
MARCH, 2021 1

Reachability-based Trajectory Safeguard (RTS): A Safe and Fast
Reinforcement Learning Safety Layer for Continuous Control

Yifei Simon Shao1,2, Chao Chen2, Shreyas Kousik3, and Ram Vasudevan1,2

Abstract—Reinforcement Learning (RL) algorithms have
achieved remarkable performance in decision making and control
tasks by reasoning about long-term, cumulative reward using
trial and error. However, during RL training, applying this trial-
and-error approach to real-world robots operating in safety criti-
cal environment may lead to collisions. To address this challenge,
this paper proposes a Reachability-based Trajectory Safeguard
(RTS), which leverages reachability analysis to ensure safety
during training and operation. Given a known (but uncertain)
model of a robot, RTS precomputes a Forward Reachable Set of
the robot tracking a continuum of parameterized trajectories. At
runtime, the RL agent selects from this continuum in a receding-
horizon way to control the robot; the FRS is used to identify if
the agent’s choice is safe or not, and to adjust unsafe choices.
The efficacy of this method is illustrated in static environments
on three nonlinear robot models, including a 12-D quadrotor
drone, in simulation and in comparison with state-of-the-art safe
motion planning methods.

Index Terms—Robot Safety, Task and Motion Planning, Rein-
forcement Learning

I. INTRODUCTION

Reinforcement Learning (RL) is a powerful tool for au-
tomating decision making and control. For example, algo-
rithms such as Soft Actor Critic (SAC) [1] and Twin Delayed
DDPG (TD3) [2] have been successfully applied to operate
robots in simulation. The success is in part because RL
attempts to maximize long term, cumulative reward. However,
RL suffers from a critical shortcoming: its inability to make
safety guarantees during or after training. Even when trained
with a large penalty for collision, an RL agent may not be
able to guarantee safety [3].

Related Work: A variety of techniques attempt to address
the challenge of safe RL. These can be broadly categorized as
policy update, model update, and shield methods.

Policy update methods attempt to conservatively update a
policy to maximize a reward function with constraint penalties
in the reward function [4], [5]. Consequently, these methods
typically only guarantee near constraint satisfaction.

Manuscript received: October, 15, 2020; Revised February, 14, 2021;
Accepted March, 1, 2021.

This paper was recommended for publication by Editor Clement Gosselin
upon evaluation of the Associate Editor and Reviewers’ comments.

This work is supported by the National Science Foundation Career Award
#1751093, the Ford Motor Company via the Ford-UM Alliance under award
N022977, and the Office of Naval Research under Award Number N00014-
18-1-2575.

1Simon Shao and Ram Vasudevan are with the School of Mechan-
ical Engineering, University of Michigan, Ann Arbor, MI. 〈syifei,
ramv〉@umich.edu.

2Chao Chen is with the Robotics Institute, University of Michigan, Ann
Arbor, MI. joecc@umich.edu.

3Shreyas Kousik is with the Department of Aeronautics and Astronautics,
Stanford University, Stanford, CA. skousik@stanford.edu.

Digital Object Identifier (DOI): see top of this page.

1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

-445 -440 -435 -430 -425
x [m]

0

5

10

y
[m

]

kdes
[1]

k d
es[2
]

Fig. 1. An illustration of the proposed Reachability-based Trajectory Safe-
guard (RTS) enforcing safety during the training of a Reinforcement Learning
(RL) policy. The RL policy selects a trajectory parameter (yellow dot on
right) which corresponds to a trajectory plan (yellow dashed line on left)
for the car (blue box on left). RTS efficiently identifies that this choice of
trajectory parameter is unsafe with respect to the obstacle (red box on left),
since it belongs to the unsafe trajectory parameter set (red set on right),
computed via reachability analysis. To replace the RL agent’s plan with a
new safe one, the parameter space is sampled (black circles), and the closest
safe parameter (green dot on right) is selected. Its trajectory (solid black line
on left) and corresponding forward reachable set (green set on left) do not
intersect the obstacle, guaranteeing safety despite tracking error. By replacing
the RL agent’s plan, RTS enables learning from unsafe plans while the robot
only executes safe plans.

Model update methods simultaneously learn a dynamic
model and a stability or safety controller. For example, one
can learn to maximize a region of attraction by creating a
Lyapunov function at each time step [6]. Alternatively, a
safe controller from a Control Barrier Function (CBF) [7] or
the Hamilton-Jacobi-Bellman (HJB) equation [8], [9] can be
applied to guide model learning. Finally, if one has a known
control-invariant set, one can explore state space to improve a
model until reaching a goal state [10]. However, the challenges
of constructing a Lyapunov function oe CBF, solving the HJB
equation, or having a control-invariant set can restrict the
complexity of models to which these techniques can be applied
in real time.

Finally, shield methods adjust a policy at run-time using
knowledge of the system’s dynamics to ensure safety. For
instance, one can linearize a robot model and apply quadratic
programming to satisfy collision constraints [3]. Similarly, one
can attempt to find a parameterized trajectory that satisfies
constraints while trying to maximize a desirable behavior
[11]. Unfortunately, applying these methods in real time while
making safety guarantees remains challenging. For real-time
performance, one can adjust a policy by selecting from a finite,
discrete (i.e., limited) set of actions [12].

Present Work In Context: We propose a safety layer using a
trajectory-parameterized reachable set, computed offline, over
a continuous action space, to ensure safe, real-time, online
learning. Unlike model update methods, we assume a known
model, and compute bounded model uncertainty offline; and,
instead of safe tracking of a given trajectory, we focus on
receding-horizon trajectory design. Unlike [12], we consider

ar
X

iv
:2

01
1.

08
42

1v
3

 [c
s.R

O
]

2
M

ar
 2

02
1

2 MARCH, 2021

continuous instead of discrete actions, do not assume perfect
trajectory-tracking, and consider more example robot models.
We also focus on reachability analysis of the ego robot, as
opposed to other agents.

Our approach is motivated by recent applications of reach-
able sets for safe trajectory planning [13]–[17]. In particular,
we extend Reachability-based Trajectory Design (RTD) [15],
which uses a simplified, parameterized model to make plans.
Offline, RTD upper bounds tracking error between the robot
and planning model to find an over-approximating Forward
Reachable Set (FRS) that describes the location of the robot
for any plan. At runtime, RTD uses the FRS to optimize over
only safe plans. However, RTD only optimizes over a short
horizon, with a cost function generated by a high-level path
planner. Furthermore, RTD requires hand-tuning of the high-
level planner to achieve frequent task completion.

Instead, this paper combines RTD’s safety guarantees with
RL’s ability to maximize long term cumulative reward, elim-
inating high-level planner tuning. We propose Reachability
based Trajectory Safeguard (RTS), a safety layer for RL
during both training and runtime. We let the RL agent choose
plan parameters instead of control inputs. This (1) lets us
leverage reachability analysis to ensure plans are safe, and
(2) reduces the dimension of the RL agent’s action space,
speeding up runtime operation. Enforcing safety can also
simplify reward tuning by removing the need for obstacle
avoidance or collision penalties.

Note, we restrict our discussion to static environments to
simplify exposition, since safety cannot be guaranteed when
other agents may act maliciously. However, like RTD [16],
[18], [19], this work can extend to dynamic environments by
using predictions of other agents from, e.g., [20].

Contributions: The contributions of this work are three-
fold. First, we propose the RTS algorithm for safe, real-time
RL training and deployment using a continuous action space.
Second, we reduce the conservatism of RTD’s reachable sets
with a novel tracking error representation. Third, we demon-
strate RTS in simulation on three nonlinear models/tasks: a
4-D cartpole swing up task on a limited track, a 5-D car on
an obstacle course, and a 12-D quadrotor drone in a cluttered
tunnel. We compare against RTD, RTS with a discrete action
space, and baseline RL. RTS outperforms the other methods
in terms of reward and tasks completed1.

Paper Organization: In Sec. II, we model the robot and
the environment. In Sec. III, we compute reachable sets of
the robot offline. In Sec. IV, we use the reachable sets online
(during training) to ensure safety. In Sec. V, we demonstrate
the method. Sec. VI provides concluding remarks.

Notation: Points, vectors, and point- or vector-valued func-
tions (resp. sets, arrays, and set- or array-valued functions)
are in lowercase (resp. uppercase) italics. The real numbers
are R; the natural numbers are N. For n,m ∈ N, we let
Nn = {1,2, · · · ,n} ⊂ N, and Nn +m = {1+m, · · · ,nm +m}.
The n-dimensional special orthogonal group is SO(n). For a
set A, its cardinality is |A| and its power set is pow (A). If A
is indexed by elements of B, we write a(b) ∈ A for b ∈ B.

1Our code is available online at www.github.com/roahmlab/
reachability-based trajectory safeguard.

Brackets denote concatenation when the size of vec-
tors/matrices are important; e.g., if v1,v2 ∈ Rn, then [v1,v2] ∈
Rn×2 and [v>1 ,v

>
2]
> ∈R2n. Otherwise, we write (v1,v2) ∈R2n.

We use diag(v1,v2, · · · ,vn) to place the elements of each input
vector (in order) on the diagonal of a matrix with zeros
elsewhere. We denote an empty vector/matrix as [].

We denote a multi-index as I = {i1 < i2 < · · · < ip} ⊂ Nn
with ip ≤ n, p ≤ n, and |I| = p. If v ∈ Rn, v[I] ∈ Rp contains
the elements of v indexed by I. Let M ∈Rn×m be a matrix; let
I1 ⊂Nn, and I2 ⊂Nm, with |I1|= p≤ n and |I2|= q≤m. Then
M[I1,I2] is a p×q sub-matrix of M with the elements indexed
by I1 (for the rows) and I2 (for the columns). Similarly, M[:,I2]

is the n×q sub-matrix of the columns of M indexed by I2. If
M(i) is the ith matrix in a set, [M(i)][j] is its jth element.

Let box(c, l,R)⊂ Rn be a rotated box, with center c ∈ Rn,
edge lengths l ∈ Rn, and rotation R ∈ SO(n):

box(c, l,R) = c+R ·
(
[−l[1], l[1]]×·· ·× [−l[n], l[n]]

)
. (1)

If R is an identity matrix, we say the box is axis-aligned.

II. ROBOT AND ENVIRONMENT

This section describes the robot and its surroundings.

A. Modeling the Robot

1) High Fidelity Model: We express the robot’s motion
using a high-fidelity model, f : X×U→RnX , with state space
X ⊂ RnX , control input space U ⊂ RnU , and

ẋ(t) = f (x(t),u), (2)

where t ∈ T = [0, tfin] is time in each planning iteration, x :
T →RnX is a trajectory of the high-fidelity model, and u ∈U
is the control input. We require that f is Lipschitz continuous,
and T , X , and U are compact, so trajectories exist. We assume
f accurately describes the robot’s dynamics. One can extend
the method to where this model only describes robot motion
to within an error bound [15, Thm. 39].

Our goal is to represent rigid-body robots moving through
space, so we require that the robot’s state x ∈ X includes the
robot’s position p in a position subspace P⊂ RnP (nP = 1,2,
or 3). For example, p can represent the robot’s center of mass
position in global coordinates. We use a projection map projP :
X → P to get the position from x ∈ X as p = projP(x).

2) Planning Model: We require frequent replanning for
real-time operation; doing so is typically challenging with a
high-fidelity model directly, so we use a simpler planning
model and bound the resulting error. Let K ⊂ RnK denote
a compact space of plan parameters (detailed below). The
planning model is a map pplan : T ×K→ P that is smooth in t
and k, with pplan(0,k) = 0 for all k ∈ K, and ṗplan(tfin,k) = 0
for all k ∈ K. We refer to a single plan pplan(·,k) : T → P
as a plan. Note, every plan begins at t = 0 without loss of
generality (WLOG), and every plan is of duration tfin. We
use the smoothness of pplan to compute reachable sets in
Section III. We fix pplan(0,k) = 0 WLOG because we can
translate/rotate any plan to the position/orientation of the high-
fidelity model at the beginning of each planning iteration. We

www.github.com/roahmlab/reachability-based_trajectory_safeguard
www.github.com/roahmlab/reachability-based_trajectory_safeguard

SHAO et al.: REACHABILITY-BASED TRAJECTORY SAFEGUARD 3

fix ṗplan(tfin, ·) = 0 so all plans end with a braking failsafe
maneuver. If the robot fails to find a safe plan in a planning
iteration, it can continue a previously-found safe plan, enabling
persistent safety [21, Sec. 5.1].

3) The Plan Parameter Space: We require that K is an
axis-aligned, box-shaped set. Let cK ,∆K ∈ RnK . Then

K = box(cK ,∆K ,0). (3)

We also break the parameter space into two subspaces, so that
K = Kinit×Kdes. Denote k = (kinit,kdes) ∈ K.

The first subspace, Kinit, determines a plan’s initial velocity,
ṗplan(0,kinit); this ensures one can choose a plan that begins
at the same velocity as the robot. To this end, we define an
initial condition function, finit : X → Kinit, for which x 7→ kinit.
Suppose the robot is at a state x and applying a control input u.
We implement finit by setting ṗplan(0,k) = projP(f (x,u)) and
solving for kinit, where we have abused notation to let projP
project the relevant coordinates.

The second subspace, Kdes, specifies positions or velocities
reached by a plan during (0, tfin]⊂ T . So, instead of choosing
control inputs, the RL agent chooses kdes in each receding-
horizon planning iteration. This design choice is an impor-
tant feature of RTS+RL, because we can design a tracking
controller (discussed below) to obtain stability guarantees and
obey actuator limits, and let RL focus on decision making.
Note, different choices of kdes may be safe or unsafe, whereas
kinit is determined by the robot’s state at t = 0.

4) Receding-horizon Timing: We specify the rate of oper-
ation with a planning time, tplan ∈ (0, tfin). In each planning
iteration, if a new, safe plan is found before tplan, the robot
begins tracking it at tplan. Otherwise, the robot continues its
previous plan. We find the robot’s initial condition x0 for each
plan by forward-integrating the high-fidelity model tracking
the previous plan for duration tplan.

5) Tracking Controller and Error: We use a tracking con-
troller, utrk : T ×X ×K→U to drive the high-fidelity model
towards a plan, with tracking error e : T → RnP as

e(t;x0,k) = p(t;x0,k)− pplan(t,k) and (4)

x(t;k,x0) =
∫ t

0
f (x(s),utrk(t,x(s),k)ds+ x0, (5)

where x0 ∈ X such that p(0;x0,k) = 0 and ṗplan(0;k) = ṗ(0),
with p(·) = projP(x(·)). Note, e is bounded because f is
Lipschitz and T , U , and K are compact. We account for
tracking error to ensure safety in Secs. III and IV.

B. Modeling the Robot’s Environment

1) Forward Occupancy: The position coordinate p ∈ P
typically describes the motion of the robot’s center of mass,
but we require the robot’s entire body to avoid obstacles. So,
we define the forward occupancy map FO : X → pow (P), for
which FO(x)⊂ P is the volume occupied by the robot at state
x ∈ X . Since we only consider rigid body robots in this work,
we conflate the robot’s workspace with P. Note this work can
extend to non-rigid robots such as multilink arms [22].

2) Safety and Obstacles: We define safety as collision
avoidance. Let an obstacle O ⊂ P be a static region of
workspace for which, if the robot is at a state x and FO(x)∩
O 6= /0, the robot is in collision. We assume each obstacle is a
box, O = box(c, l,R)⊂ P, and static with respect to time; note
that typical mapping and perception algorithms output rotated
boxes [23], [24]. We also assume that the robot need only
avoid a finite number of obstacles for any plan. We assume
the robot can sense every obstacle within a finite distance dsense
of its position, as in [15, Thm. 39]. Note the present work can
extend to dynamic environments [16], [18].

III. OFFLINE REACHABILITY ANALYSIS

Offline, we compute a Planning Reachable Set (PRS), Rplan,
of the planning model, then bound tracking error with an Error
Reachable Set (ERS), Rerr. Online, we use the PRS and ERS
to build safety constraints (in the next section).

A. Planning Reachable Set

We represent the PRS with zonotopes using an open-source
toolbox called CORA [25]. A zonotope is a set

Z(c,G) = {y ∈ Rn | y = c+Gβ , β ∈ [−1,1]m} , (6)

where c∈Rn is the zonotope’s center, G⊂Rn×m is a generator
matrix, and β is a coefficient vector. The columns of G are
called generators of the zonotope.

1) PRS Computation Setup: We provide the toolbox [25]
with three inputs to compute the PRS. First, we partition T
into mT ∈ N intervals. Let ∆T = tfin/mT , T (1) = [0,∆T], and
T (i) =

(
(i− 1) ·∆T , i ·∆T

]
. Then, T =

⋃mT
i=1 T (i). Second, we

provide an augmented state z = (p,k) with ż = (ṗplan,0), to al-
low computing the PRS for all k. Third, since for any k, a plan
has pplan(0,k) = 0, we provide an initial condition zonotope
Z(0)

plan =Z
(

c(0),G(0)
)
⊂ P×K, with center c(0) = (0nP×1,cK)∈

Rm and generator matrix G(0) = diag(0nP×1,∆K) ∈ Rm×m,
where m = nP +nK .

2) PRS Representation: The PRS is represented as

Rplan =
{

Z(i)
plan = Z

(
c(i)plan,G

(i)
plan

)
⊂ P×K | i ∈ NmT

}
, (7)

which conservatively contains all plans and parameters: if t ∈
T (i) and k ∈ K, then (pplan(t,k),k) ∈ Z(i)

plan [26, Thm. 3.3].
3) Plan Parameter Partition: In practice, the conservatism

of the PRS zonotope representation is proportional to the size
of Kinit. So, we partition Kinit into mK ∈N axis-aligned boxes
K(j)

init ⊂ K such that K ⊆
⋃mK

j=1(K
(j)
init×Kdes) and K(i)

init∩K(j)
init = /0

when i 6= j. We compute (7) for each K(j) = K(j)
init×Kdes, and

choose which PRS to use online (in each planning iteration)
based on the robot’s initial condition, by choosing j such that
finit(x0) ∈ K(j)

init.

B. Error Reachable Set

The ERS bounds tracking error as in (4). Novel to this work,
we also use the ERS to bound the robot’s forward occupancy
in workspace, whereas [17], [19] bounded the occupancy in
the PRS, which is more conservative in practice.

4 MARCH, 2021

1) Initial Condition Partition: Notice that tracking error
depends on the robot’s initial condition x0 ∈ X0 = {x0 ∈
X | projP(x0) = 0}. Just as we partitioned Kinit to reduce
PRS conservatism, we partition X0 to reduce ERS conser-
vatism. We choose m0 ∈ N axis-aligned boxes X (h)

0 such that
X0 ⊆

⋃m0
h=1 X (h)

0 , and X (i)
0 ∩X (j)

0 = /0 when i 6= j.
2) Zonotope ERS: With our partition of X0, we represent

the ERS as a collection of zonotopes

Rerr = {Z(i, j,h)
err ⊂ P | (i, j,h) ∈ NmT ×NmK ×Nm0} (8)

for which, if t ∈ T (i), k = (kinit,kdes) ∈ K(j), x0 ∈ X (h)
0 , and

finit(x0) = kinit, then

FO(x(t;k,x0))⊆ {pplan(t,k)}+Z(i, j,h)
err (9)

with x as in (5) and + denoting set addition [22, Lem. 6].
3) Computing the ERS via Sampling: It is challenging to

compute (8) using reachability tools such as [25], because the
high-dimensional, nonlinear tracking error results in excessive
conservatism. Instead, we use adversarial sampling, wherein
we extend [19, Alg. 3] for forward occupancy.

Our goal is to conservatively estimate worst-case tracking
error using a finite number of samples in K(j) × X (h)

0 by
leveraging the box structure of K(j) and X (h)

0 . An axis-aligned
box B ⊂ Rn can be expressed [−l1, l1]× ·· · × [−ln, ln]. We
call {−l1, l1}×·· ·×{−ln, ln} the box’s corners. Let C(j,h) be
the corners of K(j) × X (h)

0 . We sample each corner of each
C(j,h). Using all corners (k,x0) ∈C(j,h), we find the zonotope
Z(i, j,h)

err as follows. First, if needed, we adjust kinit such that
finit(x0) = kinit. Then, we find x as in (5) and

V (i, j,h) =
⋃

(t,k,x0)∈S

FO(x(t;k,x0))−{pplan(t,k)}, (10)

with S = T (i)×C(j,h) and − denoting set subtraction. Note,
in practice, we discretize T (i) to estimate this union, and
numerically estimate x with a standard differential equation
solver. Finally, we compute each ERS zonotope as

Z(i, j,h)
err =minBoundingBox(V (i, j,h)), (11)

where minBoundingBox returns a minimum bounding box
using [27]. We use rotated boxes to enable fast online planning.
Note, box(c, l,R) = Z(c,Rdiag(l)) by (6). Fig. 2 shows an
example of (11). The proposed method reduces ERS conser-
vatism compared to [19], which overapproximates all rotations
of a robot’s body with one zonotope. However, our method is
limited by exponential growth of the number of samples with
the state dimension, and by finding the robot’s high-fidelity
model and ERS offline.

4) Justifying Conservatism: We now justify that our ERS
sampling strategy can satisfy (9). We improve upon [19,
Prop. 7.1], which justifies sampling the corners of each K(j)

init
and X (h)

0 , by justifying why we sample the corners of K(j).
To proceed, we assume our robot’s actuators are modeled
as double integrators, and that maximizing actuator tracking
error maximizes robot tracking error. Then, tracking error is
proportional to commanded change in velocity:

0 5 10
x [m]

-4

-2

0

2

4

y
[m

]

Global Coordinate

-2 -1 0 1 2
x [m]

-2

-1

0

1

y
[m

]

Error Coordinate

Fig. 2. An example of tracking error (as in (4)) plus the robot body at a
sampled time, for two sampled plans (black on left). The tracking error plus
robot body (yellow and cyan dots) is shown with respect to the robot’s center
of mass (pink), and bounded with a rotated box (red) as in (11).

Proposition 1. Consider a 1-D actuator model with states
(p, ṗ)∈R2 and p̈ = u∈R. Let pplan(·,k) : T →R be a smooth
plan. Consider control gains γp,γd ∈ R, and let

u = γp · (p− pplan)+ γd · (ṗ− ṗplan), (12)

Suppose p(0) = pplan(0,k) and k = (kinit,kdes) with kinit fixed
such that ṗ(0,k) = ṗplan(0,k). Suppose that, for all t ∈ T ,
p̈plan(t,k) = kdes ∈ [kmin,kmax] ⊂ R. Then the tracking error
|p(t)− pplan(t)| is maximized when kdes ∈ {kmin,kmax}.

Proof. Consider the tracking error system

z(t,k) =
[

z1(t,k)
z2(t,k)

]
=

[
p(t)− pplan(t,k)
ṗ(t)− ṗplan(t,k)

]
. (13)

Recalling that k̇ = 0 for any plan, we have

ż(t,k) =
[

0 1
γp γd

]
︸ ︷︷ ︸

A

z(t,k)+
[

0
p̈plan(t,k)

]
, (14)

for any fixed k ∈ K. We can solve for z to find

z(t,k) =−A−1(eAt − I2×2)

[
0

kdes

]
, (15)

where I2×2 is an identity matrix. Notice that

A−1 =

[
−γd/γp 1/γp

1 0

]
=⇒ eAt =

[
a1(t) a2(t)
a3(t) a4(t)

]
, (16)

where we can choose γp and γd such that a2(t) and a4(t) 6= 0.
Then, by expanding (15), we have

z1(t,k) =
1− γda2(t)+a4(t)

γp
kdes, (17)

completing the proof.

Note that the planning model in Prop. 1 does not obey
ṗplan(tfin,k) = 0. This simplification is to illustrate the main
idea: the tracking error is proportional to kdes. However, a
similar result holds when p̈plan(t,k) ∝ (kdes−kinit)t2 (as is true
for the planning models in Sec. V) by applying integration
by parts to solve (14). Furthermore, input saturation does not
affect the result of Prop. 1, because then p̈ would be constant
for some duration. So, one can maximize tracking error by
choosing kdes to maximize input saturation.

SHAO et al.: REACHABILITY-BASED TRAJECTORY SAFEGUARD 5

IV. ONLINE SAFE REINFORCEMENT LEARNING

This section describes online training and testing with RTS,
wherein the robot only chooses safe plans while still learning
from unsafe plans. The main result is in Thm. 3.

To enforce safety, we combine the PRS (i.e., all plans)
and ERS (i.e. tracking error) to build a Forward Reachable
Set (FRS) containing the motion of the high-fidelity model
tracking any plan. If a subset of the FRS corresponding to a
plan is collision free, then that plan is safe.

A. Reachability-based Trajectory Safeguard (RTS)

Consider a single planning iteration. Suppose the robot is
generating a plan beginning from an initial condition x0 ∈ X .
We present all computations from here on in the robot’s local
coordinate frame at t = 0, so projP(x0) = 0. We build the FRS,
use it to create safety constraints, then present an algorithm
to ensure the robot only chooses safe plans.

Before we construct the FRS, we choose the PRS and ERS
zonotopes from the partition of K and X0. Pick x0 ∈ X (h)

0 and
K(j) such that if kinit = finit(x0), then k = (kinit,kdes) ∈ K(j).
Let i ∈ NmT (i.e., the time interval T (i)) be arbitrary. For the
rest of this section, we consider the zonotopes

Z(i, j)
plan = Z

(
c(i, j)plan ,G

(i, j)
plan

)
⊂ P×K and (18)

Z(i, j,h)
err = Z

(
c(i, j,h)err ,G(i, j,h)

err

)
⊂ P. (19)

1) FRS Construction: We represent the FRS as zonotopes
Z(i, j,h)

FRS ⊂ P×K built from the PRS and ERS zonotopes:

Z(i, j,h)
FRS = Z

(
c(i, j)plan +

[
c(i, j,h)err
0nK×1

]
,

[
G(i, j)

plan ,

[
G(i, j,h)

err
0nK×nP

]])
, (20)

which follows from the zonotope Minkowski sum and Carte-
sian product [28]. Note, the first nP rows of G(i, j)

plan correspond

to all nP rows of G(i, j,h)
err (and similarly for the centers).

2) Creating Safety Constraints: Let {O(m)}nobs
m=1 be the set of

obstacles that the robot must avoid in the current planning iter-
ation. The robot must choose kdes such that, if k = (kinit,kdes),
then FO(x(t;x0,k))∩O(m) = /0 ∀ m. To check this intersection,
we introduce slicing. Let c ∈ Rn,G ∈ Rn×p. Let I ⊆ Np be a
multi-index and β ∈ [−1,1]|I|. We define

slice(Z(c,G) , I,β) = Z
(

c+G[:,I]
β , G[:,Np\I]

)
. (21)

From (6), a sliced zonotope is a subset of the original
zonotope, reducing the conservatism of using reachable sets
for online planning. We use slicing to identify unsafe plans:

Lemma 2. Consider the obstacle O(m) = Z
(

c(m)
obs ,G

(m)
obs

)
⊂ P

and denote Z(i, j,h)
FRS =Z

(
c(i, j,h)FRS ,G(i, j,h)

FRS

)
. We identify unsafe k by

slicing Z(i, j,h)
FRS and checking if it intersects O. Suppose G(i, j,h)

FRS

has n ∈ N generators. Let I = NnK +nP. Denote

G(i, j,h)
slc = [G(i, j,h)

FRS][NnP ,I], G(i, j,h)
extra = [G(i, j,h)

FRS][NnP ,Nn\I],

Z(i, j,h)
slc = Z

(
c(i, j,h)FRS ,G(i, j,h)

slc

)
, Z(i, j,h)

extra = Z
(

0,G(i, j,h)
extra

)
.

Let k = (kinit,kdes) ∈ K(j) such that kinit = finit(x0), and con-
struct βk = diag(∆K)

−1 (k− cK). Then

slice
(

Z(i, j,h)
FRS ,βk, I

)
∩ O = /0 (22)

if and only if

slice
(

Z(i, j,h)
slc ,βk,NnK

)
6∈ Z

(
c(m)

obs , [G
(m)
obs ,G

(i, j,h)
extra]

)
. (23)

Proof. First note, O is a rotated box, and therefore a zonotope.
Second, notice that, by construction, Z(i, j,h)

slc and Z(i, j,h)
extra ⊂ P.

Furthermore, Z(i, j,h)
slc contains the generators of Z(i, j,h)

FRS that can
be sliced by βk [19, Lemma 6.5], and Z(i, j,h)

extra contains all of
the other generators (hence the multi-index Nn\I). This means
the left-hand side of (23) is a point, hence the use of 6∈. Fur-
thermore, it follows from (21) that slice

(
Z(i, j,h)

slc ,βk,NnK

)
∈ P,

because Z(i, j,h)
slc has exactly NnK generators [19, Lemma 6.5].

The desired result then follows from [28, Lemma 5.1]: if
Z1 =Z(c1,G1) and Z2 =Z(c2,G2), then Z1∩Z2 = /0 ⇐⇒ c1 6∈
Z(c2, [G1,G2]).

In our application, we must repeatedly evaluate (23) (see
Alg. 1, Line 9). To perform this efficiently, we apply [26,
Thm. 2.1] to represent each zonotope Z

(
c(m)

obs , [G
(m)
obs ,G

(i, j,h)
extra]

)
as the intersection of nhp ∈ N affine halfplanes using a pair
of matrices, A(i, j,h,m)

obs ∈ Rnhp×nP and b(i, j,h,m)
obs ∈ Rnhp×1, for

which (23) holds if and only if

−max
(

A(i, j,h,m)
obs slice(Zslc,βk,NnK)−b(i, j,h,m)

obs

)
< 0, (24)

where the max is taken over the elements of its argument.
Note A(i, j,h,m)

obs and b(i, j,h,m)
obs can be constructed quickly, and

enable future work where the adjust function in Alg. 1 can
use gradient descent instead of sampling, similar to [22].

3) Parameter Adjustment: To enforce safety at runtime, we
use (24) as a constraint on the RL agent’s choice of k. Using
Alg. 1, we adjust an unsafe choice of k by attempting to
replace it with a safe one. Importantly, Alg. 1 also returns the
Euclidean distance from the RL agent’s choice to the adjusted
k, which we can use as a penalty during training.

B. Safe Learning with RTS

We use RTS to safely train a model-free RL agent with Alg.
2. In each training episode the RL agent performs receding-
horizon planning until the robot completes the task (e.g.,
reaching a goal), crashes, or exceeds a time limit. In each
planning iteration, we roll out the current policy to get a plan,
adjust the plan if unsafe, and execute the resulting plan. We
train the RL agent on minibatches of experiences containing
observations, reward, and policy output. The observations con-
tain the robot’s state, nearby obstacles, and goal information.
The reward is a function of the task, robot trajectory, obstacles,
and distance that Alg. 1 adjusted the agent’s plan. In practice,
training the agent at runtime does not impede the real-time
performance of RTS because we use an experience buffer,
allowing training in parallel to plan execution. We conclude
by confirming that RTS is safe:

6 MARCH, 2021

Algorithm 1: (k,d) = adjust(x0,{O(m)}nobs
m=1,kRL)

1 get Z(i, j)
plan and Z(i, j,h)

err for each i ∈ NmT using x0

2 create Z(i, j,h)
FRS for each i ∈ NmT as in (20)

3 for i ∈ NmT ,m ∈ Nnobs do
4 construct A(i, j,h,m)

obs and b(i, j,h,m)
obs as in Sec. IV-A2

5 evaluate (24) on kRL

6 if kRL does not satisfy (24) for all (i,m) then
7 create samples {k(n)}nsample

n=1 ⊂ K(j) such that
k(n)init = finit(x0) for all m

8 sort {k(n)}nsample
n=1 by increasing cost ‖k(n)− kRL‖2

9 for i ∈ NmT , m ∈ Nnobs , n ∈ Nnsample do
10 if k(n) satisfies (24) then
11 return (k(n),‖k(n)− kRL‖2), break loop

12 return ([], []) (robot continues previous plan)
13 else
14 return (kRL,0) (no adjustment necessary)

Theorem 3. Suppose the ERS satisfies (9). Then an RL agent
/ robot using Alg. 2 is safe during training.

Proof. In each planning iteration, Alg. 2 checks if the plan
from the RL agent is unsafe using Alg. 1, which either returns
a safe plan (by Lem. 2), or else the robot executes a previously-
found, safe failsafe maneuver. Since the robot is initialized
with a failsafe maneuver, it is always safe.

Algorithm 2: Safe Reinforcement Learning with RTS

1 initialize random policy and empty experience set E
2 for each training episode do
3 initialize task T (e.g., reach a goal position)
4 create random obstacles O= {O(m)}nobs

m=1
5 initialize robot at random, safe start position, with

failsafe maneuver (stay at start)
6 while time limit not exceeded do
7 get initial condition x0 from robot
8 get observation o = observe(x0,O)
9 get kRL = rollout(o)

10 get (ksafe,d) = adjust(x0,O,kRL) with Alg. 1
11 if ksafe 6= [] then
12 execute robot trajectory x as in (5) by

tracking pplan(·,ksafe) for tplan s
13 store pplan as new failsafe maneuver
14 else
15 execute robot trajectory x as in (5) by

continuing previous failsafe for tplan s

16 get r = reward(T,x,O,d)
17 get observation o′ = observe(x(tplan),O)
18 store experience (o,o′,r,kRL) in E

19 train policy on a minibatch of E
20 if task T done or robot crashed then break

21 return trained policy

V. EXPERIMENTS

The proposed approach is demonstrated on a cartpole robot,
an autonomous car, and a quadrotor drone, all simulated in
MATLAB. Due to space limitations, results for the cartpole
and implementation details for all robots are in the supplement.
A supplementary video highlights our method.

Comparison Methods: For each robot, we train three RL
agents: one with RTS to ensure safety, one with RTS but a
discrete action space (similar to [12]), and a baseline with no
safety layer. We also compare against two versions of RTD
[19]: a “Reward” version that optimizes the same reward as
RL, and a “Standard” version that optimizes distance to a
waypoint generated by a high-level path planner. At the time
of writing, code to compare against [8] was unavailable.

Evaluation Metrics: We consider goals reached (i.e., tasks
completed), safe stops (task incomplete, but no collision),
collisions, safety interventions (how many times Alg. 1 was
needed), and min/mean/max reward over all trials. To ensure
a fair comparison, all methods run for a fixed number of
planning iterations; when a method gets stuck, it accumulates
negative reward per the reward functions in the supplement.

Hypotheses: We expect RTS+RL and RTD to have no
collisions, the continuous action space RTS to outperform the
discrete action space version, and baseline RL to have many
collisions. We expect Standard RTD to outperform Reward
RTD due its convex cost and hand-tuned high-level planner.

Summary of Results: RTS+RL consistently outperforms the
other methods on most metrics. Standard RTD consistently
outperforms Reward RTD as expected. Interestingly, Standard
RTD often achieves higher reward (but fewer goals) than RTS
for the drone, meaning reward is not always an accurate metric
for task success.

A. Car Lane Change Experiment

1) Task and Method: In this experiment, a self-driving car
tries to reach a goal position 500 m away on a road-like
obstacle course as quickly as possible. We use a realistic high-
fidelity model [29] that has a larger turning radius at higher
speeds, so the car must slow to avoid obstacles, and stop if
there is not enough room to avoid an obstacle. For the RL
methods, we train TD3 [30] agents for 20,000 episodes and
evaluate on 500 episodes.

2) Results and Discussion: Fig. 3 shows reward during
training. Table I shows evaluation data. Fig. 4 illustrates
RTS+RL achieving two safe lane changes at high speed, and
the baseline RL agent having a collision.

RTS+RL attains high reward and goals by learning to drive
slowly near obstacles and quickly otherwise. RTS+RL Discrete
is less consistent because it lacks fine control over the car’s
speed, limiting possible turning radii and getting the car stuck.
Baseline RL collides often, as expected, so it learns to drive
slowly, limiting its reward. As expected, RTD does not crash,
and Standard RTD outperforms Reward RTD. Standard RTD
succeeds due to our careful hand-tuning of its high-level
planner, resulting in similar success rates to prior studies
on RTD [15], [16]. However, RTS effectively behaves as an
automated way of tuning this high-level behavior, resulting in

https://youtu.be/j5h3JzHboMk

SHAO et al.: REACHABILITY-BASED TRAJECTORY SAFEGUARD 7

0 5000 10000 15000 20000
Training Episode

-100

-50

0

50

100

E
pi

so
de

 R
ew

ar
d

Fig. 3. Running average of reward and its standard deviation during training
for the car lane change task. The proposed RTS+RL method (green) achieves
high reward compared to a discrete version of the same method (blue) and
a baseline RL approach (orange). Baseline RL had collisions in 40.2% of
episodes, whereas RTS had none.

Fig. 4. Car lane changes with RTS+RL (top) and baseline RL (bottom). The
car (blue) is plotted at each receding-horizon planning iteration (increasing
opacity with time). RTS+RL avoids obstacles (red) while traveling at a higher
speed than the baseline RL agent, which suffers a collision.

a higher success rate with less human effort (we found tuning
the reward function easy in practice since there is no tradeoff
required for penalizing obstacles/collisions).

Note, RTS requires much less than tplan = 2 seconds to en-
sure safety in each planning iteration, meaning that it enables
real-time training and evaluation. We chose this tplan because
it forces the methods to consider longer-term reward and
discourages aggressive lateral acceleration Also, the dynamics
we use for RTS+RL have been shown to accurately represent
real car-like robots for safe operation [15], [16], so we expect
that RTS can overcome the sim-to-real gap.

B. Drone Obstacle Tunnel Experiment

1) Task and Method: This experiment requires a quadrotor
drone to traverse a 100 m tunnel as quickly as possible
while avoiding randomly-placed obstacles, as shown in Fig. 6.
Recent applications of deep/reinforcement learning for drone
control and navigation have only empirically demonstrated
safety of a learned policy [31]–[33]. We use RL+RTS to enable
more systematic guarantees for learning drone navigation. We
train TD3 agents for 2000 episodes, then evaluate on 500
episodes.

2) Results and Discussion: Table II shows evaluation data.
Fig. 6 shows an example where RTS+RL succeeds and base-
line RL has a collision. As expected, RTS+RL and RTD
had no collisions, and the continuous action space RTS was
superior. The discrete action space often has too few actions to
prevent the robot from becoming stuck. Baseline RL learned
to crash to avoid accumulating negative reward over time; so,
enforcing safety allows one to avoid some tradeoffs in reward
tuning. As expected, Standard RTD was more effective than
Reward RTD at reaching goals and accumulating reward due

0 500 1000 1500
Training Episode

-400

-300

-200

-100

0

100

E
pi

so
de

 R
ew

ar
d

Fig. 5. Running average of reward and its standard deviation during training
for the drone obstacle tunnel. Our RTS+RL framework (green) learns to
navigate the random obstacle tunnels, whereas the discrete version (blue) does
not achieve as much reward. The baseline RL approach (orange) struggles to
accumulate reward, and instead learns to collide with obstacles

Fig. 6. In the Drone Obstacle Tunnel Experiment, RTS+RL (top) successfully
navigates a trial, whereas the baseline RL (bottom) learns to crash rapidly to
avoid accumulating negative reward. The drone begins on the left and must
reach the goal (green) on the right while avoiding obstacles (red). Note, unlike
this 25 m example world, the training and testing worlds are 100 m long and
have higher obstacle density.

to its carefully hand-tuned high level planner. Surprisingly,
RTS+RL reached more goals (which is RTD’s purpose) but
RTD accumulated higher reward, showing that reward is not
necessarily the proper metric for evaluating an RL agent. Also,
note RTS+RL’s planning time is less than the real-time limit
tplan = 1 s.

VI. CONCLUSION

To apply RL on real-world robots in safety-critical environ-
ments, one should be able to ensure safety during and after
training. To that end, this paper proposes Reachability-based
Trajectory Safeguard (RTS), which leverages offline reachabil-
ity analysis to guarantee safety. The method is demonstrated in
simulation performing safe, real-time receding-horizon plan-
ning for three robot platforms with continuous action spaces.
RTS typically outperforms state-of-the-art safe trajectory plan-
ners in terms of reward and tasks completed. Furthermore, RTS
simplifies RL training by allowing users to focus on designing
a reward without tuning safety penalties. Future work will
apply RTS+RL on hardware and non-rigid-body robots, and
explore additional benefits of safe RL training.

8 MARCH, 2021

Car Results RTS+RL RTS+RL Discrete Baseline RL Reward RTD Standard RTD
Avg. Planning Time [s] 0.058 0.057 1.7E-5 0.20 0.17
Goals Reached [%] 100.0 88.0 82.4 42.8 90.2
Safely Stopped [%] 0.0 12.0 0.0 57.2 9.8
Collisions [%] 0.0 0.0 17.6 0.0 0.0
Safety Interventions [%] 3.3 6.2 N/A N/A N/A
Min/Mean/Max Reward 38/121/158 −645/87/157 −53/78/151 −1471/−168/156 −821/53/157

TABLE I
Evaluation and comparison results for the Car Lane Change Experiment. Reward is rounded to nearest integer for space.

Drone Results RTS+RL RTS+RL Discrete Baseline RL Reward RTD Standard RTD
Avg. Planning Time [s] 0.22 0.18 8.8E-6 0.86 0.22
Goals Reached [%] 83.4 71.8 0.0 58.6 76.2
Safely Stopped [%] 16.6 28.2 0.0 41.4 23.8
Collisions [%] 0.0 0.0 100.0 0.0 0.0
Safety Interventions [%] 90.6 80.3 N/A N/A N/A
Min/Mean/Max Reward −430/−63/25 −429/−95/30 −212/−212/−210 −345/−112/31 −430/−55/43

TABLE II
Evaluation and comparison results for the Drone Obstacle Tunnel Experiment. Reward is rounded to nearest integer for space.

REFERENCES

[1] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a
stochastic actor,” arXiv preprint arXiv:1801.01290, 2018.

[2] S. Fujimoto, H. Van Hoof, and D. Meger, “Addressing func-
tion approximation error in actor-critic methods,” arXiv preprint
arXiv:1802.09477, 2018.

[3] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and Y.
Tassa, “Safe exploration in continuous action spaces,” arXiv preprint
arXiv:1801.08757, 2018.

[4] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International conference on machine
learning, 2015, pp. 1889–1897.

[5] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy
optimization,” arXiv preprint arXiv:1705.10528, 2017.

[6] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, “Safe
model-based reinforcement learning with stability guarantees,” in
Advances in neural information processing systems, 2017.

[7] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, “End-to-
end safe reinforcement learning through barrier functions for safety-
critical continuous control tasks,” in Proceedings of the AAAI Con-
ference on Artificial Intelligence, vol. 33, 2019, pp. 3387–3395.

[8] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J.
Gillula, and C. J. Tomlin, “A general safety framework for learning-
based control in uncertain robotic systems,” IEEE Transactions on
Automatic Control, vol. 64, no. 7, pp. 2737–2752, 2018.

[9] A. K. Akametalu, “A learning-based approach to safety for uncertain
robotic systems,” Ph.D. dissertation, UC Berkeley, 2018.

[10] T. Lew, A. Sharma, J. Harrison, and M. Pavone, “Safe Model-Based
Meta-Reinforcement Learning: A Sequential Exploration-Exploitation
Framework,” arXiv preprint arXiv:2008.11700, 2020.

[11] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-
agent, reinforcement learning for autonomous driving,” arXiv preprint
arXiv:1610.03295, 2016.

[12] H. Krasowski, X. Wang, and M. Althoff, “Safe reinforcement learning
for autonomous lane changing using set-based prediction,” in IEEE In-
ternational Conference on Intelligent Transportation Systems (ITSC),
2020.

[13] D. Heß, M. Althoff, and T. Sattel, “Formal verification of maneuver
automata for parameterized motion primitives,” in 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IEEE,
2014, pp. 1474–1481.

[14] C. Pek, S. Manzinger, M. Koschi, and M. Althoff, “Using online
verification to prevent autonomous vehicles from causing accidents,”
Nature Machine Intelligence, vol. 2, no. 9, pp. 518–528, 2020.

[15] S. Kousik*, S. Vaskov*, F. Bu, M. Johnson-Roberson, and R. Vasude-
van, “Bridging the gap between safety and real-time performance in
receding-horizon trajectory design for mobile robots,” The Interna-
tional Journal of Robotics Research, 2020.

[16] S. Vaskov, S. Kousik, H. Larson, F. Bu, J. Ward, S. Worrall, M.
Johnson-Roberson, and R. Vasudevan, “Towards provably not-at-fault
control of autonomous robots in arbitrary dynamic environments,”
arXiv preprint arXiv:1902.02851, 2019.

[17] S. Kousik, P. Holmes, and R. Vasudevan, “Safe, aggressive quadrotor
flight via reachability-based trajectory design,” in Dynamic Systems
and Control Conference, American Society of Mechanical Engineers,
vol. 59162, 2019, V003T19A010.

[18] S. Vaskov, H. Larson, S. Kousik, M. Johnson-Roberson, and R.
Vasudevan, “Not-at-fault driving in traffic: A reachability-based ap-
proach,” in 2019 IEEE Intelligent Transportation Systems Conference
(ITSC), IEEE, 2019, pp. 2785–2790.

[19] S. Kousik, “Reachability-based Trajectory Design,” Ph.D. dissertation,
University of Michigan, 2020.

[20] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Trajec-
tron++: Multi-agent generative trajectory forecasting with heteroge-
neous data for control,” arXiv preprint arXiv:2001.03093, 2020.

[21] T. Fraichard and H. Asama, “Inevitable collision states—A step
towards safer robots?” Advanced Robotics, vol. 18, no. 10, pp. 1001–
1024, 2004.

[22] P. Holmes, S. Kousik, B. Zhang, D. Raz, C. Barbalata, M. Johnson-
Roberson, and R. Vasudevan, “Reachable Sets for Safe, Real-Time
Manipulator Trajectory Design,” Robotics: Science and Systems,
2019.

[23] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Op-
timal speed and accuracy of object detection,” arXiv preprint
arXiv:2004.10934, 2020.

[24] S. Thrun, “Robotic mapping: A survey,” 2003.
[25] M. Althoff, “An introduction to CORA 2015,” in Proc. of the

Workshop on Applied Verification for Continuous and Hybrid Systems,
2015.

[26] ——, “Reachability analysis and its application to the safety assess-
ment of autonomous cars,” Ph.D. dissertation, Technische Universität
München, 2010.

[27] C.-T. Chang, B. Gorissen, and S. Melchior, “Fast Oriented Bounding
Box Optimization on the Rotation Group SO(3),” ACM Trans. Graph.,
vol. 30, no. 5, Oct. 2011.

[28] L. J. Guibas, A. T. Nguyen, and L. Zhang, “Zonotopes as bounding
volumes,” in SODA, vol. 3, 2003, pp. 803–812.

[29] Y. Rasekhipour, A. Khajepour, S.-K. Chen, and B. Litkouhi, “A
potential field-based model predictive path-planning controller for
autonomous road vehicles,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 18, no. 5, pp. 1255–1267, 2016.

[30] S. Fujimoto, H. Van Hoof, and D. Meger, “Addressing func-
tion approximation error in actor-critic methods,” arXiv preprint
arXiv:1802.09477, 2018.

[31] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, “Control of a quadrotor
with reinforcement learning,” IEEE Robotics and Automation Letters,
vol. 2, no. 4, pp. 2096–2103, 2017.

[32] S. L. Waslander, G. M. Hoffmann, J. S. Jang, and C. J. Tomlin, “Multi-
agent quadrotor testbed control design: Integral sliding mode vs.
reinforcement learning,” in 2005 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IEEE, 2005.

[33] E. Kaufmann, A. Loquercio, R. Ranftl, M. Müller, V. Koltun,
and D. Scaramuzza, “Deep drone acrobatics,” arXiv preprint
arXiv:2006.05768, 2020.

[34] J. R. Pati, “Modeling, identification and control of cart-pole system,”
2014.

https://escholarship.org/content/qt7319h9gd/qt7319h9gd.pdf
https://escholarship.org/content/qt7319h9gd/qt7319h9gd.pdf
https://arxiv.org/abs/2008.11700
https://arxiv.org/abs/2008.11700
https://arxiv.org/abs/2008.11700
http://archive.www6.in.tum.de/www6/Main/Publications/Hess2014.pdf
http://archive.www6.in.tum.de/www6/Main/Publications/Hess2014.pdf
https://www.nature.com/articles/s42256-020-0225-y
https://www.nature.com/articles/s42256-020-0225-y
https://doi.org/10.1177/0278364920943266
https://doi.org/10.1177/0278364920943266
https://arxiv.org/abs/1902.02851
https://arxiv.org/abs/1902.02851
https://deepblue.lib.umich.edu/handle/2027.42/162884
https://arxiv.org/abs/2001.03093
https://arxiv.org/abs/2001.03093
https://arxiv.org/abs/2001.03093
https://www.tandfonline.com/doi/abs/10.1163/1568553042674662?casa_token=1Zpozfl2l2oAAAAA:PHafPchSe6LRHSIlO2cCTNYdM64exavs-d1pLQExEoHgm8RAOzPBeFDgJIvkTDS_H5untv7CrZY
https://www.tandfonline.com/doi/abs/10.1163/1568553042674662?casa_token=1Zpozfl2l2oAAAAA:PHafPchSe6LRHSIlO2cCTNYdM64exavs-d1pLQExEoHgm8RAOzPBeFDgJIvkTDS_H5untv7CrZY
https://roboticsconference.org/program/papers/100/
https://roboticsconference.org/program/papers/100/
https://tumcps.github.io/CORA/
https://dl.acm.org/doi/abs/10.1145/2019627.2019641?casa_token=5fi1UvViFT0AAAAA:fFSYe07NOaUxqiSH6-HuR8oaqc5_KO-k_DMnPQxVaBOqpQm057ZW6Yn6eIgdhJq2fygJlw-ZIy1iCA
https://dl.acm.org/doi/abs/10.1145/2019627.2019641?casa_token=5fi1UvViFT0AAAAA:fFSYe07NOaUxqiSH6-HuR8oaqc5_KO-k_DMnPQxVaBOqpQm057ZW6Yn6eIgdhJq2fygJlw-ZIy1iCA
https://geometry.stanford.edu/papers/gnz-zbv-2003/gnz-zbv-2003.pdf
https://geometry.stanford.edu/papers/gnz-zbv-2003/gnz-zbv-2003.pdf
http://ethesis.nitrkl.ac.in/6302/

SHAO et al.: REACHABILITY-BASED TRAJECTORY SAFEGUARD 9

[35] M. W. Mueller, M. Hehn, and R. D’Andrea, “A Computationally
Efficient Motion Primitive for Quadrocopter Trajectory Generation,”
IEEE Transactions on Robotics, vol. 31, no. 6, pp. 1294–1310, 2015.

[36] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D.
Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[37] T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control
of a quadrotor uav on se(3),” in 49th IEEE Conference on Decision
and Control (CDC), 2010, pp. 5420–5425.

SHAO et al.: REACHABILITY-BASED TRAJECTORY SAFEGUARD 1

RTS SUPPLEMENT

In this supplement, we provide the following2. First, we
elaborate on the utility of slicing the FRS. Second, we provide
the cartpole experiment results, and implementation details for
the cartpole, car, and quadrotor drone. In particular, we present
the high-fidelity model, planning model, tracking controller,
and RL reward function for each robot.

I. SLICING THE FRS ZONOTOPES

We now explain slicing in more detail. For context, slicing
is a key difference between our use of reachable sets and
that of, e.g., [12], [13]. In particular, slicing allows us to
back out a subset of a high-dimensional reachable set by
only considering a single trajectory parameter, as opposed to
the entire space of trajectory parameters. To enable slicing,
our reachable sets include the parameters as augmented state
dimensions, in contrast to [13] where the reachable sets are
effectively unions (in state space) over every parameterized
trajectory. Our reachable sets are instead disjoint unions (in
state space and parameter space) of all of reachable sets of
each parameterized trajectory.

We find that slicing, in combination with our sampling-
based reachability analysis, significantly reduces the con-
servatism and computation time of using overapproximative
reachable sets for online planning. This approach also enables
extensions to high-dimensional nonlinear robot models such
as the quadrotor in the present work.

To demonstrate the utility of slicing, we check that the FRS
does indeed contain the motion of the robot when tracking any
plan:

Lemma 4. ([19, Thm. 6.6]) Suppose t ∈ T (i). Let k ∈ K(j).
Suppose Z(i, j,h)

err satisfies (9). Let

βk = diag(∆K)
−1 (k− cK). (25)

Let I = NnK +nP. Then

FO(x(t;x0,k))⊂ slice(Z(i, j,h)
FRS ,βk,NnK). (26)

Note, I is constructed in this way because the first nP columns
of the generator matrix correspond to the pplan dimensions of
Z(i, j,h)

FRS ; the next nK columns correspond to k [19, Lemma 6.5],
and all other columns correspond to the ERS zonotope by
construction. So, we slice all the generators that correspond
to k; the remaining generators add volume to Z(i, j,h)

FRS to
compensate for tracking error, the body of the robot, and
nonlinearities in ṗplan(·,k).

In short, one can slice the FRS to find the reachable volume
in workspace corresponding to a particular plan, as illustrated
in Fig. 9 (note, this figure just shows the sliced PRS for visual
clarity). The plan is safe if this volume does not intersect with
obstacles.

2Supplementary video: https://youtu.be/j5h3JzHboMk

II. EXPERIMENTS

We now present the cartpole experiment, with a comparison
of RTS+RL against baseline RL and RTD with the RL reward
function. We then provide implementation details for the car
and quadrotor drone3.

A. Cartpole Implementation Details
To demonstrate safe RL on a simple example, we use a

cartpole, or an unactuated pendulum on a cart. We consider
the swingup task, wherein one must invert the pendulum by
moving the cart. We limit the length of track, and seek to
complete the task without exceeding the track boundaries. We
do not consider the pendulum for obstacle avoidance (to keep
the example simple), but the method can extend to include the
pendulum using rotating body reachable sets as in [22].

1) High-Fidelity Model: The cartpole’s state is x =
(p, ṗ,θ , θ̇), containing the cart position and velocity (p and
ṗ) and the pendulum angle (relative to vertical) and velocity
(θ and θ̇). We use the following high-fidelity model [34]:

p̈ =

(
w+ml2

)(
u+mlθ̇ 2 sinθ

)
−gm2l2 sinθ cosθ

w(mc +m)+ml2
(
mc +msin2

θ
) (27)

θ̈ =
−ml(ucosθ +mlθ̇ 2 sinθ · cosθ − (mc +m)gsinθ)

w(mc +m)+ml2
(
mc +msin2

θ
) ,

(28)

where w= 0.099 kg·m2 is the inertia of the pendulum, m= 0.2
kg is the mass of pole, mc = 2 kg is the mass of the cart, and
l = 0.5 m is the length of the pole [34, Table I, pg. 8]. The
control input is u.

For X , we require p(t) ∈ [−4,4] m (instead of randomiz-
ing the track length, we randomize the cart and pendulum
initial state in each episode). We require ṗ(t) ∈ [−5,5] m/s,
θ ∈ [−π,π] rad. We do not explicitly bound θ̇ . We draw
control inputs from U = [−40,40] N.

2) Planning Model: We use a planning model based on
the 1-D model in [17], [35]. The trajectory parameters are
(kv,ka) ∈ Kinit ⊂ R2 and kdes ∈ Kdes ⊂ R; kv (resp. ka) is the
cart’s initial velocity (resp. initial acceleration), and kdes is a
desired velocity to be achieved at a time tdes ∈ (0, tfin). The
planning model is:

pplan(t,k) =
τ1(t,k)

24
t4 +

τ2(t,k)
6

t3 +
ka

2
t2 + kvt (29)[

τ1(t,k)
τ2(t,k)

]
=

1

(τ3(t))
3

[
−12 6τ3(t)

6τ3(t) −2(τ3(t))
2

][
∆v(t,k)
∆a(t,k)

]
(30)

τ3(t) =
{

tdes t ∈ [0, tdes)
tfin− tdes t ∈ [tdes, tfin]

(31)

∆v(t,k) =
{

kdes− kv− katdes t ∈ [0, tdes)
−kdes t ∈ [tdes, tfin]

(32)

∆a(t,k) =
{
−ka t ∈ [0, tdes)
0 t ∈ [tdes, tfin]

(33)

We set kv,kdes ∈ [−5,5] m/s and ka ∈ [−15,15] m/s2. We set
tplan = tdes = 0.1 s and tfin = 0.3 s.

3Our code is available online at www.github.com/roahmlab/
reachability-based trajectory safeguard

https://youtu.be/j5h3JzHboMk
www.github.com/roahmlab/reachability-based_trajectory_safeguard
www.github.com/roahmlab/reachability-based_trajectory_safeguard

2 MARCH, 2021

-6 -4 -2 0 2 4 6

Fig. 7. A time lapse illustration of the cartpole swingup policy learned by
our proposed RTS+RL method. The cart is the blue rectangle that moves
horizontally, and the pendulum is the blue rectangle that rotates; the red walls
are the track boundaries; the track is not shown to reduce visual clutter. The
cart begins at 0 and moves to the left, then brakes to a stop before hitting
the boundary while still completing the swingup motion. This figure shows
a hand-crafted initial condition to emphasize our approach’s ability to obey
the constraints; the training and evaluation episodes had randomized initial
conditions, but RTS+RL still obeyed the constraints.

3) Tracking Controller: We use

utrk(t,x(t),k) =
[
γp,γd

]
·
[

pplan(t,k)− p(t)
ṗplan(t,k)− ṗ(t)

]
, (34)

where γd = γp = 50 are control gains with the appropriate units.
We saturate this controller if |utrk(·)|> 40 N.

4) Reachability Hyperparameters: To compute the PRS
and ERS, we partition T into mT = 30 intervals. We partition
the kv dimension of K into 11 intervals and ka into 5 intervals,
so mK = 11×5. We similarly partition the ṗ dimension of X0
into 11 intervals; we partition the θ dimension into 4 intervals,
and do not partition the θ̇ dimension, so m0 = 11× 4. We
found that, since the pendulum is light compared to the cart,
the cart’s tracking error is not significantly influenced by the
pendulum’s speed. Also note, we do not need to partition the
p dimension of X0 because all plans start at p(0) = 0.

5) Observations: We provide the RL agent with observa-
tions of the robot’s state: o = (p, ṗ,sinθ ,cosθ , θ̇).

6) Reward: We specify three reward terms: r1 rewards
bringing the pendulum upright, r2 rewards being in the middle
of the track, and r3 penalizes exceeding track boundaries.
Recall that x = (p, ṗ,θ , θ̇) ∈ X .

r(x) = r1(x)+ r2(x)+ r3(x), where (35)

r1(x) = 1
2 cosθ + 1

2 (36)
r2(x) =−0.1 · sign(p) · sign(ṗ), and (37)

r3(x) =

{
−0.05|p|+30 p ∈ [−4,4]
−0.05|p|−30 p /∈ [−4,4].

(38)

Here, sign returns +1 or −1 (i.e., the sign of its argument).

B. Cartpole Swing Up Experiment

1) Task, Method, and Hypotheses: The cartpole task is to
swing up the freely-rotating, unactuated pendulum by planning
trajectories for the cart while ensuring safety by staying within
the track bounds.

We train two DDPG [36] RL agents (one with RTS and one
without, as noted in Sec. V) for 300 episodes, and is tested

0 100 200 300
Training Episode

-50

0

50

100

150

200

E
pi

so
de

 R
ew

ar
d

Fig. 8. Running average of reward and its standard deviation for the cartpole
swingup task. The RTS+RL framework (green) is able to more rapidly
converge to a high reward policy when compared to a baseline RL approach
(red).

500 episodes. Every episode starts at a random initial state,
with the cart position far enough from the track limits that it
is possible to avoid collision. We also test Reward RTD (i.e.
optimizing the RL reward). A Standard RTD approach, with
a high-level planner to generate waypoints towards the global
goal, does not exist for the cartpole.

Since RL optimizes for the long-term reward, we expect
both RL agents to attempt to complete the task. We expect
RTS will always respect the track limits, unlike baseline RL.
Finally, we expect RTD to complete the task without a high-
level planner.

2) Results and Discussion: We summarize the results in
Table III. The reward during training for each RL agent is
shown in Fig. 8.

The main result is that the RTS+RL agent achieves higher
reward in fewer episodes. Both agents are eventually able learn
a policy to complete the swing up task, and both obtain similar
reward on successful trials. However, only RTS+RL is able
to guarantee safety while completing the task. Surprisingly,
RTD is unable to complete the task at all. This is likely
due to the non-convex reward; RTD becomes stuck in a
local minimum because it is unable to optimize for long-term
reward without a high-level planner. In this local minimum,
RTD keeps the cart moving back-and-forth and inadvertently
maximizes the middle-of-the-track reward, avoiding the large
possible minimum reward seen by RTS+RL and Baseline
RL, which sometimes become stuck when trying to complete
the global task. This shows the importance of the planning
hierarchy typically used for RTD [15]. Note, RTS+RL’s time
per step (i.e. the time to run the while loop in Algorithm 2)
is less than tplan = 0.1 s, so our method can be used to ensure
RL safety online.

C. Car Implementation Details

1) High-Fidelity Model: We use the following high-fidelity
model, adapted from [29] to represent a car driving on
a multi-lane road. The state space of the vehicle is x =

SHAO et al.: REACHABILITY-BASED TRAJECTORY SAFEGUARD 3

Cartpole SwingUp Result RTS+RL Baseline RL Reward RTD
Avg. Planning Time [s] 0.027 8.6E-6 0.055
Goals Reached [%] 99.6 98.2 0.0
Safely Stopped [%] 0.4 0.4 100.0
Collisions [%] 0.0 1.4 0.0
Safety Interventions [%] 0.08 N/A N/A
Min/Mean/Max Reward −38.2/82.7/100.9 −20.2/82.6/97.8 −3.1/4.5/21.6

TABLE III
Performance of RTS+RL versus baseline RL and RTD on the cartpole swing up task.

[plong, plat,ψ,v,δ] ∈ X , with dynamics

ẋ =


vcosψ− vlat cosψ

vsinψ + vlat cosψ

ω

c1v+ c2u1
c3 · (u2−δ)

 , (39)

where

ω =
v tanδ

c4 + c5v2 , and (40)

vlat = ω
(
c6 + c7v2) . (41)

Here, plong, plat, and ψ are the longitudinal, lateral position,
and heading in the global reference frame; v is the longitudinal
velocity in the robot’s local (body-fixed) coordinate frame (vlat
is its lateral velocity), and δ is its steering angle. The control
inputs are u = [u1,u2]

> ∈U are the acceleration command u1
and steering torque u2. The values c1, · · · ,c7 ∈R are constant
model parameters.

We specify ψ ∈ [−0.3,+0.3] rad, v ∈ [0,5] m/s, δ ∈
[−0.1,0.1] rad. The control inputs are drawn from u1 ∈ [−4,4]
m/s2 and u2 ∈ [−2,2] rad/s.

2) Planning Model: We use piecewise polynomials adapted
from [35]. Recall that p = (plong, plat). Let Kinit,Kdes ⊂ R2,
and denote k = (k[1]init,k

[2]
init,k

[1]
des,k

[2]
des) ∈ K. The parameter k[1]des

specifies a velocity to be reached at a time t [1]des ∈ (0, tfin), and
k[2]des specifies a lateral position to be reached at a time t [2]des ∈
(0, tfin). Denote pplan = (p1, p2). The planning model is given
by

p1(t,k) =
τ1(t,k)

24
t4 +

τ2(t,k)
6

t3 + k[1]initt, (42)

p2(t,k) =
τ4(t,k)

120
t5 +

τ5(t,k)
24

t4 +
τ6(t,k)

6
t3−∆vlat(k)t, (43)

where τ1, · · · ,τ7 are given by[
τ1(t,k)
τ2(t,k)

]
=

∆vlong(t,k)

(τ3(t))
3

[
−12

6τ3(t)

]
and (44)τ4(t,k)

τ5(t,k)
τ6(t,k)

=
1

(τ7(t))5

 720 −360τ7(t)
−360τ7(t) 168τ7(t)

2

60τ7(t)
2 −24τ7(t)

3

∆lat(t,k),

(45)

which are piecewise constant in t because

τ3(t) =

{
t [1]des t ∈ [0, t [1]des)

tfin− t [1]des t ∈ [t [1]des, tfin]
, (46)

τ7(t) =

{
t [2]des t ∈ [0, t [2]des]

tfin− t [2]des t ∈ [t [2]des, tfin]
, (47)

and each ∆(·) is given by

∆lat(t,k) =
[

∆plat(t,k)
∆vlat(t,k)

]
, (48)

∆vlong(t,k) =

{
k[1]des− k[1]init t ∈ [0, t [1]des)

−k[1]des t ∈ [t [1]des, tfin]
, (49)

∆plat(t,k) =

{
k[2]des−∆vlat(t,k) t ∈ [0, t [2]des)

0 t ∈ [t [2]des, tfin]
, and (50)

∆vlat(t,k) =

{
−k[1]init sin(k[2]init) t ∈ [0, t [2]des)

0 t ∈ [t [2]des, tfin]
. (51)

Example plans are shown in Figure 9.
We specify k[1]init,k

[1]
des ∈ [0,5] m/s and k[2]init,k

[2]
des ∈ [−1,1] m.

We set the timing parameters as tplan = 2 s, t [1]des = 2 s, t [2]des = 4
s, and tfin = 6 s. Note, as we see in the results in Sec. V
of the paper, the car consistently finds new plans in ≈ 0.06
s. However, we chose tplan = 2 s because we found that this
reduced oscillations due to the RL agents choosing frequent
lane changes, which improved the agents’ ability to complete
the car lane change task.

0 5 10
x [m]

-2

0

2

y
[m

]

Reference Trajectories

0 5 10
x [m]

-2

0

2

y
[m

]

Zonotope Representation

Fig. 9. The top subfigure shows plans for the car at different k[2]des parameter
values ranging from [−1,1] m, with one specific trajectory shown in black.
The bottom subfigure shows the zonotope PRS for the same range of k[2]des.
The black subset is the sliced PRS corresponding to the trajectory in the top
subfigure. Notice that it conservatively contains the given trajectory.

3) Tracking Controller: Recall that P = Plong×Plat and x =
(p,ψ,v,δ) ∈ R5. Let pplan be a plan with kinit determined by

4 MARCH, 2021

x. We specify utrk for the car as a PD controller:

utrk(t,x(t)) = Γ ·




p(t)
ψ(t)
v(t)
δ (t)

−


pplan(t,k)+ p0
0

ṗ1(t,k)
0


 , (52)

where Γ∈R2×5 is a matrix of control gains, p0 = projP(x(0)),
and ṗ1 is the time derivative of (42).

4) Reachability Hyperparameters: To compute the PRS
and ERS, we partition T into mT = 120 intervals of duration
∆T = 0.05 s. We partition k[1]init into 2 intervals, and do not
partition k[2]init, so mK = 2. We partition the θ dimension of X0
into 13 intervals, the v dimension into 2 intervals, and the δ

dimension into 5 intervals, so m0 = 13×2×5.
5) Observations: We specify six elements for the car’s

observations. The first four are the relative distance from the
car’s center of mass to the closest obstacle and second closest
obstacle in front of the car, ∆

[1]
long, ∆

[1]
lat , ∆

[2]
long and ∆

[2]
lat . The

last two observations are the car’s velocity and global lateral
position, v and plat. So,

o =
(

∆
[1]
long,∆

[1]
lat ,∆

[2]
long,∆

[2]
lat ,v, plat

)
. (53)

6) Reward: Recall the robot’s state is x =
(plong, plat,ψ,v,δ). The reward encourages the car to
get to the goal, and some auxiliary rewards are added to help
learning. The total reward for each step consists of a speed
reward, a lane reward, and goal reward:

r(x,o) = rspeed(x)+ rlane(x,o)+ rgoal(x) (54)

The speed reward is

rspeed(x) = exp
(
−1

v2 +1

)
−3.7. (55)

The lane reward encourages the car to stay in one of three lanes
in the road-like environment. Let yobs = plat +δ

[1]
lat , where δ

[1]
lat

is part of the observation o discussed above. Then,

rlane(x,o) =


ρ1(yobs)−2 |(plat−2)|−4 plat ∈ [0,2)
ρ2(plat)−4 plat ∈ [2,10)
ρ3(yobs)−2 |(plat−10)|−4 plat ∈ [10,12]

,

(56)

where

ρ1(yobs) = 5exp
(

−1
(yobs−2)2 +1

)
, (57)

ρ2(plat) = 5exp
(
−1

plat
2 +1

)
, and (58)

ρ3(yobs) = 5exp
(

−1
(yobs−10)2 +1

)
. (59)

Finally, the goal reward encourages maintaining a high average
velocity and reaching the end of the road

rgoal(x) =

{
0 plong < 500
100 plong ≥ 500.

(60)

Notice we require the car to attempt to drive for 500 m in
each episode.

D. Drone Implementation Details

1) High-fidelity Model: We use the following high-fidelity
model for the drone [37]:

p̈ = τRe3−mge3 (61)
Ṙ = Rω̂ (62)

ω̇ = J−1(µ−ω× Jω), (63)

with states for position p ∈ R3, velocity ṗ ∈ R3, attitude
R ∈ SO(3), and angular velocity ω ∈R3. The model has been
modified from [37] to use a north-west-up convention for the
global and body frame coordinate axes; e3 is the global up
direction.

Its control inputs u = (τ,µ) ∈U ⊂ R4 are thrust τ > 0 and
body moment µ ∈R3. We convert these control inputs (given
by a tracking controller described below) to rotor speeds using
[17, (3)], then saturate the rotor speeds to enforce compactness
of U .

We use model parameters for an AscTec Hummingbird
drone4 with mass m = 0.547 kg and moment of inertia tensor
J = 10−3 ·diag(3.3,3.3,5.8) kgm/s2. We set g= 9.81 m/s2. The
rotor speeds (and therefore the control inputs) are saturated to
within [1100,8600] rpm. See [17, Table I] for more details.
This model does not include aerodynamic drag, so it is valid up
to a maximum speed of ‖ṗ(t)‖2 = 5 m/s [17]. Further bounds
on the states and inputs are in [17].

2) Planning Model: The drone uses the same planning
model as the cartpole separately in each of the three directions
of R3. We bound its velocity parameter to [−5,5] m/s, and
its initial acceleration to [−10,10] m/s2. We pick tplan = 1
s, tdes = 1.5 s, and tfin = 3 s. See [17] and [19] for more
details about the planning model, PRS computation, and ERS
computation.

3) Tracking Controller: We use the tracking controller
developed in [37], which has stronger stability guarantees than
the controller used in [17], which we found in practice enables
the RL agent to choose more aggressive trajectories while
maintaining safety. Per the notation in [37], we set the control
gains as kx = 2, kv = 0.5, kR = 1, and kΩ = 0.03.

4) Observations: We provide the drone RL agents with
observations containing 35 elements. The first three are the
drone’s velocity in the global frame. The next three are the
unit vector egoal from the drone’s global position to the global
goal. The remaining elements are the distances to obstacles
along 29 rays extending from the drone’s position (described
below). If any of these distances are greater than 10 m, we set
them to 10 m. So, one can write an observation for the drone
as the tuple

o =
(

ṗ,egoal,{d
(i)
obs}

29
i=1

)
, (64)

where each d(i)
obs is a distance along one of the 29 rays.

The rays are created using spherical coordinates. We sample
seven evenly-spaced azimuth angles in [−3/16π,3/16π] rad,
in addition to −π/2 and π/2 rad azimuth angles for looking
sideways. We also use five elevation angles, at −π/2,−π/12,

4The code is available online at www.github.com/roahmlab/RTD
quadrotor DSCC 2019

www.github.com/roahmlab/RTD_quadrotor_DSCC_2019
www.github.com/roahmlab/RTD_quadrotor_DSCC_2019

SHAO et al.: REACHABILITY-BASED TRAJECTORY SAFEGUARD 5

0, π/12 and π/2 rad. Lastly we omit the repeating rays to
create 29 observation directions.

5) Reward: We use a goal reward to encourage getting to
the goal and some auxiliary rewards to help learning:

r(x,o) = rv(x,o)+ robs(o)+ rgoal(x,o). (65)

The first term rewards traveling in the direction of the goal:

rv(x,o) = 1
2 egoal · ṗ−2, (66)

where · indicates the dot product.
The second term penalizes being near obstacles:

robs(o) =
(
tan−1 (µobs)

)4−4, (67)

where µobs is the mean of the smallest eight observation
distances from the drone’s global position to the nearby
obstacles (which may be a boundary of the world).

The final term rewards reaching the goal (i.e., traveling
through the entire tunnel):

rgoal(x) =

{
0 p[1] < 97.5
100 p[1] ≥ 97.5,

(68)

recalling that p ∈ R3 is the drone’s global position.

	I Introduction
	II Robot and Environment
	II-A Modeling the Robot
	II-A1 High Fidelity Model
	II-A2 Planning Model
	II-A3 The Plan Parameter Space
	II-A4 Receding-horizon Timing
	II-A5 Tracking Controller and Error
	II-B Modeling the Robot's Environment
	II-B1 Forward Occupancy
	II-B2 Safety and Obstacles
	III Offline Reachability Analysis
	III-A Planning Reachable Set
	III-A1 PRS Computation Setup
	III-A2 PRS Representation
	III-A3 Plan Parameter Partition

	III-B Error Reachable Set
	III-B1 Initial Condition Partition
	III-B2 Zonotope ERS
	III-B3 Computing the ERS via Sampling
	III-B4 Justifying Conservatism

	IV Online Safe Reinforcement Learning
	IV-A Reachability-based Trajectory Safeguard (RTS)
	IV-A1 FRS Construction
	IV-A2 Creating Safety Constraints
	IV-A3 Parameter Adjustment

	IV-B Safe Learning with RTS

	V Experiments
	V-A Car Lane Change Experiment
	V-A1 Task and Method
	V-A2 Results and Discussion

	V-B Drone Obstacle Tunnel Experiment
	V-B1 Task and Method
	V-B2 Results and Discussion

	VI Conclusion
	I Slicing the FRS Zonotopes
	II Experiments
	II-A Cartpole Implementation Details
	II-A1 High-Fidelity Model
	II-A2 Planning Model
	II-A3 Tracking Controller
	II-A4 Reachability Hyperparameters
	II-A5 Observations
	II-A6 Reward
	II-B Cartpole Swing Up Experiment
	II-B1 Task, Method, and Hypotheses
	II-B2 Results and Discussion
	II-C Car Implementation Details
	II-C1 High-Fidelity Model
	II-C2 Planning Model
	II-C3 Tracking Controller
	II-C4 Reachability Hyperparameters
	II-C5 Observations
	II-C6 Reward

	II-D Drone Implementation Details
	II-D1 High-fidelity Model
	II-D2 Planning Model
	II-D3 Tracking Controller
	II-D4 Observations
	II-D5 Reward

