RF1/RF2):

$$1046 [R_{ter}^{pep}] = [C_{UAA}^{+pep}] + [C_{UAG}^{+pep}] + [C_{UGA}^{+pep}] + [D_{UAA}^1] + [D_{UAG}^1] + [D_{UAA}^2] + [D_{UGA}^2],$$

$$1047 [R_{ter}^{pep}] = J \left(\frac{f_{UAG}}{\hat{k}_{on}^{RF1} [RF1]} + \frac{f_{UGA}}{\hat{k}_{on}^{RF1} [RF2]} + \frac{f_{UAA}}{\hat{k}_{on}^{RF1} ([RF1] + [RF2])} + \frac{1}{k_{cat}^{RF1}} \right).$$

1048
1049
1050 Upon conversion to proteome fraction, the above becomes:

$$1051 \phi_{ribo}^{pep} = \frac{\ell_{ribo}}{\langle \ell \rangle} \lambda \left(\frac{f_{UAG}}{k_{on}^{RF1} \phi_{RF1}^{free}} + \frac{f_{UGA}}{k_{on}^{RF1} \phi_{RF2}^{free}} + \frac{f_{UAA}}{k_{on}^{RF1} (\phi_{RF1}^{free} + \phi_{RF2}^{free})} + \frac{1}{k_{cat}^{RF1}} \right) := \frac{\ell_{ribo}}{\langle \ell \rangle} \lambda \tau_{pep}.$$

1054
1055 The bracketed term corresponds to the coarse-grained time associated with peptide chain release τ_{pep} , and the free concentrations are given by equations 22.

1056 Optimal abundances for RF1/RF2

The solved concentrations in steady-state (as a function of proteome fractions) and coarse-grained times allow us to determine the optimal RF1 and RF2 solutions (within our model). The optimality condition (equation 5) is now:

$$1057 \left(\frac{\partial \tau_{pep}}{\partial \phi_{RF1}} \right)^* = -\frac{\langle \ell \rangle}{\ell_{ribo} \lambda^*}, \quad \left(\frac{\partial \tau_{pep}}{\partial \phi_{RF2}} \right)^* = -\frac{\langle \ell \rangle}{\ell_{ribo} \lambda^*}.$$

1058
1059 Solving the above system leads to optima ϕ_{RF1}^* and ϕ_{RF2}^* :

$$1060 \phi_{RF1}^* + \phi_{RF2}^* = \sqrt{\frac{\ell_{ribo} \lambda^* (1 + \delta)}{\langle \ell \rangle k_{on}^{RF1}}} + \frac{\ell_{RF1} \lambda^*}{\langle \ell \rangle k_{cat}^{RF1}}, \quad (23)$$

$$1063 \phi_{RF1}^* - \frac{f_{UAG} \ell_{RF1} \lambda^*}{\langle \ell \rangle k_{cat}^{RF1}} = \sqrt{\frac{f_{UAG}}{f_{UGA}}}, \quad (24)$$

$$1065 \phi_{RF2}^* - \frac{f_{UGA} \ell_{RF1} \lambda^*}{\langle \ell \rangle k_{cat}^{RF1}} = \sqrt{\frac{f_{UGA}}{f_{UAG}}}.$$

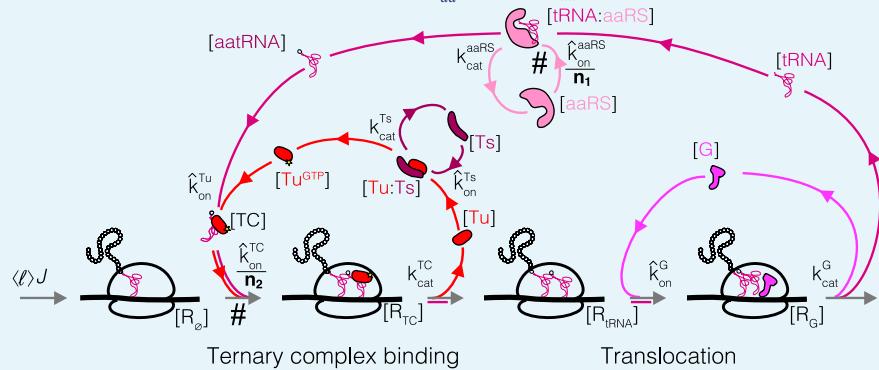
1067 where the new factor $\delta := 2\sqrt{f_{UAG} f_{UGA}}$.

1068 The relative flux through each stop codon (f_{UAA} , f_{UAG} , f_{UGA}) can be estimated in a variety of
1069 bacteria from ribosome profiling data ([Lalanne et al., 2018](#)) as the total synthesis fraction of
1070 genes with the respective stop codon. For fast growing species considered in the current
1071 study, $f_{UAA} \approx 0.9$, and the correction term to the optimal solution for the summed abundance
1072 of RF1 and RF2 ($\sqrt{1 + \delta}$) is consequently small (*E. coli*: $f_{UAA} = 0.888$, $f_{UAG} = 0.015$, $f_{UGA} =$
1073 0.097 , $\sqrt{1 + \delta} = 1.04$; *B. subtilis*: $f_{UAA} = 0.888$, $f_{UAG} = 0.064$, $f_{UGA} = 0.049$, $\sqrt{1 + \delta} = 1.05$, *V.*
1074 *natriegens*: $f_{UAA} = 0.929$, $f_{UAG} = 0.041$, $f_{UGA} = 0.031$, $\sqrt{1 + \delta} = 1.04$)

1076
1077 **Translation elongation**1078 **Coarse-grained one-codon model**

1079 Translation elongation is a more complicated process than termination, involving multiple
 1080 factors to bring the charged tRNA to the ribosome (EF-Tu), charge the tRNAs (aaRS), translo-
 1081 cate the ribosome (EF-G), and perform nucleotide exchange on EF-Tu to drive the process
 1082 (EF-Ts), in addition to others not included here. Our simplified kinetic scheme is illustrated in
 1083 Appendix 3 Figure 1. In anticipation coarse-graining procedure detailed below, rates rescaled
 1084 in the conversion to a one-codon model are marked by *.

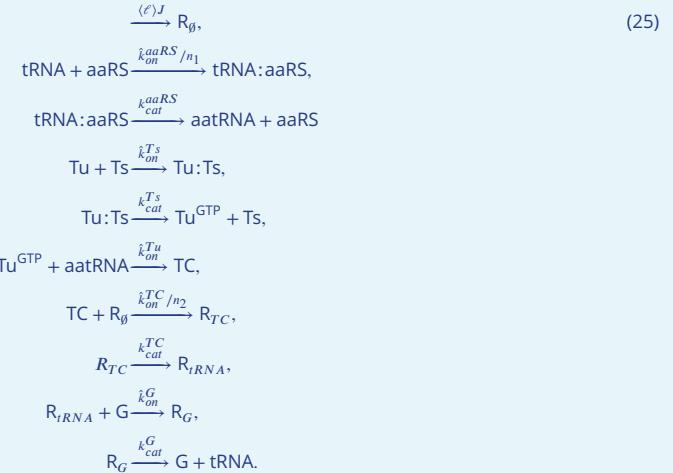
1085 To simplify our model, we coarse-grain the elongation cycle by considering a single
 1086 codon type (section Estimation of coarse-grained rates below or details of the coarse-
 1087 graining procedure), effectively grouping the tRNA's, tRNA synthetases, and different ternary
 1088 complexes to single entities. Importantly, as a result, the on-rates associated with these
 1089 processes are rescaled by a factor close to n_{aa}^{-1} , where $n_{aa} = 20$.



1090 **Appendix 3 Figure 1.** Coarse-grained reaction scheme for a single step (amino acid incorporation) of
 1091 translation elongation. Tu: EF-Tu, Ts: EF-Ts, G: EF-G, aaRS: aminoacyl tRNA synthetases. Steps with
 1092 slower rates as a result of the coarse-graining to one effective codon are marked by #.

1093 An important distinction for elongation compared to initiation and termination is that
 1094 multiple elongation steps (average $\langle \ell \rangle \approx 200$) are required to generate a protein. Hence, the
 1095 flux into the through the elongation cycle is $\langle \ell \rangle$ larger than that through the initiation and
 1096 termination steps (there is one initiation and termination event for each protein made, but
 1097 about 200 elongation steps on average).

1098 The mass action reaction scheme for translation elongation:



1099
1100
1101
1102

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115

To arrive at the above, we started with a full model of translation (not shown), with all possible codons, tRNA species, and ribosomes with different codons. To coarse-grain the model, we introduced the following effective variables, which correspond to the total concentration of each type of species involved, summed over the of the codon/amino acid specificity:

$$[\text{tRNA}] := \sum_i [\text{tRNA}_i], \quad [\text{aatRNA}] := \sum_i [\text{aatRNA}_i], \quad [\text{aaRS}] := \sum_i [\text{aaRS}_i], \quad [\text{TC}] := \sum_i [\text{TC}_i]$$

$$[\text{R}_\emptyset] := \sum_{i,v,\mu} [\text{R}_{v\mu}^i], \quad [\text{R}_{TC}] := \sum_{i,j,v,\mu} [\text{R}_{v\mu}^{i,TC_j}], \quad [\text{R}_{tRNA}] := \sum_{i,j,v,\mu} [\text{R}_{v\mu}^{ij}], \quad [\text{R}_G] := \sum_{i,j,v,\mu} [\text{R}_{v\mu}^{ij}] :: G.$$

In the above, Greek indices correspond to different codons on mRNAs, and Roman indices to different tRNAs. Roman indices with a hat (\hat{i}) correspond to tRNA synthetases recognizing specific tRNAs (multiple amino acids have more than one tRNA isoacceptor). In defining these coarse-grained species (our approach is analogous to that of ([Dai et al., 2016](#))), we redefined the two following kinetic parameters:

$$\frac{\hat{k}_{on}^{aaRS}}{n_1} := \hat{k}_{on}^{aaRS} \sum_i \frac{[\text{tRNA}_i][\text{aaRS}_i]}{[\text{tRNA}][\text{aaRS}]}, \quad \text{and} \quad \frac{\hat{k}_{on}^{TC}}{n_2} := \hat{k}_{on}^{TC} \sum_{\mu,v,i,j} \frac{[\text{R}_{\mu v}^i] S_{v,j} [\text{TC}_j]}{[\text{R}_\emptyset][\text{TC}]} \quad (26)$$

\hat{k}_{on}^{aaRS} and \hat{k}_{on}^{TC} correspond to the microscopic bimolecular rates (assumed equal for the different chemical species). $S_{v,j}$ is the tRNA isoacceptor/codon specificity matrix (1 if tRNA i can recognize codon v , 0 otherwise) ([Björk and Hagervall, 2014](#)). Rescaling terms n_1 and n_2 are estimated below.

1123
1124

Estimation of coarse-grained rates

The definition of coarse-grained parameters (equations 26) involves sums:

$$\frac{1}{n_1} := \sum_i \frac{[\text{tRNA}_i][\text{aaRS}_i]}{[\text{tRNA}][\text{aaRS}]} \quad \text{and} \quad \frac{1}{n_2} := \sum_{\mu,v,i,j} \frac{[\text{R}_{\mu v}^i] S_{v,j} [\text{TC}_j]}{[\text{R}_\emptyset][\text{TC}]}.$$

These can be estimated from tRNA abundances, codon usage and individual synthetases' levels obtained from ribosome profiling data in *E. coli* ([Li et al., 2014](#)).

We first consider n_1 . Note that the fraction of free tRNA of type i to the total number of free tRNA (not bound to any protein) is not readily measurable. Assuming similarities between types of tRNA's, we approximate this fraction with the fraction of total tRNA of type i to the total tRNA concentration, or

$$\frac{[\text{tRNA}_i]}{[\text{tRNA}]} \approx \frac{\text{tRNA}_i^{tot}}{\text{tRNA}_{tot}}.$$

The total tRNA concentration has been measured at fast growth for *E. coli* ([Dong et al., 1996](#)). The relative concentration of each tRNA synthetases (appropriately corrected for stoichiometry for the different classes) can be computed from the ribosome profiling data ([Li et al., 2014](#)), and we obtain

$$\frac{1}{n_1} := \sum_i \left(\frac{[\text{tRNA}_i]}{[\text{tRNA}]} \frac{[\text{aaRS}_i]}{[\text{aaRS}]} \right) \approx \sum_i \left(\frac{\text{tRNA}_i^{tot}}{\text{tRNA}_{tot}} \frac{[\text{aaRS}_i]}{[\text{aaRS}]} \right) \approx 0.056 \Rightarrow n_1 \approx 17.8$$

This was to be expected since the synthetases in *E. coli* show little variability around their mean, and in the case of equal synthetase concentration, $n_1 = 20$ would strictly hold.

For the second sum (n_2), we use distribution of ribosome footprint reads across the transcriptome to estimate ribosome occupancies at different codons. We first make the following approximation for one of the sub-sum:

$$\sum_{\mu,i} \frac{[\text{R}_{\mu v}^i]}{[\text{R}_\emptyset]} \approx \sum_{\mu} \frac{N_{\mu v}^{FP}}{N_{tot}^{FP}},$$

1152 where $N_{\mu\nu}^{FP}$ is the total number of ribosome footprint reads at codon pairs μ, ν and N_{tot}^{FP}
 1153 is the total number of footprint reads mapping to coding sequences. The nature of the
 1154 approximation is that we are taking relative fraction of ribosome footprints (representing
 1155 ribosomes across the elongation cycle at that codon pair) at a given codon pair to be equal
 1156 to the relative fraction of ribosomes waiting for the ternary complex to deliver a tRNA to
 1157 the A site. The modest differences in elongation rates at different codons seen in ribosome
 1158 profiling data (*Mohammad et al., 2019*) justify this approximation.

1159 From our data (not shown), we have that

$$1160 \sum_{\mu} \frac{N_{\mu\nu}^{FP}}{N_{tot}^{FP}} \approx \sum_{\mu} \frac{N_{\nu\mu}^{FP}}{N_{tot}^{FP}} = \frac{N_{\nu}^{FP}}{N_{tot}^{FP}} := f_{\nu}$$

1163 holds to better than 0.5% for each codon. f_{ν} above is the (expression weighted) codon
 1164 usage. As before with the free tRNA concentrations, we can approximate the relative ternary
 1165 complexes concentrations by the corresponding total tRNA concentrations:

$$1166 \frac{1}{n_2} := \sum_{\mu, \nu, i, j} \frac{[R_{\mu\nu}^i] S_{\nu, j} [TC_j]}{[R][TC]} \approx \sum_{\nu, j} \frac{f_{\nu} S_{\nu, j} tRNA_j^{tot}}{tRNA_{tot}} \approx 0.048 \Rightarrow n_2 \approx 20.8 \quad (27)$$

1169 We used the same dataset as before for the total tRNA concentration in *E. coli* (*Dong et al., 1996*),
 1170 the codon usage was determined directly from ribosome profiling data (*Li et al., 2014*). The sum of these products is graphically represented in Appendix 3 Figure 2. The
 1171 above sum of product of tRNA fraction and codon usage provides an effective number of
 1172 different ternary complexes. *A priori*, that might have been expected to equal to the number
 1173 of tRNAs (≈ 40). However, as is apparent in Appendix 3 Figure 2, certain tRNA-codon pairs
 1174 are much more prevalent than others (even for amino acid with multiple codons and/or
 1175 tRNA isoacceptors), which leads to a decrease in the effective concentration. The exact value
 1176 depends on the detailed codon usage and tRNA abundance.



1178
 1179 **Appendix 3 Figure 2.** Graphical illustration of the sum (equation 27). Left: codon usage (vertical, from
 1180 analysis of ribosome profiling data from (*Li et al., 2014*)), tRNA-codon specificity (matrix, from (*Björk*
 1181 and *Hagervall, 2014*)), with different amino acids outlined with different colors, and tRNA abundance
 1182 (horizontal, from (*Dong et al., 1996*)) organized by amino acid. Right: product matrix.

1183 Given the results above, we take for simplicity $n_1 = n_2 = n_{aa} = 20$.

Translation elongation: optimal solutions

The mass action reactions corresponding to the one codon elongation cycle model are (equations 25):

1186

$$\frac{d[R_\emptyset]}{dt} = \langle \ell \rangle J - \frac{\hat{k}_{on}^{TC}}{n_{aa}} [TC][R_\emptyset],$$

1187

$$\frac{d[R_{TC}]}{dt} = \frac{\hat{k}_{on}^{TC}}{n_{aa}} [TC][R_\emptyset] - k_{cat}^{TC} [R_{TC}],$$

1188

$$\frac{d[Tu]}{dt} = k_{cat}^{TC} [R_{TC}] - \hat{k}_{on}^{Ts} [Tu][Ts],$$

1189

$$\frac{d[tRNA]}{dt} = - \frac{\hat{k}_{on}^{aaRS}}{n_{aa}} [tRNA][aaRS] + k_{cat}^G [R_G],$$

1190

$$\frac{d[tRNA::aaRS]}{dt} = \frac{\hat{k}_{on}^{aaRS}}{n_{aa}} [tRNA][aaRS] - k_{cat}^{aaRS} [tRNA::aaRS] = - \frac{d[aaRS]}{dt},$$

1191

$$\frac{d[aaRS]}{dt} = k_{cat}^{aaRS} [tRNA::aaRS] - \hat{k}_{on}^{Tu} [aatRNA][Tu^{GTP}],$$

1192

$$\frac{d[Tu^{GTP}]}{dt} = k_{cat}^{Ts} [Tu:Ts] - \hat{k}_{on}^{Tu} [aatRNA][Tu^{GTP}],$$

1193

$$\frac{d[Tu:Ts]}{dt} = - k_{cat}^{Ts} [Tu:Ts] + \hat{k}_{on}^{Ts} [Tu][Ts] = - \frac{d[Ts]}{dt},$$

1194

$$\frac{d[TC]}{dt} = \hat{k}_{on}^{Tu} [aatRNA][Tu^{GTP}] - \frac{\hat{k}_{on}^{TC}}{n_{aa}} [TC][R_\emptyset],$$

1195

$$\frac{d[R_{tRNA}]}{dt} = k_{cat}^{TC} [R_{TC}] - \hat{k}_{on}^G [R_{tRNA}][G],$$

1196

$$\frac{d[R_G]}{dt} = \hat{k}_{on}^G [R_{tRNA}][G] - k_{cat}^G [R_G] = - \frac{d[G]}{dt}.$$

Conservation equations close the system:

$$Ts_{tot} = [Ts] + [Tu:Ts],$$

$$Tu_{tot} = [Tu] + [Tu^{GTP}] + [Tu:Ts] + [TC] + [R_{TC}],$$

$$tRNA_{tot} = [R_\emptyset] + 2[R_{TC}] + 2[R_{tRNA}] + 2[R_G] + [tRNA] + [tRNA:aaRS] + [aatRNA] + [TC],$$

$$aaRS_{tot} = [tRNA:aaRS] + [aaRS],$$

$$G_{tot} = [G] + [R_G].$$

The ternary complex concentration and free EF-G concentration enter the translation elongation time (equation 10, which is the diffusion limited and factor dependent contribution to the elongation time) and are required to infer optimal abundances of elongation factors. Both can be obtained by solving the system of non-linear equations above.

First, catalytic steps must equal to the flux through in the system in steady-state and thus:

$$[R_G] = \frac{\langle \ell \rangle J}{k_{cat}^G}, \quad [R_{TC}] = \frac{\langle \ell \rangle J}{k_{cat}^{TC}}, \quad [tRNA::aaRS] = \frac{\langle \ell \rangle J}{k_{cat}^{aaRS}}, \quad [Tu::Ts] = \frac{\langle \ell \rangle J}{k_{cat}^{Ts}}.$$

1200

Together with the conservation equations, these allow for immediate solutions for the free concentrations [Ts], [aaRS], and [G]:

1201

1202

$$[Ts] = Ts_{tot} - \frac{\langle \ell \rangle J}{k_{cat}^{Ts}},$$

1203

1204

$$[aaRS] = aaRS_{tot} - \frac{\langle \ell \rangle J}{k_{cat}^{aaRS}},$$

1205

1206

$$[G] = G_{tot} - \frac{\langle \ell \rangle J}{k_{cat}^G}.$$

1207

1208

The solution for other species can then also be obtained in terms $[Tu^{GTP}]$, and $[TC]$:

$$\begin{aligned}
 1209 \quad [R_{tRNA}] &= \frac{\langle \ell \rangle J}{\hat{k}_{on}^G \left(G_{tot} - \frac{\langle \ell \rangle J}{k_{cat}^G} \right)}, \quad [R_\emptyset] = \frac{\langle \ell \rangle n_{aa} J}{\hat{k}_{on}^{TC} [TC]} \\
 1210 \quad [tRNA] &= \frac{\langle \ell \rangle n_{aa} J}{\hat{k}_{on}^{aaRS} \left(aaRS_{tot} - \frac{\langle \ell \rangle J}{k_{cat}^{aaRS}} \right)}, \quad [aatRNA] = \frac{\langle \ell \rangle J}{\hat{k}_{on}^{Tu} [Tu^{GTP}]}, \\
 1211 \quad [Tu] &= \frac{\langle \ell \rangle J}{\hat{k}_{on}^{Ts} \left(Ts_{tot} - \frac{\langle \ell \rangle J}{k_{cat}^{Ts}} \right)}.
 \end{aligned}$$

1212

Substituting these in the conservation equations for tRNAs and EF-Tu lead to the final system to solve (converting to proteome fraction):

$$\frac{tRNA_{tot}}{P} := \psi_{tRNA} = \frac{\lambda n_{aa}}{k_{on}^{TC} \phi_{TC}} + \frac{2\lambda}{k_{cat}^{TC}} + \frac{2\lambda}{k_{on}^G \left(\phi_G - \frac{\ell_G \lambda}{k_{cat}^G} \right)} + \frac{2\lambda}{k_{cat}^G} + \dots \quad (28)$$

$$\begin{aligned}
 1213 \quad & \frac{\lambda n_{aa}}{k_{on}^{aaRS} \left(\phi_{aaRS} - \frac{\ell_{aaRS} \lambda}{k_{cat}^{aaRS}} \right)} + \frac{\lambda}{k_{cat}^{aaRS}} + \frac{\lambda}{k_{on}^{Tu} \phi_{Tu^{GTP}}} + \frac{\phi_{TC}}{\ell_{Tu}}, \\
 1214 \quad & \text{where } \phi_{Tu^{GTP}} := \phi_{Tu} - \frac{\ell_{Tu} \lambda}{k_{on}^{Ts} \left(\phi_{Ts} - \frac{\ell_{Ts} \lambda}{k_{cat}^{Ts}} \right)} - \frac{\ell_{Tu} \lambda}{k_{cat}^{Ts}} - \phi_{TC} - \frac{\ell_{Tu} \lambda}{k_{cat}^{TC}}. \quad (29)
 \end{aligned}$$

1215

1216

1217

1218

1219

1220

1221

where the solution for $\phi_{Tu^{GTP}}$ in terms of the ternary concentration was obtained from the conservation equation for EF-Tu. Equations 28 and 29 are closed, and the only variables to solve for is ϕ_{TC} in terms of the tRF abundances: ϕ_{Tu} , ϕ_{Ts} , ϕ_G , ϕ_{aaRS} , tRNA abundances, kinetic parameters, and the growth rate λ .

1222

Coarse-grained translation elongation time

1223

In order to obtain the coarse-grained translation elongation time, we proceed as for translation termination (section Coarse-grained translation termination time). The summed concentration of the ribosome containing species for translation elongation in our model is:

1224

1225

1226

1227

1228

$$\begin{aligned}
 [R_{el}] &= [R_\emptyset] + [R_{TC}] + [R_{tRNA}] + [R_G], \\
 &= \frac{\langle \ell \rangle n_{aa} J}{\hat{k}_{on}^{TC} [TC]} + \frac{\langle \ell \rangle J}{k_{cat}^{TC}} + \frac{\langle \ell \rangle J}{\hat{k}_{on}^G \left(G_{tot} - \frac{\langle \ell \rangle J}{k_{cat}^G} \right)} + \frac{\langle \ell \rangle J}{k_{cat}^G}.
 \end{aligned}$$

1229

Converting to proteome fraction:

1230

1231

1232

$$\frac{1}{\ell_{ribo}} \phi_{ribo}^{el} = \lambda \left(\frac{n_{aa}}{k_{on}^{TC} \phi_{TC}} + \frac{1}{k_{cat}^{TC}} + \frac{1}{k_{on}^G \left(\phi_G - \frac{\ell_G \lambda}{k_{cat}^G} \right)} + \frac{1}{k_{cat}^G} \right).$$

1233

1234

From the coarse-grained flux relations through the different categories (equation 17), which defines the coarse-grained transition times, we thus have:

1235

1236

1237

$$\tau_{el} = \langle \ell \rangle \tau_{aa}, \text{ where } \tau_{aa} = \frac{n_{aa}}{k_{on}^{TC} \phi_{TC}} + \frac{1}{k_{cat}^{TC}} + \frac{1}{k_{on}^G \left(\phi_G - \frac{\ell_G \lambda}{k_{cat}^G} \right)} + \frac{1}{k_{cat}^G}. \quad (30)$$

1238

1239

1240

Above, τ_{aa} is the effective time for a single step (by one codon) of translation elongation, and τ_{ind} corresponds to the summed time of factor independent transitions in each elongation step (not explicitly included in the kinetic scheme).

1241
1242
1243

Optimality conditions for translation elongation factors

The optimality condition (equation 5) applied to translation elongation factors leads to:

1244
1245

$$\left(\frac{\partial \tau_{taa}}{\partial \phi_G} \right)^* = \left(\frac{\partial \tau_{taa}}{\partial \phi_{Tu}} \right)^* = \left(\frac{\partial \tau_{taa}}{\partial \phi_{Ts}} \right)^* = \left(\frac{\partial \tau_{taa}}{\partial \phi_{aaRS}} \right)^* = -\frac{1}{\ell_{ribo} \lambda^*}. \quad (31)$$

1246
1247
1248
1249
1250

where equation 30 was used for τ_{aa} . Since the free EF-G concentration does not depend on EF-Tu, EF-Ts, or aaRS concentration, the conditions for EF-Tu, EF-Ts and aaRS simplify to:

1251
1252
1253
1254
1255

$$\frac{\partial}{\partial \phi_{Tu}} \left(\frac{n_{aa}}{k_{on}^{TC} \phi_{TC}} \right)^* = \frac{\partial}{\partial \phi_{Ts}} \left(\frac{n_{aa}}{k_{on}^{TC} \phi_{TC}} \right)^* = \frac{\partial}{\partial \phi_{aaRS}} \left(\frac{n_{aa}}{k_{on}^{TC} \phi_{TC}} \right)^* = -\frac{1}{\ell_{ribo} \lambda^*}. \quad (32)$$

1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275

Carrying through the differentiation also leads to conditions on the derivatives of the ternary complex concentration at the optimum:

$$\left(\frac{\partial \phi_{TC}}{\partial \phi_{Tu}} \right)^* = \left(\frac{\partial \phi_{TC}}{\partial \phi_{Ts}} \right)^* = \left(\frac{\partial \phi_{TC}}{\partial \phi_{aaRS}} \right)^* = \frac{k_{on}^{TC} (\phi_{TC}^*)^2}{\ell_{ribo} n_{aa} \lambda^*}. \quad (33)$$

These relationships will be useful to solve for the some elongation factor optimal abundances below.

Optimal EF-Ts abundance

Differentiating equation 28 with respect to ϕ_{Tu} and ϕ_{Ts} , we get at the optimum:

1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275

$$\begin{aligned} \frac{1}{\ell_{ribo}} + \frac{\lambda^*}{k_{on}^{Tu} (\phi_{Tu}^*)^2} \left(\frac{\partial \phi_{Tu}^{GTP}}{\partial \phi_{Tu}} \right)^* &= \frac{1}{\ell_{Tu}} \left(\frac{\partial \phi_{TC}}{\partial \phi_{Tu}} \right)^*, \\ \frac{1}{\ell_{ribo}} + \frac{\lambda^*}{k_{on}^{Ts} (\phi_{Ts}^*)^2} \left(\frac{\partial \phi_{Tu}^{GTP}}{\partial \phi_{Ts}} \right)^* &= \frac{1}{\ell_{Ts}} \left(\frac{\partial \phi_{TC}}{\partial \phi_{Ts}} \right)^*. \end{aligned}$$

By equation 33, the above leads to the additional condition at the optimum:

1265
1266

$$\left(\frac{\partial \phi_{Tu}^{GTP}}{\partial \phi_{Tu}} \right)^* = \left(\frac{\partial \phi_{Tu}^{GTP}}{\partial \phi_{Ts}} \right)^*.$$

Directly differentiating equation 29, and using equation 33, leads to:

1269
1270

$$\left(\frac{\partial \phi_{Tu}^{GTP}}{\partial \phi_{Tu}} \right)^* = 1 - \frac{k_{on}^{TC} (\phi_{TC}^*)^2}{\ell_{ribo} n_{aa} \lambda^*} = \left(\frac{\partial \phi_{Tu}^{GTP}}{\partial \phi_{Ts}} \right)^* = \frac{\ell_{Tu} \lambda^*}{k_{on}^{Ts} \left(\phi_{Ts}^* - \frac{\ell_{Ts} \lambda^*}{k_{cat}^{Ts}} \right)^2} - \frac{k_{on}^{TC} (\phi_{TC}^*)^2}{\ell_{ribo} n_{aa} \lambda^*}.$$

Therefore, the optimal abundance for EF-Ts is:

1273
1274

$$\phi_{Ts}^* = \sqrt{\frac{\ell_{Tu} \lambda^*}{k_{on}^{Ts}}} + \frac{\ell_{Ts} \lambda^*}{k_{cat}^{Ts}}. \quad (34)$$

Optimal EF-G abundance

The optimality condition for EF-G is complicated by the fact that EF-G free concentration appears in the solution for the steady-state ternary complex through the tRNA conservation equation 28. Differentiating the conservation tRNA equation, and using the optimality condition 31 (replacing a number of terms with the elongation time τ_{aa} , equation 30):

1275

$$0 = -\frac{2}{\ell_{ribo}} + \frac{\lambda^* n_{aa}}{k_{on}^{TC} (\phi_{Tu}^*)^2} \left(\frac{\partial \phi_{TC}}{\partial \phi_G} \right)^* + \frac{1}{\ell_{Tu}} \left(\frac{\partial \phi_{TC}}{\partial \phi_G} \right)^* - \frac{\lambda^*}{k_{on}^{Tu} (\phi_{Tu}^*)^2} \left(\frac{\partial \phi_{Tu}^{GTP}}{\partial \phi_G} \right)^*. \quad (35)$$

1276
1277
1278
1279
1280
1281
1282
1283

Above, the right-hand portion corresponds to the additional constraint coming from the implication of EF-G in the steady-state concentration of the ternary complex. From the equation for $\phi_{Tu^{GTP}}$ (equation 29), we have directly:

$$\left(\frac{\partial \phi_{Tu^{GTP}}}{\partial \phi_G} \right)^* = - \left(\frac{\partial \phi_{TC}}{\partial \phi_G} \right)^*.$$

1284
1285

Substituting this in equation 35:

1288
1289
1290
1291
1292
1293

$$\frac{2}{\ell_{ribo}} = \left[\frac{1}{\ell_{Tu}} + \frac{\lambda^*}{k_{on}^{Tu} (\phi_{Tu^{GTP}}^*)^2} + \frac{\lambda^* n_{aa}}{k_{on}^{TC} (\phi_{TC}^*)^2} \right] \left(\frac{\partial \phi_{TC}}{\partial \phi_G} \right)^*. \quad (36)$$

1294
1295
1296
1297

The derivative of the ternary complex with respect to EF-G at the optimum can be obtained from the original optimality condition 31, by carrying through the differentiation:

1298
1299

$$\left(\frac{\partial \phi_{TC}}{\partial \phi_G} \right)^* = \frac{k_{on}^{TC}}{n_{aa}} (\phi_{TC}^*)^2 \left[\frac{1}{\ell_{ribo} \lambda^*} - \frac{1}{k_{on}^G \left(\phi_G^* - \frac{\ell_G \lambda^*}{k_{cat}^G} \right)^2} \right].$$

1300
1301
1302

Substituting in equation 36, we arrive at a final equation for EF-G in terms of the concentration of other elongation factor and the optimal growth rate:

$$\frac{2}{\ell_{ribo}} = \lambda^* \left[1 + \frac{k_{on}^{TC} (\phi_{TC}^*)^2}{n_{aa} \ell_{Tu} \lambda^*} + \frac{k_{on}^{TC} (\phi_{TC}^*)^2}{n_{aa} k_{on}^{Tu} (\phi_{Tu^{GTP}}^*)^2} \right] \left(\frac{1}{\ell_{ribo} \lambda^*} - \frac{1}{k_{on}^G \left(\phi_G^* - \frac{\ell_G \lambda^*}{k_{cat}^G} \right)^2} \right).$$

1303
1304
1305
1306

The optimal solution for EF-G is thus:

$$\phi_G^* = \sqrt{\frac{\ell_{ribo} \lambda^*}{k_{on}^G} \left(\frac{\Delta + 1}{\Delta - 1} \right)} + \frac{\ell_G \lambda^*}{k_{cat}^G} \geq \sqrt{\frac{\ell_{ribo} \lambda^*}{k_{on}^G}} + \frac{\ell_G \lambda^*}{k_{cat}^G}, \quad (37)$$

where: $\Delta := \frac{k_{on}^{TC} (\phi_{TC}^*)^2}{n_{aa} \ell_{Tu} \lambda^*} + \frac{k_{on}^{TC} (\phi_{TC}^*)^2}{n_{aa} k_{on}^{Tu} (\phi_{Tu^{GTP}}^*)^2}$.

1307
1308
1309
1310
1311
1312
1313

Note that given that the term Δ involves ϕ_{TC}^* and $\phi_{Tu^{GTP}}^*$, and so the solution above is not a priori complete. However, using the approximate ternary complex concentration at the optimum (equation 12, derived in details in section Optimal EF-Tu and aaRS abundances), we have:

1314
1315
1316
1317
1318
1319
1320
1321
1322

This means that the lower bound for ϕ_G^* above (equation 37) is a good approximation: in the physiological regime, we can approximately neglect the indirect dependence of the ternary complex concentration on EF-G via the tRNA conservation equation. Hence, the approximate solution for the EF-G optimal abundance is (same for had we initially assumed that ϕ_{TC} was independent of ϕ_G , in which case the solution for EF-G can be obtained identically as that of release factors):

$$\phi_G^* \approx \sqrt{\frac{\ell_{ribo} \lambda^*}{k_{on}^G}} + \frac{\ell_G \lambda^*}{k_{cat}^G}.$$

1323 Optimal EF-Tu and aaRS abundances

1324 While simplifying relations were possible with EF-Ts and EF-G, allowing their solution (approximately) independently from the rest of the cycle, EF-Tu and aaRS are intricately connected
 1325 through the tRNA cycle. We thus return to the tRNA conservation equation, equation 28. For
 1326 notational simplicity, we group the catalytic step of the TC, EF-G binding, and EF-G catalytic
 1327 action (translocation) in parameter k_{el}^{max} (these do not depend on ϕ_{Tu} and ϕ_{aaRS}) which we
 1328 take to be experimentally determined value of 22 s^{-1} (Dai et al., 2016). Further dropping
 the EF-Ts related and catalytic terms (will be added back at the end, they only contribute a
 fixed term at the optimum) in the equation for the free EF-Tu, we get:

$$\frac{tRNA_{tot}}{P\lambda} = \frac{n_{aa}}{k_{on}^{TC}\phi_{TC}} + \frac{2}{k_{el}^{max}} + \dots \quad (38)$$

$$\frac{n_{aa}}{k_{on}^{aaRS} \left(\phi_{aaRS} - \frac{\ell_{aaRS}\lambda}{k_{cat}^{aaRS}} \right)} + \frac{1}{k_{cat}^{aaRS}} + \frac{1}{k_{on}^{Tu}\phi_{TuGTP}} + \frac{\phi_{TC}}{\ell_{Tu}\lambda},$$

1329 where $\phi_{TuGTP} = \phi_{Tu} - \phi_{TC}$ is the free EF-Tu concentration.

1330 This system is first solved numerically (Figure 3B). To close the equation in terms of uniquely
 1331 ϕ_{TC} , we use our relationship for λ (equation 1), with:

$$\tau_{trl} = \langle \ell \rangle \left(\frac{n_{aa}}{k_{on}^{TC}\phi_{TC}} + \frac{1}{k_{el}^{max}} \right) + \tau_{ini} + \tau_{ter},$$

1332 where as before k_{el}^{max} is the maximum rate of translation elongation (from reactions other
 1333 than ternary complex diffusion) estimated from *in vivo* kinetic measurements ($\approx 22 \text{ s}^{-1}$ (Dai
 1334 et al., 2016)), and $\tau_{ini} + \tau_{ter} \approx 0.5 \text{ s}$ the estimated time for the initiation and termination step
 1335 ($\approx 5 - 10\%$ of the full translation cycle translation time), taken as fixed parameters here. Using
 1336 this relationship for the translation time leads to the explicit relationship between growth
 1337 and ternary complex concentration:

$$\lambda(\phi_{TC}) = \frac{\phi_{ribo}}{\ell_{ribo}} \left(\frac{k_{trl}\phi_{TC}}{\phi_{TC} + K_{TC}} \right), \text{ with } k_{trl} := \frac{\langle \ell \rangle k_{el}^{max}}{\langle \ell \rangle + k_{el}^{max}(\tau_{ini} + \tau_{ter})} \text{ and } K_{TC} := \frac{k_{trl}n_{aa}}{k_{on}^{TC}} \quad (39)$$

1338 which is the same relationship as the one derived in (Klumpp et al., 2013), with the addition
 1339 of the terms corresponding to the rest translation cycle. Substituting the explicit relationship
 1340 between growth and ternary complex concentration above (equation 39) in the aaRS/EF-Tu
 1341 tRNA cycle relationship (equation 38) closes the system for ϕ_{TC} . Numerical solution for this
 1342 equation is presented in Figure 3B (see section Estimation of optimal abundances for other
 1343 parameters).

1344 The main conclusion from numerically solving the reduced system (equations 38 and 39)
 1345 is that the EF-Tu/aaRS space is partitioned in two regimes, resulting from the separation of
 1346 scale of reactions in the coarse-grained model. Specifically, $k_{on}^{Tu} \gg \frac{k_{on}^{TC}}{n_{aa}}$, so that any imbalance
 1347 between the constituents of the ternary complex (charged tRNAs, free EF-Tu), results in
 1348 stoichiometric unproductive excess of the component in surplus.

1349 We can derive a relation for the "transition line" in the aaRS/EF-Tu space where both free
 1350 charged tRNAs and free EF-Tu are at low concentrations. This corresponds to setting the
 1351 (formally impossible) requirement $\phi_{TuGTP} \approx 0 \Rightarrow \phi_{TC} \approx \phi_{Tu}$ and $[\text{aatRNA}] \propto \frac{1}{k_{on}^{Tu}\phi_{TuGTP}} \approx 0$, i.e.,

$$\frac{tRNA_{tot}}{P\lambda(\bar{\phi}_{Tu})} - \frac{n_{aa}}{k_{on}^{TC}\bar{\phi}_{Tu}} - \frac{2}{k_{el}^{max}} - \frac{\bar{\phi}_{Tu}}{\ell_{Tu}\lambda(\bar{\phi}_{Tu})} = \frac{n_{aa}}{k_{on}^{aaRS} \left(\bar{\phi}_{aaRS} - \frac{\ell_{aaRS}\lambda(\bar{\phi}_{Tu})}{k_{cat}^{aaRS}} \right)} + \frac{1}{k_{cat}^{aaRS}}. \quad (40)$$

1352 The $\bar{\cdot}$ signifies the transition line relationship between $\bar{\phi}_{Tu}$ and $\bar{\phi}_{aaRS}$, which is displayed in
 1353 Figure 3B.

1368 The heuristic to estimate the optimal EF-Tu concentration described in the main text can be
 1369 extended to include the EF-Ts cycle. In particular, in the EF-Tu limited regime, with $\phi_{Tu^{GTP}} \approx 0$,
 1370 we have (from equation 29):

$$1371 \phi_{TC} \approx \phi_{Tu} - \frac{\ell_{Tu}\lambda}{k_{on}^{Ts} \left(\phi_{Ts} - \frac{\ell_{Ts}\lambda}{k_{cat}^{Ts}} \right)} - \frac{\ell_{Tu}\lambda}{k_{cat}^{Ts}} - \frac{\ell_{Tu}\lambda}{k_{cat}^{TC}}.$$

1372
 1373 Substituting the above expression for ϕ_{TC} in the optimality condition (equation 32) for ϕ_{Tu} ,
 1374 we arrive at (using the optimal solution for EF-Ts, equation 34):

$$1375 \phi_{Tu}^* \approx \sqrt{\frac{\ell_{ribo} n_{aa} \lambda^*}{k_{on}^{TC}}} + \sqrt{\frac{\ell_{Tu} \lambda^*}{k_{on}^{Ts}}} + \frac{\ell_{Tu} \lambda^*}{k_{cat}^{Ts}} + \frac{\ell_{Tu} \lambda^*}{k_{cat}^{TC}}.$$

1376 Above, the last three terms (not appearing in equation 12) correspond to the additional
 1377 diffusion of the EF-Ts cycle, and catalytic contributions.

1378 Following the argument (see main text) that the optimal aaRS abundance should lie on the
 1379 transition line (equation 40), we obtain:

$$1380 \phi_{aaRS}^* \approx \frac{n_{aa} \lambda^*}{k_{on}^{aaRS} \Delta_{tRNA}^*} + \frac{\ell_{aaRS} \lambda^*}{k_{cat}^{aaRS}},$$

1381 with Δ_i related to the excess tRNA (tRNAs remaining after subtracting tRNAs sequestered on
 1382 the ribosome and TC from the total tRNA budget):

$$1383 \Delta_{tRNA}^* := \frac{tRNA_{tot}}{P} - \frac{n_{aa} \lambda^*}{k_{on}^{TC} \phi_{TC}^*} - \frac{2 \lambda^*}{k_{el}^{max}} - \frac{\phi_{TC}^*}{\ell_{Tu}} - \frac{\lambda^*}{k_{cat}^{aaRS}}, \text{ where } \phi_{TC}^* = \sqrt{\frac{n_{aa} \ell_{ribo} \lambda^*}{k_{on}^{TC}}}.$$

1388 Interpretation of the sharp separation between aars and EF-Tu limited regimes
 1389 The sharp separation of the solution for ϕ_{TC} in two distinct regimes (EF-Tu limited, and aaRS
 1390 limited, illustrated in Figure 3B), can be intuitively understood from a geometrical viewpoint.
 1391 For the simplicity of the argument (not strictly necessary), neglecting the short initiation and
 1392 termination times in equation 39, and using $tRNA_{tot} = \frac{t \phi_{ribo} P}{\ell_{ribo}}$ (with t the tRNA to ribosome
 1393 molar ratio). The tRNA conservation condition, equation 38, can then be rewritten as
 1394 (binding-limited regime):

$$1395 \underbrace{(t-1) \frac{\phi_{ribo}}{\ell_{ribo}}}_{\text{tRNA budget}} - \underbrace{\frac{\phi_{TC}}{\ell_{Tu}}}_{\text{ternary complex}} - \underbrace{\frac{\lambda(\phi_{TC})}{k_{el}^{max}}}_{\text{A-site tRNA}} = \lambda(\phi_{TC}) \left[\underbrace{\frac{n_{aa}}{k_{on}^{aaRS} \phi_{aaRS}}}_{\text{uncharged tRNA}} + \underbrace{\frac{1}{k_{on}^{Tu} (\phi_{Tu} - \phi_{TC})}}_{\text{free charged tRNA}} \right]$$

1398 At given abundance of EF-Tu (ϕ_{Tu}) and aaRS (ϕ_{aaRS}), the solution for ϕ_{TC} is obtained when
 1399 equality in the above equation is reached. The behavior of the various terms with ϕ_{TC} is
 1400 illustrated for different values of ϕ_{aaRS} and ϕ_{Tu} in Figure 3-Figure supplement 1: the number
 1401 of uncharged tRNAs (pink line in Figure 3-Figure supplement 1) is a decreasing function of
 1402 aaRS, and free charged tRNA (red line in Figure 3-Figure supplement 1) are dependent on ϕ_{Tu} .
 1403 Specifically, the free charged tRNA contribution, due to the rapid association rate k_{on}^{Tu} (codon
 1404 agnostic) between charged tRNAs and EF-Tu (red line), is negligible except for a very narrow
 1405 range where $\phi_{TC} \approx \phi_{Tu}$, at which point a sharp divergence occurs. This rapid divergence
 1406 bounds the solution for ϕ_{TC} at the total EF-Tu concentration.

1407 The aaRS limited regime corresponds to conditions in which the uncharged tRNA contribution
 1408 (pink line) intersects the available tRNA budget (full black line), lower left in Figure 3-Figure
 1409 supplement 1. In contrast, the EF-Tu limited regime corresponds to conditions in which

1410

1411

1412

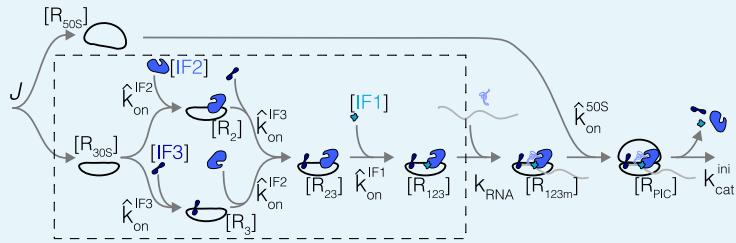
1413 the free charged tRNA (red line) intersects the tRNA budget, upper right in Figure 3-Figure
1414 supplement 1. The sharpness of the transition between the two regime arises from the near
1415 vertical divergence of the free charged tRNA contribution.

1417
1418
1419
1420
1421
1422
1423
1424
1425
1426

Translation initiation

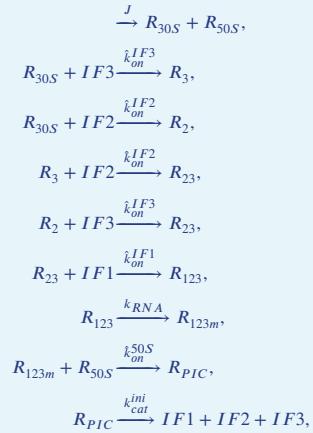
Translation initiation is also relatively complex compared to translation termination. In contrast with other steps of the translation cycle, binding of factors necessary for the process (IF1, IF2, IF3, initiator tRNA) do not occur in a strict sequential order, leading to a "heterogeneous assembly landscape" (Gualerzi and Pon, 2015; Chen et al., 2016) more complex to model. However, one assembly pathway is kinetically favored (Milón et al., 2012). We take this favored assembly pathway as our kinetic scheme (Appendix 4 Figure 1, note that binding of tRNA/mRNA are coarse-grained to a single even without loss of generality). We provide some evidence below that taking a more complex assembly pathway would minimally affect the predicted optimal initiation factor abundances.

1427

1428
1429
1430

Appendix 4 Figure 1. Simplified kinetic scheme for translation initiation. Reactions in dashed box correspond to sub-system solved in detail first (section Sub-pathway without subunits joining). Variables are labeled on the scheme.

The reactions in our simplified schemes are:



with corresponding mass action equations:

$$\begin{aligned}
 \frac{d[R_{30S}]}{dt} &= J - \hat{k}_{on}^{IF2}[R_{30S}][IF2] - \hat{k}_{on}^{IF3}[R_{30S}][IF3], \\
 \frac{d[R_2]}{dt} &= \hat{k}_{on}^{IF2}[R_{30S}][IF2] - \hat{k}_{on}^{IF3}[R_2][IF3], \\
 \frac{d[R_3]}{dt} &= \hat{k}_{on}^{IF3}[R_{30S}][IF3] - \hat{k}_{on}^{IF2}[R_3][IF2], \\
 \frac{d[R_{23}]}{dt} &= \hat{k}_{on}^{IF2}[R_3][IF2] + \hat{k}_{on}^{IF3}[R_2][IF3] - \hat{k}_{on}^{IF1}[R_{23}][IF1], \\
 \frac{d[R_{123}]}{dt} &= \hat{k}_{on}^{IF1}[R_{23}][IF1] - k_{RNA}[R_{123}], \\
 \frac{d[R_{123m}]}{dt} &= k_{RNA}[R_{123}] - \hat{k}_{on}^{50S}[R_{123m}][R_{50S}], \\
 \frac{d[R_{PIC}]}{dt} &= \hat{k}_{on}^{50S}[R_{123m}][R_{50S}] - k_{cat}^{ini}[R_{PIC}], \\
 \frac{d[R_{30S}]}{dt} &= J - \hat{k}_{on}^{50S}[R_{123m}][R_{50S}], \\
 \frac{d[IF1]}{dt} &= -\hat{k}_{on}^{IF1}[R_{23}][IF1] + k_{cat}^{ini}[PIC], \\
 \frac{d[IF2]}{dt} &= -\hat{k}_{on}^{IF2}([R_{30S}] + [R_3])[IF2] + k_{cat}^{ini}[PIC], \\
 \frac{d[IF3]}{dt} &= -\hat{k}_{on}^{IF3}([R_{30S}] + [R_2])[IF3] + k_{cat}^{ini}[PIC],
 \end{aligned}$$

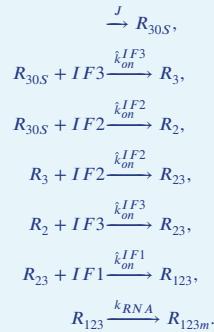
and conservation equations:

$$\begin{aligned}
 IF1_{tot} &= [IF1] + [R_{123}] + [R_{123m}] + [R_{PIC}], \\
 IF2_{tot} &= [IF2] + [R_2] + [R_{23}] + [R_{123}] + [R_{123m}] + [R_{PIC}], \\
 IF3_{tot} &= [IF3] + [R_3] + [R_{23}] + [R_{123}] + [R_{123m}] + [R_{PIC}], \\
 [R_{50S}] &= [R_{30S}] + [R_2] + [R_3] + [R_{23}] + [R_{123}] + [R_{123m}].
 \end{aligned}$$

We assume the steady-state concentrations of small and large ribosomal subunits to be equal.

Sub-pathway without subunits joining

The system of equation is complicated by the second branch of the pathway corresponding to 50S subunit binding. However, in the regime $\sqrt{\frac{\ell_{IF}}{\ell_{ribo}} \frac{k_{on}^{50S}}{k_{IF}^{50S}}} \ll 1$ (which is realized because of the large size of the ribosome and slower association rate constant for the large subunit compared to the initiation factors again due to size), the effect of this branch is to add a term to the optimal abundance equal to the concentration of species R_{123m} (see derivation in section Pathway including subunits joining). We focus here on the solution of the part of the reaction scheme boxed in Appendix 4 Figure 1. This sub-scheme corresponds to:



$$\begin{aligned}
1447 \quad \frac{d[R_{30S}]}{dt} &= J - \hat{k}_{on}^{IF2}[R_{30S}][IF2] - \hat{k}_{on}^{IF3}[R_{30S}][IF3], \\
1448 \quad \frac{d[R_2]}{dt} &= \hat{k}_{on}^{IF2}[R_{30S}][IF2] - \hat{k}_{on}^{IF3}[R_2][IF3], \\
1449 \quad \frac{d[R_3]}{dt} &= \hat{k}_{on}^{IF3}[R_{30S}][IF3] - \hat{k}_{on}^{IF2}[R_3][IF2], \\
1450 \quad \frac{d[R_{23}]}{dt} &= \hat{k}_{on}^{IF2}[R_3][IF2] + \hat{k}_{on}^{IF3}[R_2][IF3] - \hat{k}_{on}^{IF1}[R_{23}][IF1], \\
1451 \quad \frac{d[R_{123}]}{dt} &= \hat{k}_{on}^{IF1}[R_{23}][IF1] - k_{RNA}[R_{123}], \\
1452 \quad \frac{d[IF1]}{dt} &= -\hat{k}_{on}^1[R_{23}][IF1] + k_{RNA}[R_{123}], \\
1453 \quad \frac{d[IF2]}{dt} &= -\hat{k}_{on}^{IF2}([R_{30S}] + [R_3])[IF2] + k_{RNA}[R_{123}], \\
1454 \quad \frac{d[IF3]}{dt} &= -\hat{k}_{on}^{IF3}([R_{30S}] + [R_2])[IF3] + k_{RNA}[R_{123}],
\end{aligned}$$

1455 with conservation equations:

$$\begin{aligned}
1460 \quad IF1_{tot} &= [IF1] + [R_{123}], \\
1461 \quad IF2_{tot} &= [IF2] + [R_2] + [R_{23}] + [R_{123}], \\
1462 \quad IF3_{tot} &= [IF3] + [R_3] + [R_{23}] + [R_{123}],
\end{aligned}$$

1463
1464

This system can be solved as with the previous schemes. In steady-state, we find for concentrations in terms of the free concentrations $[IF2]$ and $[IF3]$:

$$\begin{aligned}
1465 \quad [R_{123}] &= \frac{J}{k_{RNA}}, \quad [IF1] = IF1_{tot} - \frac{J}{k_{RNA}}, \quad [R_{23}] = \frac{J}{\hat{k}_{on}^{IF1}[IF1]}, \quad [R_{30S}] = \frac{J}{\hat{k}_{on}^{IF2}[IF2] + \hat{k}_{on}^{IF3}[IF3]}, \\
&[R_2] = \frac{\hat{k}_{on}^{IF2}[IF2]}{\hat{k}_{on}^{IF3}[IF3]} \left(\frac{J}{\hat{k}_{on}^{IF2}[IF2] + \hat{k}_{on}^{IF3}[IF3]} \right), \quad [R_3] = \frac{\hat{k}_{on}^{IF3}[IF3]}{\hat{k}_{on}^{IF2}[IF2]} \left(\frac{J}{\hat{k}_{on}^{IF2}[IF2] + \hat{k}_{on}^{IF3}[IF3]} \right),
\end{aligned}$$

1466

and the coupled equations for $[IF2]$ and $[IF3]$ that need to be solved:

$$\begin{aligned}
1467 \quad IF2_{tot} &= [IF2] + \frac{\hat{k}_{on}^{IF2}[IF2]}{\hat{k}_{on}^{IF3}[IF3]} \left(\frac{J}{\hat{k}_{on}^{IF2}[IF2] + \hat{k}_{on}^{IF3}[IF3]} \right) + \frac{J}{\hat{k}_{on}^{IF1}[IF1]} + \frac{J}{k_{RNA}}, \quad (41) \\
1468 \quad IF3_{tot} &= [IF3] + \frac{\hat{k}_{on}^{IF3}[IF3]}{\hat{k}_{on}^{IF2}[IF2]} \left(\frac{J}{\hat{k}_{on}^{IF2}[IF2] + \hat{k}_{on}^{IF3}[IF3]} \right) + \frac{J}{\hat{k}_{on}^{IF1}[IF1]} + \frac{J}{k_{RNA}}.
\end{aligned}$$

1469
1470
1471
1472
1473
1474
1475

As for translation termination (section Coarse-grained translation termination time) and elongation (section Coarse-grained translation elongation time), summing the ribosome containing species:

$$\begin{aligned}
1476 \quad [R_{ini}] &= [R_{30S}] + [R_2] + [R_3] + [R_{23}] + [R_{123}], \\
1477 \quad &= J \left(\frac{1}{\hat{k}_{on}^{IF2}[IF2]} + \frac{1}{\hat{k}_{on}^{IF3}[IF3]} - \frac{1}{\hat{k}_{on}^{IF2}[IF2] + \hat{k}_{on}^{IF3}[IF3]} + \frac{1}{\hat{k}_{on}^{IF1}[IF1]} + \frac{1}{k_{RNA}} \right),
\end{aligned}$$

1478
1479
1480
1481
1482
1483

allows us to read the initiation time directly (recast in proteome fraction units):

$$\tau_{ini} = \frac{1}{k_{on}^{IF2}\phi_{IF2}^{free}} + \frac{1}{k_{on}^{IF3}\phi_{IF3}^{free}} - \frac{1}{k_{on}^{IF2}\phi_{IF2}^{free} + k_{on}^{IF3}\phi_{IF3}^{free}} + \frac{1}{k_{on}^{IF1}\phi_{IF1}^{free}} + \frac{1}{k_{RNA}}. \quad (42)$$

1484
1485
1486
1487

The above is the time can be used in the optimality condition (equation 5). Note that the parallel nature of the reactions with IF2 and IF3 leads to a reduction compared to a purely sequential pathway (negative term above decreasing the total initiation time, as expected if multiple reactions can occur in parallel).

Given that binding of IF1 occurs last in this scheme, its free concentration takes a simple form ($\phi_{IF1}^{free} = \phi_{IF1} - \frac{\ell_{IF1}\lambda}{\langle \ell \rangle k_{RNA}}$). In contrast, computing the free IF2 and IF3 concentrations

requires solving the non-linear coupled system, equations 41. Recasting these in units of proteome fraction:

$$\begin{aligned}\tilde{\phi}_{IF2} &= \phi_{IF2}^{free} + \frac{\lambda \ell_{IF2}}{\langle \ell \rangle k_{on}^{IF3} \phi_{IF3}^{free}} \left(\frac{k_{on}^{IF2} \phi_{IF2}^{free}}{k_{on}^{IF2} \phi_{IF2}^{free} + k_{on}^{IF3} \phi_{IF3}^{free}} \right), \\ \tilde{\phi}_{IF3} &= \phi_{IF3}^{free} + \frac{\lambda \ell_{IF3}}{\langle \ell \rangle k_{on}^{IF2} \phi_{IF2}^{free}} \left(\frac{k_{on}^{IF3} \phi_{IF3}^{free}}{k_{on}^{IF2} \phi_{IF2}^{free} + k_{on}^{IF3} \phi_{IF3}^{free}} \right),\end{aligned}$$

with $\tilde{\phi}_{IF2} := \phi_{IF2} - \frac{\ell_{IF2} \lambda}{\langle \ell \rangle k_{RNA}} - \frac{\ell_{IF2} \lambda}{\langle \ell \rangle k_{on}^{IF1} \phi_{IF1}^{free}}$, and similarly for $\tilde{\phi}_{IF3}$. We show now that the terms coupling the two equations for ϕ_{IF2}^{free} and ϕ_{IF3}^{free} (bracketed above) are small at the optimum. Indeed, based on results in simpler schemes (self-consistency confirmed below), we expect at the optimum:

$$\phi_{IF2}^{free,*} \sim \sqrt{\frac{\ell_{ribo} \lambda^*}{\langle \ell \rangle k_{on}^{IF2}}} \quad \text{and} \quad \phi_{IF3}^{free,*} \sim \sqrt{\frac{\ell_{ribo} \lambda^*}{\langle \ell \rangle k_{on}^{IF3}}}.$$

Hence, we expect the two terms at the optimum in the coupled equations above to compare as (e.g., in the free IF2 equation):

$$\frac{\phi_{IF2}^{free,*}}{\left(\frac{\lambda^* \ell_{IF2}}{\langle \ell \rangle k_{on}^{IF3} \phi_{IF3}^{free,*}} \right)} \sim \frac{\ell_{ribo}}{\ell_{IF2}} \sqrt{\frac{k_{on}^{IF3}}{k_{on}^{IF2}}} \gg 1,$$

coming from the large size of the ribosome compared to the initiation factors. In addition, the derivative of the coupling terms, which appear in the optimality condition and therefore in identifying the optimal abundances, are all of the form $\frac{\lambda^* \ell_{IF}}{\langle \ell \rangle k_{on}^{IF} (\phi_{IF}^{free})^2}$ compared to the main term. This scales scales as $\ell_{IF} \ell_{ribo}^{-1} \ll 1$ at the self-consistent solution. Hence, neglecting the coupling is justified as an approximate solutions near the optimum, and we obtain for the free concentrations of IFs:

$$\begin{aligned}\phi_{IF1}^{free} &= \phi_{IF1} - \frac{\ell_{IF1} \lambda}{\langle \ell \rangle k_{RNA}}, \\ \phi_{IF2}^{free} &\approx \phi_{IF2} - \frac{\ell_{IF2} \lambda}{\langle \ell \rangle k_{RNA}} - \frac{\ell_{IF2} \lambda}{\langle \ell \rangle k_{on}^{IF1} \phi_{IF1}^{free}}, \\ \phi_{IF3}^{free} &\approx \phi_{IF3} - \frac{\ell_{IF3} \lambda}{\langle \ell \rangle k_{RNA}} - \frac{\ell_{IF3} \lambda}{\langle \ell \rangle k_{on}^{IF1} \phi_{IF1}^{free}}.\end{aligned}$$

Substituting these in the expression for the initiation time, equation 42, and using the optimality condition (equation 5, we find that no simple solution exist for the non symmetric case of $k_{on}^{IF2} \neq k_{on}^{IF3}$. Since the on-rates should be similar for IF2 and IF3 (difference in size should only lead to modest difference in on-rates coefficient, by roughly $(\ell_{IF2}/\ell_{IF3})^{1/3} \approx 1.7$ assuming Stokes scaling), the symmetric case is approximately correct. We report the symmetric solution for simplicity. The final optimal solutions for the three factors for the sub-scheme solved here is:

$$\begin{aligned}\phi_{IF1}^* &\approx \sqrt{\frac{\ell_{ribo} \lambda^*}{\langle \ell \rangle k_{on}^{IF1}} \left[1 + \frac{\ell_{IF2} + \ell_{IF3}}{\ell_{ribo}} \right]} + \frac{\ell_{IF1} \lambda^*}{\langle \ell \rangle k_{on}^{ini}}, \\ \phi_{IF2}^* &\approx \sqrt{\frac{3}{4}} \sqrt{\frac{\ell_{ribo} \lambda^*}{\langle \ell \rangle k_{on}^{IF2}}} + \frac{\ell_{IF2}}{\langle \ell \rangle} \sqrt{\frac{\ell_{ribo} \lambda^*}{\langle \ell \rangle k_{on}^{IF1}}} + \frac{\ell_{IF2} \lambda^*}{\langle \ell \rangle k_{on}^{ini}}, \\ \phi_{IF3}^* &\approx \sqrt{\frac{3}{4}} \sqrt{\frac{\ell_{ribo} \lambda^*}{\langle \ell \rangle k_{on}^{IF3}}} + \frac{\ell_{IF3}}{\langle \ell \rangle} \sqrt{\frac{\ell_{ribo} \lambda^*}{\langle \ell \rangle k_{on}^{IF1}}} + \frac{\ell_{IF3} \lambda^*}{\langle \ell \rangle k_{on}^{ini}}.\end{aligned}\tag{43}$$

1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542

The form of the solution is again similar to that derived for the simpler translation termination scheme (c.f., equation 20), with three differences, each of which has an intuitive interpretation. First, the factor $\left[1 + \frac{\ell_{IF2} + \ell_{IF3}}{\ell_{ribo}}\right]$ in the IF1 solution arises as a result of IF1 binding being last in our initiation pathway. Indeed, IF1 concentration also influences free IF2 and IF3 concentration, leading to additional selective pressure to increase its abundance. In effect, the molecular species waiting for IF1 to diffuse to its target is not only the ribosome, but the ribosome with IF2 and IF3 bound, and a total amino acid weight $\ell_{ribo} \rightarrow \ell_{ribo} + \ell_{IF2} + \ell_{IF3}$. Second, the factor of $\sqrt{3/4} \approx 0.87 < 1$ for IF2 and IF3 (corresponding to the symmetric case), arising from the parallel pathway for IF2 and IF3 rendering the process more efficient. We therefore see that the correction from having multiple reactions in parallel is modest (0.87 vs. 1). The third difference to the simpler case of translation termination are the second terms for IF2 and IF3, corresponding to the additional delay incurred by binding of IF1. These come from the assumed sequential nature of our initiation scheme (Appendix 4 Figure 1). In such cases, factors binding earlier have to be present at higher abundances to account for their wait times for later binding events. The exact form of this correction term would be different for more complex assembly pathways (but would be captured by average delays from other factor binding).

1543
1544
1545
1546
1547
1548
1549
1550

Pathway including subunits joining

The solutions above (equations 43) are for the reduced scheme (boxed in Appendix 4 Figure 1). The full solutions includes the delay arising from 50S subunit binding. Including subunit joining requires the solution of an additional equation for the steady-state concentration of species with all three initiation factors, mRNA and initiator tRNA waiting for subunit joining (species R_{123m} in Appendix 4 Figure 1, denoted ϕ_{123m} in units of proteome fraction). The equation to solve for ϕ_{123m} can be obtained from the 50S ribosome subunit conservation equation:

1551
1552
1553

$$\frac{\lambda}{k_{on}^{50S} \phi_{123m}} = \frac{\lambda}{k_{on}^{IF2} \phi_{IF2}^{free}} + \frac{\lambda}{k_{on}^{IF3} \phi_{IF3}^{free}} - \frac{\lambda}{k_{on}^{IF2} \phi_{IF2}^{free} + k_{on}^{IF3} \phi_{IF3}^{free}} + \frac{\lambda}{k_{on}^{IF1} \phi_{IF1}^{free}} + \frac{\lambda}{k_{RNA}} + \frac{\langle \ell \rangle \phi_{123m}}{\ell_{30S}}.$$

1554
1555
1556

ϕ_{123m} appears in the equations for the free concentration of the initiation factors (from the conservation equations), and also leads to the appearance of a new term in the expression for the initiation time τ_{ini} (equation 42) corresponding to this step: $\frac{\langle \ell \rangle \phi_{123m}}{\ell_{30S} \lambda}$.

These two additions, resulting from the parallel branch of 50S joining, can be simplified due to a separation of scales between the various terms. For large initiation factor concentrations, the corresponding mass action terms in the equation for ϕ_{123m} negligibly contribute to the solution. In this regime, the new term involving ϕ_{123m} in the initiation time τ_{ini} does not alter the form the optimal abundances of IF1, IF2, and IF3 beyond adding a constant term. Hence, in the regime of high free IF concentration, the optimality condition has the same form as derived in the previous section. We can therefore obtain ϕ_{123m} assuming large IF concentration, denoted ϕ_{123m}^∞ :

$$\phi_{123m}^\infty = \frac{\ell_{30S}}{\langle \ell \rangle} \left(-\frac{\lambda}{2k_{RNA}} + \sqrt{\frac{1}{4} \left(\frac{\lambda}{k_{RNA}} \right)^2 + \frac{\langle \ell \rangle \lambda}{\ell_{30S} k_{on}^{50S}}} \right)$$

This solution will be self-consistent provided (for all initiation factors):

$$\frac{\lambda^*}{k_{on}^{IF} \phi_{IF}^{free,*}} \ll \frac{\lambda^*}{k_{RNA}} + \frac{\langle \ell \rangle \phi_{123m}^\infty}{\ell_{30S}} = \frac{\lambda^*}{2k_{RNA}} + \sqrt{\frac{1}{4} \left(\frac{\lambda^*}{k_{RNA}} \right)^2 + \frac{\langle \ell \rangle \lambda^*}{\ell_{30S} k_{on}^{50S}}},$$

1568

1569

1570

1571

1572

1573

1574

1575

It therefore suffices to show:

$$\frac{\lambda^*}{k_{on}^{IF} \phi_{IF}^{free,*}} \ll \sqrt{\frac{\langle \ell \rangle \lambda^*}{\ell_{30S} k_{on}^{50S}}}.$$

Using our optimality condition on $\phi_{IF}^{free,*}$ (equation 43) assuming no contribution from ϕ_{123m} (self-consistency), and converting association rates in units $\mu M^{-1}s^{-1}$, the above condition reduces to:

$$\sqrt{\frac{\ell_{IF} \hat{k}_{on}^{50S}}{\ell_{ribo} \hat{k}_{on}^{IF}}} \ll 1.$$

1576

1577

1578

1579

1580

The self-consistency condition is met both because initiation factors are smaller than ribosomes $\ell_{IF} \ll \ell_{ribo}$, and because the on-rate for subunit joining is lower than initiation factor binding ($\hat{k}_{on}^{50S} \ll \hat{k}_{on}^{IF}$), given again the size differences. The solution, including the contribution from ribosome subunits joining is then:

$$\phi_{IF1}^* \approx \sqrt{\frac{\ell_{ribo} \lambda^*}{\langle \ell \rangle k_{on}^{IF1}} \left[1 + \frac{\ell_{IF2} + \ell_{IF3}}{\ell_{ribo}} \right] + \frac{\ell_{IF1}}{\ell_{30S}} \phi_{123m}^\infty + \frac{\ell_{IF1} \lambda^*}{\langle \ell \rangle} \left(\frac{1}{k_{RNA}} + \frac{1}{k_{cat}^{ini}} \right)},$$

$$\phi_{IF2}^* \approx \sqrt{\frac{3}{4}} \sqrt{\frac{\ell_{ribo} \lambda^*}{\langle \ell \rangle k_{on}^{IF2}}} + \frac{\ell_{IF2}}{\langle \ell \rangle} \sqrt{\frac{\ell_{ribo} \lambda^*}{\langle \ell \rangle k_{on}^{IF1}}} + \frac{\ell_{IF2}}{\ell_{30S}} \phi_{123m}^\infty + \frac{\ell_{IF2} \lambda^*}{\langle \ell \rangle} \left(\frac{1}{k_{RNA}} + \frac{1}{k_{cat}^{ini}} \right)},$$

$$\phi_{IF3}^* \approx \sqrt{\frac{3}{4}} \sqrt{\frac{\ell_{ribo} \lambda^*}{\langle \ell \rangle k_{on}^{IF3}}} + \frac{\ell_{IF3}}{\langle \ell \rangle} \sqrt{\frac{\ell_{ribo} \lambda^*}{\langle \ell \rangle k_{on}^{IF1}}} + \frac{\ell_{IF3}}{\ell_{30S}} \phi_{123m}^\infty + \frac{\ell_{IF3} \lambda^*}{\langle \ell \rangle} \left(\frac{1}{k_{RNA}} + \frac{1}{k_{cat}^{ini}} \right)},$$

1581

1582

1583

1584

1585

1586

1587

1588

1589

where for k_{RNA} much faster than the association between the subunits, $\phi_{123m}^\infty \approx \sqrt{\frac{\ell_{30S} \lambda^*}{\langle \ell \rangle k_{on}^{50S}}}$.

1591
1592
1593
1594
Estimation of optimal abundances1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
To compare prediction from our parsimonious framework (Table 2) requires specific values
of kinetic parameters. We use empirical measurements together with scaling relations to
estimate these kinetic parameters.1607
1608
1609
1610
1611
1612
1613
1614
Catalytic rates for many enzymes have been measured *in vitro*, but the obtained values
can be sharply incompatible with kinetic parameters that have been measured in the cell.
An example is the class tRNA synthetases. Tallying the measured k_{cat} for all wild-type *E. coli*
aaRSs (Jeske et al., 2019), we find a median value of $k_{cat}^{aaRS} \approx 3 \text{ s}^{-1}$, and 80% of reported value
below 6 s^{-1} . The total molar concentration of aaRSs in the cell is comparable to the total
number of ribosomes, and the per-step elongation speed of ribosome is above 15 s^{-1} (Dai
et al., 2016; Johnson et al., 2020). Hence, the absolute minimum catalytic rate to sustain the
translation elongation flux needs to obey $k_{cat}^{aaRS} > 15 \text{ s}^{-1}$, which is much higher than most
in vitro measured values. To avoid the difficulties in estimating catalytic parameters, and
to derive a lower bound on factor abundance from our model, we focus on the binding
component (related to the associate rate) of our predictions, assuming large catalytic rates
($k_{cat} \rightarrow \infty$).1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
To estimate association rates \hat{k}_{on} , we scaled the measured *in vivo* association rate for
the ternary complex, $\hat{k}_{on}^{TC} = 6.4 \text{ } \mu\text{M}^{-1}\text{s}^{-1}$ (Dai et al., 2016) by diffusion of the respective
components, i.e., $\hat{k}_{on}^{AB}/\hat{k}_{on}^{TC} = (D_A + D_B)/(D_{TC} + D_{ribo})$, where D_i is the diffusion coefficients for
the molecular species i . While the *in vivo* diffusion coefficient for a number of component
of the translation apparatus exist (Bakshi et al., 2012; Sanamrad et al., 2014; Volkov et al.,
2018; Plochowietz et al., 2017), several factors do not have measured diffusion coefficients.
For these, we used the cubic root scaling from the Stokes-Einstein relation (Nenninger et al.,
2010), see Appendix 5 Table 1.1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
28010
28011
28012
28013
28014
28015
28016
28017
28018
28019
28020
28021
28022
28023
28024
28025
28026
28027
28028
28029
28030
28031
28032
28033
28034
28035
28036
28037
28038
28039
28040
28041
28042
28043
28044
28045
28046
28047
28048
28049
28050
28051
28052
28053
28054
28055
28056
28057
28058
28059
28060
28061
28062
28063
28064
28065
28066
28067
28068
28069
28070
28071
28072
28073
28074
28075
28076
28077
28078
28079
28080
28081
28082
28083
28084
28085
28086
28087
28088
28089
28090
28091
28092
28093
28094
28095
28096
28097
28098
28099
28100
28101
28102
28103
28104
28105
28106
28107
28108
28109
28110
28111
28112
28113
28114
28115
28116
28117
28118
28119
28120
28121
28122
28123
28124
28125
28126
28127
28128
28129
28130
28131
28132
28133
28134
28135
28136
28137
28138
28139
28140
28141
28142
28143
28144
28145
28146
28147
28148
28149
28150
28151
28152
28153
28154
28155
28156
28157
28158
28159
28160
28161
28162
28163
28164
28165
28166
28167
28168
28169
28170
28171
28172
28173
28174
28175
28176
28177
28178
28179
28180
28181
28182
28183
28184
28185
28186
28187
28188
28189
28190
28191
28192
28193
28194
28195
28196
28197
28198
28199
28200
28201
28202
28203
28204
28205
28206
28207
28208
28209
28210
28211
28212
28213
28214
28215
28216
28217
28218
28219
28220
28221
28222
28223
28224
28225
28226
28227
28228
28229
28230
28231
28232
28233
28234
28235
28236
28237
28238
28239
28240
28241
28242
28243
28244
28245
28246
28247
28248
28249
28250
28251
28252
28253
28254
28255
28256
28257
28258
28259
28260
28261
28262
28263
28264
28265
28266
28267
28268
28269
28270
28271
28272
28273
28274
28275
28276
28277
28278
28279
28280
28281
28282
28283
28284
28285
28286
28287
28288
28289
28290
28291
28292
28293
28294
28295
28296
28297
28298
28299
28300
28301
28302
28303
28304
28305
28306
28307
28308
28309
28310
28311
28312
28313
28314
28315
28316
28317
28318
28319
28320
28321
28322
28323
28324
28325
28326
28327
28328
28329
28330
28331
28332
28333
28334
28335
28336
28337
28338
28339
28340
28341
28342
28343
28344
28345
28346
28347
28348
28349
28350
28351
28352
28353
28354
28355
28356
28357
28358
28359
28360
28361
28362
28363
28364
28365
28366
28367
28368
28369
28370
28371
28372
28373
28374
28375
28376
28377
28378
28379
28380
28381
28382
28383
28384
28385
28386
28387
28388
28389
28390
28391
28392
28393
28394
28395
28396
28397
28398
28399
28400
28401
28402
28403
28404
28405
28406
28407
28408
28409
28410
28411
28412
28413
28414
28415
28416
28417
28418
28419
28420
28421
28422
28423
28424
28425
28426
28427
28428
28429
28430
28431
28432
28433
28434
28435
28436
28437
28438
28439
28440
28441
28442
28443
28444
28445
28446
28447
28448
28449
28450
28451
28452
28453
28454
28455
28456
28457
28458
28459
28460
28461
28462
28463
28464
28465
28466
28467
2

1638 tRNA concentration (estimated from the tRNA to ribosome ratio of 6.5 (**Dong et al., 1996**)
 1639 using: $tRNA_{tot} = (tRNA/ribo)\phi_{ribo}P/\ell_{ribo}$), the maximum per-codon elongation rate, excluding
 1640 ternary complex diffusion, $k_{el}^{max} = 22 \text{ s}^{-1}$ (**Dai et al., 2016**) (used to estimate the number of
 1641 tRNAs sequestered on ribosomes and therefore the excess tRNA number in the optimum for
 1642 aaRS, see equations 18 and 38), the in-protein amino acid concentration $P = 2.6 \text{ M}$ (**Klumpp et al., 2013; Bremer and Dennis, 2008**).

1644 For the fast growth average, results displayed in Figure 4 listed in Supplementary File 2.
 1645 Additional predictions in individual conditions are shown in Figure 4-Figure supplement 1,
 1646 with numerical values for measured and predicted values listed in Supplementary Files 1 to 4.
 1647 For predictions in different growth conditions/species, we used the measured growth
 1648 rates in the corresponding conditions (values listed in Supplementary Files 1 and 3), and
 1649 association rate constants estimated based on *E. coli* data (Appendix 5 Tables 1 to 3), and the
 1650 tRNA abundance (only needed for the prediction of aaRS) at the corresponding growth rate
 1651 in *E. coli* from (**Dong et al., 1996**). As a result of the lack of quantitation of tRNA abundance
 1652 in other species, these values were used for *B. subtilis*, *V. natriegens* and *C. crescentus*, and
 1653 should be interpreted with caution given possible difference in cellular physiology for these
 1654 species.

Factor	Number of codon per protein	Diffusion coefficient ($\mu\text{m}^2 \text{ s}^{-1}$)
Ribosome	$\ell_{ribo} = 7336$	$D_{ribo} = 0.05 \pm 0.01$
30S subunit	$\ell_{30S} = 3108$	$D_{subunits} = 0.2 \pm 0.1$
TC	$\ell_{TC} = 630^{\#}$	$D_{TC} = 3 \pm 0.5$
tRNA	N/A	$D_{tRNA} = 8 \pm 1$
IF1	$\ell_{IF1} = 72$	$D_{IF1} = D_{TC} \sqrt[3]{\frac{\ell_{TC}}{\ell_{IF1}}}$
IF2	$\ell_{IF2} = 890$	$D_{IF2} = D_{TC} \sqrt[3]{\frac{\ell_{TC}}{\ell_{IF2}}}$
IF3	$\ell_{IF3} = 180$	$D_{IF3} = D_{TC} \sqrt[3]{\frac{\ell_{TC}}{\ell_{IF3}}}$
EF-G	$\ell_G = 704$	$D_G = D_{TC} \sqrt[3]{\frac{\ell_{TC}}{\ell_G}}$
EF-Ts	$\ell_{Ts} = 283$	$D_{Ts} = D_{TC} \sqrt[3]{\frac{\ell_{TC}}{\ell_{Ts}}}$
EF-Tu	$\ell_{Tu} = 394$	$D_{Tu} = D_{TC} \sqrt[3]{\frac{\ell_{TC}}{\ell_{Tu}}}$
aaRS	$\ell_{aaRS} = 987^{\dagger}$	$D_{aaRS} = D_{TC} \sqrt[3]{\frac{\ell_{TC}}{\ell_{aaRS}}}$
RF1/RF2	$\ell_{RF1} = 362$	$D_{RF1} = D_{TC} \sqrt[3]{\frac{\ell_{TC}}{\ell_{RF1}}}$
RF4	$\ell_{RF4} = 185$	$D_{RF4} = D_{TC} \sqrt[3]{\frac{\ell_{TC}}{\ell_{RF4}}}$

1655
 1656 **Appendix 5 Table 1.** Protein sizes (number of codons) and diffusion coefficients. Unless otherwise
 1657 noted, number of codons per protein are taken for *E. coli* (**Keseler et al., 2016**) (ribosome size taken
 1658 from (**Wittmann, 1982**)). [#]For the ternary complex, the total mass of tRNA+EF-Tu was converted to an
 1659 equivalent amino acid length for the diffusion constant scaling estimate. [†]For aaRS, the size for the
 1660 summed aaRSs is, from the coarse graining, $\ell_{aaRS} = \sum_i \phi_{aaRS,i} / \sum_i (\phi_{aaRS,i} / \ell_{aaRS,i})$, here with proteome
 1661 fractions estimated from ribosome profiling (**Li et al., 2014**) in *E. coli* and sizes accounting for varying
 1662 complex stoichiometries. Measured diffusion coefficients are taken from: (**Bakshi et al., 2012;**
 1663 **Sanamrad et al., 2014**) for the ribosome, from (**Plochowietz et al., 2017; Volkov et al., 2018**) for tRNAs,
 1664 and from (**Volkov et al., 2018**) for the TC.

	Factors involved in reaction	Variable	Used expression for association rate constant			
1666	Ternary complex and ribosome	\hat{k}_{on}^{TC}	$6.4 \pm 0.6 \mu\text{M}^{-1}\text{s}^{-1}$ (Dai et al., 2016)			
	EF-G and ribosome	\hat{k}_{on}^G	$\hat{k}_{on}^{TC}(D_G + D_{ribo})/(D_{TC} + D_{ribo})$			
	aaRS And tRNAs	\hat{k}_{aaRS}	$\hat{k}_{on}^{TC}(D_{tRNA} + D_{aaRS})/(D_{TC} + D_{ribo})$			
	EF-Ts and ribosome	\hat{k}_{on}^{Ts}	$\hat{k}_{on}^{TC}(D_{Ts} + D_{ribo})/(D_{TC} + D_{ribo})$			
	EF-Tu and tRNAs	\hat{k}_{on}^{Tu}	$\hat{k}_{on}^{TC}(D_{tRNA} + D_{Tu})/(D_{TC} + D_{ribo})$			
	IF1 and 30S subunit	\hat{k}_{on}^{IF1}	$\hat{k}_{on}^{TC}(D_{IF1} + D_{subunit})/(D_{TC} + D_{ribo})$			
	IF2 and 30S subunit	\hat{k}_{on}^{IF2}	$\hat{k}_{on}^{TC}(D_{IF2} + D_{subunit})/(D_{TC} + D_{ribo})$			
	IF3 and 30S subunit	\hat{k}_{on}^{IF3}	$\hat{k}_{on}^{TC}(D_{IF3} + D_{subunit})/(D_{TC} + D_{ribo})$			
	50S and 30S subunits	\hat{k}_{on}^{50S}	$\hat{k}_{on}^{TC}(D_{subunit} + D_{subunit})/(D_{TC} + D_{ribo})$			
	RF1/RF2 and ribosome	\hat{k}_{on}^{RF1}	$\hat{k}_{on}^{TC}(D_{RF1} + D_{ribo})/(D_{TC} + D_{ribo})$			
	RF4 and ribosome	\hat{k}_{on}^{RF4}	$\hat{k}_{on}^{TC}(D_{RF4} + D_{ribo})/(D_{TC} + D_{ribo})$			
1667	Appendix 5 Table 2. Expression used to estimate the association rate constants for our predictions (Table 2). Diffusion coefficients are listed in Appendix 5 Table 1.					
1669						
1670						
1671						
1672						
1673						
1674						
1675						
Appendix 5 Table 3. Additional parameters used to obtain numerical values for predictions. For the doubling times (growth rates) and tRNA to ribosome ratios used for in individual growth conditions considered, see Supplementary Files 2 and 4. P is taken from (Klumpp et al., 2013), k_{el}^{max} from (Dai et al., 2016), and the tRNA/ribosome ratios from (Dong et al., 1996).						

$$\begin{aligned}
(t-1) \underbrace{\frac{\phi_{ribo}}{\ell_{ribo}}}_{\text{tRNA budget}} - \underbrace{\frac{\phi_{TC}}{\ell_{Tu}}}_{\text{ternary complex}} - \underbrace{\frac{\lambda(\phi_{TC})}{k_{el}^{\max}}}_{\text{A-site tRNA}} = \lambda(\phi_{TC}) \left[\frac{n_{aa}}{k_{on}^{aaRS} \phi_{aaRS}} \right. \\
\left. + \frac{1}{k_{on}^{Tu} (\phi_{Tu} - \phi_{TC})} \right]
\end{aligned}$$

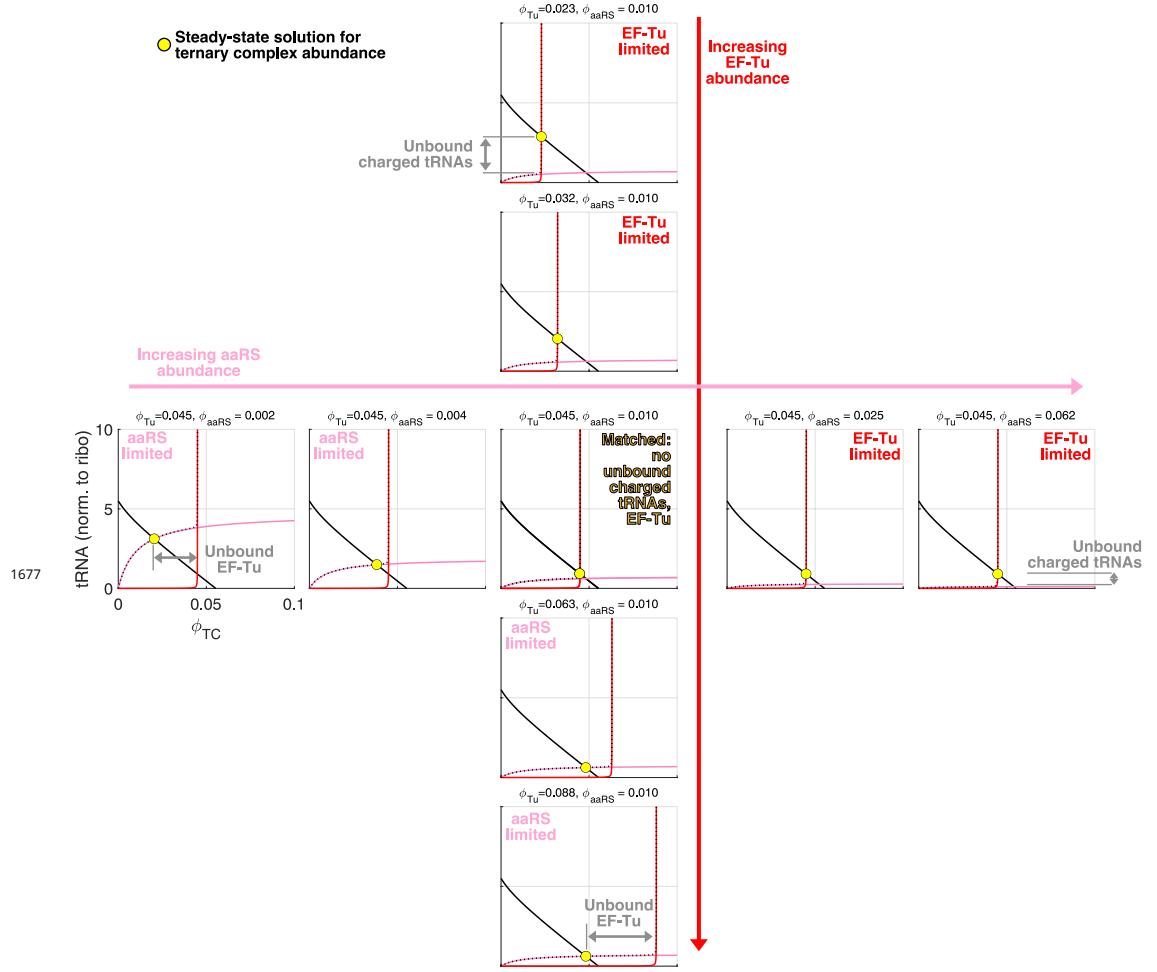


Figure 3-Figure supplement 1. Geometrical interpretation of the sharpness of the separation of the aaRS limited and EF-Tu limited regimes. Each graph corresponds to a different combination of aaRS and EF-Tu abundance. The solution for ϕ_{TC} (yellow circle) corresponds to the intersection of the full (tRNA budget minus TC concentration and ribosome bound tRNAs) and dashed (all remaining tRNA contributions) black lines. Red and pink lines correspond to the free uncharged and charged tRNAs respectively. Because of the rapid divergence of the free charged tRNA term (red) at $\phi_{TC} = \phi_{Tu}$, the system shifts from being limited by aaRS-limited (pink line intersecting full black line) to being EF-Tu limited (red line intersect full black line) over a very narrow range in aaRS or EF-Tu expression change. The central graph corresponds to the abundance of EF-Tu and aaRS matched (no unbound charged tRNAs or EF-Tu), and falls on the transition line of Figure 3

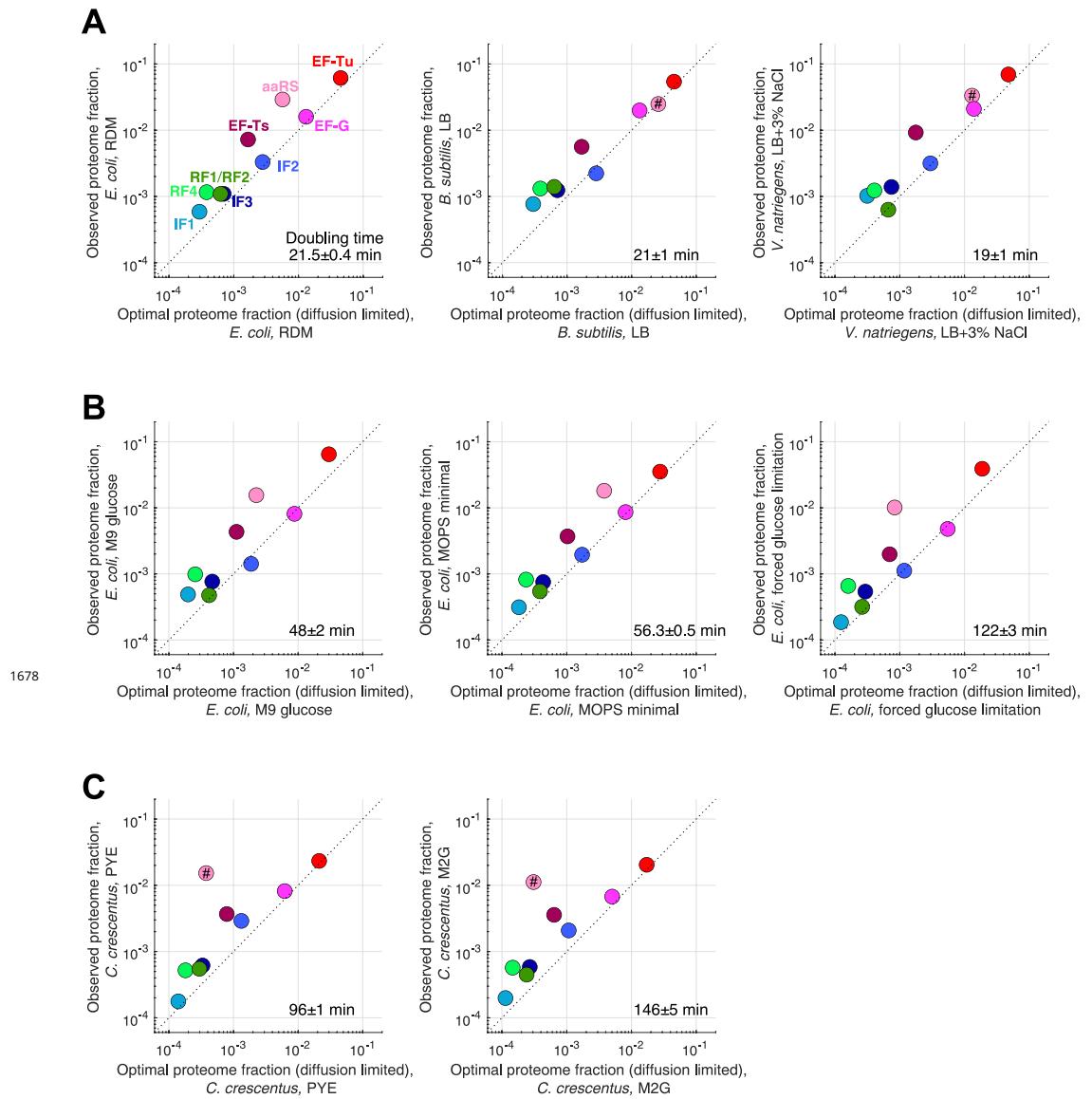


Figure 4-Figure supplement 1. Measured (ribosome profiling) and predicted (diffusion-limited estimates) proteome fraction for core translation factors in individual conditions corresponding to different ribosome profiling datasets included in our analysis (see Supplementary Files 1 to 4). Doubling time for each condition is indicated. (A) individual fast growing species (see Figure 4 for the average). (B) Slower growth conditions in *E. coli*. (C) *C. crescentus* datasets. Predictions of aaRS in species other than *E. coli* are marked by # to indicate that we used *E. coli* tRNA abundance measurements from (Dong *et al.*, 1996) to make prediction for this tIF these other species.

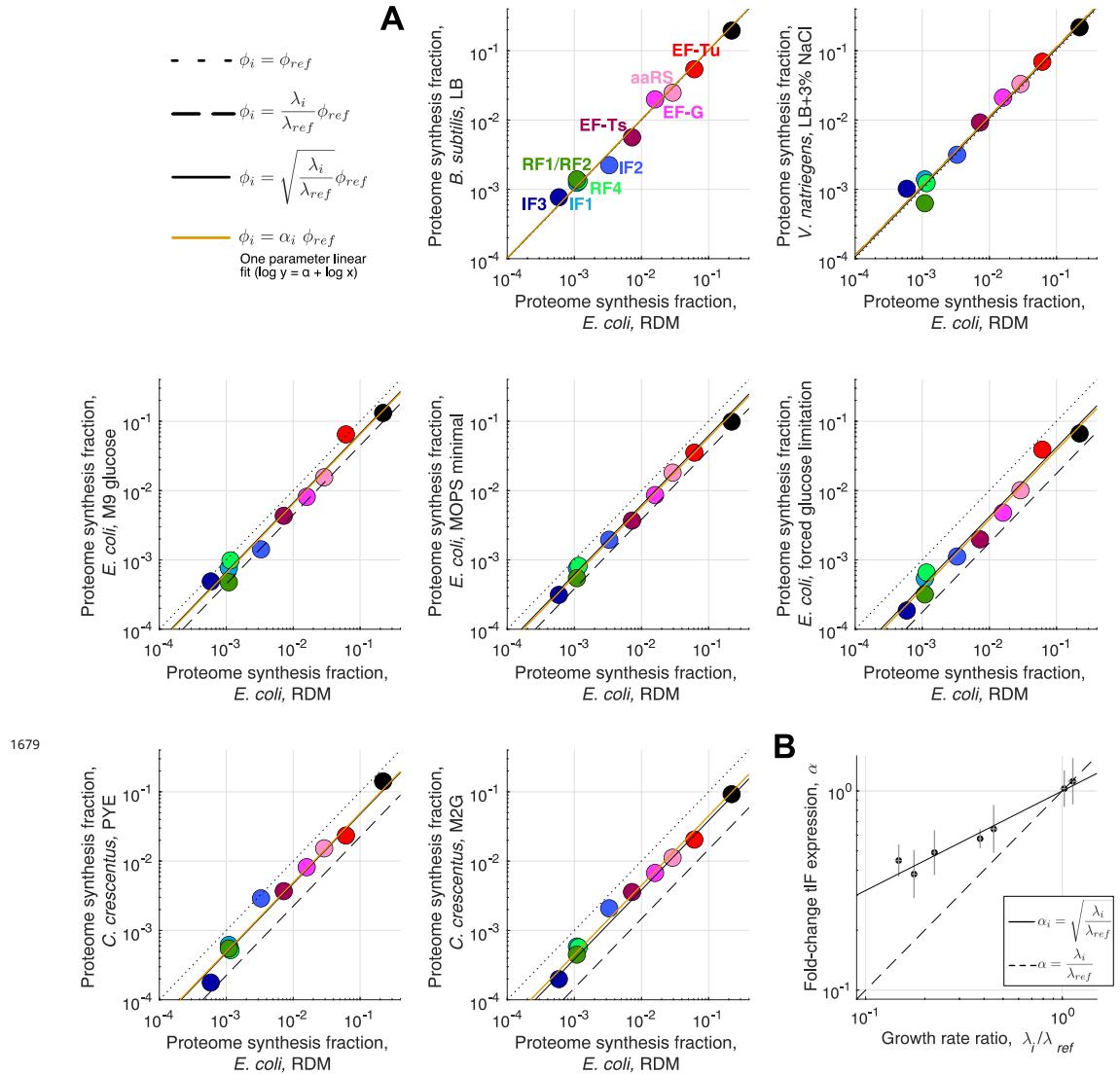


Figure 4-Figure supplement 2. Expression stoichiometry of core translation factors in different species and at different growth rates. (A) Comparison of measured (ribosome profiling) proteome fraction for core translation factors across different species and growth conditions (same conditions as Figure 4-Figure supplement 1). All conditions are compared to the *E. coli* RDM dataset (reference: *ref*, condition of interest: *i*). Dotted line correspond to $\phi_i = \phi_{ref}$, dashed line to $\phi_i = (\lambda_i / \lambda_{ref}) \phi_{ref}$ and full black line to $\phi_i = \sqrt{\lambda_i / \lambda_{ref}} \phi_{ref}$ (the parameter free prediction from the binding-limited regime of the model, optimal abundance $\propto \sqrt{\lambda}$). Orange line corresponds to the one parameter fit $\log \phi_i = \alpha_i + \log \phi_{ref}$ (excluding aaRS, not expected to follow the square root scaling, and ribosomes), corresponding to the scaling of all factor's abundance. (B) Best one-parameter fit α_i (scale factor) from (A) as a function of the growth rate ratio $\lambda_i / \lambda_{ref}$. Square root scaling: full line. Linear scaling: dashed line. Uncertainties on the growth ratio are propagated from uncertainties of the respective growth rates. Uncertainties in α_i are 95% confidence interval from the linear fits in (A).