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7

Abstract Enzymatic pathways have evolved uniquely preferred protein expression stoichiometry8

in living cells, but our ability to predict the optimal abundances from basic properties remains9

underdeveloped. Here we report a biophysical, first-principles model of growth optimization for10

core mRNA translation, a multi-enzyme system that involves proteins with a broadly conserved11

stoichiometry spanning two orders of magnitude. We show that predictions from maximization of12

ribosome usage in a parsimonious flux model constrained by proteome allocation agree with the13

conserved ratios of translation factors. The analytical solutions, without free parameters, provide14

an interpretable framework for the observed hierarchy of expression levels based on simple15

biophysical properties, such as diffusion constants and protein sizes. Our results provide an16

intuitive and quantitative understanding for the construction of a central process of life, as well as a17

path toward rational design of pathway-specific enzyme expression stoichiometry.18

19

Introduction20

A universal challenge faced by both evolution and synthetic pathway creation is to optimize the21

cellular abundance of proteins. This abundance optimization problem is not only multidimensional22

– often involving several proteins participating in the same pathway – but also under systems-wide23

constraints, such as limited physical space (Klumpp et al., 2013) and finite nutrient inputs (You24

et al., 2013). The complexity of this problem has prevented rational design of protein expression for25

pathway engineering (Jeschek et al., 2017). Fundamentally, being able to predict the optimal and26

observed cellular protein abundances from their individual properties would reflect an ultimate27

understanding of molecular and systems biology.28

Evolutionary comparison of gene expression across microorganisms suggests that basic prin-29

ciples governing the optimization problem may exist. We recently reported broad conservation30

of relative protein synthesis rates within individual pathways, even under circumstances in which31

the relative transcription and translation rates for the homologous enzymes have dramatically32

diverged across species (Lalanne et al., 2018). Moreover, distinct proteins that evolved convergently33

towards the same biological function also displayed the same stoichiometry of protein synthesis34

in their respective species. These results suggest that the determinants of optimal in-pathway35

protein stoichiometry are likely modular and independent of detailed biochemical or physiological36

properties that differ across clades. However, the precise nature of such determinants remains37

unknown.38

Translation of mRNA into proteins is a central pathway required for cell growth and therefore39

serves as an entry point for establishing a quantitative model of growth-optimized in-pathway40

stoichiometry. As a group, the total amount of translation-related proteins per cell mass linearly41

increases with growth rate in most conditions (Scott et al., 2010; Dai et al., 2016; Schaechter42
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et al., 1958), a relationship considered a bacterial ‘growth law’. In addition to ribosomes which43

have well-coordinated synthesis of subunits (Nomura et al., 1984), the translation pathway is44

comprised of nearly 100 protein factors involved in facilitating ribosome assembly, translation45

initiation, elongation, and termination (Marintchev and Wagner, 2004; Dever and Green, 2012;46

Rodnina, 2018). The intracellular abundances of these factors vary over 100-fold (Pedersen et al.,47

1978; Li et al., 2014), and their ratios are often maintained in different growth conditions and48

across different species (Lalanne et al., 2018). What dictates the observed stoichiometry among49

translation factors is less understood. Early studies predicted expression of the highly expressed50

elongation factor Tu (EF-Tu) relative to the ribosome (Klumpp et al., 2013; Ehrenberg and Kurland,51

1984) by maximizing translational flux per unit proteome. More recently, expression of several52

other components involved in the elongation step (ribosomes, tRNA, mRNA, EF-Tu, and EF-Ts) was53

predicted by minimizing the total mass of the components at a fixed translational flux (Hu et al.,54

2020). The selective pressure on expression levels remains to be determined for most members of55

the translation machinery, including initiation and termination factors that are much more lowly56

expressed and often assumed to be non-limiting.57

Here we sought to derive an intuitive model to understand the quantitative abundance hierarchy58

(Figure 1B) among the core translation factors (tlFs), which have well-characterized functions (Table 1,59

schematic in Figure 1A). Our goal is not to exhaustively model the heterogeneous movement of60

ribosomes on the transcriptome (Shaw et al., 2003; Reuveni et al., 2011; Subramaniam et al., 2014;61

Dykeman, 2020) or to include as many details of the underlying molecular steps as possible (Hu62

et al., 2020; Vieira et al., 2016). Instead, we coarse-grained global translation into a cycle that63

consists of sequential steps with interconnected fluxes that depend on core tlFs concentrations.64

At steady-state cell growth, all individual fluxes are matched and the overall rate of ribosomes65

completing the full translation cycle is proportional to cell growth. By solving for the maximum66

flux under proteome allocation constraints, we obtained analytical solutions for the optimal factor67

concentrations, which agree well with the observed values. The ratios of optimal concentrations68

depend only on simple biophysical parameters that are broadly conserved across species. For69

instance, elongation factor EF-G is predicted to be more abundant than initiation and termination70

tlFs by a multiplicative factor of ≈
√

average number of codons per protein ≈ 14, whereas EF-Tu is71

predicted to be more abundant than EF-G by a factor of ≈
√

number of different amino acids ≈ 4.72

These results, arising from the optimization procedure and generic properties of the translation73

cycle, provide rationales for the order-of-magnitude expression of these important enzymes.74

Results75

Problem statement and model formulation76

Our overall goal is to determine the growth-optimizing proteome allocation for the core translation77

factors. Conceptually, varying tlF concentrations has two opposing effects on cell proliferation. At78

the biochemical level, high tlF expression can facilitate growth by allowing more efficient usage of79

ribosomes. At the systems level, increased tlF expression can nonetheless limit growth by reducing80

the number of ribosomes and other proteins that can be produced. The tradeoffs between various81

tlFs and ribosomes create a multidimensional optimization problem.82

We solve this multidimensional problem by treating translation as a dynamical system, in which83

ribosomes cycle through initiation, elongation, and termination. The resulting flux drives cell84

growth. During steady-state growth, every interlocked step of the translation cycle must have the85

same ribosome flux that is specified by the growth rate. We show that at the growth optimum,86

concentrations for distinct tlFs can be solved independently. The resulting analytical solutions can87

be expressed in terms of the growth rate and simple biophysical parameters.88
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Table 1. Brief description of the function of core translation factors considered. For reviews of mRNA

translation, see (Rodnina, 2018; Chen et al., 2016).

Step Factor Function

Initiation IF1 Initiation factor 1: binds to 30S ribosome subunits to facilitate initiator tRNA

binding (Laursen and Sørensen, 2005; Gualerzi and Pon, 2015).
Initiation IF2 Initiation factor 2: ribosome-dependent GTPase interacting with 30 ribosome

subunits, ensures correct binding of initiator tRNAs (Laursen and Sørensen,
2005; Gualerzi and Pon, 2015).

Initiation IF3 Initiation factor 3: prevents premature docking of 50S ribosomal subunits

(Laursen and Sørensen, 2005; Gualerzi and Pon, 2015).
Elongation EF-Tu Elongation factor Tu: binds to charged tRNAs to form ternary complexes, brings

charged tRNAs to empty ribosome A sites. (Weijland et al., 1992; Agirrezabala
and Frank, 2009; Andersen et al., 2003)

Elongation aaRS tRNA synthetases: charge tRNAs with cognate amino acids (Ibba and Dieter,
2000; Pang et al., 2014).

Elongation EF-G Elongation factor G: catalyzes translocation steps of the ribosome after peptide

bond formation (Andersen et al., 2003; Agirrezabala and Frank, 2009).
Elongation EF-Ts Elongation factor Ts: nucleotide exchange factor for EF-Tu (Agirrezabala and

Frank, 2009; Andersen et al., 2003).
Termination RF1/RF2 Peptide chain release factors 1 and 2: recognize stop codon and hydrolyze

the completed protein. RF1 recognizes UAA, UAG, and RF2 UAA, UGA (Bertram
et al., 2001).

Termination RF4 Ribosome recycling factor: catalyzes the dissociation of ribosome subunits

following peptide chain release in translation termination (Bertram et al.,
2001).

Cell growth driven by tlF-dependent ribosome flux89

To describe the biochemical effects of tlF concentrations on cell growth, we first introduce a90

coarse-grained translation cycle time τtl, or the time it takes for a ribosome to complete a typical91

cycle of protein synthesis (Figure 1A), which consists of three sequential steps: initiation ("ini"),92

elongation ("el"), and termination ("ter"). Each of these steps is catalyzed by multiple tlFs. The full93

translation cycle time is then sum of ribosome transit times at the three steps (τtl = τini + τel + τter),94

whose dependence on individual tlF concentrations can be quantitatively described through mass95

action kinetic schemes (schematically depicted in Figure 1A, see Appendices 2, 3, and 4 for details96

and examples below). We express tlF concentrations in units of proteome fractions (dry mass97

fraction of a specified protein to the full proteome), denoted by � (Scott et al., 2010) (Materials and98

Methods, section Conversion between concentration and proteome fraction). Using this notation,99

the translation cycle time τtl is a decreasing function of various tlFs concentrations (
{

�tlF ,i
}

).100

In addition to its dependency on tlF concentrations, the translation cycle time provides a bridge101

between the cell growth rate and ribosome concentration. In steady-state growth (Monod, 1949;102

Scott et al., 2010; Dai et al., 2016), the growth rate of cells and of their protein content (total103

number of proteins) must be identical, denoted here as �, as a result of the constant average104

cellular composition. The protein content grows at a rate determined by the flux of active ribosomes105

completing the translation cycle, that is Nact
ribo∕τtl, where N

act
ribo is the number of active ribosomes106

per cell, divided by the total number of proteins NP per cell: � = Nact
ribo∕τtlNP . Active ribosomes107

are defined as those functionally engaged in, and cycling through, the initiation, elongation, and108

termination reactions of peptide synthesis. Rescaling to the total mass fraction (Materials and109

Methods, section Conversion between concentration and proteome fraction) of proteome for active110

ribosomes (�actribo) yields111

� =
�actribo
τtl

⟨l⟩
lribo

, (1)

where lribo is the number of amino acids in ribosomal proteins and ⟨l⟩ is the average number of112

codons per protein, weighted by expression levels (Materials and Methods, section Average number113
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Figure 1. The hierarchy of mRNA translation factor expression stoichiometry. (A) Multiscale model relating

translation factor expression to growth rate. The growth rate � is directly proportional to the active ribosome
content (�actribo) in the cell and inversely proportional to the average time to complete the translation cycle τtl ,
consisting of the sum of the initiation (τini), elongation (τel), and termination (τter) times. Each of these reaction

times are determined by the translation factor abundances. On average, the elongation step is repeated around

⟨l⟩ ≈ 200× to complete a full protein, compared to 1× for initiation and termination. Our framework of flux
optimization under proteome allocation constraint addresses what ribosome and translation factor

abundances maximize growth rate. (B) Measured expression hierarchy of bacterial mRNA translation factors,

conserved across evolution. Horizontal bars mark the proteome synthesis fractions as measured by ribosome

profiling (Lalanne et al., 2018) (equal to the proteome fraction by weight for a stable proteome) for key mRNA
translation factors in B. subtilis (Bsub), E. coli (Ecol), and V. natriegens (Vnat) and are color-coded according to the
protein (or group of proteins) specified. Triangles (◀) on the right indicate the mean synthesis fraction of the
protein in the three species. See Table 1 for a short description of the translation factors considered.

Figure 1–source data 1. Synthesis fractions in (B) can be found in Supplementary File 1.

of codons per protein: ⟨l⟩). The rescaling factor (lribo∕⟨l⟩ ≈ 7300∕200 = 36.5) is approximately114

constant across growth conditions (Matrials and Methods, section Average number of codons per115

protein: ⟨l⟩). This equation establishes how tlF concentrations affect the growth rate biochemically116

via τtl.117

We note that equation 1 is a generalized form of the bacterial growth law that relates the118

mass fraction of elongating ribosomes to growth rate (� =
�elribo
τel

⟨l⟩

lribo
= 
�elribo, where 
 is a rescaled119

translation elongation rate and �elribo is the proteome fraction of actively translating ribosomes (Scott120

et al., 2010; Dai et al., 2016; Scott et al., 2014)). This classic growth law was derived by considering121

the steady-state flux of peptide bond formation by elongating ribosomes, whereas our model122

focuses on the flux of ribosomes that traverse the entire translation cycle, thereby allowing us to123

consider the effects of translation factors and ribosomes engaged in additional steps (initiation,124

elongation, and termination). For each step, equation 1 can be extended to show that the growth125

rate is similarly proportional to the mass fraction of the corresponding ribosomes divided by the126

transit time at that step (Materials and Methods, section Equality of ribosome flux in steady-state).127

Steady-state growth thus imposes the requirement that the growth rate be inversely proportional128

to the translation cycle time and proportional to the number of active ribosomes engaged in129

the translation cycle (equation 1). Inactive ribosomes, comprised of assembly intermediates,130

hibernating ribosomes, or otherwise non-functional ribosomes, have been found to constitute131
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a small fraction (≈5%) of the total ribosome pool for fast growth (Lindahl, 1975; Dai et al., 2016).132

Based on equation 1, both increasing ribosome concentration and increasing tlF concentrations133

(which decreases τtl) can accelerate growth. However, production of ribosomes and tlFs is subject134

to competition under a limited proteomic space, which we consider next.135

Optimization under proteome allocation constraint136

To model the production cost tradeoff between tlFs and ribosomes, we integrate the flux-based137

formulation above with a proteomic constraint. Assuming that components of the translation138

machinery together accounts for a fixed fraction of proteome, i.e., the ‘translation sector’ �tl139

(denoted �R in the context of growth laws (Scott et al., 2010)), the proteome fraction for active140

ribosomes is related to the proteome fraction for translation factors via141

�actribo = �tl − �
inact
ribo −

∑

i
�tlF ,i. (2)

Equations 1 and 2, together with to the kinetic schemes for each step of the translation cycle,142

constitute the core of our model. Combining the biochemical effects (equation 1) and the systems-143

level constraints (equation 2) on tlFs, we arrive at a self-contained relationship between growth and144

tlF concentrations:145

� =
�tl − �inactribo −

∑

i �tlF ,i
τtl(

{

�tlF ,i
}

)
⟨l⟩
lribo

, (3)

where we explicitly express τtl as a function of �tlF ,i to reflect the dependence of ribosome transit146

times on translation factor abundances. The above relationship (equation 3) allows us to ask: what147

is the stoichiometry of tlFs, or partitioning of the translation sector, that maximizes the growth rate148

(Figure 1A)?149

The condition for the optimal TF abundances, i.e., the set of �tlF ,i that satisfies
(

)�∕)�tlF ,i
)∗ = 0,150

can be obtained by considering the �tlF ,i as independent variables and taking the derivative of151

equation 3 with respect to a specified tlF abundance. Under the assumptions that the translation152

sector (�tl) and the proteome fraction for inactive ribosomes (�inactribo ) are both fixed in a given external153

nutrient condition, this yields154
(

)τtl
)�tlF ,i

)∗

= −
⟨l⟩
lribo

1
�∗
, (4)

where the asterisk refers to the growth optimum within our model, i.e.,
(

)�∕)�tlF ,i
)∗ = 0. Hence, un-155

der this framework, the tlF abundances are growth-optimized when the sensitivity of the translation156

cycle time to changing the considered tlF abundance ()τtl∕)�tlF ,i) reaches a value determined solely157

by the growth rate and protein size factors. We emphasize that the derivative above corresponds to158

a perturbation scenario in which the tlF abundance is changed while maintaining fixed the total159

proteomic resources to the translation sector, as prescribed by our optimization procedure. As160

such, it does not correspond an actual perturbation easily realizable experimentally.161

Although equation 3 and the resulting optimization conditions (equation 4, one for every tlF)162

corresponds to a coupled nonlinear system of multiple �tlF ,i, substantial decoupling occurs at the163

optimal growth rate. In this situation, most �tlF ,i are only connected through the resulting growth164

rate. The optimization problem is then further simplified by the fact that the translation cycle165

consists of sequential and largely independent steps. The translation cycle time τtl corresponds to166

the sum of the coarse-grained initiation, elongation, and termination times, i.e., τtl = τini + τel + τter.167

Given that each tlF is involved in a specific molecular step, the sensitivity matrix of these times168

to tlF concentration is sparse:
(

)τj∕)�tlF ,i
)∗ = 0 for most combinations of τj and �tlF ,i. This lack169

of ‘cross-reactivity’ expresses that, for example, the initiation time τini is unaffected by the tRNA170

synthetase concentration. This sparsity only occurs at the optimal expression levels, as the transit171

times typically depend on the growth rate (see an example in section Non binding-limited regime172

(one stop codon)) and )�∕)�tlF ,i ≠ 0 away from the optimum. The optimum condition for factor i173
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then simplifies to:174

( )τj
)�tlF ,i

)∗

= −
⟨l⟩
lribo

1
�∗
, (5)

where j above denotes the translation step(s) that tlFi participates in. This leads to simplifications175

that allow the system to be solved analytically in most cases: instead of solving the full system at176

once, individual reactions within the translation cycle can be considered in isolation. The resulting177

optimal concentrations are connected via the growth rate �∗. Interestingly, the optimal stoichiometry178

among most tlFs is independent of �∗ if the reactions are in the binding-limited regime, as we show179

below.180

Case study: Translation termination181

We first illustrate the process of solving for the optimal tlF concentration for the relatively simple case182

of translation termination. The principles used here and the form of solutions provide conceptual183

guideposts for solving other steps of the translation cycle.184

In bacteria, translation termination (Bertram et al., 2001) consists of two distinct, sequential185

steps: (1) stop codon recognition and peptidyl-tRNA hydrolysis catalyzed by class I peptide chain186

release factors RF1 and RF2, followed by (2) dissociation of ribosomal subunits from the mRNA, i.e.,187

ribosome recycling, catalyzed by RF4. We do not explicitly consider the additional factors (e.g., RF3188

and EF-G) due to their lack of conservation or because they are non-limiting for this specific step189

(Appendix 2, section Omitted molecular details). RF1 and RF2 have the same molecular functions190

but recognize different stop codons (Scolnick et al., 1968): RF1 recognizes stops UAA and UAG,191

whereas RF2 recognizes UAA and UGA. For simplicity, we describe here a scenario where RF1 and192

RF2 have no specificity towards the three stop codons, which allows us to combine them in a single193

factor (denoted RFI). The model is readily generalized, with similar results, to the case of the two194

RFs with their specificity towards the three stop codons (Appendix 2, section Full three stop codons195

model).196

Under a coarse-grained description, the total ribosome transit time at termination τter can be197

decomposed into a sum of peptide release time and ribosome recycling time. In the treatment198

below, we consider a regime of binding-limited reactions for simplicity (rapid catalytic rate). A199

full model with catalytic components can also be solved analytically (Appendix 2, section Non200

binding-limited regime (one stop codon), Figure 2A). In the binding-limited regime (kcat →∞), the201

peptide release time and ribosome recycling time are inversely proportional to the corresponding202

tlF concentrations:203

τter =
1

kRFIon �RFI
+ 1
kRF4on �RF4

, (6)

where the association rate constants kion are rescaled by the factor’s sizes in proteome fraction units204

(Materials and Methods, section Conversion between concentration and proteome fraction). The205

above expression constitutes the solution of the mass action scheme for termination, connecting206

factor abundances to termination time.207

The termination time (equation 6) can then be directly substituted into the optimality condition208

(equation 5) and solved in terms of �∗:209

�∗RFI =

√

lribo�∗

⟨l⟩kRFIon
, �∗RF4 =

√

lribo�∗

⟨l⟩kRF4on
. (7)

If the reactions are not binding-limited, an additional catalytic term ∝ �∗∕kcat is added to the210

minimally required levels above (Appendix 2, section Non binding-limited regime (one stop codon)).211

The square-root dependence in the optimal RF concentrations emerges from the �−1i dependence212

of τi, e.g., for ribosome recycling τrecyc ∝ �−1RF4, which becomes (�
∗
i )
−2 upon taking the derivative213

in the optimality condition (equation 5). The square root is then obtained by solving for �∗i . A214

similar square-root dependence has been noted in optimization of the ternary complex and tRNA215
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Figure 2. Case study with translation termination (A) Coarse-grained translation termination scheme. (B)

Illustration of the minimization of effective proteome fraction corresponding to peptide chain release factors,

leading to the equipartition principle.

abundances (Ehrenberg and Kurland, 1984; Berg and Kurland, 1997). Analysis of tlF expression216

across slower growth conditions supports the derived square root dependence (Figure 4-Figure217

supplement 2). As a result of the square-root, the optimal RF concentrations are weakly affected218

by biophysical properties such as the association rate constants and protein sizes. In the binding-219

limited regime above, the ratio of the optimal concentrations between RFI and RF4 is independent220

of the growth rate and only depends on the kinetics of binding.221

As a side note, the expression for termination time τter in equation 6 must be modified in a222

regime where ribosomes are frequently queued upstream of stop codons. This would occur if223

the termination rate were slow and approached initiation rates on mRNAs (Bergmann and Lodish,224

1979; Lalanne et al., 2021). In this regime, queues of ribosomes at stop codons would incur an225

additional time to terminate. In a general description, the resulting additional termination time can226

be absorbed in a queuing factor : τfullter ∶= τter (τter) (Appendix 1 for derivation and discussion).227

The resulting nonlinearity would forbid the decoupling in the optimization procedure between RFI228

and RF4. Although absolute rates of termination are difficult to measure in vivo, translation on229

mRNAs is generally thought to be limited at the initiation step (Laursen and Sørensen, 2005), and230

consistently, ribosome queuing at stop codons in bacteria is not usually observed (except under231

severe perturbations, e.g., (Kavčič et al., 2020; Baggett et al., 2017; Mangano et al., 2020; Saito232

et al., 2020; Lalanne et al., 2021)). In the physiological regime of fast termination, the queuing factor233

converges to 1, yielding simple solutions that depend only on biophysical parameters (equations 7).234

Equipartition between tlF and corresponding ribosomes235

The optimal tlF concentrations (e.g., equation 7) can also be intuitively derived from another236

viewpoint. For each reaction in the translation cycle, we can define an effective proteome fraction237

allocated to that process, combining the proteome fractions of the corresponding tlF and the238

ribosomes waiting at that specific step. As an example, for the case of peptide chain release factor239

(RFI) just treated, the effective proteome fraction includes the release factors and ribosomes with240

completed peptides waiting at stop codons (dashed box in Figure 2A), i.e., �effRFI ∶= �RFI + �
stop
ribo . This241

effective proteome fraction corresponds to the total proteomic space associated to a tlF in the242

context of the translation cycle.243

During steady-state growth, the concentration of ribosomes waiting at any specific step of the244

translation cycle is equal to the total active ribosome concentration multiplied by the ratio of the245

transit time of that step to the full cycle: e.g., here �stopribo =
τstop

τtl
�actribo, where τstop = 1∕(k

RFI
on �RFI ) is the246

time to arrival of RFI. Using equation 1 for �actribo, the effective proteome fraction satisfies:247

�effRFI ∶= �RFI + �
stop
ribo = �RFI +

1
�RFI

�
kRFIon

lribo
⟨l⟩

≥ 2

√

�
kRFIon

lribo
⟨l⟩

.
(8)

In the last line, we used the inequality of arithmetic and geometric means (a + b ≥ 2
√

ab) to obtain248
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the minimum of the effective proteome fraction. The equality holds when the two proteome249

fractions are equal (�RFI = �
stop
ribo ), which provides the solution for optimal �RFI :250

�∗RFI =

√

lribo�∗

⟨l⟩kRFIon
, (9)

Hence, we recover equation 7 by minimizing the effective proteome fraction allocated to a given251

process in the translation cycle (the above argument applies to the optimal free concentration252

in the non-binding limited regime, see Appendix 2, section Non binding-limited regime (one stop253

codon) for an example). From this perspective, optimization of the translation apparatus balances254

the production cost of the enzyme of interest with the improved efficiency of a having less ribo-255

somes idle at that step, Figure 2B. The optimal abundance in our model corresponds to a point256

of equipartition: the proteome fraction of free cognate factors equals the proteome fraction of257

ribosomes waiting at the corresponding step (Figure 2B).258

Case study: Ternary complex and tRNA cycle (EF-Tu and aaRS)259

We next consider a more complex step of the translation cycle – elongation – and demonstrate260

that the optimality criterion (equation 5) can similarly provide simple analytical solutions in the261

physiologically relevant regime. Translation elongation involves multiple interlocked cycles (one262

for each chemical species) and enzymes (EF-Tu, EF-G, EF-Ts, aminoacyl-tRNA synthetases (aaRS),263

and more). Our simplified kinetic scheme for translation elongation is shown in Figure 3A: charged264

tRNAs are brought to ribosomes through a ternary complex (TC), corresponding to a bound tRNA265

and EF-Tu. Following tRNA delivery and GTP hydrolysis, EF-Tu is released from the ribosome, and266

nucleotide exchange factor EF-Ts recycles EF-Tu back into the active pool, after which EF-Tu can267

bind a charged tRNA again and form another TC. At the ribosome, translocation to the next codon268

is catalyzed by EF-G, followed by release of uncharged tRNAs. Aminoacyl-tRNA synthetases then269

charge tRNAs to complete the elongation cycle.270

To reduce the complexity due to different tRNA isoacceptors and aaRSs, we self-consistently271

coarse-grained the translation elongation cycle to have a single codon (derived in Appendix 3,272

section Coarse-grained one-codonmodel). The resulting model harbors a single effective species for273

tRNA, aaRSs, and TCs, respectively. A rescaling factor (1∕naa ≈ 1∕20, estimated in section Estimation274

of coarse-grained rates) arises in the procedure to decrease the rates of codon specific reactions275

and can be attached to either the respective rate constants or chemical species concentrations.276

In our formulation, we choose to rescale the association rate constants such that the coarse-277

grained abundance for each effective species corresponds to the sum over all individual codon-278

specific components. For example, �aaRS in our coarse-grained model corresponds to the summed279

proteome fraction of all aaRSs in the cell, and its association rate constant with the total tRNAs is280

rescaled by a factor of 1∕naa.281

As a result of this choice of rescaling within our coarse-grained model, there are two classes282

of reactions in the elongation cycle that are distinguished by different kinetics: those that were283

codon specific (scaled by 1∕naa) and those that are not. Codon-specific reactions, e.g., aaRS binding284

to cognate tRNAs and TC binding to cognate codons, are coarse-grained into one-codon reactions285

with reduced association rate constants (marked by # in Figure 3A). By contrast, codon-agnostic286

reactions do not incur such a rescaling and are thus much faster. We refer to this as a separation of287

timescale between the two classes of reactions (codon-specific vs. codon-agnostic), and note that288

this is not a reflection of slower underlying microscopic bimolecular reaction rates, but rather a289

result of our choice of variable in the coarse-graining.290

Similar to translation termination, the factor-dependent ribosome transit time through a single291

codon (τaa) is comprised of two steps, corresponding to binding of the TC and EF-G, respectively292

(formal derivation and non binding-limited regime in Appendix 3, section Coarse-grained translation293
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elongation time):294

τaa =
1

kTCon
naa
�TC

+ 1
kGon�G

. (10)

The coarse-grained factor-dependent portion of the total translation elongation time in our model295

is then given by the single codon time above multiplied by the average number of codons per296

protein, i.e., ⟨l⟩τaa. As discussed above, the rescaling of the TC association rate constant by n−1aa297

arises as a result of our coarse-graining to a one-codon model (Appendix 3, section Coarse-grained298

one-codon model). Note that the ternary complex concentration, �TC , is a nonlinear function of the299

concentrations of all elongation factors (including �G).300

Despite the complexity of τaa as a function of the �tlF ,i, the fact that all fluxes are equal in301

steady-state allows several steps to be isolated and solved separately (EF-Ts and EF-G, greyed out in302

Figure 3A, respectively solved in Appendix 3, sections Optimal EF-Ts abundance and Optimal EF-G303

abundance). For example, the approximate binding-limited solution for optimal EF-G concentration304

parallels that for termination factors:305

�∗G ≈

√

lribo�∗

kGon
. (11)

Importantly, the optimum for EF-G is larger than the optimum for RFs by a factor
√

⟨l⟩, reflecting306

that the typical translation cycle to produce a protein requires ⟨l⟩ steps catalyzed by EF-G and only307

one step for RFs (i.e, ⟨l⟩τaa enters the optimality condition, equation 5, in contrast to τter which is308

not multiplied by a scaling factor). The square root dependence arises here for the same reason as309

in the case of translation termination (derivative of �−1).310

In contrast to EF-G and EF-Ts, EF-Tu and aaRS cannot a priori be treated in isolation because311

the TC is composed of both EF-Tu and charged tRNAs. Still, the separation of timescales within our312

coarse-grained model (see Appendix 3, section Interpretation of the sharp separation between aaRS313

and EF-Tu limited regimes) simplifies the solution considerably. Indeed, rapid binding of charged314

tRNAs to EF-Tu leads to either component being limiting for ternary complex concentration in most315

of the aaRS/EF-Tu expression space, leading to two clearly delineated regimes (Figure 3B). In one316

regime, charged tRNAs are limiting (low aaRS), whereas EF-Tu is limiting in the other (low EF-Tu).317

These regimes are separated by a narrow transition region, whose sharpness is a reflection of the318

smallness of the rate rescaling parameter n−1aa (see Appendix 3, section Interpretation of the sharp319

separation between aaRS and EF-Tu limited regimes). We term the focal region separating the320

two regimes in the aaRS/EF-Tu expression space the "transition line" (see Box 1 for derivation and321

additional details).322

The transition line corresponds to conditions in which EF-Tu and aaRS are co-limiting for TC323

concentration. In the EF-Tu limited region, increasing aaRS abundance does not increase ternary324

complex concentration: since all EF-Tu proteins are already bound to charged tRNAs, increasing325

tRNA charging cannot further increase TC concentration. Conversely, in the aatRNA limited region,326

increasing EF-Tu abundance does not increase TC concentration: since all charged tRNAs are327

already bound by EF-Tu, increasing EF-Tu concentration does not alleviate the requirement for328

more charged tRNAs. Given that the optimality condition requires non-zero increase in ternary329

complex concentration with increasing factor abundance (equation 5 using τaa from equation 10),330

the optimal EF-Tu and aaRS abundances must be on the transition line.331

Which point on the transition line corresponds to the optimum? Note that inside the EF-Tu332

limited region, the ternary complex concentration is entirely set by the total EF-Tu concentration:333

�TC ≈ �T u (since most EF-Tu proteins are bound by charged tRNAs, Figure 3-Figure supplement 1). As334

an approximation resulting from the narrow range of transition region (Figure 3 and Figure 3-Figure335

supplement 1), we assume that the EF-Tu limited regime solution �TC ≈ �T u holds up to very close to336

the transition line. Replacing �TC by �T u in the elongation time equation 10 and substituting in the337

optimality condition (equation 5), the approximate optimal abundance for EF-Tu (the full solution338
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Figure 3. Case study with elongation factors (EF-Tu/aaRS) (A) Schematic of the translation elongation scheme,

with the tRNA cycle, involving aminoacyl-tRNA synthetases (aaRS) and EF-Tu. Reactions with a # have their

association rate constants rescaled by a factor of n−1aa ≈ 1∕20 through our coarse-graining to a single codon
model. Greyed out cycles (EF-Ts and EF-G) can be solved in isolation (Appendix 3, sections Optimal EF-Ts

abundance and Optimal EF-G abundance). (B) Exploration of the aaRS/EF-Tu expression space from numerical

solution of the elongation model (Appendix 3, section Optimal EF-Tu and aaRS abundances). The transition line

(orange) marks the boundary between the EF-Tu limited and aaRS limited regimes. Left panel shows the ternary

complex concentration (which is closely related to the elongation rate, equation 10). The ternary complex

concentration is scaled by the dissociation constant KTC to the ribosome A site (see equation 39). Middle panel
shows the free charged tRNA fraction. Right panel shows the free EF-Tu fraction (�T uGTP denotes the proteome
fraction of EF-Tu GTP that can bind to charged tRNAs to form the ternary complex). The star marks the optimal

solution, as described in the text.

Figure 3–Figure supplement 1. Geometrical interpretation of the sharpness of the separation of the aaRS

limited and EF-Tu limited regimes.

Figure 3–source code 1. Source code to obtain panel (B) can be found in the associated scripts submitted with

this work.

includes additional terms from the EF-Ts cycle, section Optimal EF-Tu and aaRS abundances) can339

then be obtained in the same way as for translation termination factors:340

�∗T u ≈

√

lribonaa�∗

kTCon
. (12)

Importantly, compared to the solution for EF-G, the above is multiplied by an additional factor341

of
√

naa. This contribution arises from the rescaling of the association rate for the ternary complex342

to the ribosome in our coarse-grained one-codon model, increasing the requirement on EF-Tu343

abundance.344

From the necessity for the combined EF-Tu and aaRS solution to fall on the transition line, the345

approximate solution for the optimal aminoacyl-tRNA synthetase abundance is then the intersection346

(yellow star in Figure 3B) of the transition line with the EF-Tu-only solution described above (dashed347

blue line in Figure 3B, derivation of solution in Box 1).348

For the above derivation to be valid, the total number of tRNAs in the cell must be sufficient to349

accommodate all ribosomes (about 2 per ribosome, A- and P-sites) and binding to all EF-Tu (about350
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> 4 per ribosome based on endogenous expression stoichiometry (Li et al., 2014; Lalanne et al.,351

2018)). The number of tRNAs per ribosomes in the cell should thus be at least 6×. Remarkably,352

estimates of this ratio in the cell suggest that this is barely the case (between 6-7 tRNAs/ribosome at353

fast growth (Dong et al., 1996)). Although our model treats the total tRNA abundance as a measured354

parameter and omits its selective pressure (see (Hu et al., 2020) which includes RNA mass in their355

optimization procedure), the abundance of three core components of the tRNA cycle appear to356

be at the special point where the transition line plateau, that is set by total tRNA abundance, just357

crosses the EF-Tu-only optimum (blue line in Figure 3B). At this point, all three components are358

co-limiting.359

Optimal stoichiometry of mRNA translation factors424

Analogous to the case studies above, optimal concentrations for all core translation factors can be425

solved using the optimality condition (equation 5) and their respective kinetics schemes (the case426

of translation initiation is solved in Appendix 4). The analytical forms of the optimal solutions are427

shown in Table 2. In the binding-limited regime, the ratios of growth-optimized tlF concentrations428

are independent of the growth rate (except for aaRS), and are dependent only on basic biophysical429

parameters, such as protein sizes and diffusion constants.430

To obtain the numerical values of association rates needed for calculate the optimal tlF sto-431

ichiometry (Table 2), we rely on a biophysically motivated scaling of the measured association432

between TC and ribosomes in vivo, k̂TCon = 6.4 µM−1s−1 (Dai et al., 2016) (k̂ denotes the raw associa-433

tion rate constant in units µM−1s−1, which is different from the rescaled k, see section Conversion434

between concentration and proteome fraction). To our knowledge this is the only measurement435

of a tlF’s association constant in a physiological context. We estimate the association rates for436

reactions involving other tlFs by scaling k̂TCon by the respective diffusion coefficients of the chemical437

species, that is for reaction involving species A and B: k̂ABon ∕k̂
TC
on = (DA +DB)∕(DTC +Dribo), where Di438

is the diffusion constant for the molecular species i (see Appendix 5 Table 2). Diffusion constants439

for several tlFs have been measured experimentally (Bakshi et al., 2012; Sanamrad et al., 2014;440

Plochowietz et al., 2017; Volkov et al., 2018), and uncharacterized ones can be estimated using the441

cubic-root scaling with number of codons per protein from the Stokes-Einstein relation (Nenninger442

et al., 2010) (see Appendix 5 Table 1). This approach to arrive at plausible numerical estimates443

of k̂on ’s assumes in particular that reactive radii and orientational constraints are similar for the444

different reactions (see Discussion for additional assumptions). These are strong assumptions445

which are necessary given the lack of in vivo biochemical parameter measurements, and can be446

relaxed as refined empirical measurements for more physiological association rates become avail-447

able. Nonetheless, we note that the square-root dependence on these parameters (Table 2) for448

our predictions makes the numerical values less sensitive to possible tlF-specific effects. For our449

estimates in fast growth, we take the growth rate �∗ to be the average of the fast-growing species450

considered, corresponding to a doubling time of 21 ± 1min (E. coli: 21.5 ± 1min, B. subtilis: 21 ± 1451

min, V. natriegens: 19 ± 1min).452

The estimated optimal tlF concentrations show concordance with the observed ones, both453

in terms of the absolute levels and the stoichiometry among tlFs (Figure 4 for fast growth, see454

Supplementary File 1 for data and Figure 4-Figure supplement 1 for additional growth conditions).455

A hierarchy of expression levels emerges such that the factors involved in elongation are more456

abundant compared to initiation and termination factors. The separation of these two classes457

is driven by the scaling factor
√

⟨l⟩ ≈ 14 in our analytical solutions, which reflects the fact that458

the flux for elongation factors is ⟨l⟩ ≈ 200 times higher than that for initiation and termination459

factors. Within each class, the finer hierarchy of expression levels can also be further explained by460

simple parameters. For example, EF-Tu is predicted to be more abundant than EF-G by a factor of461

√

naalT u∕lG ≈ 3.3 (observed �T u∕�G: E. coli 3.9, B. subtilis 2.7, V. natriegens 3.3). A higher abundance462

is required for EF-Tu because it is bound to the different tRNAs, which effectively decreases the463

concentration by a factor of naa ≈ 20 (see section Estimation of coarse-grained rates for derivation464
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Box 1. The EF-Tu and aaRS transition line360361

Within our framework, optimality of translation factors is dictated by how coarse-grained ribosome transit times depend

on factors’ abundances (equation 4). For elongation factors aaRS and EF-Tu, contribution to the ribosome elongation time

(τel = ⟨l⟩τaa) is through the concentration of the ternary complex (equation 10). Obtaining the optimal EF-Tu and aaRS
abundance therefore requires solving for the ternary complex concentration as a function of these two variables.

362

363

364

365

The steady-state solution for the ternary complex concentration in the aaRS/EF-Tu expression displays two sharply

separated regime (Figure 3B), separated by a narrow transition region (the ‘transition line’). As described in the main text,

the transition line plays a critical role for identifying the optimal EF-Tu and aaRS abundances within our model. Away from

the line, there is an unproductive excess of either factors, viz. either )�TC∕)�T u ≈ 0 or )�TC∕)�aaRS ≈ 0. Here, we derive
the equation for the transition line. First, we leverage the constraint imposed by the conservation of tRNAs, which in our

model is:

tRNAtot = [R∅] + 2[RTC ] + 2[RtRNA] + 2[RG]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∝ �∕kmaxel

+[tRNA] + [tRNA∶aaRS] + [aatRNA] + [TC].

Above, tRNAtot corresponds to the total tRNA concentration in the cell. In addition: R∅: elongating ribosomes with empty

A-site, RTC : ribosomes with bound TC, RtRNA: ribosomes with filled A-site and no bound factor, RG : ribosomes with bound

EF-G, tRNA: free uncharged tRNAs, tRNA∶aaRS: tRNA and aaRS complex, aatRNA: free charged tRNAs, and TC: ternary
complex. Here, we assume that the elongating ribosomes always have a tRNA in the P-site, and a negligible occupancy in

the E-site.

366

367

368

369

370

371

372

373

374

375

376

377

378

379

Using the system of equations from the mass action scheme at steady-state (section Translation elongation: optimal

solutions), variables in the tRNA conservation equation above can be solved for in terms of the total abundance of

EF-Tu and aaRS, the growth rate, and the steady-state ternary complex concentration. We note that the three ribosome

species with a filled A site (RTC , RtRNA, and RG) do not depend on EF-Tu concentration, and can be coarse-grained to
a term proportional to �∕kmaxel , where k

max
el is the maximal translation elongation rate (not including the TC diffusion

contribution) (Dai et al., 2016). In the binding-limited regime, converting to proteome fraction units, and leaving out the
EF-Ts contribution without loss of generality (see section Optimal EF-Tu and aaRS abundances for a full treatment), we

have:

 tRNA =
�(�TC )
kTCon
naa

�TC
⏟⏞⏞⏟⏞⏞⏟
R∅

+
2�(�TC )
kmaxel

+
�(�TC )

kaaRSon
naa

�aaRS
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

free uncharged tRNA

+
�(�TC )

kT uon �T uGTP

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
free aatRNA

+
�TC
lT u

, where �T uGTP ∶= �T u − �TC . (13)

Above,  tRNA is a normalized tRNA concentration (see equation 28). We have explicitly highlighted that the growth rate
is dependent on EF-Tu and aaRS only through the ternary complex concentration �TC . From the definition of of the
elongation time (equation 10), we have �(�TC ) ∝ �TC∕(KTC + �TC ) (Klumpp et al., 2013; Dai et al., 2016) (definition of
KTC in terms of model parameters: supplement, equation 39). Equation 13 is closed and can be solved for �TC at given
abundances of EF-Tu (�T u) and aaRS (�aaRS ).

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

Although equation 13 is non-linear and cannot be solved exactly in general, the separation of timescales in our coarse-

grained description simplifies the problem considerably. Indeed, numerical solutions of equation 13 (Figure 3B, sec-

tion Optimal EF-Tu and aaRS abundances) show that the behavior of TC concentration in the two-dimensional EF-Tu/aaRS

expression space is split into two distinct regimes, sharply delineated by a transition line (orange line in Figure 3B, a geo-

metric heuristic explaining the sharp separation between the regimes is presented in Appendix 3, section Interpretation

of the sharp separation between aaRS and EF-Tu limited regimes, Figure 3-Figure supplement 1). Since TC concentration

only increases as a function of both aaRS and EF-Tu on the transition line, the optimal solutions for the two factors must

fall on it.

396

397

398

399

400

401

402

403

An expression for the transition line can be derived. Conceptually, the region of transition between the two regimes

has both a low concentration of free EF-Tu molecules (�T uGTP ∕�T u ≈ 0) and a low concentration of free charged tRNAs
([aatRNAs]∕tRNAtot ≈ 0). Although no values in the aaRS/EF-Tu expression plane can formally satisfy these two conditions
simultaneously, the transition line is specified by setting the free charged tRNA term to 0 and replacing �TC by �T u (no
free EF-Tu) in equation 13. We denote by (�̄T u, �̄aaRS ) points satisfying the resulting requirement, namely (see equation 40
for non binding-limited case):

Transition line:  tRNA −
�
(

�̄T u
)

naa
kTCon �̄T u

−
2�

(

�̄T u
)

kmaxel
−
�̄T u
lT u

∶= ΔtRNA(�̄T u) =
naa�

(

�̄T u
)

kaaRSon �̄aaRS
, (14)

where we have defined the excess tRNA (ΔtRNA) above. In words, ΔtRNA corresponds to the available tRNAs after the tRNAs
sequestered on ribosomes and EF-Tu in the TC are subtracted from the total tRNA budget. At large aaRS concentrations,

the transition line plateaus as a result of the finite total tRNA budget within the cell (Figure 3B, middle panel). The plateau

is reached once all tRNAs aaRS are charged: the system is then no longer limited by aaRSs, but by the amount of tRNAs.

404

405

406

407

408

409

410

411

412

413

414

415

416

Using the requirement that the optimum must fall on the transition line and the approximate solution for the EF-Tu

optimum, the approximate optimal solution for aaRS is, from equation 14 (section Optimal EF-Tu and aaRS abundances

for non binding-limited solution):

�∗aaRS ≈
naa�∗

kaaRSon Δ∗tRNA
, where: Δ∗tRNA =  tRNA −

naa�∗

kTCon �
∗
T u
− 2�∗
kmaxel

−
�∗T u
lT u

(15)

Within our model, the optimal aaRS concentration is thus set by the excess tRNAs at the EF-Tu optimum (Δ∗tRNA).

417

418

419

420

421

422

423
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and discussion of why the factor is not equal to the number of different tRNAs). Taken together,465

our model offers straightforward explanations for the observed tlF stoichiometry.466

Figure 4. Predicted optimal abundance (no catalytic contribution, kcat →∞) versus observed abundance.
Measured proteome fractions are the average of E. coli, B. subtilis, V. natriegens (Lalanne et al., 2018). We note
that given the sensitivity of the optimal aaRS abundance on the total tRNA/ribosome ratio (visually: yellow star’s

position in Figure 3B moves rapidly along x-axis upon changes in plateau of transition line), the prediction for

aaRS should be interpreted with caution.

Figure 4–Figure supplement 1. Measured and predicted proteome fraction for core translation factors in

individual conditions.

Figure 4–Figure supplement 2. Expression stoichiometry of core translation factors in different species and at

different growth rates.

Figure 4–source data 1. Data and predicted values can be found in Supplementary File 1 and 2.

For a few tlFs, the observed concentrations are 2- to 5-fold higher than the predicted optimal467

levels (e.g., EF-Ts, RF4, and IF1 in Fig. 4). A potential explanation is that the corresponding reactions468

may not be binding or diffusion-limited, which would lead to a non-negligible fraction of tlFs469

sequestered at the catalytic step and thereby require higher total concentrations. Indeed, recent470

detailed modeling of the EF-Ts (Hu et al., 2020) cycle estimated only a small fraction (6 to 48%) of its471

abundance was in the free form in the cell, consistent with the large deviation we observe for this472

factor from our diffusion only prediction. Our optimization model can also be solved analytically473

in the non-binding-limited regime (Table 2), with the finite catalytic rate leading to an additional474

contribution of the form ∝ l�∗∕kcat. However, the numerical values for these solutions are in general475

difficult to obtain because the estimates for catalytic rates are sparse and often inconsistent with476

estimates of kinetics in live cells. As an example, median estimated aaRS catalytic rates (Jeske477

et al., 2019) measured in vitro is ≈ 3 s−1, well below theminimal value of 15 s−1, required to sustain478

translation flux at the measured value (Appendix 5), suggesting substantial deviation between in479

vitro and in vivo kinetics. While technically demanding, the fraction of free vs. bound factors can in480

principle be determined through live cell microscopy of tagged factors by partitioning the diffusive481

states of the tagged enzyme. Using that approach, (Volkov et al., 2018) estimated that EF-Tu was482

in its bound state <10% of the time (consistent with our diffusion-limited prediction closed to the483

observed value for this factor).484

Another potential explanation for the observed deviations from our predictions is that the485

selective pressure for these tlFs may be lower compared to the more highly expressed tlFs. This486

explanation is unlikely both because their stoichiometry are observed to be conserved (Figure 1B,487

Figure 4-Figure supplement 2) and given that the expression of other lowly expressed tlFs (e.g.,488

RF1, RF2, and individual aaRSs) has been shown to acutely affect cell growth (Lalanne et al., 2021;489

Parker et al., 2020). Nevertheless, the deviations from the predicted optimal levels suggest that a490
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more refined model may be required than our first-principles derivation.491

Discussion492

Despite the comprehensive characterization of their molecular mechanisms, the ‘mixology’ for493

the protein synthesis machineries inside living cells has remained elusive. Here we establish a494

first-principles framework to provide analytical solutions for the growth-optimizing concentrations495

of translation factors. We find reasonable agreements between our parameter-free parsimonious496

predictions and the observed tlF stoichiometry (Figure 4). These results provide simple rationales497

for the hierarchy of expression levels, as well as insights into several construction principles for498

biological pathways.499

An important implication from the agreement between observed stoichiometries and our500

predictions is that most tlFs are co-limiting for growth. Previous models have focused on expression501

optimization for the full translation sector, ribosomes (Scott et al., 2010, 2014; Belliveau et al.,502

2021), and the abundant elongation factors EF-Tu (Ehrenberg and Kurland, 1984; Klumpp et al.,503

2013). In a recent study, Hu and colleagues considered additional RNA components and EF-Ts in504

their optimization procedure (Hu et al., 2020). In line with the conclusions of these previous studies,505

our results demonstrate that multiple components of the translation machinery, regardless of506

their observed expression level, are simultaneously co-limiting for cell growth. By virtue of the507

interlocked translation cycles at steady state, the flux through every cycle must be matched. In our508

model, the optimality occurs when there are just enough tlFs to support the required flux in every509

cycle, such that the proteome fraction of free factors equals that of waiting ribosomes at that step510

(equipartition). If the concentration of any one tlF falls below the optimal point, it becomes the511

limiting factor for protein synthesis and growth. This result is supported by experimental evidence512

that slight knockdowns of individual RFs and aaRSs are detrimental to growth (Parker et al., 2020;513

Lalanne et al., 2021). Figuratively, the translation apparatus is analogous to a vulnerable supply514

chain, in which slowdown in any of the steps affects the full output.515

In the binding-limited regime, the optimal tlF stoichiometry is independent of the specific growth516

rate (except for aaRS). This is consistent with the observation that relative tlF expression remains517

unchanged in E. coli in conditions with growth rates ranging from 20-min to 2-hr doubling time518

(Lalanne et al., 2018; Li et al., 2014) (Figure 4-Figure supplement 2A).519

Our results are also consistent with the maintenance of the relative tlF expression across520

large phylogenetic distances even though the underlying regulation and cellular physiology has521

diverged (Lalanne et al., 2018) (Figure 1B, and additional comparison to slow growing C. crescentus in522

Figure 4-Figure supplement 2A). Under the assumption of diffusion-limited association to estimate523

parameters, the optimal tlF stoichiometry depends only on simple biophysical parameters, including524

protein sizes and diffusion constants, that are likely conserved in distant species. It remains to be525

determined if similar biophysical principles apply to the other pathways that also exhibit conserved526

enzyme expression stoichiometry.527

In principle, our model can also make predictions on the growth defects at suboptimal tlF528

concentrations. However, experimentally testing these predictions will be difficult due to secondary529

effects of gene regulation that are not considered in our model near optimality. For example, we530

have recently shown that small changes in RF levels lead to idiosyncratic induction of the general531

stress response in B. subtilis due to a single ultrasensitive stop codon (Lalanne et al., 2021). As532

a result, the growth defect not only arises from reduced translation flux, but is in fact dictated533

by spurious regulatory connections that are normally not activated when tlF expression is at the534

optimum. We propose that tlF expression may be set at the optimal levels as our first-principles535

model suggests but entrenched by connections in the regulatory network. To predict the full536

expression-to-fitness landscape away from the optimum, a more comprehensive model may be537

required to take into account all the molecular interactions in the cell (Karr et al., 2012; Macklin538

et al., 2020).539

14 of 49



Our coarse-graining approach has several limitations in its connection to detailed biochemical540

parameters. Foremost, coarse-grained association rate constants remain difficult to numerically541

estimate, and possibly neglect important features. In particular, given the sparsity of available in542

vivo rate constants, we scaled the measured TC association rate (k̂TCon ) by the respective diffusion543

coefficients to estimate k̂on for all tlFs reactions. This approach generates more plausible values544

than the unrealistic overestimate from Smoluchowski theory (diffusion-limited rate for perfectly545

absorbing spheres, see Appendix 5), but however assumes that certain molecular properties of546

other modeled reactions are similar. These include the size of the reactive surfaces, orientational547

constraints of the bimolecular interaction, and possible non-cognate binding events. We also do548

not explicitly consider off-rates in our model. Instead, our parameters correspond to effective rate549

constants that account for possible sequential binding and unbinding events, i.e., k̃on = kon∕nbind , with550

nbind = kcat∕(kcat+koff ). The effective association rate constants in ourmodel thus contain information551

about catalytic and possible proofreading steps, which could be tlF-specific and are challenging552

to estimate. All of these effects may contribute to the discrepancy between our predicted and553

observed tlF concentrations. As more physiological and molecular data become available, these554

tlF-specific features could be used to individually refine our estimate for the association rates555

constants and our predictions. For example, elaborate calculations from structural data could556

account for rotational constraints (Schlosshauer and Baker, 2004), but are beyond the scope of the557

present work. Overall, we expect these tlF-specific corrections to be of limited influence on the final558

predictions due to the square-root dependence of the optimal expression (Table 2). We further note559

that a number of conclusions from our model, such as the factor of
√

⟨l⟩ separating the optimal560

abundance of elongation from initiation/termination tlFs, are generic and do not depend on the561

specific association rates.562

Taken together, our model provides the biophysical basis for the stoichiometry of translation563

factors in living cells. The first-principles approach complements more comprehensive models that564

include many biochemical parameters (Hu et al., 2020; Vieira et al., 2016), while providing intuitive565

rationales for the expression hierarchy. We anticipate that our approach will be generalizable to566

elucidate or design enzyme stoichiometry of other biological pathways, especially those whose567

activities are required for cell growth.568

Materials and Methods569

Average number of codons per protein: ⟨l⟩570

We calculate the average number of codons per protein, weighted by expression, as

⟨l⟩ ∶=
∑

i eili
∑

i ei
, (16)

where li is the number of codon for the protein product of gene i, and ei is the protein synthesis rate571

(as estimated from ribosome profiling (Li et al., 2014; Lalanne et al., 2018)) for gene i. For a stable572

proteome (in fast growing bacteria, the cell doubling time is shorter than the active degradation573

of most proteins (Larrabee et al., 1980)), the protein synthesis rate equals to the proteome mass574

fraction (Li et al., 2014). Changes in the expression of genes across growth conditions do not lead575

to substantial changes in ⟨l⟩. In E. coli, across growth conditions spanning ≈ 20min doubling time576

to ≈ 120min, ⟨l⟩ changes by about 20%. Specifically, we find ⟨l⟩ =196, 210, and 240 in respectively577

MOPS complete (≈ 20min doubling time (Li et al., 2014)), MOPS minimal (≈ 56min doubling time578

(Li et al., 2014)), and NQ1390 forced glucose limitation (≈ 120min doubling time (Mori et al., 2021)),579

based on ribosome profiling data. Here for simplicity, we take ⟨l⟩ ≈ 200 throughout.580

Conversion between concentration and proteome fraction581

Throughout, we use both units of concentration (molar), denoted as e.g., [A] for protein A, and582

proteome fraction, denoted by �A (Scott et al., 2010). The correspondence between the two is583

�A = [A]lA∕P , where lA is the number of amino acid in protein A, and P is the in-protein amino584

15 of 49



acid concentration in the cell. P ≈ 2.6 × 106 µM, and has a value approximately independent of585

growth rate (Klumpp et al., 2013; Bremer and Dennis, 2008). This change in units also relates to586

how association constants are defined in units of proteome fraction: k̂on[A] ∶= kon�A, where the hat587

⋅̂ refers to the association constant in usual units of µM−1 s−1 (used to connect to empirical data).588

Hence, kon ∶= k̂onPl−1 is the rescaled association rate in units of proteome fraction.589

Equality of ribosome flux in steady-state590

In steady-state exponential growth, the ribosome flux in and out of each intermediate state is equal591

to the total flux. This results from the fact that no ribosome can accumulate in any intermediate592

state. Since the flux out of state i is given by �iribo∕τi, we must have:593

�lribo
⟨l⟩

=
�actribo
τtrl

=
�iniribo
τini

=
�elribo
τel

=
�terribo
τter

. (17)

As a consequence, the proportion of ribosome in each state is equal to the proportion of time594

spent at that given step, for example for translation initiation:595

�iniribo
�actribo

=
τini

τini + τel + τter
.

Protein production flux and growth rate596

In order to write the mass action kinetic scheme for more complex models, it is useful to recast597

our framework in terms of the protein number production flux J , defined as the number of full598

length proteins produced per cell volume per unit time. The production of each protein requires a599

ribosome to go through the full synthesis cycle, and as such J provides a convenient quantity in600

mass action schemes formulated in molar units.601

In steady-state of exponential growth (Monod, 1949; Scott et al., 2010; Dai et al., 2016), there602

is a direct relationship between the growth rate � (defined through dN∕dt = �N , where N is the603

number of cells per unit volume of culture) and the protein production flux J . Explicitly, the protein604

mass accumulation rate is �M , where M is the total protein mass per unit volume of culture.605

If V is the mean cell volume, then �M∕V = Nmaa⟨l⟩J , where maa is the mean amino acid mass.606

Defining P ∶=M∕(maaNV ), the in-protein amino acid concentration per cell (Materials and Methods,607

section Conversion between concentration and proteome fraction), the connection between protein608

production flux J and growth rate � is then J = P�
⟨l⟩
. This relationship will be used to convert between609

molar and proteome fraction in some equations below.610

Summary of optimal solutions611

Solutions for the factor predicted optimal abundances as a function of effective biochemical612

parameters and the growth rate at the optimum, are presented in Table 2. The table breaks down613

terms in each solution by categories: direct diffusion term (arising from diffusive search time),614

catalytic sequestration, and delay incurred by the diffusion of other proteins in part of the cycle615

of the factor of interest. Solutions are listed in terms of on-rate k̂on (units of µM−1s−1). The aaRS616

solution follows a different form:617

�∗aaRS =
naalaaRS�∗

k̂aaRSon PΔ∗tRNA
+
laaRS�∗

kaaRScat

, (18)

with Δ∗tRNA ∶=
tRNAtot

P
− �∗

kTCon �
∗
TC
− 2�∗
kmaxel

−
�∗TC
lT u

− �∗

kaaRScat

, and �∗TC ∶=

√

naalribolT u�∗

k̂TCon P
.
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Factor Diffusion (direct) ∝
√

�∗
P

Diffusion (other) ∝
√

�∗
P

Catalytic sequestration ∝ �∗

IF1

√

lribolIF1
⟨l⟩k̂IF1on

[

1 +
lIF2 + lIF3

lribo

]

lIF1
⟨l⟩

√

⟨l⟩

k̂50Son

lIF1
⟨l⟩

(

1
kRNA

+ 1
kinicat

)

IF2

√

3
4

√

lribolIF2
⟨l⟩k̂IF2on

lIF2
⟨l⟩

(√

lribolIF1
⟨l⟩k̂IF1on

+

√

⟨l⟩

k̂50Son

)

lIF2
⟨l⟩

(

1
kRNA

+ 1
kinicat

)

IF3

√

3
4

√

lribolIF3
⟨l⟩k̂IF3on

lIF3
⟨l⟩

(√

lribolIF1
⟨l⟩k̂IF1on

+

√

⟨l⟩

k̂50Son

)

lIF3
⟨l⟩

(

1
kRNA

+ 1
kinicat

)

EF-G

√

lribolG
k̂Gon

lG
kGcat

EF-Ts

√

lT ulT s
k̂T son

lT s
kT scat

EF-Tu

√

lribolT unaa
k̂TCon

√

lT ulT s
k̂T son

lT u

(

1
kTCcat

+ 1
kT scat

)

RF1+RF2

√

lribolRFI (1 + �)
⟨l⟩k̂RFIon

lRFI
⟨l⟩kRFIcat

RF4

√

lribolRF4
⟨l⟩k̂RF4on

lRF4
⟨l⟩kRF4cat

Table 2. Compilation of predicted optimal abundances for translation factors. The optimal abundance is the

sum of the terms in each row. Columns correspond to contributions of different nature (diffusion of factor itself,

diffusion of other factors involved in the factor’s cycle, catalytic term). Terms must be multiplied by the common

factors indicated in each column’s header (∝). For RF1+RF2, � ∶= 2
√

fUAGfUGA (see section Optimal abundances
for RF1/RF2).

17 of 49



Acknowledgments618

We thank R. Battaglia, J. Cascino, M. Gill, M. Parker, D. Parker, and G. Schmidt for critical reading619

of the manuscript, and all members of the Li lab for discussion. This research was supported by620

NIH grant R35GM124732, the NSF CAREER Award, the Smith Odyssey Award, the Pew Biomedical621

Scholars Program, a Sloan Research Fellowship, the Searle Scholars Program, the Smith Family622

Award for Excellence in Biomedical Research; NSERC doctoral Fellowship and HHMI International623

Student Research Fellowship (to J.-B.L.).624

Supplementary Files625

Supplementary File 1: Proteome synthesis fraction (in %) of core mRNA translation factors for626

species and growth conditions with fast growth estimated from ribosome profiling data (Li et al.,627

2014; Lalanne et al., 2018).628

629

Supplementary File 2: Diffusion-limited optima predicted for translation factors for fast-growth630

conditions.631

632

Supplementary File 3: Proteome synthesis fraction (in %) of core mRNA translation factors for633

species/conditions with slower growth estimated from ribosome profiling. Ribosome profiling data:634

E. coli (MOPS minimal (Li et al., 2014), M9 glucose (Mori et al., 2021), C. crescentus ((Schrader et al.,635

2014), with synthesis rates estimated in (Lalanne et al., 2018)).636

637

Supplementary File 4: Diffusion-limited optima predicted for translation factors for slower growth638

conditions.639

640

References641

Agirrezabala X, Frank J. Elongation in translation as a dynamic interaction among the ribosome, tRNA,642

and elongation factors EF-G and EF-Tu. Quarterly Reviews of Biophysics. 2009; 42(3):159–200. doi:643

10.1017/S0033583509990060.644

Andersen GR, Nissen P, Nyborg J. Elongation factors in protein biosynthesis. Trends in Biochemical Sciences.645

2003; 28(8):434–441. doi: 10.1016/S0968-0004(03)00162-2.646

Baggett NE, Zhang Y, Gross CA. Global analysis of translation termination in E. coli. PLoS Genetics. 2017; 13(3):1–647

27. http://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1006676{&}type=printable, doi:648

10.1371/journal.pgen.1006676.649

Bakshi S, Siryaporn A, Goulian M, Weisshaar JC. Superresolution imaging of ribosomes and RNA polymerase in650

live Escherichia coli cells. Molecular Microbiology. 2012; 85(1):21–38. doi: 10.1111/j.1365-2958.2012.08081.x.651

Belliveau NM, Chure G, Hueschen CL, Fisher DS, Theriot JA, Phillips R. Fundamental limits on the rate652

of bacterial growth and their influence on proteomic composition. Cell Systems. 2021; p. 1–21. doi:653

10.1016/j.cels.2021.06.002.654

Berg OG, Kurland CG. Growth rate-optimised tRNA abundance and codon usage. Journal of molecular biology.655

1997; 270(4):544–550. doi: 10.1006/jmbi.1997.1142.656

Bergmann JE, Lodish HF. A kinetic model of protein synthesis. Application to hemoglobin synthesis and657

translational control. Journal of Biological Chemistry. 1979; 254(23):11927–11937. http://www.jbc.org/content/658

254/23/11927.full.pdf, doi: 10.1016/s0021-9258(19)86406-2.659

Bertram G, Innes S, Minella O, Richardson JP, Stansfield I. Endless possibilities: Translation termination and660

stop codon recognition. Microbiology. 2001; 147(2):255–269. doi: 10.1099/00221287-147-2-255.661

Björk GR, Hagervall TG. Transfer RNA Modification: Presence, Synthesis, and Function. EcoSal Plus. 2014; 6(1).662

doi: 10.1128/ecosalplus.esp-0007-2013.663

18 of 49

http://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1006676{&}type=printable
10.1371/journal.pgen.1006676
10.1371/journal.pgen.1006676
10.1371/journal.pgen.1006676
10.1111/j.1365-2958.2012.08081.x
10.1016/j.cels.2021.06.002
10.1016/j.cels.2021.06.002
10.1016/j.cels.2021.06.002
10.1006/jmbi.1997.1142
http://www.jbc.org/content/254/23/11927.full.pdf
http://www.jbc.org/content/254/23/11927.full.pdf
http://www.jbc.org/content/254/23/11927.full.pdf
10.1128/ecosalplus.esp-0007-2013


Borg A, Pavlov M, Ehrenberg M. Complete kinetic mechanism for recycling of the bacterial ribosome. RNA.664

2016; 22(1):10–21. doi: 10.1261/rna.053157.115.665

Bremer H, Dennis PP. Modulation of Chemical Composition and Other Parameters of the Cell at Different666

Exponential Growth Rates. EcoSal Plus. 2008; http://ctbp.ucsd.edu/qbio/beemer96.pdf, doi: 10.1016/0022-667

2836(72)90190-8.668

Chen J, Choi J, O’Leary SE, Prabhakar A, Petrov A, Grosely R, Puglisi EV, Puglisi JD. The molecular choreography of669

protein synthesis: translational control, regulation, and pathways. Quarterly Reviews of Biophysics. 2016;670

49:e11. doi: 10.1017/s0033583516000056.671

Dai X, Zhu M, Warren M, Balakrishnan R, Patsalo V, Okano H, Williamson JR, Fredrick K, Wang YP, Hwa T. Re-672

duction of translating ribosomes enables Escherichia coli to maintain elongation rates during slow growth.673

Nature Microbiology. 2016; 2(2):1–9. http://dx.doi.org/10.1038/nmicrobiol.2016.231, doi: 10.1038/nmicro-674

biol.2016.231.675

Dever TE, Green R. The elongation, termination, and recycling phases of translation in eukaryotes. Cold Spring676

Harbor Perspectives in Biology. 2012; 4(7):1–16. doi: 10.1101/cshperspect.a013706.677

Dong H, Nilsson L, Kurland CG. Co-variation of tRNA Abundance and Codon Usage in Escherichia coli at Different678

Growth Rates. Journal of molecular biology. 1996; 260(5):649–663. doi: 10.1006/jmbi.1996.0428.679

Dykeman EC. A stochastic model for simulating ribosome kinetics in vivo. PLoS computational biology. 2020;680

16(2):e1007618. http://dx.doi.org/10.1371/journal.pcbi.1007618, doi: 10.1371/journal.pcbi.1007618.681

Ehrenberg M, Kurland CG. Costs of accuracy determined by a maximal growth rate constraint. Quarterly682

reviews of biophysics. 1984; 17:45–80. doi: 10.1080/10643389.2012.728825.683

Elowitz MB, Surette MG, Wolf PE, Stock JB, Leibler S. Protein mobility in the cytoplasm of Escherichia coli. Journal684

of Bacteriology. 1999; 181(1):197–203. doi: 10.1128/jb.181.1.197-203.1999.685

Gorochowski TE, Chelysheva I, Eriksen M, Nair P, Pedersen S, Ignatova Z. Absolute quantification of translational686

regulation and burden using combined sequencing approaches. Molecular Systems Biology. 2019; 15(5):e8719.687

doi: 10.15252/msb.20188719.688

Gualerzi CO, Pon CL. Initiation of mRNA translation in bacteria: Structural and dynamic aspects. Cellular and689

Molecular Life Sciences. 2015; 72(22):4341–4367. doi: 10.1007/s00018-015-2010-3.690

Hu XP, Dourado H, Schubert P, Lercher MJ. The protein translation machinery is expressed for maximal efficiency691

in Escherichia coli. Nature Communications. 2020; 11(1):1–10. http://dx.doi.org/10.1038/s41467-020-18948-x,692

doi: 10.1038/s41467-020-18948-x.693

Ibba M, Dieter S. Aminoacyl-tRNA synthesis. Annu Rev Biochem. 2000; 69:617–650.694

Jeschek M, Gerngross D, Panke S. Combinatorial pathway optimization for streamlined metabolic engineering.695

Current Opinion in Biotechnology. 2017; 47:142–151. http://dx.doi.org/10.1016/j.copbio.2017.06.014, doi:696

10.1016/j.copbio.2017.06.014.697

Jeske L, Placzek S, Schomburg I, Chang A, Schomburg D. BRENDA in 2019: A European ELIXIR core data resource.698

Nucleic Acids Research. 2019; 47(D1):D542–D549. doi: 10.1093/nar/gky1048.699

Johnson GE, Lalanne JB, Peters ML, Li GW. Functionally uncoupled transcription-translation in Bacillus subtilis.700

Nature. 2020; 585(7823):124–128. doi: 10.1038/s41586-020-2638-5.701

Karr JR, Sanghvi JC, MacKlin DN, Gutschow MV, Jacobs JM, Bolival B, Assad-Garcia N, Glass JI, Covert MW.702

A whole-cell computational model predicts phenotype from genotype. Cell. 2012; 150(2):389–401. doi:703

10.1016/j.cell.2012.05.044.704

Kavčič B, Tkačik G, Bollenbach T. Mechanisms of drug interactions between translation-inhibiting antibiotics.705

Nature Communications. 2020; 11(1):4013. doi: 10.1038/s41467-020-17734-z.706

Kennell D, Riezman H. Transcription and translation initiation frequencies of the Escherichia coli lac operon.707

Journal of Molecular Biology. 1977; 114(1):1–21. doi: 10.1016/0022-2836(77)90279-0.708

19 of 49

10.1261/rna.053157.115
http://ctbp.ucsd.edu/qbio/beemer96.pdf
http://dx.doi.org/10.1038/nmicrobiol.2016.231
10.1038/nmicrobiol.2016.231
10.1038/nmicrobiol.2016.231
10.1038/nmicrobiol.2016.231
10.1101/cshperspect.a013706
10.1006/jmbi.1996.0428
http://dx.doi.org/10.1371/journal.pcbi.1007618
10.1371/journal.pcbi.1007618
10.1080/10643389.2012.728825
10.1128/jb.181.1.197-203.1999
10.15252/msb.20188719
http://dx.doi.org/10.1038/s41467-020-18948-x
http://dx.doi.org/10.1016/j.copbio.2017.06.014
10.1016/j.copbio.2017.06.014
10.1016/j.copbio.2017.06.014
10.1016/j.copbio.2017.06.014
10.1016/j.cell.2012.05.044
10.1016/j.cell.2012.05.044
10.1016/j.cell.2012.05.044


Keseler IM, Mackie A, Santos-Zavaleta A, Billington R, Bonavides-Martínez C, Caspi R, Fulcher C, Gama-Castro709

S, Kothari A, Krummenacker M, Latendresse M, Muñiz-Rascado L, Ong Q, Paley S, Peralta-Gil M, Subhraveti710

P, Velázquez-Ramírez DA, Weaver D, Collado-Vides J, Paulsen I, et al. The EcoCyc database: reflecting new711

knowledge about Escherichia coli K-12. Nucleic acids research. 2016; 45(November 2016):gkw1003. doi:712

10.1093/nar/gkw1003.713

Klumpp S, Scott M, Pedersen S, Hwa T. Molecular crowding limits translation and cell growth. Proceed-714

ings of the National Academy of Sciences of the United States of America. 2013; 110(42):16754–9. doi:715

10.1073/pnas.1310377110.716

Kumar M, Mommer MS, Sourjik V. Mobility of cytoplasmic, membrane, and DNA-binding proteins in Escherichia717

coli. Biophysical Journal. 2010; 98(4):552–559. doi: 10.1016/j.bpj.2009.11.002.718

Lalanne JB, Parker DJ, Li GW. Spurious regulatory connections dictate the expression-fitness landscape of719

translation factors. Molecular Systems Biology. 2021; 17(4):1–23. doi: 10.15252/msb.202110302.720

Lalanne JB, Taggart JC, Guo MS, Herzel L, Schieler A, Li GW. Evolutionary Convergence of Pathway-Specific721

Enzyme Expression Stoichiometry. Cell. 2018; p. 749–761. doi: 10.1016/j.cell.2018.03.007.722

Larrabee KL, Phillips JO, Williams GJ, Larrabee AR. The relative rates of protein synthesis and degradation in a723

growing culture of Escherichia coli. Journal of Biological Chemistry. 1980; 255(9):4125–4130.724

Laursen BS, Sørensen HP. Initiation of protein synthesis in bacteria. Microbiology and Molecular Biology725

Reviews. 2005; 69(1):101–123. doi: 10.1128/MMBR.69.1.101.726

Li GW. How do bacteria tune translation efficiency? Current Opinion in Microbiology. 2015; 24:66–71. http:727

//dx.doi.org/10.1016/j.mib.2015.01.001, doi: 10.1016/j.mib.2015.01.001.728

Li GW, Burkhardt D, Gross C, Weissman JS. Quantifying absolute protein synthesis rates reveals principles729

underlying allocation of cellular resources. Cell. 2014; 157(3):624–635. doi: 10.1016/j.cell.2014.02.033.730

Lindahl L. Intermediates and time kinetics of the in vivo assembly of Escherichia coli ribosomes. Journal of731

Molecular Biology. 1975; 92(1):15–37. doi: 10.1016/0022-2836(75)90089-3.732

Macklin DN, Ahn-Horst TA, Choi H, Ruggero NA, Carrera J, Mason JC, Sun G, Agmon E, DeFelice MM, Maayan I,733

Lane K, Spangler RK, Gillies TE, Paull ML, Akhter S, Bray SR, Weaver DS, Keseler IM, Karp PD, Morrison JH, et al.734

Simultaneous cross-evaluation of heterogeneous E. coli datasets via mechanistic simulation. Science. 2020;735

369(6502). doi: 10.1126/science.aav3751.736

Mangano K, Florin T, Shao X, Klepacki D, Chelysheva I, Ignatova Z, Gao Y, Mankin AS, Vázquez-Laslop N. Genome-737

wide effects of the antimicrobial peptide apidaecin on translation termination in bacteria. eLife. 2020; 9:1–24.738

doi: 10.7554/eLife.62655.739

Margus T, RemmM, Tenson T. Phylogenetic distribution of translational GTPases in bacteria. BMC Genomics.740

2007; 8:1–18. doi: 10.1186/1471-2164-8-15.741

Marintchev A, Wagner G. Translation initiation: structures, mechanisms and evolution. Quarterly reviews of742

biophysics. 2004; 37(3-4):197–284. doi: 10.1017/S0033583505004026.743

Milón P, Maracci C, Filonava L, Gualerzi CO, Rodnina MV. Real-time assembly landscape of bacterial 30S transla-744

tion initiation complex. Nature Structural & Molecular Biology. 2012; 19(6):609–615. doi: 10.1038/nsmb.2285.745

Mohammad F, Green R, Buskirk AR. A systematically-revised ribosome profiling method for bacteria reveals746

pauses at single-codon resolution. eLife. 2019; 8:1–25. doi: 10.7554/eLife.42591.747

Monod J. The Growth of Bacterial Cultures. Annual Review of Microbiology. 1949; 3(1):371–394. doi: 10.1146/an-748

nurev.mi.03.100149.002103.749

Mora L, Heurgué-Hamard V, De Zamaroczy M, Kervestin S, Buckingham RH. Methylation of bacterial release750

factors RF1 and RF2 is required for normal translation termination in vivo. Journal of Biological Chemistry.751

2007; 282(49):35638–35645. doi: 10.1074/jbc.M706076200.752

Mori M, Zhang Z, Banaei-Esfahani A, Lalanne J, Okano H, Collins BC, Schmidt A, Schubert OT, Lee D, Li G,753

Aebersold R, Hwa T, Ludwig C. From coarse to fine: the absolute Escherichia coli proteome under diverse754

growth conditions . Molecular Systems Biology. 2021; 17(5). doi: 10.15252/msb.20209536.755

20 of 49

10.1073/pnas.1310377110
10.1073/pnas.1310377110
10.1073/pnas.1310377110
10.1016/j.bpj.2009.11.002
10.15252/msb.202110302
10.1016/j.cell.2018.03.007
10.1128/MMBR.69.1.101
http://dx.doi.org/10.1016/j.mib.2015.01.001
http://dx.doi.org/10.1016/j.mib.2015.01.001
http://dx.doi.org/10.1016/j.mib.2015.01.001
10.1016/j.mib.2015.01.001
10.1016/j.cell.2014.02.033
10.1126/science.aav3751
10.7554/eLife.62655
10.1038/nsmb.2285
10.7554/eLife.42591
10.1146/annurev.mi.03.100149.002103
10.1146/annurev.mi.03.100149.002103
10.1146/annurev.mi.03.100149.002103
10.1074/jbc.M706076200
10.15252/msb.20209536


Nenninger A, Mastroianni G, Mullineaux CW. Size dependence of protein diffusion in the cytoplasm of Es-756

cherichia coli. Journal of Bacteriology. 2010; 192(18):4535–4540. doi: 10.1128/JB.00284-10.757

Nomura M, Gourse R, Baughman G, Regulation of the synthesis of ribosomes and ribosomal components.;758

1984. doi: 10.1146/annurev.bi.53.070184.000451.759

Pang YLJ, Poruri K, Martinis SA. tRNA synthetase: TRNA aminoacylation and beyond. Wiley Interdisciplinary760

Reviews: RNA. 2014; 5(4):461–480. doi: 10.1002/wrna.1224.761

Parker DJ, Lalanne JB, Kimura S, Johnson GE, Waldor MK, Li GW. Growth-Optimized Aminoacyl-tRNA Synthetase762

Levels Prevent Maximal tRNA Charging. Cell Systems. 2020; 11:1–10. doi: 10.1016/j.cels.2020.07.005.763

Pavlov MY, Freistroffer DV, Heurgué-Hamard V, Buckingham RH, Ehrenberg M. Release factor RF3 abolishes764

competition between release factor RF1 and ribosome recycling factor (RRF) for a ribosome binding site.765

Journal of Molecular Biology. 1997; 273(2):389–401. doi: 10.1006/jmbi.1997.1324.766

Pedersen S, Bloch PL, Reeh S, Neidhardt FC. Patterns of protein synthesis in E. coli: a catalog of the amount of767

140 individual proteins at different growth rates. Cell. 1978; 14(1):179–190. doi: 10.1016/0092-8674(78)90312-768

4.769

Plochowietz A, Farrell I, Smilansky Z, Cooperman BS, Kapanidis AN. In vivo single-RNA tracking shows that most770

tRNA diffuses freely in live bacteria. Nucleic Acids Research. 2017; 45(2):926–937. doi: 10.1093/nar/gkw787.771

Reuveni S, Meilijson I, Kupiec M, Ruppin E, Tuller T. Genome-scale analysis of translation elongation with a772

ribosome flow model. PLoS Computational Biology. 2011; 7(9). doi: 10.1371/journal.pcbi.1002127.773

Rodnina MV. Translation in prokaryotes. Cold Spring Harbor Perspectives in Biology. 2018; 10(9):1–22. doi:774

10.1101/cshperspect.a032664.775

Saito K, Green R, Buskirk AR. Ribosome recycling is not critical for translational coupling in E. Coli. eLife. 2020;776

9:1–37. doi: 10.7554/ELIFE.59974.777

Sanamrad A, Persson F, Lundius EG, Fange D, Gynnå AH, Elf J. Single-particle tracking reveals that free ribosomal778

subunits are not excluded from the Escherichia coli nucleoid. Proceedings of the National Academy of779

Sciences of the United States of America. 2014; 111(31):11413–11418. doi: 10.1073/pnas.1411558111.780

Schaechter M, MaalOe O, Kjeldgaard NO. Dependency on Medium and Temperature of Cell Size and Chemical781

Composition during Balanced Growth of Salmonella typhimurium. Journal of General Microbiology. 1958;782

19(3):592–606. http://mic.microbiologyresearch.org/content/journal/micro/10.1099/00221287-19-3-592, doi:783

10.1099/00221287-19-3-592.784

Schlosshauer M, Baker D. Realistic protein-protein association rates from a simple diffusional model neglecting785

long-range interactions, free energy barriers, and landscape ruggedness. Protein Science. 2004; 13(6):1660–786

1669. doi: 10.1110/ps.03517304.787

Schrader JM, Zhou B, Li GW, Lasker K, Childers WS, Williams B, Long T, Crosson S, McAdams HH, Weissman JS,788

Shapiro L. The Coding and Noncoding Architecture of the Caulobacter crescentus Genome. PLoS Genetics.789

2014; 10(7). doi: 10.1371/journal.pgen.1004463.790

Scolnick E, Tompkins R, Caskey T, Nirenberg M. Release factors differing in specificity for terminator codons.791

Proceedings of the National Academy of Sciences of the United States of America. 1968; 61(2):768–774. doi:792

10.1073/pnas.61.2.768.793

Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T, Gunderson CW, Mateescu EM, Zhang Z, Hwa T. Inter-794

dependence of Cell Growth Origins and Consequences. Science. 2010; 330:1099–1102. doi: 10.1126/sci-795

ence.1192588.796

Scott M, Klumpp S, Mateescu EM, Hwa T. Emergence of robust growth laws from optimal regulation of ribosome797

synthesis. Molecular Systems Biology. 2014; 10(8):747. doi: 10.15252/msb.20145379.798

Shaw LB, Zia RKP, Lee KH. Totally asymmetric exclusion process with extended objects: a model for protein799

synthesis. Physical review E, Statistical, nonlinear, and soft matter physics. 2003; 68(2 Pt 1):021910. doi:800

10.1103/PhysRevE.68.021910.801

Subramaniam AR, Zid BM, O’Shea EK. An integrated approach reveals regulatory controls on bacterial802

translation elongation. Cell. 2014; 159(5):1200–1211. http://dx.doi.org/10.1016/j.cell.2014.10.043, doi:803

10.1016/j.cell.2014.10.043.804

21 of 49

10.1128/JB.00284-10
10.1146/annurev.bi.53.070184.000451
10.1002/wrna.1224
10.1016/j.cels.2020.07.005
10.1006/jmbi.1997.1324
10.1371/journal.pcbi.1002127
10.1101/cshperspect.a032664
10.1101/cshperspect.a032664
10.1101/cshperspect.a032664
10.7554/ELIFE.59974
10.1073/pnas.1411558111
http://mic.microbiologyresearch.org/content/journal/micro/10.1099/00221287-19-3-592
10.1110/ps.03517304
10.1371/journal.pgen.1004463
10.1073/pnas.61.2.768
10.1073/pnas.61.2.768
10.1073/pnas.61.2.768
10.1126/science.1192588
10.1126/science.1192588
10.1126/science.1192588
10.15252/msb.20145379
10.1103/PhysRevE.68.021910
10.1103/PhysRevE.68.021910
10.1103/PhysRevE.68.021910
http://dx.doi.org/10.1016/j.cell.2014.10.043
10.1016/j.cell.2014.10.043
10.1016/j.cell.2014.10.043
10.1016/j.cell.2014.10.043


Vieira JP, Racle J, Hatzimanikatis V. Analysis of Translation Elongation Dynamics in the Context of an Escherichia805

coli Cell. Biophysical Journal. 2016; 110(9):2120–2131. http://dx.doi.org/10.1016/j.bpj.2016.04.004, doi:806

10.1016/j.bpj.2016.04.004.807

Volkov IL, Lindén M, Aguirre Rivera J, Ieong KW, Metelev M, Elf J, Johansson M. tRNA tracking for direct808

measurements of protein synthesis kinetics in live cells. Nature Chemical Biology. 2018; 14(6):618–626.809

http://dx.doi.org/10.1038/s41589-018-0063-y, doi: 10.1038/s41589-018-0063-y.810

Weijland A, Harmark K, Cool RH, Anborgh PH, Parmeggiani A. Elongation factor Tu: a molecular switch in811

protein biosynthesis. Molecular Microbiology. 1992; 6(6):683–688. doi: 10.1111/j.1365-2958.1992.tb01516.x.812

Wittmann HG. Components of Bacterial Ribosomes. Annual Review of Biochemistry. 1982; 51(1):155–183. doi:813

10.1146/annurev.bi.51.070182.001103.814

You C, Okano H, Hui S, Zhang Z, Kim M, Gunderson CW, Wang YP, Lenz P, Yan D, Hwa T. Coordination of bacterial815

proteome with metabolism by cyclic AMP signalling. Nature. 2013; 500(7462):301–306. doi: 10.1038/na-816

ture12446.817

Zavialov AV, Hauryliuk VV, Ehrenberg M. Splitting of the posttermination ribosome into subunits by the818

concerted action of RRF and EF-G. Molecular Cell. 2005; 18(6):675–686. doi: 10.1016/j.molcel.2005.05.016.819

22 of 49

http://dx.doi.org/10.1016/j.bpj.2016.04.004
10.1016/j.bpj.2016.04.004
10.1016/j.bpj.2016.04.004
10.1016/j.bpj.2016.04.004
http://dx.doi.org/10.1038/s41589-018-0063-y
10.1111/j.1365-2958.1992.tb01516.x
10.1146/annurev.bi.51.070182.001103
10.1146/annurev.bi.51.070182.001103
10.1146/annurev.bi.51.070182.001103
10.1016/j.molcel.2005.05.016


Appendix 1820

Coarse-grained transition times: models of ribosome traffic821

Our coarse-grained model of ribosome transitions between categories of initiation, elonga-

tion, and termination need to be distinguished from the individual molecular times of the

respective steps in one important regard: ribosome traffic on mRNAs can lead to effective

delays arising from transient queuing. For example, if translation termination is slow and

ribosomes start to pile up and form queues upstream of stop codons on mRNAs, the molec-

ular time of termination (time between ribosome arrival to the stop codon and its recycling

to the free ribosome pool) will not be a correct reflection of the actual termination time of

a ribosome, because of the additional wait time in the queue. A similar argument can be

made for transient queuing forming in the body of genes for elongating ribosomes.
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We connect these two (molecular and coarse-grained) levels of description by noting

that our mass action schemes relating the translation factor abundance to the times of the

specific steps can be used as input parameters in traffic models of ribosome movement

along mRNAs taking into account possible many-body interactions (e.g., totally asymmetric

exclusion processes (Shaw et al., 2003; Kavčič et al., 2020)). Solving these traffic models
can then be used to obtain transition times in our coarse-grained translation cycle model.

As we show below, corrections arising from transient queuing are small (for endogenous

translation factor abundances) based on current estimates the absolute rates of initiation,

elongation, and termination, on individual mRNAs, such that stochastic queuing does not

play a dominant role in determining optimal translation factor expression levels.
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As a first example, we relate the on-stop codon molecular termination time τter, which

we obtain from solving our mass action scheme (see equation 6), to the termination time

in presence of queuing: τ
full
ter . The difference between the two, as described above, being

related to possible queues upstream of stop codons leading to further delays in the process

of translation termination, and thus to a longer termination time than that of the molecular

on-stop codon termination. The delay factor will be denoted 
(

τter
)

, defined through:

τ
full
ter ∶= τter 

(

τter
)

.

To derive the expression for the  factor, note that in steady-state, ribosome numbers in a
given state is directly proportional to the time to transition out of that state. Let mi be the
mRNA concentration for gene i in the cell, nter(�i, τter) the number of terminating ribosomes
(including queues if present) on a transcript with per mRNA translation initiation rate (i.e.,

translation efficiency (Li, 2015)) �i, then:
τ
full
ter ∝

∑

i
mi nter(�i, τter),

whereas

τter ∝
∑

i
mi n

Ø
ter (�i, τter),

with nØter (�i, τter) the average number of terminating ribosomes on a transcript with translation
efficiency �i, assuming no queue upstream of the stop codon. Note that nter(�i, τter) ≥
nØter (�i, τter) (the differences being queued ribosomes). Hence, the queuing factor  is:


(

τter
)

∶=
τ
full
ter

τter
=

∑

i mi nter(�i, τter)
∑

i mi n
Ø
ter (�i, τter)

.
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Formally, nter can be obtained by solving a TASEP model (Shaw et al., 2003), but a sim-
plified queue model (Bergmann and Lodish, 1979; Lalanne et al., 2021) disregarding spatial
information recapitulates the statistics of queue formation (as verified by full stochastic

simulations, data not shown). The state space of the queue model is the number of ri-

bosomes N in the queue. Ribosomes arrive at a rate � (initiation rate on the transcript),
and leave at the molecular termination rate τ−1ter. The ribosome arrival rate at the queue is

rigorously correct in steady-state, unless the queue becomes large enough to affect the

initiation process (fully jammed transcript), or RNA degradation. The stochastic process

(away from the jammed state) is then described by: N → N + 1 at rate �, and N → N − 1
at rate τ−1ter for N > 0. The probability for the queue to have N ribosomes, P (N), can be
obtained as the steady-state from the resulting master equation, leading to a geometric

series: P (N) =
(

�τter
)N (

1 − �τter
)

. Hence, the prevalence of higher order queues scales as

the ratio of the initiation to termination rate on the transcript. The average queue size,

corresponding to nter(�i, τter), is:

nter(�i, τter) ≈

⎧

⎪

⎪

⎨

⎪

⎪

⎩

τter�i
1 − τter�i

, τ−1ter ≥ �i(1 + lfootprintl−1i ),

li
lfootprint

, τ−1ter < �i(1 + lfootprintl
−1
i ).

Above, the solution of the simple model is truncated at the value where the transcript

becomes fully jammed with li∕lfootprint ribosomes (li and lfootprint being the size of gene i and
the size occupied by a ribosome respectively). The no queue ribosome number is simply

equal to a model where queues withN > 1 do not arise, hence nØter (�i, τter) = �iτter. Therefore,
the queuing factor, under the stated assumptions (and assuming no transcript is in the

jammed state), is


(

τter
)

≈

∑

i mi
�i

1−τter�i
∑

i mi�i
.

Expanding for fast termination gives  − 1 = τter⟨�2⟩
⟨�⟩

as the leading order correction, where

the averages are weighted by mRNA levels. The above was derived assuming exponentially

distributed initiation and termination times, but could be modified to account for more

complex dynamics of the initiation and initiation steps.
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The queuing factor can be estimated based on absolute measurements of the initiation

and termination rates in cells. Kennell and Riezman (Kennell and Riezman, 1977) estimate
3.2 s between initiation events on the lacZ mRNA (at 48 min per cell doubling). Bremer and
Dennis (Bremer and Dennis, 2008) estimate 1 s per ribosome initiation events at 20 min
doubling time. Recent calibrated high-throughput measurements report a genome-wide

median of 5.6 s per initiation events (Gorochowski et al., 2019). To our knowledge, estimation
of absolute in vivo termination rates have not been performed, but we can estimate bounds.
Indirect assessment based on steady-state protein production measurements place the

fraction of actively elongating ribosome at about 95% (Dai et al., 2016). Assuming (upper
bound) that the 5% of non elongating ribosomes are in the process of termination would

give a termination time of 5% × 11.1s ≈ 0.6 s (fraction of ribosomes in a given state equal to
the ratio of transition times), where we have used that the elongation time of an average

protein is about 11.1 s (200∕18 s−1) at fast growth (Dai et al., 2016). This upper bound is
still much smaller than the reported median initiation time, suggesting that the queuing

factor for termination is small. As additional support to the view that translation is far from

being termination limited, small that queues at stop codons are only globally observed
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in ribosome profiling upon severe perturbations (Kavčič et al., 2020; Baggett et al., 2017;
Mangano et al., 2020; Saito et al., 2020; Lalanne et al., 2021).
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With regards to translation elongation, transient queuing in the body of gene can also

lead to a difference between molecular and coarse-grained transition times in our model.

However, the fraction of ribosomes transiently stalled due to this queuing scales as �τaa in
the low density phase (defined by requirements �τter < 1 and �τaa < (1 +

√

lfootprint)−1 ≈ 0.25)
of the TASEP model (Shaw et al., 2003). Since measured estimates place �τaa ∼ 0.01 (Dai
et al., 2016; Gorochowski et al., 2019), we do not consider the queuing effect for elongating
ribosomes within our optimization framework for elongation factor abundances.
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Appendix 2923

Translation termination924

Omitted molecular details925

The kinetic scheme presented in Figure 2A does not include some knownmolecular details of

translation termination. For example, GTPase RF3 has been shown to catalyze the release of

RF1/RF2 post peptide hydrolysis and to effectively prevent rebinding to empty A site ribosome

without peptide (Pavlov et al., 1997). RF3 is not included in our model given our desire for
a parsimonious description and due to the absence of identifiable homologs in multiple

bacteria (e.g., B. subtilis) (Margus et al., 2007). Our scheme aggregates the RF1/RF2 recycling
rate with the catalytic rate, and further assume a unidirectional reaction without rebinding

(consistent with a lower bound), effectively taking into account the action of RF3. In addition,

translocation factor EF-G is known to be implicated in ribosome recycling via translocation

post RF4 binding (Zavialov et al., 2005). We assume EF-G’s abundance requirement towards
the function of termination to be a minor fraction of its total requirement (non-sense to

sense codons ≈0.5%) and to be non-limiting for this step. We thus coarse-grain EF-G’s role
in ribosome recycling through an effective catalytic rate for RF4, see (Borg et al., 2016) for
details of EF-G’s involvement in ribosome recycling. As another example of simplification in

our coarse-graining, we also do not explicitly model RF1/RF2’s post-translational modification

by methyltransferase PrmC (Mora et al., 2007). Thus, the activity of the RFs within our
description to correspond to the average within a possibly heterogeneous pool of modified

and unmodified factors in the cell.
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940

941

942

943

Non binding-limited regime (one stop codon)944

If translation termination is not diffusion limited, terms corresponding to the finite catalytic

times must be included in addition to the diffusive contributions in the termination time

(equation 6). Under our simplified scheme (Figure 2A) andwith a single stop codons (grouping

RF1 and RF2), the molecular termination time is then sum of the four separate times

corresponding to distinct events:

τter =
1

kRFIon �freeRFI

+ 1
kRFIcat

+ 1
kRF4on �freeRF4

+ 1
kRF4cat

The two novelties compared to the diffusion-limited regime (equation 6) are: (1) addition of

the catalytic times k−1cat for the two steps, and importantly (2) the mass action diffusion terms
now involve the free concentration of release factors. Generally, the free concentration

of the tlFs can be obtained by solving the steady-state solutions of kinetic schemes under

constraints imposed by conservation equations. The examples in e.g., sections 2, 2, and 1

below provide the mathematical details associated with the procedure.
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Here, the difference between the total and free concentration of release factor arises

from the finite catalytic turnover of the enzymes, and corresponds to the concentration

of ribosome bound release factors. Given the flux J through the system in steady-state
of growth, the concentration of ribosome bound release factor (e.g., for RF4) is J∕kRF4cat ,

which becomes
lRF4�
⟨l⟩kRF4cat

upon converting to proteome fraction. This quantity sets the absolute

minimum for the release factor abundance necessary to sustain growth � for a given kcat.
The free concentrations for the release factors are then:

�freeRFI = �RFI −
lRFI�
⟨l⟩kRFIcat

, �freeRF4 = �RF4 −
lRF4�
⟨l⟩kRF4cat

. (19)
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Hence, the final solution for the steady-state termination time as a function of the total

abundance of the release factors and growth rate is:

τter =
1

kRFIon

(

�RFI −
lRFI�
⟨l⟩kRFIcat

) + 1
kRFIcat

+ 1

kRF4on

(

�RF4 −
lRF4�
⟨l⟩kRF4cat

) + 1
kRF4cat

.

The relationship above, between termination time, total tlF abundance, and growth rate �
closes the solution of the kinetic scheme. Substituting the above in the optimality condition

(equation 5) leads to the solution:

�∗RFI =

√

lribo�∗

⟨l⟩kRFIon
+
lRFI�∗

⟨l⟩kRFIcat
, �∗RF4 =

√

lribo�∗

⟨l⟩kRF4on
+
lRF4�∗

⟨l⟩kRF4cat

. (20)

The additional terms ∝ �∗ correspond to the contribution to the optimal abundance arising
from the finite catalytic rates, no present in the diffusion limited regime (equation 7).
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Full three stop codons model982

The full model with three different stop codons (UAA, UGA, UAG) and RF1/RF2 with different

specificities (RF1: UAA, UAG; RF2: UAA, UGA) can also be solved exactly, leading to a small

correction on the summed optimal abundance for RF1 and RF2 of

√

1 + 2
√

fUAGfUGA < 1.05
(fast growing species considered, where fUAG and fUGA are the fractional fluxes through
the RF1 and RF2 stop codons respectively) compared to the single stop codon optimum

derived above (�∗RFI , equation 20). We provide details below. With three stop codons, the
coarse-grained reaction scheme is shown in Appendix 2 Figure 1. The relevant chemical

species and parameters are listed in Appendix 2 Table 1.
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Appendix 2 Figure 1. Coarse-grained translation termination scheme with three stop codons and

RF1/RF2.
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Variable Description

[C+pepUAA] Ribosomes at UAA with peptide chain [�M]
[C+pepUAG] Ribosomes at UAG with peptide chain [�M]
[C+pepUGA] Ribosomes at UGA with peptide chain [�M]
[D1

UAA] Ribosomes at UAA with peptide chain and RF1 bound [�M]
[D1

UAG] Ribosomes at UAG with peptide chain and RF1 bound [�M]
[D2

UAA] Ribosomes at UAA with peptide chain and RF2 bound [�M]
[D2

UGA] Ribosomes at UGA with peptide chain and RF2 bound [�M]
[C−pep] Ribosomes at all stops without peptide chain [�M]
[E4] Ribosomes at all stops without peptide chain and RF4 bound [�M]
[RF1] Free RF1 [�M]
[RF2] Free RF2 [�M]
[RF4] Free RF4 [�M]

JUAA = fUAAJ Ribosome flux through UAA [�M s−1]
JUAG = fUAGJ Ribosome flux through UAG [�M s−1]
JUGA = fUGAJ Ribosome flux through UGA [�M s−1]

k̂RF1on On-rate for RF1 [�M−1 s−1]

k̂RF2on On-rate for RF2 [�M−1 s−1]

k̂RF4on On-rate for RF4 [�M−1 s−1]

kRF1cat Catalytic rate for RF1 [s−1]

kRF2cat Catalytic rate for RF2 [s−1]

kRF4cat Catalytic rate for RF4 [s−1]

RF1tot Total RF1 [�M]
RF2tot Total RF2 [�M]
RF4tot Total RF4 [�M]

995

Appendix 2 Table 1. Chemical species and parameters in three stop codons termination model.996997

The corresponding mass action system of equations for peptide release:

d[C+pepUAA]
dt

= fUAAJ − [C
+pep
UAA]

(

k̂RF1on [RF1] + k̂RF2on [RF1]
)

,

d[C+pepUAG]
dt

= fUAGJ − k̂RF1on [C+pepUAG][RF1],

d[C+pepUGA]
dt

= fUGAJ − k̂RF2on [C+pepUGA][RF1],

d[D1
UAA]
dt

= k̂RF1on [RF1][C+pepUAA] − k
RF1
cat [D

1
UAA],

d[D1
UAG]
dt

= k̂RF1on [RF1][C+pepUAG] − k
RF1
cat [D

1
UAG],

d[D2
UAA]
dt

= k̂RF2on [RF2][C+pepUAA] − k
RF1
cat [D

2
UAA],

d[D2
UGA]
dt

= k̂RF2on [RF2][C+pepUGA] − k
RF1
cat [D

2
UGA],

d[RF1]
dt

= −k̂RF1on [RF1]
(

[C+pepUAA] + [C
+pep
UAG]

)

+ kRF1cat
(

[D1
UAA] + [D

1
UAG]

)

,

d[RF2]
dt

= −k̂RF2on [RF2]
(

[C+pepUAA] + [C
+pep
UGA]

)

+ kRF2cat
(

[D2
UAA] + [D

2
UGA]

)

.

998

999

1000

1001
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And for ribosome recycling:

d[C−pep]
dt

= kRF1cat
(

[D1
UAA] + [D

1
UAG]

)

+ kRF2cat
(

[D2
UAA] + [D

2
UGA]

)

− k̂RF4on [C−pep][RF4],

d[E4]
dt

= k̂RF4on [C−pep][RF4] − kRF4cat [E
4],

d[RF4]
dt

= −k̂RF4on [C−pep][RF4] + kRF4cat [E
4].

The conservation equations for RF1, RF2 and RF4 are:

RF1tot = [RF1] + [D1
UAA] + [D

1
UAG],

RF2tot = [RF2] + [D2
UAA] + [D

2
UGA],

RF4tot = [RF4] + [E4].

With a more complex scheme such as the one above, the optimization problem can be

solved in three steps. First, we obtain the steady-state concentration of the chemical

species. Second, we determine the effective coarse-grained termination time. Finally,
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the optimal abundance is found by substituting the termination time in the optimality

condition (equation 5), and solving the resulting system of equation.
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1009
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1015

Steady-state concentrations for RFs1016

Note that the RF1/RF2 and RF4 completely decouple, and that the solution for RF4 is identical

to the one stop codon case solved above (section Non binding-limited regime (one stop

codon)). For peptide chain release, the steady-state of the system can be solved by expressing

the all chemical species in terms of [RF1], and [RF2]:

[C+pep
UAA] =

fUAAJ

k̂RF1on [RF1] + k̂RF2on [RF2]
(21)

[D1
UAA] = fUAA

J
kRF1cat

(

k̂RF1on [RF1]

k̂RF1on [RF1] + k̂RF2on [RF2]

)

,

[D2
UAA] = fUAA

J
kRF2cat

(

k̂RF2on [RF2]

k̂RF1on [RF1] + k̂RF2on [RF2]

)

,

[C+pep
UAG] =

fUAGJ

k̂RF1on [RF1]
, [C+pep

UGA] =
fUGAJ

k̂RF2on [RF2]
, [D1

UAG] = fUAG
J
kRF1cat

, [D2
UGA] = fUGA

J
kRF2cat

.
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Substituting these in the conservation equations for RF1 and RF2 leads to a closed system in

terms of [RF1] and [RF2]:

RF1tot = [RF1]

[

1 + fUAA
J
kRF1cat

(

k̂RF1on

k̂RF1on [RF1] + k̂RF2on [RF2]

)]

+ fUAG
J
kRF1cat

,

RF2tot = [RF2]

[

1 + fUAA
J
kRF2cat

(

k̂RF2on

k̂RF1on [RF1] + k̂RF2on [RF2]

)]

+ fUGA
J
kRF2cat

.

Under the assumption of identical biochemical properties for RF1 and RF2, namely kRF1cat =
kRF2cat ∶= kRFIcat and k̂

RF1
on = k̂RF2on ∶= k̂RFIon , the total free concentration of RF1 and RF2 simplifies

to: [RF1]+[RF2] = RF1tot+RF2tot−
J

kRFIcat
, where we used fUAA+fUAG+fUGA = 1 (by definition).

Using this relation to eliminate [RF2] from the [RF1] equation (and vice-versa), we obtain,
upon conversion to proteome fraction:

�freeRF ,tot ∶=�RF1 + �RF2 −
lRFI�
⟨l⟩kRFIcat

, (22)

�freeRF1 =�RF1 �
free
RF ,tot, �

free
RF2 = �RF2 �

free
RF ,tot,

where

�RF1 ∶=
�RF1 −

lRFI�
⟨l⟩kRFIcat

f
UAG

(�RF1 −
lRFI�
⟨l⟩kRFIcat

f
UAG
) + (�RF2 −

lRFI�
⟨l⟩kRFIcat

f
UGA
)
,

�RF2 ∶=
�RF2 −

lRFI�
⟨l⟩kRFIcat

f
UGA

(�RF1 −
lRFI�
⟨l⟩kRFIcat

f
UAG
) + (�RF2 −

lRFI�
⟨l⟩kRFIcat

f
UGA
)
.

These constitute the steady-state solutions of the system of equation.

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

Coarse-grained translation termination time1042

In order to obtain an expression for the termination time (peptide release portion), needed

to determine the optimal RF abundance (i.e., to substitute in equation 5), the peptide chain

release contribution arises from the ribosome containing species listed in equation 21, which
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sum to (under the assumption of identical biochemical properties for RF1/RF2):

[Rpep
ter ] = [C

+pep
UAA] + [C

+pep
UAG] + [C

+pep
UGA] + [D

1
UAA] + [D

1
UAG] + [D

2
UAA] + [D

2
UGA],

[Rpep
ter ] = J

(

fUAG
k̂RFIon [RF1]

+
fUGA

k̂RFIon [RF2]
+

fUAA
k̂RFIon ([RF1] + [RF2])

+ 1
kRFIcat

)

.

1043

1044

1045

1046

1047

1048

1049

Upon conversion to proteome fraction, the above becomes:

�pepribo =
lribo
⟨l⟩

�

(

fUAG
kRFIon �freeRF1

+
fUGA

kRFIon �freeRF2

+
fUAA

kRFIon

(

�freeRF1 + �
free
RF2

)
+ 1
kRFIcat

)

∶=
lribo
⟨l⟩

�τpep.

The bracketed term corresponds to the coarse-grained time associated with peptide chain

release τpep, and the free concentrations are given by equations 22.

1050

1051

1052

1053

1054

1055

Optimal abundances for RF1/RF21056

The solved concentrations in steady-state (as a function of proteome fractions) and coarse-

grained times allow us to determine the optimal RF1 and RF2 solutions (within our model).

The optimality condition (equation 5) is now:

( )τpep
)�

RF1

)∗

= −
⟨l⟩
lribo�∗

,
( )τpep
)�

RF2

)∗

= −
⟨l⟩
lribo�∗

.

Solving the above system leads to optima �∗RF1 and �
∗
RF2:

�∗RF1 + �
∗
RF2 =

√

lribo�∗ (1 + �)
⟨l⟩kRFIon

+
lRFI�∗

⟨l⟩kRFIcat
, (23)

�∗RF1 −
fUAGlRFI�∗

⟨l⟩kRFIcat

�∗RF2 −
fUGAlRFI�∗

⟨l⟩kRFIcat

=

√

fUAG
fUGA

. (24)

where the new factor � ∶= 2
√

fUAGfUGA.

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

The relative flux through each stop codon (fUAA, fUAG, fUGA) can be estimated in a variety of
bacteria from ribosome profiling data (Lalanne et al., 2018) as the total synthesis fraction of
genes with the respective stop codon. For fast growing species considered in the current

study, fUAA ≈ 0.9, and the correction term to the optimal solution for the summed abundance
of RF1 and RF2 (

√

1 + �) is consequently small (E. coli: fUAA = 0.888, fUAG = 0.015, fUGA =
0.097,

√

1 + � = 1.04; B. subtilis: fUAA = 0.888, fUAG = 0.064, fUGA = 0.049,
√

1 + � = 1.05, V.
natriegens: fUAA = 0.929, fUAG = 0.041, fUGA = 0.031,

√

1 + � = 1.04)

1068

1069

1070

1071

1072

1073

1074
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Appendix 31075

Translation elongation1076

Coarse-grained one-codon model1077

Translation elongation is a more complicated process than termination, involving multiple

factors to bring the charged tRNA to the ribosome (EF-Tu), charge the tRNAs (aaRS), translo-

cate the ribosome (EF-G), and perform nucleotide exchange on EF-Tu to drive the process

(EF-Ts), in addition to others not included here. Our simplified kinetic scheme is illustrated in

Appendix 3 Figure 1. In anticipation coarse-graining procedure detailed below, rates rescaled

in the conversion to a one-codon model are marked by ∗.

1078

1079

1080

1081

1082

1083

To simplify our model, we coarse-grain the elongation cycle by considering a single

codon type (section Estimation of coarse-grained rates below or details of the coarse-

graining procedure), effectively grouping the tRNA’s, tRNA synthetases, and different ternary

complexes to single entities. Importantly, as a result, the on-rates associated with these

processes are rescaled by a factor close to n−1aa , where naa = 20.

1084

1085

1086

1087

1088

1089

Appendix 3 Figure 1. Coarse-grained reaction scheme for a single step (amino acid incorporation) of

translation elongation. Tu: EF-Tu, Ts: EF-Ts, G: EF-G, aaRS: aminoacyl tRNA synthetases. Steps with

slower rates as a result of the coarse-graining to one effective codon are marked by #.

1090

1091

10921093

An important distinction for elongation compared to initiation and termination is that

multiple elongation steps (average ⟨l⟩ ≈ 200) are required to generate a protein. Hence, the
flux into the through the elongation cycle is ⟨l⟩ larger than that through the initiation and

termination steps (there is one initiation and termination event for each protein made, but

about 200 elongation steps on average).

1094

1095

1096

1097

1098

The mass action reaction scheme for translation elongation:

⟨l⟩J
←←←←←←←←←←←←←←←←←←→ R∅, (25)

tRNA + aaRS
k̂aaRSon ∕n1
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ tRNA∶aaRS,

tRNA∶aaRS
kaaRScat
←←←←←←←←←←←←←←←←←←←←←←←←←→ aatRNA + aaRS

Tu + Ts
k̂T son
←←←←←←←←←←←←←←←→ Tu∶Ts,

Tu∶Ts
kT scat
←←←←←←←←←←←←←←←←→ TuGTP + Ts,

Tu
GTP + aatRNA

k̂T uon
←←←←←←←←←←←←←←←←→ TC,

TC + R∅
k̂TCon ∕n2
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ RTC ,

RTC
kTCcat
←←←←←←←←←←←←←←←←←←→ RtRNA,

RtRNA + G
k̂Gon
←←←←←←←←←←←←←←→ RG ,

RG

kGcat
←←←←←←←←←←←←←←←←→ G + tRNA.
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1099

1100

1101

1102

1103

To arrive at the above, we started with a full model of translation (not shown), will all possible

codons, tRNA species, and ribosomes with different codons. To coarse-grain the model, we

introduced the following effective variables, which correspond to the total concentration of

each type of species involved, summed over the of the codon/amino acid specificity:

[tRNA] ∶=
∑

i
[tRNAi], [aatRNA] ∶=

∑

i
[aatRNAi], [aaRS] ∶=

∑

î

[aaRSî], [TC] ∶=
∑

i
[TCi]

[R∅] ∶=
∑

i,�,�
[R i��], [RTC ] ∶=

∑

i,j,�,�
[R

i TCj
�� ], [RtRNA] ∶=

∑

i,j,�,�
[R ij��], [RG] ∶=

∑

i,j,�,�
[R ij�� ∶∶ G].

In the above, Greek indices correspond to different codons on mRNAs, and Roman indices

to different tRNAs. Roman indices with a hat (î) correspond to tRNA synthetases recognizing
specific tRNAs (multiple amino acids have more than one tRNA isoacceptor). In defining

these coarse-grained species (our approach is analogous to that of (Dai et al., 2016)), we
redefined the two following kinetic parameters:

k̂aaRSon

n1
∶= k̂aaRSon

∑

i

[tRNAi][aaRSî]
[tRNA][aaRS]

, and
k̂TCon
n2

∶= k̂TCon
∑

�,�,i,j

[R i��]S�,j[TCj]

[R∅][TC]
. (26)

k̂aaRSon and k̂TCon correspond to the microscopic bimolecular rates (assumed equal for the
different chemical species). S�,j is the tRNA isoacceptor/codon specificity matrix (1 if tRNA i
can recognize codon �, 0 otherwise) (Björk and Hagervall, 2014). Rescaling terms n1 and n2
are estimated below.

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

Estimation of coarse-grained rates1123

The definition of coarse-grained parameters (equations 26) involves sums:

1
n1
∶=

∑

i

[tRNAi][aaRSî]
[tRNA][aaRS]

and
1
n2
∶=

∑

�,�,i,j

[R i��]S�,j[TCj]

[R∅][TC]
.

These can be estimated from tRNA abundances, codon usage and individual synthetases’

levels obtained from ribosome profiling data in E. coli (Li et al., 2014).

1124

1125

1126

1127

1128

1129

We first consider n1. Note that the fraction of free tRNA of type i to the total number of free
tRNA (not bound to any protein) is not readily measurable. Assuming similarities between

types of tRNA’s, we approximate this fraction with the fraction of total tRNA of type i to the
total tRNA concentration, or

[tRNAi]
[tRNA]

≈
tRNA

tot
i

tRNAtot
.

The total tRNA concentration has been measured at fast growth for E. coli (Dong et al.,
1996). The relative concentration of each tRNA synthetases (appropriately corrected for
stoichiometry for the different classes) can be computed from the ribosome profiling data

(Li et al., 2014), and we obtain
1
n1
∶=

∑

i

(

[tRNAi]
[tRNA]

[aaRSî]
[aaRS]

)

≈
∑

i

(

tRNA
tot
i

tRNAtot

[aaRSî]
[aaRS]

)

≈ 0.056 ⇒ n1 ≈ 17.8

This was to be expected since the synthetases in E. coli show little variability around their
mean, and in the case of equal synthetase concentration, n1 = 20 would strictly hold.

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

For the second sum (n2), we use distribution of ribosome footprint reads across the transcrip-
tome to estimate ribosome occupancies at different codons. We first make the following

approximation for one of the sub-sum:

∑

�,i

[R i��]

[R∅]
≈
∑

�

NFP
��

NFP
tot
,
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where NFP
�� is the total number of ribosome footprint reads at codon pairs �, � and N

FP
tot

is the total number of footprint reads mapping to coding sequences. The nature of the

approximation is that we are taking relative fraction of ribosome footprints (representing

ribosomes across the elongation cycle at that codon pair) at a given codon pair to be equal

to the relative fraction of ribosomes waiting for the ternary complex to derliver a tRNA to

the A site. The modest differences in elongation rates at different codons seen in ribosome

profiling data (Mohammad et al., 2019) justify this approximation.

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

From our data (not shown), we have that

∑

�

NFP
��

NFP
tot

≈
∑

�

NFP
��

NFP
tot

=
NFP
�

NFP
tot

∶= f�

holds to better than 0.5% for each codon. f� above is the (expression weighted) codon
usage. As before with the free tRNA concentrations, we can approximate the relative ternary

complexes concentrations by the corresponding total tRNA concentrations:

1
n2
∶=

∑

�,�,i,j

[R i��]S�,j[TCj]

[R][TC]
≈
∑

�,j

f� S�,j tRNA
tot
j

tRNAtot
≈ 0.048 ⇒ n2 ≈ 20.8 (27)

We used the same dataset as before for the total tRNA concentration in E. coli (Dong et al.,
1996). The codon usage was determined directly from ribosome profiling data (Li et al.,
2014). The sum of these products is graphically represented in Appendix 3 Figure 2. The
above sum of product of tRNA fraction and codon usage provides an effective number of

different ternary complexes. A priori, that might have been expected to equal to the number
of tRNAs (≈40). However, as is apparent in Appendix 3 Figure 2, certain tRNA-codon pairs
are much more prevalent than others (even for amino acid with multiple codons and/or

tRNA isoacceptors), which leads to a decrease in the effective concentration. The exact value

depends on the detailed codon usage and tRNA abundance.

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

Appendix 3 Figure 2. Graphical illustration of the sum (equation 27). Left: codon usage (vertical, from

analysis of ribosome profiling data from (Li et al., 2014)), tRNA-codon specificity (matrix, from (Björk
and Hagervall, 2014), with different amino acids outlined with different colors), and tRNA abundance
(horizontal, from (Dong et al., 1996)) organized by amino acid. Right: product matrix.

1179

1180

1181

11821183

Given the results above, we take for simplicity n1 = n2 = naa = 20.1184
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Translation elongation: optimal solutions1185

The mass action reactions corresponding to the one codon elongation cycle model are

(equations 25):

d[R∅]
dt

= ⟨l⟩J −
k̂TCon
naa

[TC][R∅],

d[RTC ]
dt

=
k̂TCon
naa

[TC][R∅] − kTCcat [RTC ],

d[Tu]
dt

= kTCcat [RTC ] − k̂
T s
on [Tu][Ts],

d[tRNA]
dt

= −
k̂aaRSon

naa
[tRNA][aaRS] + kGcat[RG],

d[tRNA::aaRS]
dt

=
k̂aaRSon

naa
[tRNA][aaRS] − kaaRScat [tRNA::aaRS] = −d[aaRS]

dt
,

d[aatRNA]
dt

= kaaRScat [tRNA::aaRS] − k̂T uon [aatRNA][Tu
GTP],

d[TuGTP]
dt

= kT scat[Tu∶Ts] − k̂
T u
on [aatRNA][Tu

GTP],

d[Tu∶Ts]
dt

= −kT scat[Tu∶Ts] + k̂
T s
on [Tu][Ts] = −

d[Ts]
dt

,

d[TC]
dt

= k̂T uon [aatRNA][Tu
GTP] −

k̂TCon
naa

[TC][R∅],

d[RtRNA]
dt

= kTCcat [RTC ] − k̂
G
on[RtRNA][G],

d[RG]
dt

= k̂Gon[RtRNA][G] − k
G
cat[RG] = −

d[G]
dt

.

1186

1187

1188

1189

1190

1191

Conservation equations close the system:

Tstot = [Ts] + [Tu∶Ts],

Tutot = [Tu] + [Tu
GTP] + [Tu∶Ts] + [TC] + [RTC ],

tRNAtot = [R∅] + 2[RTC ] + 2[RtRNA] + 2[RG] + [tRNA] + [tRNA∶aaRS] + [aatRNA] + [TC],

aaRStot = [tRNA∶aaRS] + [aaRS],

Gtot = [G] + [RG].

The ternary complex concentration and free EF-G concentration enter the translation elon-

gation time (equation 10, which is the diffusion limited and factor dependent contribution

to the elongation time) and are required to infer optimal abundances of elongation factors.

Both can to be obtained by solving the system of non-linear equations above.

1192

1193

1194

1195

1196

1197

1198

1199

First, catalytic steps must equal to the flux through in the system in steady-state and thus:

[RG] =
⟨l⟩J
kGcat

, [RTC ] =
⟨l⟩J
kTCcat

, [tRNA::aaRS] =
⟨l⟩J
kaaRScat

, [Tu::Ts] =
⟨l⟩J
kT scat

.

Together with the conservation equations, these allow for immediate solutions for the free

concentrations [Ts], [aaRS], and [G]:

[Ts] =Tstot −
⟨l⟩J
kT scat

,

[aaRS] =aaRStot −
⟨l⟩J
kaaRScat

,

[G] =Gtot −
⟨l⟩J
kGcat

.

1200

1201

1202

1203

1204

1205

1206

1207

1208
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The solution for other species can then also be obtained in terms [TuGTP], and [TC]:

[RtRNA] =
⟨l⟩J

k̂Gon
(

Gtot −
⟨l⟩J
kGcat

) , [R∅] =
⟨l⟩naaJ

k̂TCon [TC]

[tRNA] =
⟨l⟩naaJ

k̂aaRSon

(

aaRStot −
⟨l⟩J
kaaRScat

) , [aatRNA] =
⟨l⟩J

k̂T uon [Tu
GTP]

,

[Tu] =
⟨l⟩J

k̂T son
(

Tstot −
⟨l⟩J
kT scat

) .1209

1210

1211

1212

Substituting these in the conservation equations for tRNAs and EF-Tu lead to the final system

to solve (converting to proteome fraction):

tRNAtot

P
∶=  tRNA =

�naa
kTCon �TC

+ 2�
kTCcat

+ 2�

kGon
(

�G −
lG�
kGcat

) + 2�
kGcat

+ ... (28)

�naa

kaaRSon

(

�aaRS −
laaRS�
kaaRScat

) + �
kaaRScat

+ �
kT uon �T uGTP

+
�TC
lT u

,

where �T uGTP ∶=�T u −
lT u�

kT son
(

�T s −
lT s�
kT scat

) −
lT u�
kT scat

− �TC −
lT u�
kTCcat

. (29)

where the solution for �T uGTP in terms of the ternary concentration was obtained from the
conservation equation for EF-Tu. Equations 28 and 29 are closed, and the only variables to

solve for is �TC in terms of the tlF abundances: �T u, �T s, �G, �aaRS , tRNA abundances, kinetic
parameters, and the growth rate �.

1213

1214

1215

1216

1217

1218

1219

1220

1221

Coarse-grained translation elongation time1222

In order to obtain the coarse-grained translation elongation time, we proceed as for trans-

lation termination (section Coarse-grained translation termination time). The summed

concentration of the ribosome containing species for translation elongation in our model is:

[Rel] =[R∅] + [RTC ] + [RtRNA] + [RG],

=
⟨l⟩naaJ

k̂TCon [TC]
+
⟨l⟩J
kTCcat

+
⟨l⟩J

k̂Gon
(

Gtot −
⟨l⟩J
kGcat

) +
⟨l⟩J
kGcat

.

1223

1224

1225

1226

1227

1228

Converting to proteome fraction:

1
lribo

�elribo =�

⎛

⎜

⎜

⎜

⎝

naa
kTCon �TC

+ 1
kTCcat

+ 1

kGon
(

�G −
lG�
kGcat

) + 1
kGcat

⎞

⎟

⎟

⎟

⎠

.

1229

1230

1231

1232

From the coarse-grained flux relations through the different categories (equation 17), which

defines the coarse-grained transition times, we thus have:

τel = ⟨l⟩τaa, where τaa =
naa

kTCon �TC
+ 1
kTCcat

+ 1

kGon
(

�G −
lG�
kGcat

) + 1
kGcat

. (30)

Above, τaa is the effective time for a single step (by one codon) of translation elongation, and

τind corresponds to the summed time of factor independent transitions in each elongation

step (not explicitly included in the kinetic scheme).

1233

1234

1235

1236

1237

1238

1239

1240
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Optimality conditions for translation elongation factors1241

The optimality condition (equation 5) applied to translation elongation factors leads to:

(

)τtaa
)�G

)∗

=
(

)τtaa
)�T u

)∗

=
(

)τtaa
)�T s

)∗

=
(

)τtaa
)�aaRS

)∗

= − 1
lribo�∗

. (31)

where equation 30 was used for τaa. Since the free EF-G concentration does not depend on

EF-Tu, EF-Ts, or aaRS concentration, the conditions for EF-Tu, EF-Ts and aaRS simplify to:

)
)�T u

(

naa
kTCon �TC

)∗

= )
)�T s

(

naa
kTCon �TC

)∗

= )
)�aaRS

(

naa
kTCon �TC

)∗

= − 1
lribo�∗

. (32)

Carrying through the differentiation also leads to conditions on the derivatives of the ternary

complex concentration at the optimum:

(

)�TC
)�T u

)∗

=
(

)�TC
)�T s

)∗

=
(

)�TC
)�aaRS

)∗

=
kTCon

(

�∗TC
)2

lribonaa�∗
. (33)

These relationships will be useful to solve for the some elongation factor optimal abundances

below.

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

Optimal EF-Ts abundance1258

Differentiating equation 28 with respect to �T u and �T s, we get at the optimum:

1
lribo

+ �∗

kT uon
(

�∗
T uGTP

)2

(

)�T uGTP
)�T u

)∗

= 1
lT u

(

)�TC
)�T u

)∗

,

1
lribo

+ �∗

kT uon
(

�∗
T uGTP

)2

(

)�T uGTP
)�T s

)∗

= 1
lT u

(

)�TC
)�T s

)∗

.

By equation 33, the above leads to the additional condition at the optimum:

(

)�T uGTP
)�T u

)∗

=
(

)�T uGTP
)�T s

)∗

.

Directly differentiating equation 29, and using equation 33, leads to:

(

)�T uGTP
)�T u

)∗

= 1 −
kTCon

(

�∗TC
)2

lribonaa�∗
=
(

)�T uGTP
)�T s

)∗

=
lT u�∗

kT son
(

�∗T s −
lT s�
kT scat

)2
−
kTCon

(

�∗TC
)2

lribonaa�∗
.
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Therefore, the optimal abundance for EF-Ts is:

�∗T s =

√

lT u�∗

kT son
+
lT s�∗

kT scat
. (34)

1271

1272

1273

1274

Optimal EF-G abundance1275

The optimality condition for EF-G is complicated by the fact that EF-G free concentration

appears in the solution for the steady-state ternary complex through the tRNA conservation

equation 28. Differentiating the conservation tRNA equation, and using the optimality

condition 31 (replacing a number of terms with the elongation time τaa, equation 30):

0 = − 2
lribo

+
�∗naa

kTCon
(

�∗T u
)2

(

)�TC
)�G

)∗

+ 1
lT u

(

)�TC
)�G

)∗

− �∗

kT uon
(

�∗
T uGTP

)2

(

)�T uGTP
)�G

)∗

. (35)
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Above, the right-hand portion corresponds to the additional constraint coming from the

implication of EF-G in the steady-state concentration of the ternary complex. From the

equation for �T uGTP (equation 29), we have directly:
(

)�T uGTP
)�G

)∗

= −
(

)�TC
)�G

)∗

.

Substituting this in equation 35:

2
lribo

=

⎡

⎢

⎢

⎢

⎣

1
lT u

+ �∗

kT uon
(

�∗
T uGTP

)2
+

�∗naa
kTCon

(

�∗TC
)2

⎤

⎥

⎥

⎥

⎦

(

)�TC
)�G

)∗

. (36)

The derivative of the ternary complex with respect to EF-G at the optimum can be obtained

from the original optimality condition 31, by carrying through the differentiation:

(

)�TC
)�G

)∗

=
kTCon
naa

(

�∗TC
)2
⎡

⎢

⎢

⎢

⎣

1
lribo�∗

− 1

kGon
(

�∗G −
lG�∗

kGcat

)2

⎤

⎥

⎥

⎥

⎦

.

Substituting in equation 36, we arrive at a final equation for EF-G in terms of the concentra-

tion of other elongation factor and the optimal growth rate:

2
lribo

= �∗
⎡

⎢

⎢

⎢

⎣

1 +
kTCon

(

�∗TC
)2

naalT u�∗
+

kTCon
(

�∗TC
)2

naakT uon
(

�∗
T uGTP

)2

⎤

⎥

⎥

⎥

⎦

⎛

⎜

⎜

⎜

⎝

1
lribo�∗

− 1

kGon
(

�∗G −
lG�∗

kGcat

)2

⎞

⎟

⎟

⎟

⎠

.
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The optimal solution for EF-G is thus:

�∗G =

√

lribo�∗

kGon

(Δ + 1
Δ − 1

)

+
lG�∗

kGcat
≥

√

lribo�∗

kGon
+
lG�∗

kGcat
, (37)

where: Δ ∶=
kTCon

(

�∗TC
)2

naalT u�∗
+

kTCon
(

�∗TC
)2

naakT uon
(

�∗
T uGTP

)2
.

Note that given that the term Δ involves �∗TC and �
∗
T uGTP

, and so the solution above is not

a priori complete. However, using the approximate ternary complex concentration at the

optimum (equation 12, derived in details in section Optimal EF-Tu and aaRS abundances),

we have:

Δ >
kTCon

(

�∗TC
)2

naalT u�∗
≈
lribo
lT u

≈ 18.5≫ 1

This means that the lower bound for �∗G above (equation 37) is a good approximation: in the
physiological regime, we can approximately neglect the indirect dependence of the ternary

complex concentration on EF-G via the tRNA conservation equation. Hence, the approximate

solution for the EF-G optimal abundance is (same for had we initially assumed that �TC was
independent of �G, in which case the solution for EF-G can be obtained identically as that of
release factors):

�∗G ≈

√

lribo�∗

kGon
+
lG�∗

kGcat
.

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

37 of 49



Optimal EF-Tu and aaRS abundances1323

While simplifying relations were possible with EF-Ts and EF-G, allowing their solution (approx-

imately) independently from the rest of the cycle, EF-Tu and aaRS are intricately connected

through the tRNA cycle. We thus return to the tRNA conservation equation, equation 28. For

notational simplicity, we group the catalytic step of the TC, EF-G binding, and EF-G catalytic

action (translocation) in parameter kmaxel (these do not depend on �T u and �aaRS ) which we
take to the be experimentally determined value of 22 s−1 (Dai et al., 2016). Further dropping
the EF-Ts related and catalytic terms (will be added back at the end, they only contribute a

fixed term at the optimum) in the equation for the free EF-Tu, we get:

tRNAtot

P�
=

naa
kTCon �TC

+ 2
kmaxel

+ ... (38)

naa

kaaRSon

(

�aaRS −
laaRS�
kaaRScat

) + 1
kaaRScat

+ 1
kT uon �T uGTP

+
�TC
lT u�

,

where �T uGTP = �T u − �TC is the free EF-Tu concentration.

This system is first solved numerically (Figure 3B). To close the equation in terms of uniquely

�TC , we use our relationship for � (equation 1), with:

τtrl = ⟨l⟩
(

naa
kTCon �TC

+ 1
kmaxel

)

+ τini + τter,

where as before kmaxel is the maximum rate of translation elongation (from reactions other

than ternary complex diffusion) estimated from in vivo kinetic measurements (≈ 22 s−1 (Dai
et al., 2016)), and τini + τter ≈ 0.5 s the estimated time for the initiation and termination step
(≈ 5−10% of the full translation cycle translation time), taken as fixed parameters here. Using
this relationship for the translation time leads to the explicit relationship between growth

and ternary complex concentration:

�(�TC ) =
�ribo
lribo

(

ktrl�TC
�TC +KTC

)

, with ktrl ∶=
⟨l⟩kmaxel

⟨l⟩ + kmaxel (τini + τter)
and KTC ∶=

ktrlnaa
kTCon

(39)

which is the same relationship as the one derived in (Klumpp et al., 2013), with the addition
of the terms corresponding to the rest translation cycle. Substituting the explicit relationship

between growth and ternary complex concentration above (equation 39) in the aaRS/EF-Tu

tRNA cycle relationship (equation 38) closes the system for �TC . Numerical solution for this
equation is presented in Figure 3B (see section Estimation of optimal abundances for other

parameters).

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342
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The main conclusion from numerically solving the reduced system (equations 38 and 39)

is that the EF-Tu/aaRS space is partitioned in two regimes, resulting from the separation of

scale of reactions in the coarse-grained model. Specifically, kT uon ≫
kTCon
naa
, so that any imbalance

between the constituents of the ternary complex (charged tRNAs, free EF-Tu), results in

stoichiometric unproductive excess of the component in surplus.

1355

1356

1357

1358

1359

We can derive a relation for the "transition line" in the aaRS/EF-Tu space where both free

charged tRNAs and free EF-Tu are at low concentrations. This corresponds to setting the

(formally impossible) requirement �T uGTP ≈ 0⇒ �TC ≈ �T u and [aatRNA] ∝
1

kT uon �T uGTP
≈ 0, i.e.,

tRNAtot

P�
(

�̄T u
) −

naa
kTCon �̄T u

− 2
kmaxel

−
�̄T u

lT u�
(

�̄T u
) =

naa

kaaRSon

(

�̄aaRS −
laaRS�(�̄T u)

kaaRScat

)
+ 1
kaaRScat

. (40)

The ⋅̄ signifies the transition line relationship between �̄T u and �̄aaRS , which is displayed in
Figure 3B.
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The heuristic to estimate the optimal EF-Tu concentration described in the main text can be

extended to include the EF-Ts cycle. In particular, in the EF-Tu limited regime, with �T uGTP ≈ 0,
we have (from equation 29):

�TC ≈ �T u −
lT u�

kT son
(

�T s −
lT s�
kT scat

) −
lT u�
kT scat

−
lT u�
kTCcat

.

Substituting the above expression for �TC in the optimality condition (equation 32) for �T u,
we arrive at (using the optimal solution for EF-Ts, equation 34):

�∗T u ≈

√

lribonaa�∗

kTCon
+

√

lT u�∗

kT son
+
lT u�∗

kT scat
+
lT u�∗

kTCcat
.

Above, the last three terms (not appearing in equation 12) correspond to the additional

diffusion of the EF-Ts cycle, and catalytic contributions.
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Following the argument (see main text) that the optimal aaRS abundance should lie on the

transition line (equation 40), we obtain:

�∗aaRS ≈
naa�∗

kaaRSon Δ∗tRNA
+
laaRS�∗

kaaRScat

,

with Δt related to the excess tRNA (tRNAs remaining after subtracting tRNAs sequestered on
the ribosome and TC from the total tRNA budget):

Δ∗tRNA ∶=
tRNAtot

P
−

naa�∗

kTCon �
∗
TC
− 2�∗
kmaxel

−
�∗TC
lT u

− �∗

kaaRScat

, where �∗TC =

√

naalribo�∗

kTCon
.
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Interpretation of the sharp separation between aaRS and EF-Tu limited regimes1391

The sharp separation of the solution for �TC in two distinct regimes (EF-Tu limited, and aaRS
limited, illustrated in Figure 3B), can be intuitively understood from a geometrical viewpoint.

1392

1393

For the simplicity of the argument (not strictly necessary), neglecting the short initiation and

termination times in equation 39, and using tRNAtot =
t�riboP
lribo

(with t the tRNA to ribosome
molar ratio). The tRNA conservation condition, equation 38, can then be rewritten as

(binding-limited regime):

(t − 1)
�ribo
lribo

⏟⏞⏞⏞⏟⏞⏞⏞⏟
tRNA budget

−
�TC
lT u

⏟⏟⏟
ternary complex

−
�(�TC )
kmaxel

⏟⏟⏟
A-site tRNA

= �(�TC )
[

naa
kaaRSon �aaRS
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
uncharged tRNA

+ 1
kT uon

(

�T u − �TC
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
free charged tRNA

]
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1396

1397

1398

1399

1400

At given abundance of EF-Tu (�T u) and aaRS (�aaRS ), the solution for �TC is obtained when
equality in the above equation is reached. The behavior of the various terms with �TC is
illustrated for different values of �aaRS and �T u in Figure 3-Figure supplement 1: the number
of uncharged tRNAs (pink line in Figure 3-Figure supplement 1) is a decreasing function of

aaRS, and free charged tRNA (red line in Figure 3-Figure supplement 1) are dependent on �T u.
Specifically, the free charged tRNA contribution, due to the rapid association rate kT uon (codon
agnostic) between charged tRNAs and EF-Tu (red line), is negligible except for a very narrow

range where �TC ≈ �T u, at which point a sharp divergence occurs. This rapid divergence
bounds the solution for �TC at the total EF-Tu concentration.
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The aaRS limited regime corresponds to conditions in which the uncharged tRNA contribution

(pink line) intersects the available tRNA budget (full black line), lower left in Figure 3-Figure

supplement 1. In contrast, the EF-Tu limited regime corresponds to conditions in which
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the free charged tRNA (red line) intersects the tRNA budget, upper right in Figure 3-Figure

supplement 1. The sharpness of the transition between the two regime arises from the near

vertical divergence of the free charged tRNA contribution.
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1412

1413

1414

1415
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Appendix 41416

Translation initiation1417

Translation initiation is also relatively complex compared to translation termination. In

contrast with other steps of the translation cycle, binding of factors necessary for the

process (IF1, IF2, IF3, initiator tRNA) do not occur in a strict sequential order, leading to

a "heterogeneous assembly landscape" (Gualerzi and Pon, 2015; Chen et al., 2016) more
complex to model. However, one assembly pathway is kinetically favored (Milón et al., 2012).
We take this favored assembly pathway as our kinetic scheme (Appendix 4 Figure 1, note

that binding of tRNA/mRNA are coarse-grained to a single even without loss of generality).

We provide some evidence below that taking a more complex assembly pathway would

minimally affect the predicted optimal initiation factor abundances.

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

Appendix 4 Figure 1. Simplified kinetic scheme for translation initiation. Reactions in dashed box

correspond to sub-system solved in detail first (section Sub-pathway without subunits joining).

Variables are labeled on the scheme.

1428

1429

14301431

The reactions in our simplified schemes are:

J
←←←←←←←→ R30S + R50S ,

R30S + IF3
k̂IF3on
←←←←←←←←←←←←←←←←←←←←←→ R3,

R30S + IF2
k̂IF2on
←←←←←←←←←←←←←←←←←←←←←→ R2,

R3 + IF2
k̂IF2on
←←←←←←←←←←←←←←←←←←←←←→ R23,

R2 + IF3
k̂IF3on
←←←←←←←←←←←←←←←←←←←←←→ R23,

R23 + IF1
k̂IF1on
←←←←←←←←←←←←←←←←←←←←←→ R123,

R123
kRNA
←←←←←←←←←←←←←←←←←←←←←←←←←→ R123m,

R123m + R50S
k̂50Son
←←←←←←←←←←←←←←←←←←←←→ RPIC ,

RPIC
kinicat
←←←←←←←←←←←←←←←←→ IF1 + IF2 + IF3,
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with corresponding mass action equations:

d[R30S ]
dt

= J − k̂IF2on [R30S ][IF2] − k̂IF3on [R30S ][IF3],

d[R2]
dt

= k̂IF2on [R30S ][IF2] − k̂IF3on [R2][IF3],

d[R3]
dt

= k̂IF3on [R30S ][IF3] − k̂IF2on [R3][IF2],

d[R23]
dt

= k̂IF2on [R3][IF2] + k̂IF3on [R2][IF3] − k̂IF1on [R23][IF1],

d[R123]
dt

= k̂IF1on [R23][IF1] − kRNA[R123],

d[R123m]
dt

= kRNA[R123] − k̂50Son [R123m][R50S ],

d[RPIC ]
dt

= k̂50Son [R123m][R50S ] − k
ini
cat[RPIC ],

d[R50S ]
dt

= J − k̂50Son [R123m][R50S ],

d[IF1]
dt

= −k̂IF1on [R23][IF1] + kinicat[PIC],

d[IF2]
dt

= −k̂IF2on
(

[R30S ] + [R3]
)

[IF2] + kinicat[PIC],

d[IF3]
dt

= −k̂IF3on
(

[R30S ] + [R2]
)

[IF3] + kinicat[PIC],

and conservation equations:

IF1tot = [IF1] + [R123] + [R123m] + [RPIC ],

IF2tot = [IF2] + [R2] + [R23] + [R123] + [R123m] + [RPIC ],

IF3tot = [IF3] + [R3] + [R23] + [R123] + [R123m] + [RPIC ],

[R50S ] = [R30S ] + [R2] + [R3] + [R23] + [R123] + [R123m].

We assume the steady-state concentrations of small and large ribosomal subunits to be

equal.

1432

1433

1434

1435

1436

1437

1438
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1440
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1442

1443

1444

1445

Sub-pathway without subunits joining1446

The system of equation is complicated by the second branch of the pathway corresponding

to 50S subunit binding. However, in the regime

√

lIF
lribo

k̂50Son
k̂IFon

≪ 1 (which is realized because of

the large size of the ribosome and slower association rate constant for the large subunit

compared to the initiation factors again due to size), the effect of this branch is to add a

term to the optimal abundance equal to the concentration of species R123m (see derivation in
section Pathway including subunits joining). We focus here on the solution of the part of the

reaction scheme boxed in Appendix 4 Figure 1. This sub-scheme corresponds to:

J
←←←←←←←→ R30S ,

R30S + IF3
k̂IF3on
←←←←←←←←←←←←←←←←←←←←←→ R3,

R30S + IF2
k̂IF2on
←←←←←←←←←←←←←←←←←←←←←→ R2,

R3 + IF2
k̂IF2on
←←←←←←←←←←←←←←←←←←←←←→ R23,

R2 + IF3
k̂IF3on
←←←←←←←←←←←←←←←←←←←←←→ R23,

R23 + IF1
k̂IF1on
←←←←←←←←←←←←←←←←←←←←←→ R123,

R123
kRNA
←←←←←←←←←←←←←←←←←←←←←←←←←→ R123m.
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d[R30S ]
dt

= J − k̂IF2on [R30S ][IF2] − k̂IF3on [R30S ][IF3],

d[R2]
dt

= k̂IF2on [R30S ][IF2] − k̂IF3on [R2][IF3],

d[R3]
dt

= k̂IF3on [R30S ][IF3] − k̂IF2on [R3][IF2],

d[R23]
dt

= k̂IF2on [R3][IF2] + k̂IF3on [R2][IF3] − k̂IF1on [R23][IF1],

d[R123]
dt

= k̂IF1on [R23][IF1] − kRNA[R123],

d[IF1]
dt

= −k̂1on[R23][IF1] + kRNA[R123],

d[IF2]
dt

= −k̂IF2on ([R30S ] + [R3])[IF2] + kRNA[R123],

d[IF3]
dt

= −k̂IF3on ([R30S ] + [R2])[IF3] + kRNA[R123],

with conservation equations:

IF1tot = [IF1] + [R123],

IF2tot = [IF2] + [R2] + [R23] + [R123],

IF3tot = [IF3] + [R3] + [R23] + [R123],
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This system can be solved as with the previous schemes. In steady-state, we find for

concentrations in terms of the free concentrations [IF2] and [IF3]:

[R123] =
J

kRNA
, [IF1] = IF1tot −

J
kRNA

, [R23] =
J

k̂IF1on [IF1]
, [R30S ] =

J
k̂IF2on [IF2] + k̂IF3on [IF3]

,

[R2] =
k̂IF2on [IF2]

k̂IF3on [IF3]

(

J
k̂IF2on [IF2] + k̂IF3on [IF3]

)

, [R3] =
k̂IF3on [IF3]

k̂IF2on [IF2]

(

J
k̂IF2on [IF2] + k̂IF3on [IF3]

)

,

and the coupled equations for [IF2] and [IF3] that need to be solved:

IF2tot = [IF2] +
k̂IF2on [IF2]

k̂IF3on [IF3]

(

J
k̂IF2on [IF2] + k̂IF3on [IF3]

)

+ J
k̂IF1on [IF1]

+ J
kRNA

, (41)

IF3tot = [IF3] +
k̂IF3on [IF3]

k̂IF2on [IF2]

(

J
k̂IF2on [IF2] + k̂IF3on [IF3]

)

+ J
k̂IF1on [IF1]

+ J
kRNA

.

As for translation termination (section Coarse-grained translation termination time) and

elongation (section Coarse-grained translation elongation time), summing the ribosome

containing species:

[Rini] = [R30S ] + [R2] + [R3] + [R23] + [R123],

= J

(

1
k̂IF2on [IF2]

+ 1
k̂IF3on [IF3]

− 1
k̂IF2on [IF2] + k̂IF3on [IF3]

+ 1
k̂IF1on [IF1]

+ 1
kRNA

)

,

allows us to read the initiation time directly (recast in proteome fraction units):

τini =
1

kIF2on �freeIF2

+ 1
kIF3on �freeIF3

− 1
kIF2on �freeIF2 + kIF3on �freeIF3

+ 1
kIF1on �freeIF1

+ 1
kRNA

. (42)

The above is the time can be used in the optimality condition (equation 5). Note that the

parallel nature of the reactions with IF2 and IF3 leads to a reduction compared to a purely

sequential pathway (negative term above decreasing the total initiation time, as expected if

multiple reactions can occur in parallel).
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Given that binding of IF1 occurs last in this scheme, its free concentration takes a simple

form (�freeIF1 = �IF1 −
lIF1�

⟨l⟩kRNA
). In contrast, computing the free IF2 and IF3 concentrations
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requires solving the non-linear coupled system, equations 41. Recasting these in units of

proteome fraction:

�̃IF2 = �
free
IF2 +

�lIF2
⟨l⟩kIF3on �freeIF3

(

kIF2on �freeIF2

kIF2on �freeIF2 + kIF3on �freeIF3

)

,

�̃IF3 = �
free
IF3 +

�lIF3
⟨l⟩kIF2on �freeIF2

(

kIF3on �freeIF3

kIF2on �freeIF2 + kIF3on �freeIF3

)

,

with �̃IF2 ∶= �IF2 −
lIF2�

⟨l⟩kRNA
− lIF2�

⟨l⟩kIF1on �freeIF1
, and similarly for �̃IF3. We show now that the terms

coupling the two equations for �freeIF2 and �
free
IF2 (bracketed above) are small at the optimum.

Indeed, based on results in simpler schemes (self-consistency confirmed below), we expect

at the optimum:

�free,∗IF2 ∼

√

lribo�∗

⟨l⟩kIF2on
and �free,∗IF3 ∼

√

lribo�∗

⟨l⟩kIF3on
.

Hence, we expect the two terms at the optimum in the coupled equations above to compare

as (e.g., in the free IF2 equation):

�free,∗IF2
(

�∗lIF2
⟨l⟩kIF3on �free,∗IF3

) ∼
lribo
lIF2

√

kIF3on

kIF2on
≫ 1,

coming from the large size of the ribosome compared to the initiation factors. In addition,

the derivative of the coupling terms, which appear in the optimality condition and therefore

in identifying the optimal abundances, are all of the form
�∗lIF

⟨l⟩kIFon (�
free
IF )2

compared to the

main term. This scales scales as lIFl
−1
ribo ≪ 1 at the self-consistent solution. Hence, neglecting

the coupling is justified as an approximate solutions near the optimum, and we obtain for

the free concentrations of IFs:

�freeIF1 = �IF1 −
lIF1�

⟨l⟩kRNA
,

�freeIF2 ≈ �IF2 −
lIF2�

⟨l⟩kRNA
−

lIF2�

⟨l⟩kIF1on �freeIF1

,

�freeIF3 ≈ �IF3 −
lIF3�

⟨l⟩kRNA
−

lIF3�

⟨l⟩kIF1on �freeIF1

.

Substituting these in the expression for the initiation time, equation 42, and using the

optimality condition (equation 5, we find that no simple solution exist for the non symmetric

case of kIF2on ≠ kIF3on . Since the on-rates should be similar for IF2 and IF3 (difference in size

should only lead to modest difference in on-rates coefficient, by roughly (lIF2∕lIF3)1∕3 ≈ 1.7
assuming Stokes scaling), the symmetric case is approximately correct. We report the

symmetric solution for simplicity. The final optimal solutions for the three factors for the

sub-scheme solved here is:

�∗IF1 ≈

√

lribo�∗

⟨l⟩kIF1on

[

1 +
lIF2 + lIF3

lribo

]

+
lIF1�∗

⟨l⟩kini
, (43)

�∗IF2 ≈
√

3
4

√

lribo�∗

⟨l⟩kIF2on
+
lIF2
⟨l⟩

√

lribo�∗

⟨l⟩kIF1on
+
lIF2�∗

⟨l⟩kini
,

�∗IF3 ≈
√

3
4

√

lribo�∗

⟨l⟩kIF3on
+
lIF3
⟨l⟩

√

lribo�∗

⟨l⟩kIF1on
+
lIF3�∗

⟨l⟩kini
.
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The form of the solution is again similar to that derived for the simpler translation termi-

nation scheme (c.f., equation 20), with three differences, each of which has an intuitive

interpretation. First, the factor

[

1 + lIF2+lIF3
lribo

]

in the IF1 solution arises as a result of IF1 bind-

ing being last in our initiation pathway. Indeed, IF1 concentration also influences free IF2 and

IF3 concentration, leading to additional selective pressure to increase its abundance. In ef-

fect, the molecular species waiting for IF1 to diffuse to its target is not only the ribosome, but

the ribosome with IF2 and IF3 bound, and a total amino acid weight lribo → lribo + lIF2 + lIF3.
Second, the factor of

√

3∕4 ≈ 0.87 < 1 for IF2 and IF3 (corresponding to the symmetric case),
arising from the parallel pathway for IF2 and IF3 rendering the process more efficient. We

therefore see that the correction from having multiple reactions in parallel is modest (0.87

vs. 1). The third difference to the simpler case of translation termination are the second

terms for IF2 and IF3, corresponding to the additional delay incurred by binding of IF1. These

come from the assumed sequential nature of our initiation scheme (Appendix 4 Figure 1). In

such cases, factors binding earlier have to be present at higher abundances to account for

their wait times for later binding events. The exact form of this correction term would be

different for more complex assembly pathways (but would be captured by average delays

from other factor binding).
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Pathway including subunits joining1543

The solutions above (equations 43) are for the reduced scheme (boxed in Appendix 4 Figure 1).

The full solutions includes the delay arising from 50S subunit binding. Including subunit

joining requires the solution of an additional equation for the steady-state concentration of

species with all three initiation factors, mRNA and initiator tRNA waiting for subunit joining

(species R123m in Appendix 4 Figure 1, denoted �123m in units of proteome fraction). The
equation to solve for �123m can be obtained from the 50S ribosome subunit conservation
equation:

�
k50Son �123m

= �
kIF2on �freeIF2

+ �
kIF3on �freeIF3

− �
kIF2on �freeIF2 + kIF3on �freeIF3

+ �
kIF1on �freeIF1

+ �
kRNA

+
⟨l⟩�123m
l30S

.

�123m appears in the equations for the free concentration of the initiation factors (from the
conservation equations), and also leads to the appearance of a new term in the expression

for the initiation time τini (equation 42) corresponding to this step:
⟨l⟩�123m
l30S�

.

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

These two additions, resulting from the parallel branch of 50S joining, can be simplified due

to a separation of scales between the various terms. For large initiation factor concentrations,

the corresponding mass action terms in the equation for �123m negligibly contribute to the
solution. In this regime, the new term involving �123m in the initiation time τini does not

alter the form the optimal abundances of IF1, IF2, and IF3 beyond adding a constant term.

Hence, in the regime of high free IF concentration, the optimality condition has the same

form as derived in the previous section.We can therefore obtain �123m assuming large IF
concentration, denoted �∞123m:

�∞123m =
l30S
⟨l⟩

⎛

⎜

⎜

⎝

− �
2kRNA

+

√

1
4

(

�
kRNA

)2

+
⟨l⟩�

l30Sk50Son

⎞

⎟

⎟

⎠

This solution will be self-consistent provided (for all initiation factors):

�∗

kIFon �
free,∗
IF

≪ �∗

kRNA
+
⟨l⟩�∞123m
l30S

= �∗

2kRNA
+

√

1
4

(

�∗
kRNA

)2

+
⟨l⟩�∗

l30Sk50Son
,
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It therefore suffices to show:

�∗

kIFon �
free,∗
IF

≪

√

⟨l⟩�∗

l30Sk50Son
.
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1574

1575

Using our optimality condition on �free,∗IF (equation 43) assuming no contribution from �123m
(self-consistency), and converting association rates in units µM−1s−1, the above condition

reduces to:

√

√

√

√

lIF
lribo

k̂50Son

k̂IFon
≪ 1.

The self-consistency condition is met both because initiation factors are smaller than ribo-

somes lIF ≪ lribo, and because the on-rate for subunit joining is lower than initiation factor

binding (k̂50Son ≪ k̂IFon ), given again the size differences. The solution, including the contribution
from ribosome subunits joining is then:

�∗IF1 ≈

√

lribo�∗

⟨l⟩kIF1on

[

1 +
lIF2 + lIF3

lribo

]

+
lIF1
l30S

�∞123m +
lIF1�∗

⟨l⟩

(

1
kRNA

+ 1
kinicat

)

,

�∗IF2 ≈
√

3
4

√

lribo�∗

⟨l⟩kIF2on
+
lIF2
⟨l⟩

√

lribo�∗

⟨l⟩kIF1on
+
lIF2
l30S

�∞123m +
lIF2�∗

⟨l⟩

(

1
kRNA

+ 1
kinicat

)

,

�∗IF3 ≈
√

3
4

√

lribo�∗

⟨l⟩kIF3on
+
lIF3
⟨l⟩

√

lribo�∗

⟨l⟩kIF1on
+
lIF3
l30S

�∞123m +
lIF3�∗

⟨l⟩

(

1
kRNA

+ 1
kinicat

)

,

where for kRNA much faster than the association between the subunits, �∞123m ≈
√

l30S�∗

⟨l⟩k50Son
.
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Appendix 51590

Estimation of optimal abundances1591

To compare prediction from our parsimonious framework (Table 2) requires specific values

of kinetic parameters. We use empirical measurements together with scaling relations to

estimate these kinetic parameters.

1592

1593

1594

Catalytic rates for many enzymes have been measured in vitro, but the obtained values
can be sharply incompatible with kinetic parameters that have been measured in the cell.

An example is the class tRNA synthetases. Tallying the measured kcat for all wild-type E. coli
aaRSs (Jeske et al., 2019), we find a median value of kaaRScat ≈ 3 s−1, and 80% of reported value
below 6 s−1. The total molar concentration of aaRSs in the cell is comparable to the total

number of ribosomes, and the per-step elongation speed of ribosome is above 15 s−1 (Dai
et al., 2016; Johnson et al., 2020). Hence, the absolute minimum catalytic rate to sustain the
translation elongation flux needs to obey kaaRScat > 15 s−1, which is much higher than most
in vitro measured values. To avoid the difficulties in estimating catalytic parameters, and
to derive a lower bound on factor abundance from our model, we focus on the binding

component (related to the associate rate) of our predictions, assuming large catalytic rates

(kcat →∞).

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

To estimate association rates k̂on, we scaled the measured in vivo association rate for
the ternary complex, k̂TCon = 6.4 µM−1s−1 (Dai et al., 2016) by diffusion of the respective
components, i.e., k̂ABon ∕k̂

TC
on = (DA +DB)∕(DTC +Dribo), where Di is the diffusion coefficients for

the molecular species i. While the in vivo diffusion coefficient for a number of component
of the translation apparatus exist (Bakshi et al., 2012; Sanamrad et al., 2014; Volkov et al.,
2018; Plochowietz et al., 2017), several factors do not have measured diffusion coefficients.
For these, we used the cubic root scaling from the Stokes-Einstein relation (Nenninger et al.,
2010), see Appendix 5 Table 1.

1607

1608

1609

1610

1611

1612

1613

1614

To motivate this approach, we can compare for the ternary complex the measured k̂TCon to
the simple Smoluchowski relation corresponding to the diffusion-limited association rate

constant for perfectly absorbing spheres: k̂diffon = 4�DR, where D is the relative diffusion
coefficients of the two reactants and R the capture radius. Diffusion coefficients of various
proteins of different sizes have been measured in the cell (Elowitz et al., 1999; Kumar et al.,
2010;Nenninger et al., 2010), including for components of the translation machinery (Bakshi
et al., 2012; Sanamrad et al., 2014; Plochowietz et al., 2017; Volkov et al., 2018). In particular,
Volkov et al report an EF-Tu diffusion coefficient (and a similar measurement for a major

diffusive state of tRNAs) of ≈ 3 µm2s−1. Since ribosomes are nearly immobile, this can be used

in an estimate of kdiffon . Taking R ≈ 2 nm (Klumpp et al., 2013) as the rough size of the capture
radius for the ternary complex, we get k̂TC,diffon ≈ 45 µM−1s−1. In vivo estimates based on kinetic
measurements of elongation (Dai et al., 2016) find k̂TCon = 6.4 µM−1s−1. Multiple features likely

explain this difference, notably as orientational constraints (Schlosshauer and Baker, 2004),
finite off-rate possibly requiring multiple binding events before productive encounter, or

possibly because the ternary complex needs to sample multiple non-cognate sites to find

a cognate target thereby slowing its diffusive search. This comparison emphasizes that

the idealized diffusion-limited Smoluchowski regime is not physiologically applicable, and

motivates our scaling approach. The later comes at the price of assuming similar molecular

properties leading to decrease of the association rates for the other tlFs. These could be

further refined via e.g., structural modeling (Schlosshauer and Baker, 2004), or upon new in
vivo rate constant measurements.

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

Additional measured quantities required to compute our estimates are: the measured

growth rate �∗ = 5.5 × 10−4 s−1 (21min doubling time, average of fast growth conditions), the
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tRNA concentration (estimated from the tRNA to ribosome ratio of 6.5 (Dong et al., 1996)
using: tRNAtot = (tRNA/ribo)�riboP∕lribo), the maximum per-codon elongation rate, excluding
ternary complex diffusion, kmaxel = 22 s−1 (Dai et al., 2016) (used to estimate the number of
tRNAs sequestered on ribosomes and therefore the excess tRNA number in the optimum for

aaRS, see equations 18 and 38), the in-protein amino acid concentration P = 2.6M (Klumpp
et al., 2013; Bremer and Dennis, 2008).

1636

1637

1638

1639

1640

1641

1642

1643

For the fast growth average, results displayed in Figure 4 listed in Supplementary File 2.

Additional predictions in individual conditions are shown in Figure 4-Figure supplement 1,

with numerical values for measured and predicted values listed in Supplementary Files 1 to 4.

For predictions in different growth conditions/species, we used used the measured growth

rates in the corresponding conditions (values listed in Supplementary Files 1 and 3), and

association rate constants estimated based on E. coli data (Appendix 5 Tables 1 to 3), and the
tRNA abundance (only needed for the prediction of aaRS) at the corresponding growth rate

in E. coli from (Dong et al., 1996). As a result of the lack of quantitation of tRNA abundance
in other species, these values were used for B. subtilis, V. natriegens and C. crescentus, and
should be interpreted with caution given possible difference in cellular physiology for these

species.

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

Factor Number of codon per protein Diffusion coefficient (µm2 s−1)

Ribosome lribo = 7336 Dribo = 0.05 ± 0.01
30S subunit l30S = 3108 Dsubunits = 0.2 ± 0.1

TC lTC = 630# DTC = 3 ± 0.5
tRNA N/A DtRNA = 8 ± 1

IF1 lIF1 = 72 DIF1 = DTC
3

√

lTC
lIF1

IF2 lIF2 = 890 DIF2 = DTC
3

√

lTC
lIF2

IF3 lIF3 = 180 DIF3 = DTC
3

√

lTC
lIF3

EF-G lG = 704 DG = DTC
3

√

lTC
lG

EF-Ts lT s = 283 DT s = DTC
3

√

lTC
lT s

EF-Tu lT u = 394 DT u = DTC
3

√

lTC
lT u

aaRS laaRS = 987† DaaRS = DTC
3

√

lTC
laaRS

RF1/RF2 lRFI = 362 DRFI = DTC
3

√

lTC
lRFI

RF4 lRF4 = 185 DRF4 = DTC
3

√

lTC
lRF4

1655

Appendix 5 Table 1. Protein sizes (number of codons) and diffusion coefficients. Unless otherwise

noted, number of codons per protein are taken for E. coli (Keseler et al., 2016) (ribosome size taken
from (Wittmann, 1982)). #For the ternary complex, the total mass of tRNA+EF-Tu was converted to an
equivalent amino acid length for the diffusion constant scaling estimate. †For aaRS, the size for the

summed aaRSs is, from the coarse graining, laaRS =
∑

i �aaRS,i∕
∑

i(�aaRS,i∕laaRS,i), here with proteome
fractions estimated from ribosome profiling (Li et al., 2014) in E. coli and sizes accounting for varying
complex stoichiometries. Measured diffusion coefficients are taken from: (Bakshi et al., 2012;
Sanamrad et al., 2014) for the ribosome, from (Plochowietz et al., 2017; Volkov et al., 2018) for tRNAs,
and from (Volkov et al., 2018) for the TC.
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1658
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1660

1661

1662

1663

16641665
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Factors involved in reaction Variable Used expression for association rate constant

Ternary complex and ribosome k̂TCon 6.4 ± 0.6 µM−1s−1 (Dai et al., 2016)
EF-G and ribosome k̂Gon k̂TCon (DG +Dribo)∕(DTC +Dribo)
aaRS And tRNAs k̂aaRSon k̂TCon (DtRNA +DaaRS )∕(DTC +Dribo)
EF-Ts and ribosome k̂T son k̂TCon (DT s +Dribo)∕(DTC +Dribo)
EF-Tu and tRNAs k̂T uon k̂TCon (DtRNA +DT u)∕(DTC +Dribo)
IF1 and 30S subunit k̂IF1on k̂TCon (DIF1 +Dsubunit)∕(DTC +Dribo)
IF2 and 30S subunit k̂IF2on k̂TCon (DIF2 +Dsubunit)∕(DTC +Dribo)
IF3 and 30S subunit k̂IF3on k̂TCon (DIF3 +Dsubunit)∕(DTC +Dribo)
50S and 30S subunits k̂50Son k̂TCon (Dsubunit +Dsubunit)∕(DTC +Dribo)
RF1/RF2 and ribosome k̂RFIon k̂TCon (DRFI +Dribo)∕(DTC +Dribo)
RF4 and ribosome k̂RF4on k̂TCon (DRF4 +Dribo)∕(DTC +Dribo)

1666

Appendix 5 Table 2. Expression used to estimate the association rate constants for our predictions

(Table 2). Diffusion coefficients are listed in Appendix 5 Table 1.

1667

16681669

Parameter Value Description

P 2.6 ± 0.5M In-protein amino acid concentration in the cell.

� (5.5 ± 0.6) × 10−4 s−1 Average fast growth, see Supplementary File 1.

⟨l⟩ 200 ± 10 Average number of codons per protein (equation 16).

naa 20 ± 2 Rescaling factor in elongation model (see equation 26).

kmaxel 22 ± 2 s−1 Maximal translation elongation rate.
√

1 + � 1.05 ± 0.01 Factor in three stop codon model (see equation 23)

t ∶=tRNA/ribosome 6.5 to 11 Values taken listed in Supplementary Files 2 and 4.

tRNAtot t�riboP∕lribo Total tRNA abundance, estimated from tRNA/ribosome.

1670

1671

Appendix 5 Table 3. Additional parameters used to obtain numerical values for predictions. For the

doubling times (growth rates) and tRNA to ribosome ratios used for in individual growth conditions

considered, see Supplementary Files 2 and 4. P is taken from (Klumpp et al., 2013), kmaxel from (Dai
et al., 2016), and the tRNA/ribosome ratios from (Dong et al., 1996).
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16751676
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Figure 3–Figure supplement 1. Geometrical interpretation of the sharpness of the separation of

the aaRS limited and EF-Tu limited regimes. Each graph corresponds to a different combination

of aaRS and EF-Tu abundance. The solution for �TC (yellow circle) corresponds to the intersection
of the full (tRNA budget minus TC concentration and ribosome bound tRNAs) and dashed (all

remaining tRNA contributions) black lines. Red and pink lines correspond to the free uncharged

and charged tRNAs respectively. Because of the rapid divergence of the free charged tRNA term

(red) at �TC = �T u, the system shifts from being limited by aaRS-limited (pink line intersecting full
black line) to being EF-Tu limited (red line intersect full black line) over a very narrow range in aaRS

or EF-Tu expression change. The central graph corresponds to the abundance of EF-Tu and aaRS

matched (no unbound charged tRNAs or EF-Tu), and falls on the transition line of Figure 3
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Figure 4–Figure supplement 1. Measured (ribosome profiling) and predicted (diffusion-limited

estimates) proteome fraction for core translation factors in individual conditions corresponding

to different ribosome profiling datasets included in our analysis (see Supplementary Files 1 to

4). Doubling time for each condition is indicated. (A) individual fast growing species (see Figure 4

for the average). (B) Slower growth conditions in E. coli. (C) C. crescentus datasets. Predictions of
aaRS in species other than E. coli are marked by # to indicate that we used E. coli tRNA abundance
measurements from (Dong et al., 1996) to make prediction for this tlF these other species.
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Figure 4–Figure supplement 2. Expression stoichiometry of core translation factors in different

species and at different growth rates. (A) Comparison of measured (ribosome profiling) proteome

fraction for core translation factors across different species and growth conditions (same conditions

as Figure 4-Figure supplement 1). All conditions are compared to the E. coli RDM dataset (reference:
ref , condition of interest: i). Dotted line correspond to �i = �ref , dashed line to �i = (�i∕�ref )�ref
and full black line to �i =

√

�i∕�ref�ref (the parameter free prediction from the binding-limited
regime of the model, optimal abundance ∝

√

�). Orange line corresponds to the one parameter fit
log�i = �i + log�ref (excluding aaRS, not expected to follow the square root scaling, and ribosomes),
corresponding to the scaling of all factor’s abundance. (B) Best one-parameter fit �i (scale factor)
from (A) as a function of the growth rate ratio �i∕�ref . Square root scaling: full line. Linear scaling:
dashed line. Uncertainties on the growth ratio are propagated from uncertainties of the respective

growth rates. Uncertainties in �i are 95% confidence interval from the linear fits in (A).
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