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Abstract Enzymatic pathways have evolved uniquely preferred protein expression stoichiometry
in living cells, but our ability to predict the optimal abundances from basic properties remains
underdeveloped. Here we report a biophysical, first-principles model of growth optimization for
core mRNA translation, a multi-enzyme system that involves proteins with a broadly conserved
stoichiometry spanning two orders of magnitude. We show that predictions from maximization of
ribosome usage in a parsimonious flux model constrained by proteome allocation agree with the
conserved ratios of translation factors. The analytical solutions, without free parameters, provide
an interpretable framework for the observed hierarchy of expression levels based on simple
biophysical properties, such as diffusion constants and protein sizes. Our results provide an
intuitive and quantitative understanding for the construction of a central process of life, as well as a
path toward rational design of pathway-specific enzyme expression stoichiometry.

Introduction

A universal challenge faced by both evolution and synthetic pathway creation is to optimize the
cellular abundance of proteins. This abundance optimization problem is not only multidimensional
- often involving several proteins participating in the same pathway - but also under systems-wide
constraints, such as limited physical space (Klumpp et al., 2013) and finite nutrient inputs (You
et al., 2013). The complexity of this problem has prevented rational design of protein expression for
pathway engineering (Jeschek et al., 2017). Fundamentally, being able to predict the optimal and
observed cellular protein abundances from their individual properties would reflect an ultimate
understanding of molecular and systems biology.

Evolutionary comparison of gene expression across microorganisms suggests that basic prin-
ciples governing the optimization problem may exist. We recently reported broad conservation
of relative protein synthesis rates within individual pathways, even under circumstances in which
the relative transcription and translation rates for the homologous enzymes have dramatically
diverged across species (Lalanne et al., 2018). Moreover, distinct proteins that evolved convergently
towards the same biological function also displayed the same stoichiometry of protein synthesis
in their respective species. These results suggest that the determinants of optimal in-pathway
protein stoichiometry are likely modular and independent of detailed biochemical or physiological
properties that differ across clades. However, the precise nature of such determinants remains
unknown.

Translation of mRNA into proteins is a central pathway required for cell growth and therefore
serves as an entry point for establishing a quantitative model of growth-optimized in-pathway
stoichiometry. As a group, the total amount of translation-related proteins per cell mass linearly
increases with growth rate in most conditions (Scott et al., 2010; Dai et al., 2016; Schaechter
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et al., 1958), a relationship considered a bacterial ‘growth law'. In addition to ribosomes which
have well-coordinated synthesis of subunits (Nomura et al., 1984), the translation pathway is
comprised of nearly 100 protein factors involved in facilitating ribosome assembly, translation
initiation, elongation, and termination (Marintchev and Wagner, 2004; Dever and Green, 2012;
Rodnina, 2018). The intracellular abundances of these factors vary over 100-fold (Pedersen et al.,
1978; Li et al., 2014), and their ratios are often maintained in different growth conditions and
across different species (Lalanne et al., 2018). What dictates the observed stoichiometry among
translation factors is less understood. Early studies predicted expression of the highly expressed
elongation factor Tu (EF-Tu) relative to the ribosome (Klumpp et al., 2013; Ehrenberg and Kurland,
1984) by maximizing translational flux per unit proteome. More recently, expression of several
other components involved in the elongation step (ribosomes, tRNA, mRNA, EF-Tu, and EF-Ts) was
predicted by minimizing the total mass of the components at a fixed translational flux (Hu et al.,
2020). The selective pressure on expression levels remains to be determined for most members of
the translation machinery, including initiation and termination factors that are much more lowly
expressed and often assumed to be non-limiting.

Here we sought to derive an intuitive model to understand the quantitative abundance hierarchy
(Figure 1B) among the core translation factors (tIFs), which have well-characterized functions (Table 1,
schematic in Figure 1A). Our goal is not to exhaustively model the heterogeneous movement of
ribosomes on the transcriptome (Shaw et al., 2003; Reuveni et al., 2011; Subramaniam et al., 2014;
Dykeman, 2020) or to include as many details of the underlying molecular steps as possible (Hu
et al., 2020; Vieira et al., 2016). Instead, we coarse-grained global translation into a cycle that
consists of sequential steps with interconnected fluxes that depend on core tIFs concentrations.
At steady-state cell growth, all individual fluxes are matched and the overall rate of ribosomes
completing the full translation cycle is proportional to cell growth. By solving for the maximum
flux under proteome allocation constraints, we obtained analytical solutions for the optimal factor
concentrations, which agree well with the observed values. The ratios of optimal concentrations
depend only on simple biophysical parameters that are broadly conserved across species. For
instance, elongation factor EF-G is predicted to be more abundant than initiation and termination
tIFs by a multiplicative factor of ~ y/average number of codons per protein ~ 14, whereas EF-Tu is
predicted to be more abundant than EF-G by a factor of ~ v/number of different amino acids = 4.
These results, arising from the optimization procedure and generic properties of the translation
cycle, provide rationales for the order-of-magnitude expression of these important enzymes.

Results

Problem statement and model formulation

Our overall goal is to determine the growth-optimizing proteome allocation for the core translation
factors. Conceptually, varying tIF concentrations has two opposing effects on cell proliferation. At
the biochemical level, high tIF expression can facilitate growth by allowing more efficient usage of
ribosomes. At the systems level, increased tIF expression can nonetheless limit growth by reducing
the number of ribosomes and other proteins that can be produced. The tradeoffs between various
tIFs and ribosomes create a multidimensional optimization problem.

We solve this multidimensional problem by treating translation as a dynamical system, in which
ribosomes cycle through initiation, elongation, and termination. The resulting flux drives cell
growth. During steady-state growth, every interlocked step of the translation cycle must have the
same ribosome flux that is specified by the growth rate. We show that at the growth optimum,
concentrations for distinct tIFs can be solved independently. The resulting analytical solutions can
be expressed in terms of the growth rate and simple biophysical parameters.
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Table 1. Brief description of the function of core translation factors considered. For reviews of mRNA
translation, see (Rodnina, 2018; Chen et al., 2016).

Step | Factor | Function
Initiation IF1 Initiation factor 1: binds to 30S ribosome subunits to facilitate initiator tRNA
binding (Laursen and Serensen, 2005; Gualerzi and Pon, 2015).
Initiation IF2 Initiation factor 2: ribosome-dependent GTPase interacting with 30 ribosome

subunits, ensures correct binding of initiator tRNAs (Laursen and Serensen,
2005; Gualerzi and Pon, 2015).

Initiation IF3 Initiation factor 3: prevents premature docking of 50S ribosomal subunits
(Laursen and Serensen, 2005; Gualerzi and Pon, 2015).
Elongation EF-Tu Elongation factor Tu: binds to charged tRNAs to form ternary complexes, brings

charged tRNAs to empty ribosome A sites. (Weijland et al., 1992; Agirrezabala
and Frank, 2009; Andersen et al., 2003)

Elongation aaRs tRNA synthetases: charge tRNAs with cognate amino acids (/bba and Dieter,
2000; Pang et al., 2014).

Elongation EF-G Elongation factor G: catalyzes translocation steps of the ribosome after peptide
bond formation (Andersen et al., 2003; Agirrezabala and Frank, 2009).

Elongation EF-Ts Elongation factor Ts: nucleotide exchange factor for EF-Tu (Agirrezabala and

Frank, 2009; Andersen et al., 2003).

Termination | RF1/RF2 | Peptide chain release factors 1 and 2: recognize stop codon and hydrolyze
the completed protein. RF1 recognizes UAA, UAG, and RF2 UAA, UGA (Bertram
et al., 2007).

Termination RF4 Ribosome recycling factor: catalyzes the dissociation of ribosome subunits
following peptide chain release in translation termination (Bertram et al.,
2007).

Cell growth driven by tIF-dependent ribosome flux

To describe the biochemical effects of tIF concentrations on cell growth, we first introduce a
coarse-grained translation cycle time t,, or the time it takes for a ribosome to complete a typical
cycle of protein synthesis (Figure 1A), which consists of three sequential steps: initiation ("ini"),
elongation ("e!"), and termination ("rer"). Each of these steps is catalyzed by multiple tIFs. The full
translation cycle time is then sum of ribosome transit times at the three steps (t, = t,,; + T + Trer)r
whose dependence on individual tIF concentrations can be quantitatively described through mass
action kinetic schemes (schematically depicted in Figure 1A, see Appendices 2, 3, and 4 for details
and examples below). We express tIF concentrations in units of proteome fractions (dry mass
fraction of a specified protein to the full proteome), denoted by ¢ (Scott et al., 2010) (Materials and
Methods, section Conversion between concentration and proteome fraction). Using this notation,
the translation cycle time v, is a decreasing function of various tIFs concentrations ({¢, ., }).

In addition to its dependency on tIF concentrations, the translation cycle time provides a bridge
between the cell growth rate and ribosome concentration. In steady-state growth (Monod, 1949;
Scott et al., 2010; Dai et al., 2016), the growth rate of cells and of their protein content (total
number of proteins) must be identical, denoted here as 4, as a result of the constant average
cellular composition. The protein content grows at a rate determined by the flux of active ribosomes
completing the translation cycle, that is N%' /T, where N2 is the number of active ribosomes

per cell, divided by the total number of prrg;eins N, per cell: 4 = N%' /1,N,. Active ribosomes
are defined as those functionally engaged in, and cycling through, the initiation, elongation, and
termination reactions of peptide synthesis. Rescaling to the total mass fraction (Materials and
Methods, section Conversion between concentration and proteome fraction) of proteome for active
ribosomes (¢ ) yields

ribo
a.ct f
A= ribo Q’ (1)
Ttl fribn
where ¢, is the number of amino acids in ribosomal proteins and (#) is the average number of

codons per protein, weighted by expression levels (Materials and Methods, section Average number
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Figure 1. The hierarchy of mRNA translation factor expression stoichiometry. (A) Multiscale model relating
translation factor expression to growth rate. The growth rate 1 is directly proportional to the active ribosome
content (¢} ) in the cell and inversely proportional to the average time to complete the translation cycle t,,
consisting of the sum of the initiation (t;,;), elongation (t,;), and termination (t,,,) times. Each of these reaction
times are determined by the translation factor abundances. On average, the elongation step is repeated around
(¢) ~ 200x to complete a full protein, compared to 1x for initiation and termination. Our framework of flux
optimization under proteome allocation constraint addresses what ribosome and translation factor
abundances maximize growth rate. (B) Measured expression hierarchy of bacterial mRNA translation factors,
conserved across evolution. Horizontal bars mark the proteome synthesis fractions as measured by ribosome
profiling (Lalanne et al., 2018) (equal to the proteome fraction by weight for a stable proteome) for key mRNA
translation factors in B. subtilis (Bsub), E. coli (Ecol), and V. natriegens (Vnat) and are color-coded according to the
protein (or group of proteins) specified. Triangles (<) on the right indicate the mean synthesis fraction of the
protein in the three species. See Table 1 for a short description of the translation factors considered.

Figure 1-source data 1. Synthesis fractions in (B) can be found in Supplementary File 1.

of codons per protein: (#)). The rescaling factor (¢,,,/(Z) ~ 7300/200 = 36.5) is approximately
constant across growth conditions (Matrials and Methods, section Average number of codons per
protein: (#)). This equation establishes how tIF concentrations affect the growth rate biochemically

via T,,.
We note that equation 1 is a generalized form of the bacterial growth law that relates the
mass fraction of elongating ribosomes to growth rate (1 = T”b" fm =y¢?, , wWhere y is a rescaled
el ribo

translation elongation rate and ¢?, is the proteome fraction of actively translating ribosomes (Scott
et al., 2010; Dai et al., 2016; Scott et al., 2014)). This classic growth law was derived by considering
the steady-state flux of peptide bond formation by elongating ribosomes, whereas our model
focuses on the flux of ribosomes that traverse the entire translation cycle, thereby allowing us to
consider the effects of translation factors and ribosomes engaged in additional steps (initiation,
elongation, and termination). For each step, equation 1 can be extended to show that the growth
rate is similarly proportional to the mass fraction of the corresponding ribosomes divided by the
transit time at that step (Materials and Methods, section Equality of ribosome flux in steady-state).

Steady-state growth thus imposes the requirement that the growth rate be inversely proportional
to the translation cycle time and proportional to the number of active ribosomes engaged in
the translation cycle (equation 1). Inactive ribosomes, comprised of assembly intermediates,
hibernating ribosomes, or otherwise non-functional ribosomes, have been found to constitute
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a small fraction (~5%) of the total ribosome pool for fast growth (Lindahl, 1975; Dai et al., 2016).
Based on equation 1, both increasing ribosome concentration and increasing tIF concentrations
(which decreases 1) can accelerate growth. However, production of ribosomes and tIFs is subject
to competition under a limited proteomic space, which we consider next.

Optimization under proteome allocation constraint

To model the production cost tradeoff between tIFs and ribosomes, we integrate the flux-based
formulation above with a proteomic constraint. Assuming that components of the translation
machinery together accounts for a fixed fraction of proteome, i.e., the ‘translation sector’ ¢,
(denoted ¢, in the context of growth laws (Scott et al., 2010)), the proteome fraction for active
ribosomes is related to the proteome fraction for translation factors via

. .
= by = B = Y b (2)
i

Equations 1 and 2, together with to the kinetic schemes for each step of the translation cycle,
constitute the core of our model. Combining the biochemical effects (equation 1) and the systems-
level constraints (equation 2) on tlFs, we arrive at a self-contained relationship between growth and
tIF concentrations: )

_ ¢t[ - ’,}:Z,ft - Zi ¢tIF,i ﬂ

Tzz({¢r1F,i}) v

where we explicitly express t,, as a function of ¢, ; to reflect the dependence of ribosome transit

times on translation factor abundances. The above relationship (equation 3) allows us to ask: what

is the stoichiometry of tIFs, or partitioning of the translation sector, that maximizes the growth rate
(Figure 1A)?

The condition for the optimal TF abundances, i.e., the set of ¢, -, that satisfies (a/l/aqs,,ﬁ,.)* =0,
can be obtained by considering the ¢, ,; as independent variables and taking the derivative of
equation 3 with respect to a specified tIF abundance. Under the assumptions that the translation
sector (¢,,) and the proteome fraction for inactive ribosomes (¢ are both fixed in a given external
nutrient condition, this yields

<ﬂ>*=_<”p>l (4)
a¢tlF,i fribo A* ’

where the asterisk refers to the growth optimum within our model, i.e., (M/dd;,,m)* = 0. Hence, un-
der this framework, the tIF abundances are growth-optimized when the sensitivity of the translation
cycle time to changing the considered tIF abundance (9T, /d¢,, ;) reaches a value determined solely
by the growth rate and protein size factors. We emphasize that the derivative above corresponds to
a perturbation scenario in which the tIF abundance is changed while maintaining fixed the total
proteomic resources to the translation sector, as prescribed by our optimization procedure. As
such, it does not correspond an actual perturbation easily realizable experimentally.

Although equation 3 and the resulting optimization conditions (equation 4, one for every tIF)
corresponds to a coupled nonlinear system of multiple ¢,,,.,, substantial decoupling occurs at the
optimal growth rate. In this situation, most ¢,,-; are only connected through the resulting growth
rate. The optimization problem is then further simplified by the fact that the translation cycle
consists of sequential and largely independent steps. The translation cycle time T, corresponds to
the sum of the coarse-grained initiation, elongation, and termination times, i.e., T, = 7, + T, + T
Given that each tIF is involved in a specific molecular step, the sensitivity matrix of these times
to tIF concentration is sparse: (aﬂrj/aq’),,p’l.)* = 0 for most combinations of t; and ¢,x,. This lack
of ‘cross-reactivity’ expresses that, for example, the initiation time t,,, is unaffected by the tRNA
synthetase concentration. This sparsity only occurs at the optimal expression levels, as the transit
times typically depend on the growth rate (see an example in section Non binding-limited regime
(one stop codon)) and d4/d¢,, ., # 0 away from the optimum. The optimum condition for factor i
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then simplifies to:

WY ) 1
-1 5
(a¢rlF,i > l’ﬂriba A ( )

where j above denotes the translation step(s) that tIF; participates in. This leads to simplifications
that allow the system to be solved analytically in most cases: instead of solving the full system at
once, individual reactions within the translation cycle can be considered in isolation. The resulting
optimal concentrations are connected via the growth rate A*. Interestingly, the optimal stoichiometry
among most tIFs is independent of A* if the reactions are in the binding-limited regime, as we show
below.

Case study: Translation termination

We firstillustrate the process of solving for the optimal tIF concentration for the relatively simple case
of translation termination. The principles used here and the form of solutions provide conceptual
guideposts for solving other steps of the translation cycle.

In bacteria, translation termination (Bertram et al., 2007) consists of two distinct, sequential
steps: (1) stop codon recognition and peptidyl-tRNA hydrolysis catalyzed by class | peptide chain
release factors RF1 and RF2, followed by (2) dissociation of ribosomal subunits from the mRNA, i.e.,
ribosome recycling, catalyzed by RF4. We do not explicitly consider the additional factors (e.g., RF3
and EF-G) due to their lack of conservation or because they are non-limiting for this specific step
(Appendix 2, section Omitted molecular details). RF1 and RF2 have the same molecular functions
but recognize different stop codons (Scolnick et al., 1968): RF1 recognizes stops UAA and UAG,
whereas RF2 recognizes UAA and UGA. For simplicity, we describe here a scenario where RF1 and
RF2 have no specificity towards the three stop codons, which allows us to combine them in a single
factor (denoted RFI). The model is readily generalized, with similar results, to the case of the two
RFs with their specificity towards the three stop codons (Appendix 2, section Full three stop codons
model).

Under a coarse-grained description, the total ribosome transit time at termination t,,, can be
decomposed into a sum of peptide release time and ribosome recycling time. In the treatment
below, we consider a regime of binding-limited reactions for simplicity (rapid catalytic rate). A
full model with catalytic components can also be solved analytically (Appendix 2, section Non
binding-limited regime (one stop codon), Figure 2A). In the binding-limited regime (k,,, — ), the
peptide release time and ribosome recycling time are inversely proportional to the corresponding
tIF concentrations:

1 1

R Gy K Gy
where the association rate constants &’ are rescaled by the factor’s sizes in proteome fraction units
(Materials and Methods, section Conversion between concentration and proteome fraction). The
above expression constitutes the solution of the mass action scheme for termination, connecting
factor abundances to termination time.

The termination time (equation 6) can then be directly substituted into the optimality condition
(equation 5) and solved in terms of 1*:

* friboj’* 5 ribaj'*
Grpr = (£)KRFI” Drps = V (£)kRF+" )

If the reactions are not binding-limited, an additional catalytic term « A*/k,, is added to the
minimally required levels above (Appendix 2, section Non binding-limited regime (one stop codon)).
The square-root dependence in the optimal RF concentrations emerges from the ¢! dependence
of 1, e.g., for ribosome recycling t,,.,. x ¢,, which becomes (¢;)~* upon taking the derivative
in the optimality condition (equation 5). The square root is then obtained by solving for ¢*. A
similar square-root dependence has been noted in optimization of the ternary complex and tRNA

(6)

T
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Figure 2. Case study with translation termination (A) Coarse-grained translation termination scheme. (B)
lllustration of the minimization of effective proteome fraction corresponding to peptide chain release factors,
leading to the equipartition principle.

abundances (Ehrenberg and Kurland, 1984; Berg and Kurland, 1997). Analysis of tIF expression
across slower growth conditions supports the derived square root dependence (Figure 4-Figure
supplement 2). As a result of the square-root, the optimal RF concentrations are weakly affected
by biophysical properties such as the association rate constants and protein sizes. In the binding-
limited regime above, the ratio of the optimal concentrations between RFl and RF4 is independent
of the growth rate and only depends on the kinetics of binding.

As a side note, the expression for termination time t,,, in equation 6 must be modified in a
regime where ribosomes are frequently queued upstream of stop codons. This would occur if
the termination rate were slow and approached initiation rates on mRNAs (Bergmann and Lodish,
1979; Lalanne et al., 2021). In this regime, queues of ribosomes at stop codons would incur an
additional time to terminate. In a general description, the resulting additional termination time can
be absorbed in a queuing factor Q: v/ := 1, O(t,,,) (Appendix 1 for derivation and discussion).
The resulting nonlinearity would forbid the decoupling in the optimization procedure between RFI
and RF4. Although absolute rates of termination are difficult to measure in vivo, translation on
MRNAs is generally thought to be limited at the initiation step (Laursen and Serensen, 2005), and
consistently, ribosome queuing at stop codons in bacteria is not usually observed (except under
severe perturbations, e.g., (Kavcic et al., 2020; Baggett et al., 2017; Mangano et al., 2020; Saito
et al., 2020; Lalanne et al., 2021)). In the physiological regime of fast termination, the queuing factor
converges to 1, yielding simple solutions that depend only on biophysical parameters (equations 7).

Equipartition between tIF and corresponding ribosomes
The optimal tIF concentrations (e.g., equation 7) can also be intuitively derived from another
viewpoint. For each reaction in the translation cycle, we can define an effective proteome fraction
allocated to that process, combining the proteome fractions of the corresponding tIF and the
ribosomes waiting at that specific step. As an example, for the case of peptide chain release factor
(RFI) just treated, the effective proteome fraction includes the release factors and ribosomes with
completed peptides waiting at stop codons (dashed box in Figure 2A), i.e., ¢;f£, i= Grpr + @)y This
effective proteome fraction corresponds to the total proteomic space associated to a tIF in the
context of the translation cycle.

During steady-state growth, the concentration of ribosomes waiting at any specific step of the
translation cycle is equal to the total active ribosome concentration multiplied by the ratio of the

transit time of that step to the full cycle: e.g., here ¢ = T;—:Pzpffga, where T, = 1/(kRF ¢ ;) is the
time to arrival of RFI. Using equation 1 for ¢ , the effective proteome fraction satisfies:
eff . stop 1 A fribo
= Grpr + by, = Prer + T
RFI RFI bo RFI Drrr kanl (&)
(8)
>2 A friba
TV KREL ()

In the last line, we used the inequality of arithmetic and geometric means (a + b > 24/ab) to obtain
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the minimum of the effective proteome fraction. The equality holds when the two proteome
fractions are equal (¢, = ¢, which provides the solution for optimal ¢z,

ribo

A%
* _ ribo
RFI — (£)kRFI ’ )

Hence, we recover equation 7 by minimizing the effective proteome fraction allocated to a given
process in the translation cycle (the above argument applies to the optimal free concentration
in the non-binding limited regime, see Appendix 2, section Non binding-limited regime (one stop
codon) for an example). From this perspective, optimization of the translation apparatus balances
the production cost of the enzyme of interest with the improved efficiency of a having less ribo-
somes idle at that step, Figure 2B. The optimal abundance in our model corresponds to a point
of equipartition: the proteome fraction of free cognate factors equals the proteome fraction of
ribosomes waiting at the corresponding step (Figure 2B).

Case study: Ternary complex and tRNA cycle (EF-Tu and aaRS)

We next consider a more complex step of the translation cycle - elongation - and demonstrate
that the optimality criterion (equation 5) can similarly provide simple analytical solutions in the
physiologically relevant regime. Translation elongation involves multiple interlocked cycles (one
for each chemical species) and enzymes (EF-Tu, EF-G, EF-Ts, aminoacyl-tRNA synthetases (aaRS),
and more). Our simplified kinetic scheme for translation elongation is shown in Figure 3A: charged
tRNAs are brought to ribosomes through a ternary complex (TC), corresponding to a bound tRNA
and EF-Tu. Following tRNA delivery and GTP hydrolysis, EF-Tu is released from the ribosome, and
nucleotide exchange factor EF-Ts recycles EF-Tu back into the active pool, after which EF-Tu can
bind a charged tRNA again and form another TC. At the ribosome, translocation to the next codon
is catalyzed by EF-G, followed by release of uncharged tRNAs. Aminoacyl-tRNA synthetases then
charge tRNAs to complete the elongation cycle.

To reduce the complexity due to different tRNA isoacceptors and aaRSs, we self-consistently
coarse-grained the translation elongation cycle to have a single codon (derived in Appendix 3,
section Coarse-grained one-codon model). The resulting model harbors a single effective species for
tRNA, aaRSs, and TCs, respectively. A rescaling factor (1/n,, ~ 1/20, estimated in section Estimation
of coarse-grained rates) arises in the procedure to decrease the rates of codon specific reactions
and can be attached to either the respective rate constants or chemical species concentrations.
In our formulation, we choose to rescale the association rate constants such that the coarse-
grained abundance for each effective species corresponds to the sum over all individual codon-
specific components. For example, ¢,z in Our coarse-grained model corresponds to the summed
proteome fraction of all aaRSs in the cell, and its association rate constant with the total tRNAs is
rescaled by a factor of 1/n,,.

As a result of this choice of rescaling within our coarse-grained model, there are two classes
of reactions in the elongation cycle that are distinguished by different kinetics: those that were
codon specific (scaled by 1/n,,) and those that are not. Codon-specific reactions, e.g., aaRS binding
to cognate tRNAs and TC binding to cognate codons, are coarse-grained into one-codon reactions
with reduced association rate constants (marked by # in Figure 3A). By contrast, codon-agnostic
reactions do not incur such a rescaling and are thus much faster. We refer to this as a separation of
timescale between the two classes of reactions (codon-specific vs. codon-agnostic), and note that
this is not a reflection of slower underlying microscopic bimolecular reaction rates, but rather a
result of our choice of variable in the coarse-graining.

Similar to translation termination, the factor-dependent ribosome transit time through a single
codon (t,,) is comprised of two steps, corresponding to binding of the TC and EF-G, respectively
(formal derivation and non binding-limited regime in Appendix 3, section Coarse-grained translation
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The coarse-grained factor-dependent portion of the total translation elongation time in our model
is then given by the single codon time above multiplied by the average number of codons per
protein, i.e., (£)t,,. As discussed above, the rescaling of the TC association rate constant by !
arises as a result of our coarse-graining to a one-codon model (Appendix 3, section Coarse-grained
one-codon model). Note that the ternary complex concentration, ¢, is a nonlinear function of the
concentrations of all elongation factors (including ¢;).

Despite the complexity of t,, as a function of the ¢,,,, the fact that all fluxes are equal in
steady-state allows several steps to be isolated and solved separately (EF-Ts and EF-G, greyed out in
Figure 3A, respectively solved in Appendix 3, sections Optimal EF-Ts abundance and Optimal EF-G
abundance). For example, the approximate binding-limited solution for optimal EF-G concentration
parallels that for termination factors:

b ~ k”—G (11)
Importantly, the optimum for EF-G is larger than the optimum for RFs by a factor /(#), reflecting
that the typical translation cycle to produce a protein requires (¢ steps catalyzed by EF-G and only
one step for RFs (i.e, (¢)t,, enters the optimality condition, equation 5, in contrast to t,,, which is
not multiplied by a scaling factor). The square root dependence arises here for the same reason as
in the case of translation termination (derivative of ¢~!).

In contrast to EF-G and EF-Ts, EF-Tu and aaRS cannot a priori be treated in isolation because
the TC is composed of both EF-Tu and charged tRNAs. Still, the separation of timescales within our
coarse-grained model (see Appendix 3, section Interpretation of the sharp separation between aaRS
and EF-Tu limited regimes) simplifies the solution considerably. Indeed, rapid binding of charged
tRNAs to EF-Tu leads to either component being limiting for ternary complex concentration in most
of the aaRS/EF-Tu expression space, leading to two clearly delineated regimes (Figure 3B). In one
regime, charged tRNAs are limiting (low aaRS), whereas EF-Tu is limiting in the other (low EF-Tu).
These regimes are separated by a narrow transition region, whose sharpness is a reflection of the
smallness of the rate rescaling parameter n_! (see Appendix 3, section Interpretation of the sharp
separation between aaRS and EF-Tu limited regimes). We term the focal region separating the
two regimes in the aaRS/EF-Tu expression space the "transition line" (see Box 1 for derivation and
additional details).

The transition line corresponds to conditions in which EF-Tu and aaRS are co-limiting for TC
concentration. In the EF-Tu limited region, increasing aaRS abundance does not increase ternary
complex concentration: since all EF-Tu proteins are already bound to charged tRNAs, increasing
tRNA charging cannot further increase TC concentration. Conversely, in the aatRNA limited region,
increasing EF-Tu abundance does not increase TC concentration: since all charged tRNAs are
already bound by EF-Tu, increasing EF-Tu concentration does not alleviate the requirement for
more charged tRNAs. Given that the optimality condition requires non-zero increase in ternary
complex concentration with increasing factor abundance (equation 5 using t,, from equation 10),
the optimal EF-Tu and aaRS abundances must be on the transition line.

Which point on the transition line corresponds to the optimum? Note that inside the EF-Tu
limited region, the ternary complex concentration is entirely set by the total EF-Tu concentration:
drc ® ¢p, (since most EF-Tu proteins are bound by charged tRNAs, Figure 3-Figure supplement 1). As
an approximation resulting from the narrow range of transition region (Figure 3 and Figure 3-Figure
supplement 1), we assume that the EF-Tu limited regime solution ¢, ~ ¢, holds up to very close to
the transition line. Replacing ¢, by ¢, in the elongation time equation 10 and substituting in the
optimality condition (equation 5), the approximate optimal abundance for EF-Tu (the full solution
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Figure 3. Case study with elongation factors (EF-Tu/aaRS) (A) Schematic of the translation elongation scheme,
with the tRNA cycle, involving aminoacyl-tRNA synthetases (aaRS) and EF-Tu. Reactions with a # have their
association rate constants rescaled by a factor of n;! ~ 1/20 through our coarse-graining to a single codon
model. Greyed out cycles (EF-Ts and EF-G) can be solved in isolation (Appendix 3, sections Optimal EF-Ts
abundance and Optimal EF-G abundance). (B) Exploration of the aaRS/EF-Tu expression space from numerical
solution of the elongation model (Appendix 3, section Optimal EF-Tu and aaRS abundances). The transition line
(orange) marks the boundary between the EF-Tu limited and aaRS limited regimes. Left panel shows the ternary
complex concentration (which is closely related to the elongation rate, equation 10). The ternary complex
concentration is scaled by the dissociation constant Ky to the ribosome A site (see equation 39). Middle panel
shows the free charged tRNA fraction. Right panel shows the free EF-Tu fraction (¢, err denotes the proteome
fraction of EF-Tu GTP that can bind to charged tRNAs to form the ternary complex). The star marks the optimal
solution, as described in the text.

Figure 3-Figure supplement 1. Geometrical interpretation of the sharpness of the separation of the aaRS
limited and EF-Tu limited regimes.

Figure 3-source code 1. Source code to obtain panel (B) can be found in the associated scripts submitted with

this work.

includes additional terms from the EF-Ts cycle, section Optimal EF-Tu and aaRS abundances) can
then be obtained in the same way as for translation termination factors:

b —f”f’;zfg“’l . (12)

Importantly, compared to the solution for EF-G, the above is multiplied by an additional factor
of /n,,. This contribution arises from the rescaling of the association rate for the ternary complex
to the ribosome in our coarse-grained one-codon model, increasing the requirement on EF-Tu
abundance.

From the necessity for the combined EF-Tu and aaRS solution to fall on the transition line, the
approximate solution for the optimal aminoacyl-tRNA synthetase abundance is then the intersection
(yellow star in Figure 3B) of the transition line with the EF-Tu-only solution described above (dashed
blue line in Figure 3B, derivation of solution in Box 1).

For the above derivation to be valid, the total number of tRNAs in the cell must be sufficient to
accommodate all ribosomes (about 2 per ribosome, A- and P-sites) and binding to all EF-Tu (about
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> 4 per ribosome based on endogenous expression stoichiometry (Li et al., 20714; Lalanne et al.,
2018)). The number of tRNAs per ribosomes in the cell should thus be at least 6x. Remarkably,
estimates of this ratio in the cell suggest that this is barely the case (between 6-7 tRNAs/ribosome at
fast growth (Dong et al., 1996)). Although our model treats the total tRNA abundance as a measured
parameter and omits its selective pressure (see (Hu et al., 2020) which includes RNA mass in their
optimization procedure), the abundance of three core components of the tRNA cycle appear to
be at the special point where the transition line plateau, that is set by total tRNA abundance, just
crosses the EF-Tu-only optimum (blue line in Figure 3B). At this point, all three components are
co-limiting.

Optimal stoichiometry of mRNA translation factors

Analogous to the case studies above, optimal concentrations for all core translation factors can be
solved using the optimality condition (equation 5) and their respective kinetics schemes (the case
of translation initiation is solved in Appendix 4). The analytical forms of the optimal solutions are
shown in Table 2. In the binding-limited regime, the ratios of growth-optimized tIF concentrations
are independent of the growth rate (except for aaRS), and are dependent only on basic biophysical
parameters, such as protein sizes and diffusion constants.

To obtain the numerical values of association rates needed for calculate the optimal tIF sto-
ichiometry (Table 2), we rely on a biophysically motivated scaling of the measured association
between TC and ribosomes in vivo, I?ff = 6.4 uM~'s™! (Dai et al., 2016) (k denotes the raw associa-
tion rate constant in units uM-'s~!, which is different from the rescaled k, see section Conversion
between concentration and proteome fraction). To our knowledge this is the only measurement
of a tIF's association constant in a physiological context. We estimate the association rates for
reactions involving other tIFs by scaling k¢ by the respective diffusion coefficients of the chemical
species, that is for reaction involving species A and B: kA2 /kC = (D, + D)/(Dy¢ + D,y;,), Where D,
is the diffusion constant for the molecular species i (see Appendix 5 Table 2). Diffusion constants
for several tIFs have been measured experimentally (Bakshi et al., 2012; Sanamrad et al., 2014;
Plochowietz et al., 2017; Volkov et al., 2018), and uncharacterized ones can be estimated using the
cubic-root scaling with number of codons per protein from the Stokes-Einstein relation (Nenninger
et al., 2010) (see Appendix 5 Table 1). This approach to arrive at plausible numerical estimates
of k,,'s assumes in particular that reactive radii and orientational constraints are similar for the
different reactions (see Discussion for additional assumptions). These are strong assumptions
which are necessary given the lack of in vivo biochemical parameter measurements, and can be
relaxed as refined empirical measurements for more physiological association rates become avail-
able. Nonetheless, we note that the square-root dependence on these parameters (Table 2) for
our predictions makes the numerical values less sensitive to possible tIF-specific effects. For our
estimates in fast growth, we take the growth rate i* to be the average of the fast-growing species
considered, corresponding to a doubling time of 21 + 1 min (E. coli: 21.5 + 1 min, B. subtilis: 21 + 1
min, V. natriegens: 19 = 1 min).

The estimated optimal tIF concentrations show concordance with the observed ones, both
in terms of the absolute levels and the stoichiometry among tIFs (Figure 4 for fast growth, see
Supplementary File 1 for data and Figure 4-Figure supplement 1 for additional growth conditions).
A hierarchy of expression levels emerges such that the factors involved in elongation are more
abundant compared to initiation and termination factors. The separation of these two classes
is driven by the scaling factor 1/(#) ~ 14 in our analytical solutions, which reflects the fact that
the flux for elongation factors is (#) ~ 200 times higher than that for initiation and termination
factors. Within each class, the finer hierarchy of expression levels can also be further explained by
simple parameters. For example, EF-Tu is predicted to be more abundant than EF-G by a factor of
Vnwlral € ~ 3.3 (Observed ¢, /dg: E. coli 3.9, B. subtilis 2.7, V. natriegens 3.3). A higher abundance
is required for EF-Tu because it is bound to the different tRNAs, which effectively decreases the
concentration by a factor of n,, ~ 20 (see section Estimation of coarse-grained rates for derivation
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360 Box 1. The EF-Tu and aaRS transition line

362 Within our framework, optimality of translation factors is dictated by how coarse-grained ribosome transit times depend
363 on factors’ abundances (equation 4). For elongation factors aaRS and EF-Tu, contribution to the ribosome elongation time
364 (t,, = (¢)T,,) is through the concentration of the ternary complex (equation 10). Obtaining the optimal EF-Tu and aaRS
365 abundance therefore requires solving for the ternary complex concentration as a function of these two variables.

The steady-state solution for the ternary complex concentration in the aaRS/EF-Tu expression displays two sharply
separated regime (Figure 3B), separated by a narrow transition region (the ‘transition line’). As described in the main text,
the transition line plays a critical role for identifying the optimal EF-Tu and aaRS abundances within our model. Away from
the line, there is an unproductive excess of either factors, viz. either d¢/d¢r, ~ 0 Or ddrc/0P..rs ~ 0. Here, we derive
the equation for the transition line. First, we leverage the constraint imposed by the conservation of tRNAs, which in our

366
367
368
369
370

- model is:

372 tRNA,,; = [Ry] + 2[Ry¢] + 2[R, gy 4] + 2[R;] +[tRNA] + [tRNA:aaRS] + [aatRNA] + [TC].

373

o « 4/KIMax

375 Above, tRNA, ; corresponds to the total tRNA concentration in the cell. In addition: R,: elongating ribosomes with empty
376 A-site, Ry¢: ribosomes with bound TC, R,z 4: ribosomes with filled A-site and no bound factor, R;: ribosomes with bound
377 EF-G, tRNA: free uncharged tRNAs, tRNA:aaRS: tRNA and aaRS complex, aatRNA: free charged tRNAs, and TC: ternary
378 complex. Here, we assume that the elongating ribosomes always have a tRNA in the P-site, and a negligible occupancy in
379 the E-site.

Using the system of equations from the mass action scheme at steady-state (section Translation elongation: optimal
solutions), variables in the tRNA conservation equation above can be solved for in terms of the total abundance of

380 EF-Tu and aaRS, the growth rate, and the steady-state ternary complex concentration. We note that the three ribosome
381 species with a filled A site (R;¢, R,zy4, @nd R;) do not depend on EF-Tu concentration, and can be coarse-grained to
382 a term proportional to 4/k”®, where k" is the maximal translation elongation rate (not including the TC diffusion
383 contribution) (Dai et al., 2016). In the binding-limited regime, converting to proteome fraction units, and leaving out the
384 EF-Ts contribution without loss of generality (see section Optimal EF-Tu and aaRS abundances for a full treatment), we
385 have:

386

388 nl:l,, drc el LI:’T‘baaRS on T Tu “

389 ———— S ——

390 Ry free uncharged tRNA  free aatRNA

391 Above, y,ry 4 is @ normalized tRNA concentration (see equation 28). We have explicitly highlighted that the growth rate
392 is dependent on EF-Tu and aaRS only through the ternary complex concentration ¢.. From the definition of of the
393 elongation time (equation 10), we have A(¢r¢) x ¢drc/(Kpe + dpe) (Klumpp et al., 2013; Dai et al., 2016) (definition of
394 K¢ in terms of model parameters: supplement, equation 39). Equation 13 is closed and can be solved for ¢ at given
395 abundances of EF-Tu (¢,) and aaRS (¢,.rs)-

396 Although equation 13 is non-linear and cannot be solved exactly in general, the separation of timescales in our coarse-
397 grained description simplifies the problem considerably. Indeed, numerical solutions of equation 13 (Figure 3B, sec-
398 tion Optimal EF-Tu and aaRS abundances) show that the behavior of TC concentration in the two-dimensional EF-Tu/aaRS
399 expression space is split into two distinct regimes, sharply delineated by a transition line (orange line in Figure 3B, a geo-
400 metric heuristic explaining the sharp separation between the regimes is presented in Appendix 3, section Interpretation
401 of the sharp separation between aaRS and EF-Tu limited regimes, Figure 3-Figure supplement 1). Since TC concentration
402 only increases as a function of both aaRS and EF-Tu on the transition line, the optimal solutions for the two factors must
403 fall on it.

404 An expression for the transition line can be derived. Conceptually, the region of transition between the two regimes
405 has both a low concentration of free EF-Tu molecules (¢, 6rr /¢r, ~ 0) and a low concentration of free charged tRNAs
406 ([aatRNAs]/tRNA,,, ~ 0). Although no values in the aaRS/EF-Tu expression plane can formally satisfy these two conditions
407 simultaneously, the transition line is specified by setting the free charged tRNA term to 0 and replacing ¢ ¢ by ¢, (no
408 free EF-Tu) in equation 13. We denote by (¢, d..rs) POINts satisfying the resulting requirement, namely (see equation 40
409 for non binding-limited case):

o L M Dr) e 22(bra) by, A Naa? (Pr)

411 2 — el U S o ) = —————

o Transition line: v, gy 4 KT s 70 Ay a(Pr) Py — (14)
413 where we have defined the excess tRNA (A, gy 4) above. In words, A,y 4 corresponds to the available tRNAs after the tRNAs
414 sequestered on ribosomes and EF-Tu in the TC are subtracted from the total tRNA budget. At large aaRS concentrations,
415 the transition line plateaus as a result of the finite total tRNA budget within the cell (Figure 3B, middle panel). The plateau
418 is reached once all tRNAs aaRS are charged: the system is then no longer limited by aaRSs, but by the amount of tRNAs.
19 Using the requirement that the optimum must fall on the transition line and the approximate solution for the EF-Tu

optimum, the approximate optimal solution for aaRS is, from equation 14 (section Optimal EF-Tu and aaRS abundances

420 for non binding-limited solution):

421 3 *
Maah” Noad* 24" Tu
Brps X e, Where: Afpy = Wirna — e — o — (15)
422 1 kzﬁksAtRNA v e k;rnc¢ru kg™ Cra
423 Within our model, the optimal aaRS concentration is thus set by the excess tRNAs at the EF-Tu optimum (A7, \ ,)-
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and discussion of why the factor is not equal to the number of different tRNAs). Taken together,
our model offers straightforward explanations for the observed tIF stoichiometry.
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Figure 4. Predicted optimal abundance (no catalytic contribution, k., — o) versus observed abundance.
Measured proteome fractions are the average of E. coli, B. subtilis, V. natriegens (Lalanne et al., 2018). We note
that given the sensitivity of the optimal aaRS abundance on the total tRNA/ribosome ratio (visually: yellow star’s
position in Figure 3B moves rapidly along x-axis upon changes in plateau of transition line), the prediction for
aaRs should be interpreted with caution.

Figure 4-Figure supplement 1. Measured and predicted proteome fraction for core translation factors in
individual conditions.

Figure 4-Figure supplement 2. Expression stoichiometry of core translation factors in different species and at
different growth rates.

Figure 4-source data 1. Data and predicted values can be found in Supplementary File 1 and 2.

For a few tIFs, the observed concentrations are 2- to 5-fold higher than the predicted optimal
levels (e.g., EF-Ts, RF4, and IF1 in Fig. 4). A potential explanation is that the corresponding reactions
may not be binding or diffusion-limited, which would lead to a non-negligible fraction of tIFs
sequestered at the catalytic step and thereby require higher total concentrations. Indeed, recent
detailed modeling of the EF-Ts (Hu et al., 2020) cycle estimated only a small fraction (6 to 48%) of its
abundance was in the free form in the cell, consistent with the large deviation we observe for this
factor from our diffusion only prediction. Our optimization model can also be solved analytically
in the non-binding-limited regime (Table 2), with the finite catalytic rate leading to an additional
contribution of the form « #4* /k,,,. However, the numerical values for these solutions are in general
difficult to obtain because the estimates for catalytic rates are sparse and often inconsistent with
estimates of kinetics in live cells. As an example, median estimated aaRS catalytic rates (Jeske
et al., 2019) measured in vitro is = 3 s~!, well below the minimal value of 15 s7!, required to sustain
translation flux at the measured value (Appendix 5), suggesting substantial deviation between in
vitro and in vivo kinetics. While technically demanding, the fraction of free vs. bound factors can in
principle be determined through live cell microscopy of tagged factors by partitioning the diffusive
states of the tagged enzyme. Using that approach, (Volkov et al., 2018) estimated that EF-Tu was
in its bound state <10% of the time (consistent with our diffusion-limited prediction closed to the
observed value for this factor).

Another potential explanation for the observed deviations from our predictions is that the
selective pressure for these tIFs may be lower compared to the more highly expressed tIFs. This
explanation is unlikely both because their stoichiometry are observed to be conserved (Figure 1B,
Figure 4-Figure supplement 2) and given that the expression of other lowly expressed tIFs (e.g.,
RF1, RF2, and individual aaRSs) has been shown to acutely affect cell growth (Lalanne et al., 2021;
Parker et al., 2020). Nevertheless, the deviations from the predicted optimal levels suggest that a
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more refined model may be required than our first-principles derivation.

Discussion

Despite the comprehensive characterization of their molecular mechanisms, the ‘mixology’ for
the protein synthesis machineries inside living cells has remained elusive. Here we establish a
first-principles framework to provide analytical solutions for the growth-optimizing concentrations
of translation factors. We find reasonable agreements between our parameter-free parsimonious
predictions and the observed tIF stoichiometry (Figure 4). These results provide simple rationales
for the hierarchy of expression levels, as well as insights into several construction principles for
biological pathways.

An important implication from the agreement between observed stoichiometries and our
predictions is that most tIFs are co-limiting for growth. Previous models have focused on expression
optimization for the full translation sector, ribosomes (Scott et al., 2010, 2014; Belliveau et al.,
2021), and the abundant elongation factors EF-Tu (Ehrenberg and Kurland, 1984; Klumpp et al.,
2013). In a recent study, Hu and colleagues considered additional RNA components and EF-Ts in
their optimization procedure (Hu et al., 2020). In line with the conclusions of these previous studies,
our results demonstrate that multiple components of the translation machinery, regardless of
their observed expression level, are simultaneously co-limiting for cell growth. By virtue of the
interlocked translation cycles at steady state, the flux through every cycle must be matched. In our
model, the optimality occurs when there are just enough tIFs to support the required flux in every
cycle, such that the proteome fraction of free factors equals that of waiting ribosomes at that step
(equipartition). If the concentration of any one tIF falls below the optimal point, it becomes the
limiting factor for protein synthesis and growth. This result is supported by experimental evidence
that slight knockdowns of individual RFs and aaRSs are detrimental to growth (Parker et al., 2020;
Lalanne et al., 2021). Figuratively, the translation apparatus is analogous to a vulnerable supply
chain, in which slowdown in any of the steps affects the full output.

In the binding-limited regime, the optimal tIF stoichiometry is independent of the specific growth
rate (except for aaRS). This is consistent with the observation that relative tIF expression remains
unchanged in E. coli in conditions with growth rates ranging from 20-min to 2-hr doubling time
(Lalanne et al., 2018; Li et al., 2014) (Figure 4-Figure supplement 2A).

Our results are also consistent with the maintenance of the relative tIF expression across
large phylogenetic distances even though the underlying regulation and cellular physiology has
diverged (Lalanne et al., 2018) (Figure 1B, and additional comparison to slow growing C. crescentus in
Figure 4-Figure supplement 2A). Under the assumption of diffusion-limited association to estimate
parameters, the optimal tIF stoichiometry depends only on simple biophysical parameters, including
protein sizes and diffusion constants, that are likely conserved in distant species. It remains to be
determined if similar biophysical principles apply to the other pathways that also exhibit conserved
enzyme expression stoichiometry.

In principle, our model can also make predictions on the growth defects at suboptimal tIF
concentrations. However, experimentally testing these predictions will be difficult due to secondary
effects of gene regulation that are not considered in our model near optimality. For example, we
have recently shown that small changes in RF levels lead to idiosyncratic induction of the general
stress response in B. subtilis due to a single ultrasensitive stop codon (Lalanne et al., 2021). As
a result, the growth defect not only arises from reduced translation flux, but is in fact dictated
by spurious regulatory connections that are normally not activated when tIF expression is at the
optimum. We propose that tIF expression may be set at the optimal levels as our first-principles
model suggests but entrenched by connections in the regulatory network. To predict the full
expression-to-fitness landscape away from the optimum, a more comprehensive model may be
required to take into account all the molecular interactions in the cell (Karr et al., 2012; Macklin
et al., 2020).
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Our coarse-graining approach has several limitations in its connection to detailed biochemical
parameters. Foremost, coarse-grained association rate constants remain difficult to numerically
estimate, and possibly neglect important features. In particular, given the sparsity of available in
vivo rate constants, we scaled the measured TC association rate (l}(ff) by the respective diffusion
coefficients to estimate k,, for all tIFs reactions. This approach generates more plausible values
than the unrealistic overestimate from Smoluchowski theory (diffusion-limited rate for perfectly
absorbing spheres, see Appendix 5), but however assumes that certain molecular properties of
other modeled reactions are similar. These include the size of the reactive surfaces, orientational
constraints of the bimolecular interaction, and possible non-cognate binding events. We also do
not explicitly consider off-rates in our model. Instead, our parameters correspond to effective rate
constants that account for possible sequential binding and unbinding events, i.e., k,, = k,,/Hy,q With
Pying = Kear/ (koatk, ;7). The effective association rate constants in our model thus contain information
about catalytic and possible proofreading steps, which could be tIF-specific and are challenging
to estimate. All of these effects may contribute to the discrepancy between our predicted and
observed tIF concentrations. As more physiological and molecular data become available, these
tIF-specific features could be used to individually refine our estimate for the association rates
constants and our predictions. For example, elaborate calculations from structural data could
account for rotational constraints (Schlosshauer and Baker, 2004), but are beyond the scope of the
present work. Overall, we expect these tIF-specific corrections to be of limited influence on the final
predictions due to the square-root dependence of the optimal expression (Table 2). We further note
that a number of conclusions from our model, such as the factor of 1/(#) separating the optimal
abundance of elongation from initiation/termination tlFs, are generic and do not depend on the
specific association rates.

Taken together, our model provides the biophysical basis for the stoichiometry of translation
factors in living cells. The first-principles approach complements more comprehensive models that
include many biochemical parameters (Hu et al., 2020; Vieira et al., 2016), while providing intuitive
rationales for the expression hierarchy. We anticipate that our approach will be generalizable to
elucidate or design enzyme stoichiometry of other biological pathways, especially those whose
activities are required for cell growth.

Materials and Methods

Average number of codons per protein: (¢)
We calculate the average number of codons per protein, weighted by expression, as

el

where ¢, is the number of codon for the protein product of gene i, and ¢, is the protein synthesis rate
(as estimated from ribosome profiling (Li et al., 2014; Lalanne et al., 2018)) for gene i. For a stable
proteome (in fast growing bacteria, the cell doubling time is shorter than the active degradation
of most proteins (Larrabee et al., 1980)), the protein synthesis rate equals to the proteome mass
fraction (Li et al., 2014). Changes in the expression of genes across growth conditions do not lead
to substantial changes in (#). In E. coli, across growth conditions spanning ~ 20 min doubling time
to ~ 120 min, (#) changes by about 20%. Specifically, we find (#) =196, 210, and 240 in respectively
MOPS complete (~ 20 min doubling time (Li et al., 2014)), MOPS minimal (~ 56 min doubling time
(Li et al., 2014)), and NQ1390 forced glucose limitation (~ 120 min doubling time (Mori et al., 2021)),
based on ribosome profiling data. Here for simplicity, we take (#) ~ 200 throughout.

(¢) = (16)

Conversion between concentration and proteome fraction

Throughout, we use both units of concentration (molar), denoted as e.g., [A] for protein 4, and
proteome fraction, denoted by ¢, (Scott et al., 2010). The correspondence between the two is
¢, = [Al¢,/ P, where #, is the number of amino acid in protein 4, and P is the in-protein amino
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acid concentration in the cell. P ~ 2.6 x 105 uM, and has a value approximately independent of
growth rate (Klumpp et al., 2013; Bremer and Dennis, 2008). This change in units also relates to
how association constants are defined in units of proteome fraction: k,,[A] := k,,¢ ,, where the hat
* refers to the association constant in usual units of uM~! s~! (used to connect to empirical data).
Hence, k,, :=k,, P~ is the rescaled association rate in units of proteome fraction.

Equality of ribosome flux in steady-state

In steady-state exponential growth, the ribosome flux in and out of each intermediate state is equal
to the total flux. This results from the fact that no ribosome can accumulate in any intermediate
state. Since the flux out of state i is given by ¢’ /1, we must have:

ribo

act ini el ter
Afribo ribo ribo ribo ribo
= Iribo _ Tribo _ Tribo _ Thribo, (17)

<?’p> Tl Tini Tt Trer

As a consequence, the proportion of ribosome in each state is equal to the proportion of time
spent at that given step, for example for translation initiation:

ini

ribo __ Tini
act :
ribo Tim’ + Tel + Tter

Protein production flux and growth rate
In order to write the mass action kinetic scheme for more complex models, it is useful to recast
our framework in terms of the protein number production flux J, defined as the number of full
length proteins produced per cell volume per unit time. The production of each protein requires a
ribosome to go through the full synthesis cycle, and as such J provides a convenient quantity in
mass action schemes formulated in molar units.

In steady-state of exponential growth (Monod, 1949; Scott et al., 2010; Dai et al., 2016), there
is a direct relationship between the growth rate 4 (defined through dN/dr = AN, where N is the
number of cells per unit volume of culture) and the protein production flux J. Explicitly, the protein
mass accumulation rate is AM, where M is the total protein mass per unit volume of culture.
If V is the mean cell volume, then AM/V = Nm,(¢)J, where m,, is the mean amino acid mass.
Defining P := M /(m,,NV), the in-protein amino acid concentration per cell (Materials and Methods,
section Conversion between concentration and proteome fraction), the connection between protein
production flux J and growth rate Aisthen J = (%. This relationship will be used to convert between
molar and proteome fraction in some equations below.

Summary of optimal solutions

Solutions for the factor predicted optimal abundances as a function of effective biochemical
parameters and the growth rate at the optimum, are presented in Table 2. The table breaks down
terms in each solution by categories: direct diffusion term (arising from diffusive search time),
catalytic sequestration, and delay incurred by the diffusion of other proteins in part of the cycle
of the factor of interest. Solutions are listed in terms of on-rate k,, (units of uM~'s~!). The aaRS
solution follows a different form:

nﬂafaa A* fﬂa A’*
Piars = Touns pa- e (18)
on tRNA cat
. tRNA : . . PR AT
with Apna i= P “ - chﬂ_* - % - == - jzRS’ and brc 1= —aa_ribo” Tu”_
o Pre ke Cr, k& krcp
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Table 2. Compilation of predicted optimal abundances for translation factors. The optimal abundance is the

sum of the terms in each row. Columns correspond to contributions of different nature (diffusion of factor itself,
diffusion of other factors involved in the factor's cycle, catalytic term). Terms must be multiplied by the common
factors indicated in each column’s header (x). For RF1+RF2, § 1= 24/fyaqfuca (See section Optimal abundances

for RF1/RF2).
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Appendix 1

Coarse-grained transition times: models of ribosome traffic

Our coarse-grained model of ribosome transitions between categories of initiation, elonga-
tion, and termination need to be distinguished from the individual molecular times of the
respective steps in one important regard: ribosome traffic on mRNAs can lead to effective
delays arising from transient queuing. For example, if translation termination is slow and
ribosomes start to pile up and form queues upstream of stop codons on mRNAs, the molec-
ular time of termination (time between ribosome arrival to the stop codon and its recycling
to the free ribosome pool) will not be a correct reflection of the actual termination time of
a ribosome, because of the additional wait time in the queue. A similar argument can be
made for transient queuing forming in the body of genes for elongating ribosomes.

We connect these two (molecular and coarse-grained) levels of description by noting
that our mass action schemes relating the translation factor abundance to the times of the
specific steps can be used as input parameters in traffic models of ribosome movement
along mRNAs taking into account possible many-body interactions (e.g., totally asymmetric
exclusion processes (Shaw et al., 2003; Kavcic et al., 2020)). Solving these traffic models
can then be used to obtain transition times in our coarse-grained translation cycle model.
As we show below, corrections arising from transient queuing are small (for endogenous
translation factor abundances) based on current estimates the absolute rates of initiation,
elongation, and termination, on individual mRNAs, such that stochastic queuing does not
play a dominant role in determining optimal translation factor expression levels.

As a first example, we relate the on-stop codon molecular termination time t,,,, which
we obtain from solving our mass action scheme (see equation 6), to the termination time
in presence of queuing: t/'. The difference between the two, as described above, being
related to possible queues upstream of stop codons leading to further delays in the process
of translation termination, and thus to a longer termination time than that of the molecular
on-stop codon termination. The delay factor will be denoted Q (), defined through:

Trfel:u =T, 9 (Trer) .

To derive the expression for the Q factor, note that in steady-state, ribosome numbers in a
given state is directly proportional to the time to transition out of that state. Let m; be the
MRNA concentration for gene i in the cell, n,,,(a;, T,.,) the number of terminating ribosomes
(including queues if present) on a transcript with per mRNA translation initiation rate (i.e.,
translation efficiency (Li, 2015)) a;, then:

Sull
Trer €5 z m; nter(ai’Tter)’
i
whereas

29
Tter & Z mi n;gr (ai’Tter)’

i

with n?9(a,, T,,,) the average number of terminating ribosomes on a transcript with translation
efficiency «,, assuming no queue upstream of the stop codon. Note that n,,(a;,7,,) >

ng?(ai,r,e,) (the differences being queued ribosomes). Hence, the queuing factor Q is:

ter

Sfull

T > m; n,,(a;,7T,,)

.__ ter __ i1 Tter\Ui> “ter
Q(thr) cT -

T 29 :
ter Y my M (@, T,

23 of 49



868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

Formally, n,,, can be obtained by solving a TASEP model (Shaw et al., 2003), but a sim-
plified queue model (Bergmann and Lodish, 1979; Lalanne et al., 2021) disregarding spatial
information recapitulates the statistics of queue formation (as verified by full stochastic
simulations, data not shown). The state space of the queue model is the number of ri-
bosomes N in the queue. Ribosomes arrive at a rate « (initiation rate on the transcript),
and leave at the molecular termination rate 7. The ribosome arrival rate at the queue is
rigorously correct in steady-state, unless the queue becomes large enough to affect the
initiation process (fully jammed transcript), or RNA degradation. The stochastic process
(away from the jammed state) is then described by: N - N + 1 atratea,and N - N — 1
at rate ;! for N > 0. The probability for the queue to have N ribosomes, P(N), can be
obtained as the steady-state from the resulting master equation, leading to a geometric
series: P(N) = (aﬂrm)N (1-art,,). Hence, the prevalence of higher order queues scales as
the ratio of the initiation to termination rate on the transcript. The average queue size,
corresponding to n,,(;,T,,), iS:

T,,.O;
ter™i -1 =il
— a(l1+7 )
B ter = Vi footprint® j />
1- Tterai
nter(ai’ Tter) ~
f" ~1 =l
Z > Tter < ai(l + ffoatprintf,' )
footprint

Above, the solution of the simple model is truncated at the value where the transcript
becomes fully jammed with £, /¢ ;,,,,.,, Fibosomes (¢, and ¢ ,,,,.,, being the size of gene i and
the size occupied by a ribosome respectively). The no queue ribosome number is simply
equal to a model where queues with N > 1 do not arise, hence ng? Therefore,

the queuing factor, under the stated assumptions (and assuming no transcript is in the
jammed state), is

((Z,-, Tter) = aiTrer'

%m

P =Ty

2 me;

Expanding for fast termination gives 9 — 1 = T’T“’z) as the leading order correction, where
the averages are weighted by mRNA levels. The above was derived assuming exponentially
distributed initiation and termination times, but could be modified to account for more
complex dynamics of the initiation and initiation steps.

The queuing factor can be estimated based on absolute measurements of the initiation
and termination rates in cells. Kennell and Riezman (Kennell and Riezman, 1977) estimate
3.2 s between initiation events on the /acZ mRNA (at 48 min per cell doubling). Bremer and
Dennis (Bremer and Dennis, 2008) estimate 1 s per ribosome initiation events at 20 min
doubling time. Recent calibrated high-throughput measurements report a genome-wide
median of 5.6 s per initiation events (Gorochowski et al., 2019). To our knowledge, estimation
of absolute in vivo termination rates have not been performed, but we can estimate bounds.
Indirect assessment based on steady-state protein production measurements place the
fraction of actively elongating ribosome at about 95% (Dai et al., 2016). Assuming (upper
bound) that the 5% of non elongating ribosomes are in the process of termination would
give a termination time of 5% x 11.1s ~ 0.6 s (fraction of ribosomes in a given state equal to
the ratio of transition times), where we have used that the elongation time of an average
protein is about 11.1 s (200/18 s7!) at fast growth (Dai et al., 2016). This upper bound is
still much smaller than the reported median initiation time, suggesting that the queuing
factor for termination is small. As additional support to the view that translation is far from
being termination limited, small that queues at stop codons are only globally observed

Q (Tter) ~
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in ribosome profiling upon severe perturbations (Kavcic et al., 2020; Baggett et al., 2017;
Mangano et al., 2020; Saito et al., 2020; Lalanne et al., 2021).

With regards to translation elongation, transient queuing in the body of gene can also
lead to a difference between molecular and coarse-grained transition times in our model.
However, the fraction of ribosomes transiently stalled due to this queuing scales as at,, in
the low density phase (defined by requirements at,,, < 1 and at,, < (1 + \/Z i)' ~ 0.25)
of the TASEP model (Shaw et al., 2003). Since measured estimates place at,, ~ 0.01 (Dai
et al., 2016; Gorochowski et al., 2019), we do not consider the queuing effect for elongating
ribosomes within our optimization framework for elongation factor abundances.
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Appendix 2

Translation termination

Omitted molecular details

The kinetic scheme presented in Figure 2A does not include some known molecular details of
translation termination. For example, GTPase RF3 has been shown to catalyze the release of
RF1/RF2 post peptide hydrolysis and to effectively prevent rebinding to empty A site ribosome
without peptide (Pavlov et al., 1997). RF3 is not included in our model given our desire for
a parsimonious description and due to the absence of identifiable homologs in multiple
bacteria (e.g., B. subtilis) (Margus et al., 2007). Our scheme aggregates the RF1/RF2 recycling
rate with the catalytic rate, and further assume a unidirectional reaction without rebinding
(consistent with a lower bound), effectively taking into account the action of RF3. In addition,
translocation factor EF-G is known to be implicated in ribosome recycling via translocation
post RF4 binding (Zavialov et al., 2005). We assume EF-G's abundance requirement towards
the function of termination to be a minor fraction of its total requirement (non-sense to
sense codons ~0.5%) and to be non-limiting for this step. We thus coarse-grain EF-G's role
in ribosome recycling through an effective catalytic rate for RF4, see (Borg et al., 2016) for
details of EF-G's involvement in ribosome recycling. As another example of simplification in
our coarse-graining, we also do not explicitly model RF1/RF2's post-translational modification
by methyltransferase PrmC (Mora et al., 2007). Thus, the activity of the RFs within our
description to correspond to the average within a possibly heterogeneous pool of modified
and unmodified factors in the cell.

Non binding-limited regime (one stop codon)

If translation termination is not diffusion limited, terms corresponding to the finite catalytic
times must be included in addition to the diffusive contributions in the termination time
(equation 6). Under our simplified scheme (Figure 2A) and with a single stop codons (grouping
RF1 and RF2), the molecular termination time is then sum of the four separate times
corresponding to distinct events:

L1 1 1 1
ter = 3
RFI 4free RFI RF4 4, free RF4
kon ¢RFI kcat kon ¢RF4 k“”

The two novelties compared to the diffusion-limited regime (equation 6) are: (1) addition of
the catalytic times k! for the two steps, and importantly (2) the mass action diffusion terms
now involve the free concentration of release factors. Generally, the free concentration
of the tIFs can be obtained by solving the steady-state solutions of kinetic schemes under
constraints imposed by conservation equations. The examples in e.g., sections 2, 2, and 1
below provide the mathematical details associated with the procedure.

Here, the difference between the total and free concentration of release factor arises
from the finite catalytic turnover of the enzymes, and corresponds to the concentration
of ribosome bound release factors. Given the flux J through the system in steady-state
of growth, the concentration of ribosome bound release factor (e.g., for RF4) is J /iR

cat '

which becomes (;;‘:;A upon converting to proteome fraction. This quantity sets the absolute

minimum for the release factor abundance necessary to sustain growth A for a given k_,,.
The free concentrations for the release factors are then:
fRFIJ’ free

(£)KRET’ Grps = Prra =

cat

fRF4)'
(z,”)kR” .

cat

(19)

free __
¢RF1 = brpr —
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Hence, the final solution for the steady-state termination time as a function of the total
abundance of the release factors and growth rate is:

S 1 1 1 " 1
tor = —
<« KRFI (¢ _ CRrIA kﬁf’ kRF4 (¢ _ _CRrat Rf4
on RFI A\KRET on RF4 Z\KREFA ca
)k gt )k car

The relationship above, between termination time, total tIF abundance, and growth rate 4
closes the solution of the kinetic scheme. Substituting the above in the optimality condition
(equation 5) leads to the solution:

Coino A" g Coino At 7 il
¢;F1 — ribo + RFI ¢;F4 — ribo + RF4 (20)

(bﬂ)kf,,” (f)kRFI ’ <g>k£enF4 <f>kRF4 .

cat cat

The additional terms « A* correspond to the contribution to the optimal abundance arising
from the finite catalytic rates, no present in the diffusion limited regime (equation 7).

Full three stop codons model
The full model with three different stop codons (UAA, UGA, UAG) and RF1/RF2 with different
specificities (RF1: UAA, UAG; RF2: UAA, UGA) can also be solved exactly, leading to a small

correction on the summed optimal abundance for RF1 and RF2 of /1 +2+/fy 16 fuga < 1.05
(fast growing species considered, where f,, ., and f,s4 are the fractional fluxes through
the RF1 and RF2 stop codons respectively) compared to the single stop codon optimum
derived above (¢7,,, equation 20). We provide details below. With three stop codons, the
coarse-grained reaction scheme is shown in Appendix 2 Figure 1. The relevant chemical
species and parameters are listed in Appendix 2 Table 1.

D)) ,;%

~RET
Kon

(€38

R;4‘ \
O & Q
o= 5 <

Ribosome recycling

[Coan]

Peptide chain release

Appendix 2 Figure 1. Coarse-grained translation termination scheme with three stop codons and
RF1/RF2.
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Variable |

Description

=
(Cyua)

7
[Cy/ag)

+pe,
[Cga)

Ribosomes at UAA with peptide chain [xM]
Ribosomes at UAG with peptide chain [uM]
Ribosomes at UGA with peptide chain [uM]

[Dy )
[Dy 561
(D]
[Dyg,]

Ribosomes at UAA with peptide chain and RF1 bound [xM]
Ribosomes at UAG with peptide chain and RF1 bound [xM]
Ribosomes at UAA with peptide chain and RF2 bound [¢M]
Ribosomes at UGA with peptide chain and RF2 bound [¢M]

[Crer)
[E*]

Ribosomes at all stops without peptide chain [uM]
Ribosomes at all stops without peptide chain and RF4 bound [uM]

[RF1]
[RF2]

995 [RF4]

Free RF1 [uM]
Free RF2 [uM]
Free RF4 [uM]

TUA = fuand
JUAG = funed
JYA = fuead

Ribosome flux through UAA [uM s~']
Ribosome flux through UAG [uM s~']
Ribosome flux through UGA [uM s~!]

R On-rate for RF1 [uM~! s71]
R On-rate for RF2 [uM~! s71]
s On-rate for RF4 [uM-! s71]
KRI Catalytic rate for RF1 [s™!]
KRE2 Catalytic rate for RF2 [s™!]
kRIS Catalytic rate for RF4 [s~!]
RF1,, Total RF1 [1M]
RF2,, Total RF2 [uM]
RF4,, Total RF4 [uM]

998 Appendix 2 Table 1. Chemical species and parameters in three stop codons termination model.

The corresponding mass action system of equations for peptide release:

d[cgiefl;] — +pepy (7 RF1 7 RF2
ar = fuaad — 1G] (KRFURF1] + kRI2(RF1])

d[cd_;t';‘”gl = fuac =k ICREIRF 1],

d[Cd—‘%ez] = fugad — kS ICTEANIRF1],

APl _ arimpiicisg) - K11DY )

—d[DdlU{‘G] = ko IRFIICHTE) ~ ki Dy 461,

APhaal _ ooy - 2710301
Whcal _ sraimeancips) - K210 )
AUBELL - R LRI (IG5 + C2) + KA (D) 001+ (D))
- ARER - a2 (171 +IC) + K (103 001+ D).

1002
And for ribosome recycling:

dicr :
% _ kfafl ([D;/AA] N [D;/AG]) o kfafz ([ngAA] + [DéGA]) — kﬁf‘*[C"’“’][RF‘ﬂ’
4
d[i_] = kSO IRF4] - K TLEY),
d[I§F4] = _kRFA[CPP][RF4] + kaA[E4].
: Kl ca

The conservation equations for RF1, RF2 and RF4 are:
RF1,, = [RF1]+[Dy,, 1+ [Dy 451
RF2, = [RF2]+[D} 1+ [D 1.

RF4,, = [RF4] + [E*].

With a more complex scheme such as the one above, the optimization problem can be
solved in three steps. First, we obtain the steady-state concentration of the chemical
species. Second, we determine the effective coarse-grained termination time. Finally,
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the optimal abundance is found by substituting the termination time in the optimality
condition (equation 5), and solving the resulting system of equation.

Steady-state concentrations for RFs

Note that the RF1/RF2 and RF4 completely decouple, and that the solution for RF4 is identical
to the one stop codon case solved above (section Non binding-limited regime (one stop
codon)). For peptide chain release, the steady-state of the system can be solved by expressing
the all chemical species in terms of [RF1], and [RF2]:

1111414‘1
kRFI[RF1] + kRF2[RF2]

il e J kRFURF1]
vasl VALY REL kRFI[RF1] + kRF2[RF2] )

D =7, J kRF2[RF2]
vAsT T IUAA LR \ RRFIRF1] + kRP2[RF2] )

(Caen =

UAA

(21)

e Suacd +pe Sfuead J J
[Cpht]l = ——=——, [Cht = ——, [D} ,c] = fosc—=> D}zl = f
vAGTkrriRFL] YUY RRFP[RF2) vacl = fura kRET voal = Juos KRE2

Substituting these in the conservation equations for RF1 and RF2 leads to a closed system in
terms of [RF1] and [RF2]:

RF1,, =[RF1]

.I k:RITI ~,
L+ foan—zm RFEL\ = = + fuacrer RFL®
KEFY\ RRFI[RF1] + kRF2[RF2] KEE

J kRF2 J
RF2,, = [RF2] |1+ f, _ i +f
o VA KR \ RRFIRF1] + kRFP2[RF2] vGA YRF2”

Under the assumption of identical biochemical properties for RF1 and RF2, namely k" =
KRI2 := KRFT and kRF1 = kRF2 = RFT, the total free concentration of RF1 and RF2 simplifies
to: [RF1]+[RF2] = RF1,,+RF2,,— kR“ ,where we used f, 4+ fyig+ fuga = 1 (by definition).
Using this relation to eliminate [RF2] from the [RF1] equation (and vice-versa), we obtain,
upon conversion to proteome fraction:

fRFIA

free . __
Drrsor “=PrE1 T PrE2 — (f)kfafl’ (22)

free free free __ free
brr1 =XrF1 PrEor PrE2 = XRF2 PRE o

where
Prr1 — (f;zkrR” fus
XRF1 = (G — WRICFRIF‘I Suns) + (D2 — (f’)R:RFI fown)
Drp2 — %fum
XRF2 =

CREIA CRETA :
(¢RF1 - #fum) + (¢RF2 - #fUGA)

These constitute the steady-state solutions of the system of equation.

Coarse-grained translation termination time

In order to obtain an expression for the termination time (peptide release portion), needed
to determine the optimal RF abundance (i.e., to substitute in equation 5), the peptide chain
release contribution arises from the ribosome containing species listed in equation 21, which
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1043
1044

1045 sum to (under the assumption of identical biochemical properties for RF1/RF2):

1046

[RI71 = [ChA1+ [Coha + [Cugal + [Dy; , 1+ [Dy, 61+ [Dy .1+ [Dy 41,

1047 ter UAA UAG UGA UAA UAG UAA UGA
1048 [RF"] = J Suac + Suea + Juaa n 1
1049 fer kRFI[RF1] ~ kRFI[RF2] kRFI([RF1]+[RF2)) k'
1050 Upon conversion to proteome fraction, the above becomes:
1051
1052 ¢pcp — fribo 1( fUAG + fUGA + fUAA + 1 ) o friba AT
ribo free free free free RFI . pep*
1053 <bﬂ> klIf'lFI(l)RFl ktlanld)RIQ kanI (¢RF1 + ¢RF2) kc‘” <f)
1054 The bracketed term corresponds to the coarse-grained time associated with peptide chain

1055 release t

L. and the free concentrations are given by equations 22.

1056 Optimal abundances for RF1/RF2
The solved concentrations in steady-state (as a function of proteome fractions) and coarse-
grained times allow us to determine the optimal RF1 and RF2 solutions (within our model).
The optimality condition (equation 5) is now:

<0Tpep ) __n <6Tpep > __®
1057 a(bRFW friba)'* ' ad)RFZ friboj'* .
zz: Solving the above system leads to optima ¢% ., and ¢? ,.,:
1990 ¢ * frilm/l* (1 + 6) fRFI)'*
1061 ¢RF1 + ¢RF2 (f)kﬁ” + <£>k£51 ’ (23)
EZ 5 _ fUAGI/pRFI’l*

RF1
1064 (e’ — = \/fUAG. (24)
1065 Prrz — % Jues
1066 <f>kcm
1067 where the new factor 6 :=2+/fy46/vca-
1068 The relative flux through each stop codon (fy 44, fu - fuca) CaN be estimated in a variety of
1069 bacteria from ribosome profiling data (Lalanne et al., 2018) as the total synthesis fraction of
1070 genes with the respective stop codon. For fast growing species considered in the current
1071 study, fy44 ~ 0.9, and the correction term to the optimal solution for the summed abundance
1072 of RF1 and RF2 (/1 + §) is consequently small (E. coli: f,,, = 0.888, fyuc = 0.015, fyos =
1073 0.097, V1 +6 = 1.04; B. subtilis: fy,, = 0.888, fyuc = 0.064, fyg4 = 0.049,4/1+6 = 1.05, V.
1074 natriegens: fy ., = 0.929, fy, ;o = 0.041, f, . = 0.031,1/1 + 6 = 1.04)
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1075 Appendix 3

1076 Translation elongation

1077 Coarse-grained one-codon model

1078 Translation elongation is a more complicated process than termination, involving multiple
1079 factors to bring the charged tRNA to the ribosome (EF-Tu), charge the tRNAs (aaRS), translo-
1080 cate the ribosome (EF-G), and perform nucleotide exchange on EF-Tu to drive the process
1081 (EF-Ts), in addition to others not included here. Our simplified kinetic scheme is illustrated in
1082 Appendix 3 Figure 1. In anticipation coarse-graining procedure detailed below, rates rescaled
1083 in the conversion to a one-codon model are marked by .

1084 To simplify our model, we coarse-grain the elongation cycle by considering a single
1085 codon type (section Estimation of coarse-grained rates below or details of the coarse-
1086 graining procedure), effectively grouping the tRNA's, tRNA synthetases, and different ternary
1087 complexes to single entities. Importantly, as a result, the on-rates associated with these
1088 processes are rescaled by a factor close to n;!, where n,, = 20.

tRNA

[aatRNA] /4’%5 % s
o Ko [tRNA]
n, §
]
(-\\[Ts]
] Ron
[Tu]
o o

®J Kia

- Wl —
e Ternary complex binding Translocation
1090 Appendix 3 Figure 1. Coarse-grained reaction scheme for a single step (amino acid incorporation) of
1091 translation elongation. Tu: EF-Tu, Ts: EF-Ts, G: EF-G, aaRS: aminoacyl tRNA synthetases. Steps with
1093 slower rates as a result of the coarse-graining to one effective codon are marked by #.
1094 An important distinction for elongation compared to initiation and termination is that
1095 multiple elongation steps (average (#) ~ 200) are required to generate a protein. Hence, the
1096 flux into the through the elongation cycle is (¢) larger than that through the initiation and
1097 termination steps (there is one initiation and termination event for each protein made, but
1098 about 200 elongation steps on average).

The mass action reaction scheme for translation elongation:

(&)
L0 Ry, (25)

aRS
{RNA + 2aRS 2 /"L, {RNA: aaRs,
KaaRS
{RNA: 23RS~ 2atRNA + 3aRS
kTS
Tu+Ts— Tu:Ts,

T
TUsTe =%, TuS™ +Ts,

JTu

TUS™P + aatRNA—L, TC,

o m
TC+ R¢—2> Rres

KIC
Keat
RTC RI RNA>

Kon
Rirva +G— Rg,
G

keat

Ro—2 G+ tRNA.
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1099
1100
1101
1102

1103

1104 To arrive at the above, we started with a full model of translation (not shown), will all possible
1105 codons, tRNA species, and ribosomes with different codons. To coarse-grain the model, we
introduced the following effective variables, which correspond to the total concentration of
each type of species involved, summed over the of the codon/amino acid specificity:

[tRNA] := D'[tRNA,], [aatRNA] := Y [aatRNA,], [aaRS] := »'[aaRS;], [TC] := Y [TC,]

1106
1107

1108

1109 Ryl = Y IRL 1 Ryl i= Y IRy, V1 [Rigal i= 3 RYL [Rgli= Y IRV :: G

iVip Vo iLj Vo ijVop
e In the above, Greek indices correspond to different codons on mRNAs, and Roman indices
to different tRNAs. Roman indices with a hat (7)) correspond to tRNA synthetases recognizing
specific tRNAs (multiple amino acids have more than one tRNA isoacceptor). In defining
these coarse-grained species (our approach is analogous to that of (Dai et al., 2076)), we
redefined the two following kinetic parameters:

mnm

1112

1113

1114

1115

1116 JaaRS ) tRNA.17aaRs. pre A [R"V]Sv ITC ]

- == aaRSZ—[ 23R and “2 o= p7C y e (26)
n, o &4 [tRNA][aaRS] n, o e [RIITC

1118

1119 l}g:RS and I}oTnc correspond to the microscopic bimolecular rates (assumed equal for the

1120 different chemical species). S, ; is the tRNA isoacceptor/codon specificity matrix (1 if tRNA i

1121 can recognize codon v, 0 otherwise) (Bjork and Hagervall, 2014). Rescaling terms »n, and n,

1122 are estimated below.

1123 Estimation of coarse-grained rates

1124 The definition of coarse-grained parameters (equations 26) involves sums:

" Z [(RNAJlaaRS;] 1 _ [R,,15,,[TC;]

e [tRNA][aaRS] m, A RITC]

1127 T

1128 These can be estimated from tRNA abundances, codon usage and individual synthetases’

1129 levels obtained from ribosome profiling data in E. coli (Li et al., 2014).

1130 We first consider n,. Note that the fraction of free tRNA of type i to the total number of free

131 tRNA (not bound to any protein) is not readily measurable. Assuming similarities between

1132 types of tRNA's, we approximate this fraction with the fraction of total tRNA of type i to the

1133 total tRNA concentration, or

1134

[tRNA,] tRNA™”
[tRNA] ~ tRNA,,

1135

1136

137 The total tRNA concentration has been measured at fast growth for E. coli (Dong et al.,
138 1996). The relative concentration of each tRNA synthetases (appropriately corrected for
139 stoichiometry for the different classes) can be computed from the ribosome profiling data
1140 (Li et al., 2014), and we obtain
1141 tot

1 [tRNA,] [aaR$;] tRNA® [aaRS;]

— = =~ 0.056 ~ 17.8
e n 2 ( [(RNA] [3aRS] Z tRNA,,, [aaRS] =
1143
1144 This was to be expected since the synthetases in E. coli show little variability around their
1145 mean, and in the case of equal synthetase concentration, n, = 20 would strictly hold.

For the second sum (n,), we use distribution of ribosome footprint reads across the transcrip-
tome to estimate ribosome occupancies at different codons. We first make the following
approximation for one of the sub-sum:

l\[17f
S m I
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1148
1149
1150
1151

152 where N'* is the total number of ribosome footprint reads at codon pairs u,v and N/”

1153 is the total number of footprint reads mapping to coding sequences. The nature of the
1154 approximation is that we are taking relative fraction of ribosome footprints (representing
1155 ribosomes across the elongation cycle at that codon pair) at a given codon pair to be equal
1156 to the relative fraction of ribosomes waiting for the ternary complex to derliver a tRNA to
1157 the A site. The modest differences in elongation rates at different codons seen in ribosome
1158 profiling data (Mohammad et al., 2019) justify this approximation.

1156 From our data (not shown), we have that

1160 Z HFVP%ZNVZPZNVFP -

et u N, tirp " N rﬁtp N 15tP . !

1162
holds to better than 0.5% for each codon. f, above is the (expression weighted) codon

usage. As before with the free tRNA concentrations, we can approximate the relative ternary
complexes concentrations by the corresponding total tRNA concentrations:

1163
1164

1165

1166 [Rl ]S\//[TC_/]

" f, S, ; tRNAY

67 ni = MZ/ ‘[R][TC] ~ 2, tR’NAw[ . ~0.048 =n,~208 (27)
1168 ’ '

1169 We used the same dataset as before for the total tRNA concentration in E. coli (Dong et al.,
1170 1996). The codon usage was determined directly from ribosome profiling data (Li et al.,
17 2014). The sum of these products is graphically represented in Appendix 3 Figure 2. The
172 above sum of product of tRNA fraction and codon usage provides an effective number of
173 different ternary complexes. A priori, that might have been expected to equal to the number
174 of tRNAs (~40). However, as is apparent in Appendix 3 Figure 2, certain tRNA-codon pairs
175 are much more prevalent than others (even for amino acid with multiple codons and/or
1176 tRNA isoacceptors), which leads to a decrease in the effective concentration. The exact value
177 depends on the detailed codon usage and tRNA abundance.

1178

179 Appendix 3 Figure 2. Graphical illustration of the sum (equation 27). Left: codon usage (vertical, from
1180 analysis of ribosome profiling data from (Li et al., 20714)), tRNA-codon specificity (matrix, from (Bjork
1181 and Hagervall, 2014), with different amino acids outlined with different colors), and tRNA abundance
1183 (horizontal, from (Dong et al., 1996)) organized by amino acid. Right: product matrix.

1184 Given the results above, we take for simplicity n, = n, = n,, = 20.
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1186
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1189

1190
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1192
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1197
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1199

1200

1201

1202

1203
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1205

1206

1207

1208

Translation elongation: optimal solutions

The mass action reactions corresponding to the one codon elongation cycle model are
(equations 25):

IR _ s kor TCIR
at =() - naa[ 1Ry,
diRrcl _ k3¢
—at n—M[TC][Rg] — K'C[Rr ],
d[Tu N
% = k'CIRyc] = kIS [Tul(Ts],
ditRNA]  kaeRs
5 - —n—M[tRNA][aaRS] +kS [Rs1,
.. JcaaRS
dItRNA=3aRS] _ Xon [ 1pNAJ[2aRS] — k%RS [tRNA:aaRS] = — J32RS]
dt Mgy cat dt
% = kRS [tRNA::aaRS] — k7 “[aatRNAI[TuS™ ],
GTP
d[T:t 1 k7 [Tu:Ts] - R7“[aatRNAJTUC™],
d[Tu:Ts] Ts AT d[Ts]
e S LITRLE S[TU[Ts] = ———,
— KPS [Tu:Ts] + AZ*[Tu][Ts] =
N %TC
AT _ jrufaatRNAITUCTP] - 2 [TCI[Ry],
dt on Ny,
dR, gy 4] R
% = KTC[Ryc] = kG [R gy AlIG],
diRgl diG]
dtG = kO [R,xw41G] — kS, [Rs] = ==

Conservation equations close the system:
TS, = [TS] + [Tu:Ts],
Tu,, = [Tu] + [TUS™] + [Tu:Ts] + [TC] + [Ryc ],
tRNA,,, = [Ry] + 2[Ry ] + 2[R,z 4] + 2[Rg1 + [tRNA] + [tRNA:aaRS] + [aatRNA] + [TC],
aaRsS,,, = [tRNA:aaRS] + [aaRS],
Gy =[G+ [Rg].

The ternary complex concentration and free EF-G concentration enter the translation elon-
gation time (equation 10, which is the diffusion limited and factor dependent contribution
to the elongation time) and are required to infer optimal abundances of elongation factors.
Both can to be obtained by solving the system of non-linear equations above.

First, catalytic steps must equal to the flux through in the system in steady-state and thus:

(I @J . AL, @
[Rgl = G [Rycl = T [tRNA::aaRS] = s [Tu:Ts] = T
cat cat cat cat

Together with the conservation equations, these allow for immediate solutions for the free
concentrations [Ts], [aaRS], and [G]:

e)yJ

[Ts] =Ts,, — ¢ T>S .
cat

()
[aaRS] =aaRs,,, — RS

cat
eyJ

61=G,, - 2L,

cat
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1230
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1234

1235

1236

1237

1238
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1240

The solution for other species can then also be obtained in terms [Tu®"], and [TC]:

Z)J Cyng,J
[Rirnal 2#3 Ry ZE >
e ( _ <f>1) krerrey
on tot kch
£yn,,J oy
[tRNA] =D . [aatRNA = — 2L
keers (aaRs,,, - %) Jeru[TusT
)
[Tu] =- (£) .
kz;ns <Tsr0t - <k'l?;rl>

Substituting these in the conservation equations for tRNAs and EF-Tu lead to the final system
to solve (converting to proteome fraction):

tRNA,,, S Mg, L 2A 24 L2 08
*T YiRNA T 7C e ——————— 1 —— TP
P kon ¢TC kcat koGn <¢G _ igl> kcm
Ang, 1 i bre
7, A B kaaRS + kT”¢ + Z 5
kzZRS <¢aaRS - ;;aligs‘ ) cat on PTuGTP Tu
4 “i 4 uA 7. ui
where ¢, i=¢r, — T—“ - TTs —bre - TTc : (29)
koTnS (¢Ts - kTTi- ) kmi kcm
cat

where the solution for ¢er in terms of the ternary concentration was obtained from the
conservation equation for EF-Tu. Equations 28 and 29 are closed, and the only variables to
solve for is ¢, in terms of the tIF abundances: ¢, ¢r,, bo» Poars: LRNA abundances, kinetic
parameters, and the growth rate 4.

Coarse-grained translation elongation time

In order to obtain the coarse-grained translation elongation time, we proceed as for trans-
lation termination (section Coarse-grained translation termination time). The summed
concentration of the ribosome containing species for translation elongation in our model is:

[Rel] =[Rﬂ] + [RTC] =P [RtRNA] + [RGL
_On () () a2
_1}0TnC[TC] KIS je (Gr - ﬂ) Ko

on kgz .

Converting to proteome fraction:

1 ) L 4 L o ; o L
fribo ribo anC¢TC cha? kfn <¢G _ igi> kg,r .

cat

From the coarse-grained flux relations through the different categories (equation 17), which
defines the coarse-grained transition times, we thus have:

L.*.L.F;_FL
kKICore KIS o <¢G_fcll> kS

G
kcal

T, = (£)T,,, Wheret, = (30)

Above, T, is the effective time for a single step (by one codon) of translation elongation, and
T,,4 COrresponds to the summed time of factor independent transitions in each elongation
step (not explicitly included in the kinetic scheme).
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Optimality conditions for translation elongation factors
The optimality condition (equation 5) applied to translation elongation factors leads to:

(af,aa>*_<0Tm>*_(arm>*_< s )*_ ! -
a¢G a¢Tu aqux a(l)aaRS fribol* .

where equation 30 was used for t,,. Since the free EF-G concentration does not depend on
EF-Tu, EF-Ts, or aaRS concentration, the conditions for EF-Tu, EF-Ts and aaRS simplify to:

) ( Mo >*_ 0 ( Mo >*_ 0 < Moy )*__ 1 32)
a¢Tu kz;,C ¢TC a¢Ts kZ"nC ¢TC a(IbaaRS k:y,ctﬁTC I’pribo/l* '

Carrying through the differentiation also leads to conditions on the derivatives of the ternary
complex concentration at the optimum:

<a¢Tc>* _ <o¢rc>* _ < 0prc > _ R () 33
aquu a¢T_v a¢aaRS Cipofaa A ’

ribo"*aa
These relationships will be useful to solve for the some elongation factor optimal abundances
below.

Optimal EF-Ts abundance
Differentiating equation 28 with respect to ¢,, and ¢, we get at the optimum:

L, e <a¢“m ) _ 1 <a¢Tc>*
fribo kT"( * )2 ad)Tu fTu ad)Tu '

on TuGTP
1 . A* (ad’ruGTP >* _ 1 (ad’Tc >*
I/pri 0 s 2 a¢ s _f u a¢ s .
’ kz-nu <¢TMGTP> g 5 :

By equation 33, the above leads to the additional condition at the optimum:

< o0y, cre >* _ (a(ﬁ—rucw >*
a(i)Tu a¢T: .
Directly differentiating equation 29, and using equation 33, leads to:

2 . \2
(ad)TuGTP >* -1 koTnC (dfrc) _ <a¢TuGTP )* _ Cry A" _ koTnC ( ;c)
b1, Z vl A oy, KTs ( e — ot )2 ? ripoMaat*
0 Ts

ribo"*aa
o TS
cat

Therefore, the optimal abundance for EF-Ts is:

Cr e Cp At

Ts Ts °
k(m kmt

by, = (34)

Optimal EF-G abundance

The optimality condition for EF-G is complicated by the fact that EF-G free concentration
appears in the solution for the steady-state ternary complex through the tRNA conservation
equation 28. Differentiating the conservation tRNA equation, and using the optimality
condition 31 (replacing a number of terms with the elongation time t,,, equation 30):

aa’

A [é) * 0 * * 0 *
0=— 2 n Noa . < ¢Tc) n 1 < ¢Tc> _ A . < &GP ) ' (35)
fribo anC ((l);u) ad)G fTu 6¢G kTu ( ) ad’G

¢;MGTP
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Above, the right-hand portion corresponds to the additional constraint coming from the
implication of EF-G in the steady-state concentration of the ternary complex. From the
equation for ¢ere (equation 29), we have directly:

<0¢TuGTP )* _ (ad’Tc >*
0dg 0dg ’

Substituting this in equation 35:

* A 7] ¥
2o b2y e (;;TC) : (36)
Tk (6 ) K (9r) o

7

ribo

The derivative of the ternary complex with respect to EF-G at the optimum can be obtained
from the original optimality condition 31, by carrying through the differentiation:

<a¢Tc>* ﬁ(d)* Pl _ 1
a¢ - Lo re fri a’l* oy o A* 2
G b kG <¢G kGG )

cat

Substituting in equation 36, we arrive at a final equation for EF-G in terms of the concentra-
tion of other elongation factor and the optimal growth rate:

2 =1+ k:nc (d)TC) P k:nC (d)TC) - 1

* 2 * 2
fribo Raq fTu A n kTu * z/priboj' ¢* fG}L
aa “on TuGTP .
Cﬂ

The optimal solution for EF-G is thus:

friboll* A+1 fG'l* rlbo’l* LpG’I* , (37)
kG
cat
kTC ¢ kTC ¢
where: A 1= -~ ( A rc) :
naaf’l"uj)k Tu # ?
nﬂﬂkun ( TuGTP)
Note that given that the term A involves ¢;.. and ¢7 .., and so the solution above is not

a priori complete. However, using the approximate ternary complex concentration at the
optimum (equation 12, derived in details in section Optimal EF-Tu and aaRS abundances),
we have:

Tnc (¢;C)2 ~ frxba

A>——x
naafTuﬁ* fTu

~ 185> 1

This means that the lower bound for ¢;. above (equation 37) is a good approximation: in the
physiological regime, we can approximately neglect the indirect dependence of the ternary
complex concentration on EF-G via the tRNA conservation equation. Hence, the approximate
solution for the EF-G optimal abundance is (same for had we initially assumed that ¢ was
independent of ¢, in which case the solution for EF-G can be obtained identically as that of
release factors):

By 2 T

on

cat
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1323 Optimal EF-Tu and aaRS abundances

While simplifying relations were possible with EF-Ts and EF-G, allowing their solution (approx-
imately) independently from the rest of the cycle, EF-Tu and aaRS are intricately connected
through the tRNA cycle. We thus return to the tRNA conservation equation, equation 28. For
notational simplicity, we group the catalytic step of the TC, EF-G binding, and EF-G catalytic
action (translocation) in parameter k** (these do not depend on ¢, and ¢,,,s) which we
take to the be experimentally determined value of 22 s=! (Dai et al., 2016). Further dropping
the EF-Ts related and catalytic terms (will be added back at the end, they only contribute a
fixed term at the optimum) in the equation for the free EF-Tu, we get:

1324

1325

1326

1327

1328

1329 tRNA,,, Aoy 2
= +— + ... (38)
1330 PA kZ‘nC(pTC k:;ax
1331 ng, " 1 1 Prc
1332 i faaRS JTu o A
1333 szlRS <¢aaRS - kg:fli? ) G on ¢Tu Z

1334 where ¢ e = ¢y, — Py is the free EF-Tu concentration.

1% This system is first solved numerically (Figure 3B). To close the equation in terms of uniquely

1336 érc, We use our relationship for 4 (equation 1), with:

1337

1338 l
1339 T = <f> (koTncd’TC " kmax) T e
1340 where as before k”* is the maximum rate of translation elongation (from reactions other
1341 than ternary complex diffusion) estimated from in vivo kinetic measurements (~ 22 s=! (Dai
1342 et al., 2016)), and 7, + T, ~ 0.5 s the estimated time for the initiation and termination step
1343 (~ 5—10% of the full translation cycle translation time), taken as fixed parameters here. Using
1344 this relationship for the translation time leads to the explicit relationship between growth
1345 and ternary complex concentration:
1346 max
1347 Mre) = ¢”bo (—MQSTC >, with &, := (O)k and Ky = % (39)
1s Cive \Prc + Kpc (€) + k™ (T + Trer) kLe
1349 which is the same relationship as the one derived in (Klumpp et al., 2013), with the addition
1350 of the terms corresponding to the rest translation cycle. Substituting the explicit relationship
1351 between growth and ternary complex concentration above (equation 39) in the aaRS/EF-Tu
1352 tRNA cycle relationship (equation 38) closes the system for ¢,.. Numerical solution for this
1353 equation is presented in Figure 3B (see section Estimation of optimal abundances for other
1354 parameters).
1355 The main conclusion from numerically solving the reduced system (equations 38 and 39)
1356 is that the EF-Tu/aaRS space is partitioned in two regimes, resulting from the separation of
1357 scale of reactions in the coarse-grained model. Specifically, k7" > it , so that any imbalance
1358 between the constituents of the ternary complex (charged tRNAs free EF-Tu), results in
1359 stoichiometric unproductive excess of the component in surplus.

We can derive a relation for the "transition line" in the aaRS/EF-Tu space where both free
1360 charged tRNAs and free EF-Tu are at low concentrations. This corresponds to setting the
1361 (formally impossible) requirement ¢, ere & 0 = ¢ = ¢, and [aatRNA] « m'ﬂ ~0,i.e.,
1362
1363 tRN'i'\rm _ M % ¢ Ny . IRS (40)
1364 Pi(dbr,) Kifhr, ki (¢Tu) kaaRs <¢aaRS - faﬂlz—zégfn)) Kea
1365 “
1366 The = signifies the transition line relationship between ¢, and ¢z, Which is displayed in
1367 Figure 3B.
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The heuristic to estimate the optimal EF-Tu concentration described in the main text can be
extended to include the EF-Ts cycle. In particular, in the EF-Tu limited regime, with ¢,err = 0,
we have (from equation 29):

1368

1369

1370

1371 e G — Cr A 3 ) 5 Cruh
TC ~ ¥Tu - 1 kTS kTC .
. _ frs
1372 kon brs P cat cat
ca

1373
Substituting the above expression for ¢, in the optimality condition (equation 32) for ¢,

we arrive at (using the optimal solution for EF-Ts, equation 34):

1374

1375

1376
* KHMJ%aA* f}ﬂﬂ* fTuA* f}uﬂ*
P \/ ae \/ et e
1378
1379 Above, the last three terms (not appearing in equation 12) correspond to the additional
1380 diffusion of the EF-Ts cycle, and catalytic contributions.

. Following the argument (see main text) that the optimal aaRS abundance should lie on the

1 transition line (equation 40), we obtain:

1383

1384 P Ngg A" Caars A"
1385 RS kGRS Ay kS
1386 with A, related to the excess tRNA (tRNAs remaining after subtracting tRNAs sequestered on
1387 the ribosome and TC from the total tRNA budget):
1388
tRNA n, A* * E * [ Mg yipo A
o Arna °= P - ‘kr?—*‘%‘%‘ iRS’ where ¢7.. = %'
1390 on ¢TC el Tu ket on
1301 Interpretation of the sharp separation between aaRS and EF-Tu limited regimes
1392 The sharp separation of the solution for ¢, in two distinct regimes (EF-Tu limited, and aaRS
1393 limited, illustrated in Figure 3B), can be intuitively understood from a geometrical viewpoint.

o For the simplicity of the argument (not strictly necessary), neglecting the short initiation and

termination times in equation 39, and using tRNA,, = "’;"'#P (with 7 the tRNA to ribosome
ribo

molar ratio). The tRNA conservation condition, equation 38, can then be rewritten as

(binding-limited regime):

1395

1396

1397

1398

- - 1);@ - ? - % = Mérc) kaaRZ:; + kTu 1_
1400 r1bo Tu ol on  Paars oL (¢T,, ¢Tc)

tRNA budget ternary complex A-site tRNA uncharged tRNA free charged tRNA
1401 At given abundance of EF-Tu (¢;,) and aaRS (¢,,s), the solution for ¢, is obtained when
1402 equality in the above equation is reached. The behavior of the various terms with ¢, is
1403 illustrated for different values of ¢,,zs and ¢, in Figure 3-Figure supplement 1: the number
1404 of uncharged tRNAs (pink line in Figure 3-Figure supplement 1) is a decreasing function of
1405 aaRs, and free charged tRNA (red line in Figure 3-Figure supplement 1) are dependent on ¢,.
1406 Specifically, the free charged tRNA contribution, due to the rapid association rate k’* (codon
1407 agnostic) between charged tRNAs and EF-Tu (red line), is negligible except for a very narrow
1408 range where ¢, ~ ¢, at which point a sharp divergence occurs. This rapid divergence
1409 bounds the solution for ¢, at the total EF-Tu concentration.

The aaRS limited regime corresponds to conditions in which the uncharged tRNA contribution
(pink line) intersects the available tRNA budget (full black line), lower left in Figure 3-Figure
supplement 1. In contrast, the EF-Tu limited regime corresponds to conditions in which
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1410

141

1412

1413

1414

1415

the free charged tRNA (red line) intersects the tRNA budget, upper right in Figure 3-Figure
supplement 1. The sharpness of the transition between the two regime arises from the near

vertical divergence of the free charged tRNA contribution.
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Appendix 4

Translation initiation

Translation initiation is also relatively complex compared to translation termination. In
contrast with other steps of the translation cycle, binding of factors necessary for the
process (IF1, IF2, IF3, initiator tRNA) do not occur in a strict sequential order, leading to
a "heterogeneous assembly landscape" (Gualerzi and Pon, 2015; Chen et al., 2016) more
complex to model. However, one assembly pathway is kinetically favored (Milon et al., 2012).
We take this favored assembly pathway as our kinetic scheme (Appendix 4 Figure 1, note
that binding of tRNA/mRNA are coarse-grained to a single even without loss of generality).
We provide some evidence below that taking a more complex assembly pathway would

minimally affect the predicted optimal initiation factor abundances.

Appendix 4 Figure 1. Simplified kinetic scheme for translation initiation. Reactions in dashed box

correspond to sub-system solved in detail first (section Sub-pathway without subunits joining).

Variables are labeled on the scheme.
The reactions in our simplified schemes are:

J
— R3ps + Rsos,

kg
Rys + [F3—— R,,

e
Ry + IF2—— R,,

k2
Ry + [F2—2 R,,,

kg
Ry + [F3—=5 R,

e
Ry; +IF1 Ri53,
kRN A
Ripz— Rigzp

G
Rizzm + Rsos—— Rprc>

Kini

Rpjc—= IF1+ IF2+ [F3,
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1439

1440

1441

1442

1443

1444

1445

1446

with corresponding mass action equations:

% =J = kg [Raos LT F2] = kg, P [Raos 1T F3],
% = KPR (IITF2] - K PRI F3],
% = KIP[Rys 1T F3] — kP2 [RIITF2),
% = KIP[R,ITF2] + kI P [RyTF3] - kP [ Ry, 1ITF 1Y,
% = ki (R ILF1] = Ky ol Rios .
w = ko alRins] — K95 [Rpyon I Rsgs .
% = 12 [Ryp3,)[Rsps] — K™ [Rpycl,
AlRsps] = T~ IS [R5, [ Rsps .
dt "
% = kP Ry U F11 + K24 [PIC],
d[QfZ] = —kIP2 ([Rygs] + [Ry]) [IF2] + k" [PIC]),
d[g{ﬂ = —kIP3 ([Rygs] + [Ry]) [TF3] + k" [PIC]),

and conservation equations:
IF1,, = [IF1]+[R»]+ [Rys,] + [Rp;cl,
IF2,, = [IF2]+ [Ry] + [Ry3] + [Rio3] + [Ryp3,] + [Rpcl,
IF3,, = [IF3]+4 [R;] + [Ro3] + [Ryp3] + [R5, ] + [Rpsc],
[Rsps] = [Ryps] + [Ryl + [R3] + [Ros] + [Ryg3] + [Ryp3 -

We assume the steady-state concentrations of small and large ribosomal subunits to be
equal.

Sub-pathway without subunits joining
The system of equation is complicated by the second branch of the pathway corresponding
‘rr koS
Zribo Ko
the large size of the ribosome and slower association rate constant for the large subunit
compared to the initiation factors again due to size), the effect of this branch is to add a
term to the optimal abundance equal to the concentration of species R,,,,, (see derivation in
section Pathway including subunits joining). We focus here on the solution of the part of the
reaction scheme boxed in Appendix 4 Figure 1. This sub-scheme corresponds to:

7
— Ryps,

to 50S subunit binding. However, in the regime < 1 (which is realized because of

iIF3
on
Rags + [F3—"— Rs,
2
Ry + IF2—— R,,
#IF2
on
R; + I F2—— R,3,
KF3
on
R, + IF3—— Ry,
WIF1

on

Ry; + [F1—— Ry3,

kRN A
Rip3—— Ry
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ARs] _ J = kP2 Ry T F2] — kPP [Rygs LT F3],

dt
% = kIF?[Rys LU F2] — kP3[R T F3],
% = kB[R ILTF3] - kP2 [Ry)[TF2],
% = kPRI F2] + kPP [RTF3] - KPRy F1),
% = kI [RyBILIF 1] — k gy 4[Ry3],
d[éf” = —k! [Ry1ITF11+ kpy a[R 31,
% = k! ([Rygs ]+ [RsDIT F2] + kg 4l Rpns s
d[;f 3 RIF([ Ry + [RyDITF3] + gy alRys ),

with conservation equations:
IF1,, = [IF1]+[Rx],
IF2,, = [IF2]+[Ry] + [Ry3] + [Rp].
IF3,, = [IF3]+ [Rs] + [Ry3] + [R53],

This system can be solved as with the previous schemes. In steady-state, we find for
concentrations in terms of the free concentrations [1 F2] and [ F3]:

J J J J
[Ri] = » UF11=1Fl, - s [Ryl= - » [Ryps] = = - :
kIFITFL] kLF2[IF2] + kIF3[1 F3]

k}{th inPJA

R k21 F2) J : kP31 F3] J
P RPUIF3 \ RPF21+RPITF3] ) RPIIF2) \ RPTF2]+ REFS[TF3] )

and the coupled equations for [I F2] and [I F3] that need to be solved:

kir11F2) J J J

IF2,, = [IF2] + - = = + - + , (41)
kIFS[TF3) \ kLF2[1F2] + k!F3[1F3] KIFTF1]  Krya
kKIF3[IF3]

IF3,,=[IF3]+ = - JA + = d + d .
kir2(1F2] \ kIF2[IF2) + kIF3[IF3] KIFITF1]  krna

As for translation termination (section Coarse-grained translation termination time) and
elongation (section Coarse-grained translation elongation time), summing the ribosome
containing species:

[R;,i] = [Ryps] + [Ry] + [R3] + [Ryz] + [Ryp3l,

1 1 1 1 1
- ~ ~ - % ~ + = + >
<k£{2[1F2] RUFS[IF3]  KF2[TF2]+kIF[IF3]  kLFIIF1] kana )

allows us to read the initiation time directly (recast in proteome fraction units):

1 1 1 1 1

- KIF2g/ree + KIF3 g/ B KIF2g/7 4 [ 1F3gpTree + KIFL/7ee * Kena
on IF2 on IF3 on IF2 on IF3 on IF1 LA

ini (42)
The above is the time can be used in the optimality condition (equation 5). Note that the
parallel nature of the reactions with IF2 and IF3 leads to a reduction compared to a purely
sequential pathway (negative term above decreasing the total initiation time, as expected if
multiple reactions can occur in parallel).

Given that binding of IF1 occurs last in this scheme, its free concentration takes a simple

form (qﬁ{ff = ¢ — é’&; )- In contrast, computing the free IF2 and IF3 concentrations

43 of 49



requires solving the non-linear coupled system, equations 41. Recasting these in units of

proteome fraction:
1F2 4 free
‘i ¢free j’fIFZ kan ¢1F2
IF2 — ¥YF2 free k,F2¢free free )

IF3 IF3
<f>kon ¢1F3 IF2 + kon ¢1F3
IF3 4 free
¢~7 ¢free Af1F3 kon ¢1F3
IF3 — W IF3 TF2 free TF2 pfree 1F3 pfree |
<f>kon ¢1F2 k ¢1F2 + kon ¢1F3
With @,y 1= ¢y — 22 — G2l and similarly for ¢, ;. We show now that the terms

(Okrya  (WLFI e

coupling the two equations for q,’:f;e; and ¢{;f; (bracketed above) are small at the optimum.

Indeed, based on results in simpler schemes (self-consistency confirmed below), we expect
at the optimum:

¢free,* ~ I’ﬂriboi* ¢free,* ~ l’ﬂribol*
IF2 (f)k’Fz IF3 (f)k”??’.

Hence, we expect the two terms at the optimum in the coupled equations above to compare
as (e.g., in the free IF2 equation):

Sreex IF3
¢IF2 friba k

( eim ) i | R
free,x
(EHe by s

coming from the large size of the ribosome compared to the initiation factors. In addition,
the derivative of the coupling terms, which appear in the optimality condition and therefore

*le
(OWKLE (7 )2
main term. This scales scales as 7, ¢} < 1 at the self-consistent solution. Hence, neglecting
the coupling is justified as an approximate solutions near the optimum, and we obtain for
the free concentrations of IFs:

> 1,

in identifying the optimal abundances, are all of the form compared to the

Z i
¢free =¢ _ IF ,
1 (O kg
¢free ~¢ _ fIFZJ’ _ fIFZJ’
IF2 ~ YIF2 free’
(O)krna  (£)kIFIgplTe
le:;j’ fIF3A

¢free ~ ¢ _ _ )
IF3 1F3 <f>kRNA <f>k£’{;1¢free

IF1

Substituting these in the expression for the initiation time, equation 42, and using the
optimality condition (equation 5, we find that no simple solution exist for the non symmetric
case of k!f2 + kI3, Since the on-rates should be similar for IF2 and IF3 (difference in size
should only lead to modest difference in on-rates coefficient, by roughly (£, /¢ r3)"/? ~ 1.7
assuming Stokes scaling), the symmetric case is approximately correct. We report the
symmetric solution for simplicity. The final optimal solutions for the three factors for the
sub-scheme solved here is:

Cripo fIFZ +71F3 Cip A
[ I [1 + + , (43)
1 <£>kIF1 rlbo (f)kzm
A*
rlbo 1F2 rlba IF2
¢’1F2

O ey \owi T ey

¢ rlbo fIFS fribo)’* l’pIF3/1*
5 @y ey \ @ T ey
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1522
1523
1524
1525

1526 The form of the solution is again similar to that derived for the simpler translation termi-

1527 nation scheme (c.f., equation 20), with three differences, each of which has an intuitive
1528 interpretation. First, the factor |1+ 2£2*155 | in the IF1 solution arises as a result of IF1 bind-
1529 ing being last in our initiation pathway. rlﬁdeed, IF1 concentration also influences free IF2 and
1530 IF3 concentration, leading to additional selective pressure to increase its abundance. In ef-
1531 fect, the molecular species waiting for IF1 to diffuse to its target is not only the ribosome, but
1532 the ribosome with IF2 and IF3 bound, and a total amino acid weight Z,,,, = .., + €152 + € 13-
1533 Second, the factor of 1/3/4 ~ 0.87 < 1 for IF2 and IF3 (corresponding to the symmetric case),
1534 arising from the parallel pathway for IF2 and IF3 rendering the process more efficient. We
1535 therefore see that the correction from having multiple reactions in parallel is modest (0.87
1536 vs. 1). The third difference to the simpler case of translation termination are the second
1537 terms for IF2 and IF3, corresponding to the additional delay incurred by binding of IF1. These
1538 come from the assumed sequential nature of our initiation scheme (Appendix 4 Figure 1). In
1539 such cases, factors binding earlier have to be present at higher abundances to account for
1540 their wait times for later binding events. The exact form of this correction term would be
1541 different for more complex assembly pathways (but would be captured by average delays
1542 from other factor binding).

1543 Pathway including subunits joining

1544 The solutions above (equations 43) are for the reduced scheme (boxed in Appendix 4 Figure 1).
1545 The full solutions includes the delay arising from 50S subunit binding. Including subunit
1546 joining requires the solution of an additional equation for the steady-state concentration of
1547 species with all three initiation factors, mRNA and initiator tRNA waiting for subunit joining
1548 (species R,,;, in Appendix 4 Figure 1, denoted ¢,,,,, in units of proteome fraction). The
1549 equation to solve for ¢,,,, can be obtained from the 50S ribosome subunit conservation
1550 equation:

. A _ A A A A A, D%
Kb KRGS KBTS KPS kPG KO Kava o fs

1554 ¢13, appears in the equations for the free concentration of the initiation factors (from the
1555 conservation equations), and also leads to the appearance of a new term in the expression
1556 for the initiation time ,,, (equation 42) corresponding to this step: Obimm

These two additions, resulting from the parallel branch of SOSjoining,ﬂgan be simplified due
to a separation of scales between the various terms. For large initiation factor concentrations,
the corresponding mass action terms in the equation for ¢,,,,, negligibly contribute to the
solution. In this regime, the new term involving ¢,,,,, in the initiation time t,,, does not
alter the form the optimal abundances of IF1, IF2, and IF3 beyond adding a constant term.
Hence, in the regime of high free IF concentration, the optimality condition has the same
form as derived in the previous section.We can therefore obtain ¢,,,, assuming large IF

concentration, denoted ¢, :

o =f30s I S B o 2+ (£)4
123m <f> 2kRNA 4 kRNA f30sk‘5;2$

This solution will be self-consistent provided (for all initiation factors):

7 O, e 1{ » \ (O
Treen & + = 12 + 505 °
kL’qu,') ’ krna ) 2krna 4 \ kpya f305k0n

1F
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It therefore suffices to show:

A* (€)Y A
free,x < 508 °
kgf brp C30skon

freex

Using our optimality condition on ¢ " (equation 43) assuming no contribution from ¢,,,,,
(self-consistency), and converting association rates in units uM~'s~!, the above condition
reduces to:

The self-consistency condition is met both because initiation factors are smaller than ribo-
somes 7, < ¢,,,, and because the on-rate for subunit joining is lower than initiation factor
binding (k%S < k!F), given again the size differences. The solution, including the contribution
from ribosome subunits joining is then:

- ZrivoA* 1+f1F2+f1F3 +£1Fl & +M 1 L
e (k! 4 Cas " () Nkpya k)’

ribo cat

[ 4 ., A* 4 & e
& \/g rib®” | Cira i U1 = 4 1F2 1 +.L. ’
4\ Okl (&) V(O L35 72" (€) \kgya KL,

cat

Cipgh* € Coph* €At
& \/E rib®” | U1r3 L DER g . 0 1 +L ,
AV @Ok () VO Caos 7" (€) \krwa ki,

cat

f-ng . 305 A*
where for kg, much faster than the association between the subunits, ¢, =~ 4/ <;>°5235.
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1590 Appendix 5

1501 Estimation of optimal abundances

1592 To compare prediction from our parsimonious framework (Table 2) requires specific values
1593 of kinetic parameters. We use empirical measurements together with scaling relations to
1504 estimate these kinetic parameters.

1595 Catalytic rates for many enzymes have been measured in vitro, but the obtained values
1596 can be sharply incompatible with kinetic parameters that have been measured in the cell.
1597 An example is the class tRNA synthetases. Tallying the measured k_,, for all wild-type E. coli
1598 aaRSs (Jeske et al., 2019), we find a median value of kjgtRS ~ 357!, and 80% of reported value
1599 below 6 s~!. The total molar concentration of aaRSs in the cell is comparable to the total
1600 number of ribosomes, and the per-step elongation speed of ribosome is above 15 s~! (Dai
1601 et al., 2016; Johnson et al., 2020). Hence, the absolute minimum catalytic rate to sustain the
1602 translation elongation flux needs to obey k“#S > 15 s~!, which is much higher than most
1603 in vitro measured values. To avoid the difficulties in estimating catalytic parameters, and
1604 to derive a lower bound on factor abundance from our model, we focus on the binding
1605 component (related to the associate rate) of our predictions, assuming large catalytic rates
1606 (kg = ).

1607 To estimate association rates I}on, we scaled the measured in vivo association rate for
1608 the ternary complex, I}(fnc = 6.4 uM-!s~! (Dai et al., 2016) by diffusion of the respective
1609 components, i.e., kA8 /kTC = (D, + Dp)/(Dr¢ + D,,), Where D, is the diffusion coefficients for
1610 the molecular species i. While the in vivo diffusion coefficient for a number of component
1611 of the translation apparatus exist (Bakshi et al., 2012; Sanamrad et al., 2014; Volkov et al.,
1612 2018; Plochowietz et al., 2017), several factors do not have measured diffusion coefficients.
1613 For these, we used the cubic root scaling from the Stokes-Einstein relation (Nenninger et al.,
1614 2010), see Appendix 5 Table 1.

1615 To motivate this approach, we can compare for the ternary complex the measured I}(fnc to
1616 the simple Smoluchowski relation corresponding to the diffusion-limited association rate
1617 constant for perfectly absorbing spheres: k4 = 4z DR, where D is the relative diffusion
1618 coefficients of the two reactants and R the capture radius. Diffusion coefficients of various
1619 proteins of different sizes have been measured in the cell (Elowitz et al., 1999; Kumar et al.,
1620 2010; Nenninger et al., 2010), including for components of the translation machinery (Bakshi
1621 etal., 2012; Sanamrad et al., 2014; Plochowietz et al., 2017; Volkov et al., 2018). In particular,
1622 Volkov et al report an EF-Tu diffusion coefficient (and a similar measurement for a major
1623 diffusive state of tRNAs) of ~ 3 um?s~!. Since ribosomes are nearly immobile, this can be used
1624 in an estimate of k%, Taking R ~ 2 nm (Klumpp et al., 2013) as the rough size of the capture
1625 radius for the ternary complex, we get k”<4¥ ~ 45 uM~'s~!. In vivo estimates based on kinetic
1626 measurements of elongation (Dai et al., 2016) find I}oTnC = 6.4 uM~'s~!. Multiple features likely
1627 explain this difference, notably as orientational constraints (Schlosshauer and Baker, 2004),
1628 finite off-rate possibly requiring multiple binding events before productive encounter, or
1629 possibly because the ternary complex needs to sample multiple non-cognate sites to find
1630 a cognate target thereby slowing its diffusive search. This comparison emphasizes that
1631 the idealized diffusion-limited Smoluchowski regime is not physiologically applicable, and
1632 motivates our scaling approach. The later comes at the price of assuming similar molecular
1633 properties leading to decrease of the association rates for the other tIFs. These could be
1634 further refined via e.g., structural modeling (Schlosshauer and Baker, 2004), or upon new in
1635 vivo rate constant measurements.

Additional measured quantities required to compute our estimates are: the measured
growth rate 1* = 5.5 x 10~* s~! (21 min doubling time, average of fast growth conditions), the
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tRNA concentration (estimated from the tRNA to ribosome ratio of 6.5 (Dong et al., 1996)
using: tRNA, , = (tRNA/ribo),.,,P/¢.,), the maximum per-codon elongation rate, excluding
ternary complex diffusion, k7 = 22 s™! (Dai et al., 2016) (used to estimate the number of
tRNAs sequestered on ribosomes and therefore the excess tRNA number in the optimum for
aaRs, see equations 18 and 38), the in-protein amino acid concentration P = 2.6 M (Klumpp
et al., 2013; Bremer and Dennis, 2008).

For the fast growth average, results displayed in Figure 4 listed in Supplementary File 2.
Additional predictions in individual conditions are shown in Figure 4-Figure supplement 1,
with numerical values for measured and predicted values listed in Supplementary Files 1 to 4.
For predictions in different growth conditions/species, we used used the measured growth
rates in the corresponding conditions (values listed in Supplementary Files 1 and 3), and
association rate constants estimated based on E. coli data (Appendix 5 Tables 1 to 3), and the
tRNA abundance (only needed for the prediction of aaRS) at the corresponding growth rate
in E. coli from (Dong et al., 1996). As a result of the lack of quantitation of tRNA abundance
in other species, these values were used for B. subtilis, V. natriegens and C. crescentus, and
should be interpreted with caution given possible difference in cellular physiology for these
species.

ribo

Factor Number of codon per protein | Diffusion coefficient (um? s!)
Ribosome rivo = 1336 D,;;, = 0.05+0.01
30S subunit 305 = 3108 D gupunirs = 0.2 £ 0.1
TC Crc = 6307 Dy =3+05
tRNA N/A Digna=8+1
— - 3 lrc
IF1 Crp1 =72 Dip; = Dre e
IF2 1y = 890 D,F2=DTC3 i

IF3 ¢ rr3 =180 D;p3 = Dpcs

S S
a3

EF-G fg =104 D¢ = Drc{/%
EF-Ts £ry =283 Dr, = Drc{/ 7€
EF-Tu Cr, =394 Dr, = Drc{) 7<
aaRS € oars = 9871 Dyors = DTC@
RF1/RF2 rpr =362 Dppr = Dri| 7
RF4 Crig = 185 Drps = DTci/%

Appendix 5 Table 1. Protein sizes (number of codons) and diffusion coefficients. Unless otherwise
noted, number of codons per protein are taken for E. coli (Keseler et al., 2016) (ribosome size taken
from (Wittmann, 1982)). #For the ternary complex, the total mass of tRNA+EF-Tu was converted to an
equivalent amino acid length for the diffusion constant scaling estimate. "For aaRs, the size for the
summed aaRSs is, from the coarse graining, £ ,,rs = X; Gaars.i/ 2i(Paars.i/ € aars.i) here with proteome
fractions estimated from ribosome profiling (Li et al., 2014) in E. coli and sizes accounting for varying
complex stoichiometries. Measured diffusion coefficients are taken from: (Bakshi et al., 2012;
Sanamrad et al., 2014) for the ribosome, from (Plochowietz et al., 2017; Volkov et al., 2018) for tRNAs,
and from (Volkov et al., 2018) for the TC.
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Factors involved in reaction Variable | Used expression for association rate constant
Ternary complex and ribosome fcoTnC 6.4 + 0.6 uM~1s=1 (Dai et al., 2016)
EF-G and ribosome kS KI'C(Dg + D,ipo)/(Drc + Dyiny)
aaRS And tRNAs 2R K€D, g 4 + Duars)/(Drc + Dyipy)
EF-Ts and ribosome kls K€Dy + Dyipy) /(D + Dyipy)
e EF-Tu and tRNAs kT I}OTnC(D,RN A+ D)/ (Dre + D)
IF1 and 30S subunit kL KLC(Dypy + Dyypunis)/ (Dre + Dyigy)
IF2 and 30S subunit I K€Dy gy + Dygypunin)/ (D + Dyig)
IF3 and 30S subunit (e KI'C(Dy g3 + Dgypunin)/(Drc + Dyiy)
50S and 30S subunits o) K€D upumic + Dsupunit)/ (D + Dyiny)
RF1/RF2 and ribosome kREL KLC(Dgpy + Dyipy)/(Drc + Dyipy)
RF4 and ribosome T kI'C(Dgpy + Dyigo)/(Dre + Diyipy)
1667 Appendix 5 Table 2. Expression used to estimate the association rate constants for our predictions
1668 (Table 2). Diffusion coefficients are listed in Appendix 5 Table 1.
Parameter Value Description
P 26+05M In-protein amino acid concentration in the cell.
A (5.5+0.6)x 107 s~! | Average fast growth, see Supplementary File 1.
(£) 200 + 10 Average number of codons per protein (equation 16).
Mgy 20+2 Rescaling factor in elongation model (see equation 26).
ke 22+2s7! Maximal translation elongation rate.
V1+6 1.05 +0.01 Factor in three stop codon model (see equation 23)
1670 t :=tRNA/ribosome | 6.5to 11 Values taken listed in Supplementary Files 2 and 4.
o tRNA,,, 1Prino P/ vivo Total tRNA abundance, estimated from tRNA/ribosome.
1672 Appendix 5 Table 3. Additional parameters used to obtain numerical values for predictions. For the
1673 doubling times (growth rates) and tRNA to ribosome ratios used for in individual growth conditions
1674 considered, see Supplementary Files 2 and 4. P is taken from (Klumpp et al., 2013), k** from (Dai
1676 et al., 2016), and the tRNA/ribosome ratios from (Dong et al., 1996).
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Figure 3-Figure supplement 1. Geometrical interpretation of the sharpness of the separation of
the aaRS limited and EF-Tu limited regimes. Each graph corresponds to a different combination
of aaRS and EF-Tu abundance. The solution for ¢, (yellow circle) corresponds to the intersection
of the full (tRNA budget minus TC concentration and ribosome bound tRNAs) and dashed (all
remaining tRNA contributions) black lines. Red and pink lines correspond to the free uncharged
and charged tRNAs respectively. Because of the rapid divergence of the free charged tRNA term
(red) at ¢rc = dr,, the system shifts from being limited by aaRS-limited (pink line intersecting full
black line) to being EF-Tu limited (red line intersect full black line) over a very narrow range in aaRS
or EF-Tu expression change. The central graph corresponds to the abundance of EF-Tu and aaRS
matched (no unbound charged tRNAs or EF-Tu), and falls on the transition line of Figure 3
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Figure 4-Figure supplement 1. Measured (ribosome profiling) and predicted (diffusion-limited
estimates) proteome fraction for core translation factors in individual conditions corresponding
to different ribosome profiling datasets included in our analysis (see Supplementary Files 1 to
4). Doubling time for each condition is indicated. (A) individual fast growing species (see Figure 4
for the average). (B) Slower growth conditions in E. coli. (C) C. crescentus datasets. Predictions of
aaRs in species other than E. coli are marked by # to indicate that we used E. coli tRNA abundance
measurements from (Dong et al., 1996) to make prediction for this tIF these other species.
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Figure 4-Figure supplement 2. Expression stoichiometry of core translation factors in different
species and at different growth rates. (A) Comparison of measured (ribosome profiling) proteome
fraction for core translation factors across different species and growth conditions (same conditions
as Figure 4-Figure supplement 1). All conditions are compared to the E. coli RDM dataset (reference:
ref, condition of interest: i). Dotted line correspond to ¢, = ¢,,,, dashed line to ¢, = (4,/A,./)P,.s
and full black line to ¢, = \/4,/4,,,¢,., (the parameter free prediction from the binding-limited
regime of the model, optimal abundance « V. Orange line corresponds to the one parameter fit
log ¢, = @, + log ¢, (excluding aaRS, not expected to follow the square root scaling, and ribosomes),
corresponding to the scaling of all factor’s abundance. (B) Best one-parameter fit «; (scale factor)
from (A) as a function of the growth rate ratio 4,/4,,,. Square root scaling: full line. Linear scaling:
dashed line. Uncertainties on the growth ratio are propagated from uncertainties of the respective
growth rates. Uncertainties in «, are 95% confidence interval from the linear fits in (A).
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