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Advantages of Bilinear Koopman Realizations for
the Modeling and Control of Systems
With Unknown Dynamics

Daniel Bruder

Abstract—Nonlinear dynamical systems can be made easier to
control by lifting them into the space of observable functions,
where their evolution is described by the linear Koopman operator.
This letter describes how the Koopman operator can be used to
generate approximate linear, bilinear, and nonlinear model real-
izations from data, and argues in favor of bilinear realizations for
characterizing systems with unknown dynamics. Necessary and
sufficient conditions for a dynamical system to have a valid linear or
bilinear realization over a given set of observable functions are pre-
sented and used to show that every control-affine system admits an
infinite-dimensional bilinear realization, but does not necessarily
admit a linear one. Therefore, approximate bilinear realizations
constructed from generic sets of basis functions tend to improve
as the number of basis functions increases, whereas approximate
linear realizations may not. To demonstrate the advantages of
bilinear Koopman realizations for control, a linear, bilinear, and
nonlinear Koopman model realization of a simulated robot arm is
constructed from data. In a trajectory following task, the bilinear
realization exceeds the prediction accuracy of the linear realization
and the computational efficiency of the nonlinear realization when
incorporated into a model predictive control framework.

Index Terms—Model learning for control.

1. INTRODUCTION

INEAR systems theory provides a wealth of analysis and
L control design techniques for linear dynamical systems,
but no such general framework exists for all nonlinear dynam-
ical systems. For this reason, it is common to approximate a
nonlinear system with one or more linear systems to make it
compatible with well-established and computationally efficient
linear control methods.

Linearization of nonlinear systems can be achieved in several
ways. Local linearization techniques, such as Jacobian lineariza-
tion, describe the local behavior near equilibrium points using
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the first order Taylor series of the dynamics [1]. Such lineariza-
tions preserve the stability properties of equilibrium points, but
only predict system behavior well in their vicinity.

Global linearization techniques, on the other hand, aim to
convert a nonlinear dynamical system into an equivalent linear
system. One such technique, based on Koopman operator theory,
achieves this by lifting the system into a higher-dimensional
space of scalar-valued functions called observables. In this
space, the evolution of observables along trajectories of the non-
linear system are described by the (linear) Koopman operator [2].
The Koopman operator captures the behavior of the system
everywhere, not just near equilibrium points, providing a global
linear representation of the system in terms of observables.

Despite their linearity in the space of observables, Koop-
man representations have limitations that hinder their ability to
inform the control of arbitrary nonlinear dynamical systems.
One limitation is that linearity with respect to observables
does not imply linearity with respect to the control input.
Therefore, Koopman models are not necessarily compatible
with computationally efficient linear control design techniques
such as LQR [3] and linear MPC [4]. A further limitation of
Koopman linear embeddings is that they are in general infinite-
dimensional. Therefore, finite-dimensional truncations must be
used in practice, which merely approximate the behavior of the
original nonlinear system rather than capture it perfectly.

Linearity with respect to the control input can be enforced by
restricting the Koopman operator to a subspace of observables
which only includes linear functions of the control input. This
strategy is introduced in [5] to construct linear predictors of
nonlinear systems for model predictive control. This and similar
approaches have shown capable of achieving better control
performance than local linearization techniques on a variety of
different robots such as a Sphero SDK [6], a swimming fish
robot [7], a Rethink Sawyer robot arm [8], and several soft
robots [9], [10].

Such applications make use of finite-dimensional matrix ap-
proximations of the Koopman operator that are identified from
data using a linear system identification technique known as
Extended Dynamic Mode Decomposition (EDMD) [11], [12].
These approximations rely upon the implicit assumption that the
identified Koopman matrix converges to the true Koopman oper-
ator as its dimension goes to infinity. In other words, they assume
that sufficient accuracy can always be achieved by a Koopman
model with linear control inputs if its dimension is large enough.
However, as shown in [13], a valid Koopman representation is
not guaranteed to exist when the approximation is restricted to
a subspace that excludes nonlinear functions of the input. This
holds true even if the subspace is infinite-dimensional.
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There is thus a trade-off when looking to utilize Koop-
man representations for control of a system with unknown
dynamics. Koopman representations with linear control inputs
are advantageous because they are compatible with computa-
tionally efficient linear control techniques. However, a valid
Koopman representation of this form may not exist, in which
case finite-dimensional approximations of this type are unlikely
to improve with dimension. On the other hand, every system
admits a valid Koopman representation with nonlinear control
inputs. However, such representations have limited usefulness
for control applications because they are not compatible with
efficient control techniques.

Koopman representations with bilinear control input terms
strike a compromise between these two extremes. Such models
preserve some of the computational benefits of linear Koopman
models, while being more likely to exist for arbitrary dynamical
systems. This makes them desirable for control applications.

Previous work has investigated Koopman-based bilineariza-
tion and control methods for nonlinear systems. In [14], the
Koopman Canonical Transform (KCT) is used to describe how
to construct bilinear realizations over the set of Koopman eigen-
functions. It also introduces a set of sufficient conditions for a
nonlinear system to be bilinearizable. In [15], it is shown that
the control-affine property of dynamical systems is preserved
for the continuous Koopman operator, which allows bilinear
surrogate models to be constructed by interpolating between
different operators. These bilinear models are incorporated into
a model predictive control framework and applied to the control
of several nonlinear systems.

In line with previous work, this letter explores the benefits of
using the Koopman operator to build bilinear models of systems
with unknown dynamics. While approximate Koopman model
realizations with linear, bilinear, or nonlinear control inputs
can be directly constructed from data, we argue that bilinear
Koopman realizations identified in this manner are likely to yield
better predictions than linear ones, and be more computationally
efficient than nonlinear ones.

The contributions of this letter are twofold. First, we offer a
theoretical justification for the proposed advantages of bilinear
Koopman model realizations. We specify necessary and suffi-
cient conditions for a dynamical system to have a valid linear
or bilinear realization over a given set of observables, and use
these conditions to show that every control-affine system admits
abilinear realization, but does not necessarily admit a linear one.
Second, we provide instructions on how to construct approxi-
mate linear, bilinear, and nonlinear Koopman model realizations
from data. Using this approach, we construct several Koopman
model realizations of a simulated robot arm, and show that a
bilinear realization simultaneously exceeds the prediction accu-
racy of a linear realization and the computational efficiency of a
nonlinear realization when incorporated into a model predictive
control framework.

II. THEORY

This section describes the Koopman operator and how it
relates to model realizations. A definition for linear and bilinear
realizations is presented, as well as necessary and sufficient
conditions for arealization to be of one of these types. Unpacking
these conditions reveals that every control-affine system has
a (possibly infinite-dimensional) bilinear realization, but not
necessarily a linear one.
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A. Koopman Operator Preliminaries

Consider the (nonlinear) dynamical system governed by the
following differential equation

() = F(x(t), u(t)) (1)

where x(t) = [z1(t),...,z,(t)]" € X C R™ is the state and
w(t) = [ur(t),...,un(t)]" € U C R™ is the input of the sys-
temattimet € [0, +00), F'is acontinuously differentiable func-
tion, and X, U are compact subsets. Denote by ¢, : X x U —
X x U the flow map, where ¢,(x(0),u(0)) = (x(7),u(0))
and x(7) is the solution to (1) at time 7 when beginning with
the initial condition x(0) at time 0 and a constant input w(0)
applied for all time between 0 and 7.

Let F be the infinite-dimensional function space composed of
all square-integrable real-valued functions with compact domain
X x U c R™"™_ Elements of F are called observables. In F,
the flow of the system is characterized by the set of Koopman
operators . : F — F, for each 7 > 0, which describe the
evolution of every observable f € F along the trajectories of
the system according to the following definition:

K+f =foor, 2
where o indicates function composition such that
(Kr ) (@(t), w) = f(a(t +7),1). 3

for a constant input @ over the time interval [¢, ¢ + 7].

The set of Koopman operators is generated by an infinitesimal
generator, denoted /C, according to the following relation [16,
Chapter 11],

K, =e™* (4)

The infinitesimal generator describes the time derivative of
observables along trajectories of the system

Kkr=4 )
such that
of
(KA (@), u(t) = 5= F(x(t), u(t)) (6)

For a given time-step, K, is sometimes referred to as the discrete
time Koopman operator and K is referred to as the continuous
time Koopman operator [17].

B. Model Realizations

A modelrealization of (1) is adynamical system that generates
the same state response @ as (1) under any input signal u. The
Koopman operator can be used to generate model realizations.
This is done by choosing a countable set of observables { f; €
F}N | (where N € N U oo) from which the original state can
be recovered through an inverse mapping C' : RY — R"™. Taken
together, this set of observables constitutes the lifted state of the
realization. The evolution of each component of the lifted state
is described by applying the continuous Koopman operator, and
the output equation of the realization consists of the mapping C"

%fi(t):/cfi(t) fori=1,...,N (7)

where f;(t) is shorthand for f;(x(t),w(t)). We say that the
realization is defined over the set of observables {f;}¥ ;. Note
that model realizations are not unique since they depend on the
choice of observables.
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The Koopman operator is a linear operator, therefore a realiza-
tion generated using the Koopman operator is linear with respect
to the observables over which it is defined. However, because
these observables can be nonlinear functions, such realizations
are not necessarily linear with respect to the original state and
input. Thus, they may not present any advantages in terms of
computational efficiency.

Certain types of realizations are particularly amenable to
control design since the control input appears either linearly
or bilinearly in them. Before formally defining these realiza-
tions, we first define the following subsets of the space of all
observables F for notational convenience:

X:={feF|f(z,u)=27forsomei=1,...,n} )

U:={feF|f(x,u)=ma;forsomei=1,...,m} (10)
Z:={feF|f(@,u)= f(@,u2), Vur,us € R™} (11)
where & = [Z1,...,%,] € X and @ = [G1,...,Uy] € U. In

other words, X is the set of functions that project onto com-
ponents of the state, I is the set of functions that project onto
components of the input, and Z is the set of all functions that
depend on the state only, including constant functions. With this
notation in hand, we define linear and bilinear model realizations
as follows:

Definition II.1 (Linear and bilinear model realizations):
A model realization of :c(t) = F(x(t),u(t)) over the
set of observables {z; € Z}¥, is bilinear if there ex-

ist sets of coefficients {a;; € R}N Lj=1 {b;; € R}E™ Lj=1>
N,N,m
{hij € RYEZ1 D ey and {cg; € R} j=1 such that

N m m N
£) =Y iz ()4 bijui (04> > hijeze(t)u;(t)
j=1 j=1

j=1k=1
(12)
fort =1,..., N and
N
chjzj (13)
j=1
for i = 1,...,n where z;(t) is shorthand for z;(x(t), u(t)),
x(t) = [21(t),...,2,(t)] " and w(t) = [u1(t), ..., um(t)] . If

hiji, = 0 for all 4, j, k, then the realization is said to be linear.

The lifted state of these realizations consists entirely of ob-
servables that depend on the state only, and the input appears
only in linear and bilinear terms.

As stated previously, realizations are not unique. They depend
on the choice of observables over which they are defined. For
a particular choice of observables to yield a bilinear or linear
realization they must satisfy certain conditions. These conditions
are presented in the following theorem.

Theorem I1.1 (Necessary and sufficient conditions for linear
and bilinear realizations): The realization of the system gov-
erned by (1) over a set of observables Z = {z; € Z} ¥, is:

1) Bilinear if and only if

0z - -
= (ZuUL{f glf e Zgeu}) (4)
fori =1,...,N and X C span(Z).
2) Linear if an only if
821- =
Zul 15
o ( ) (15)
fori=1,...,N and X C span(Z).

4371

Note that linear systems are by definition also bilinear.

Proof: The definition for both realizations specifies that the
state can be recovered as a linear combination of the observables,
ie.

N
Ti= Y iz, fori=1,....,n  (16)
j=1
& x; € span (Z), fori=1,...,n (17)
& X C span(Z2). (18)

The conditions specified by (14) and (15) are verified by apply-
ing the chain rule to the left hand side of (12):

d 821 de 0z

- R = = )

dt ox dt ~ Ox
Plugging (19) into the definition of a bilinear realization from
Def. II.1 then yields,

m N
gz F= Z @ijZj + Z bijuj + Z Z hijrziu;  (20)

j=1 j=1k=1

fore=1,...,N (19)

(:)%F€span(ZUUU{f-g|f€Z,g€Z/l})

Similarly, plugging (19) into the definition of a linear realization
from Def. II.1 yields,

21

3 i
“i F E aijzj + g biju; (22)
822‘ =
& —F €span(ZUU) (23)
ox
[ |

Since there are computational benefits to performing control
synthesis with linear and bilinear realizations, we would prefer to
choose sets of observables that admit a realization of one of these
types. However, unless the dynamics of the system are known,
it is not possible to verify whether a particular set of observables
satisfies the conditions outlined in Theorem II.1. Nevertheless,
as we show below, one can prove that for control-affine systems,
a realization over Z is bilinear.

Corollary I1.1: If the system governed by (1) is control-affine
and a set of observables Z = {z; € Z}?2, is a basis of Z, then
the realization of the system defined over Z is bilinear. |

Proof: Omitted for brevity. See [18] for complete proof.

A consequence of the preceding corollary is that every
control-affine system has a valid bilinear realization over an
infinite set of basis functions. Thus, generic sets of basis func-
tions (i.e. polynomial, Fourier, or radial) can be used as the
chosen set of observables in Z since linear combinations of
them can represent arbitrary functions in Z. It should be noted
that the theorem offers no such guarantee that a system has a
valid linear realization, no matter the choice of basis functions.
Therefore, realizations defined over a finite set of basis functions
of the space of state-dependent observables will converge to a
valid bilinear realization as the number of basis functions goes
to infinity, but will not necessarily converge to a valid linear
realization.

III. TECHNIQUES FOR DATA-DRIVEN REALIZATION

The previous section describes how a model realization can
be constructed over a set of observables using the Koopman
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operator. This section describes how to identify matrix approx-
imations of the Koopman operator from data such that they can
be used to produce model realizations that are linear, bilinear,
or nonlinear.

A. Approximation of the Koopman Operator From Data

The restriction of the Koopman operator to a finite-
dimensional subspace can be represented as a matrix. Using
the Extended Dynamic Mode Decomposition (EDMD) algo-
rithm [11], [12], we identify a finite-dimensional matrix approx-
imation of the Koopman operator via linear regression applied
to observed data.

We first specify a finite-dimensional subspace as the span
of a chosen set of M linearly independent observables
{h; : X xU — R}M,. We then define a lifting function
1 : X x U — RM which evaluates each of the observables and
stacks them into a vector:

(@, 0) = [ (x, )
where z € X and u € U.
To approximate the discrete time Koopman operator from a
set of experimental data, we take K discrete measurements in
the form of so-called “snapshots” {p(k), q'®, u(’“)},{U,K:1 where

p" =z (t™) (25)
g™ = 2(t™ + T, (26)

t(k) denotes the time corresponding to the k™ measurement,
u(*) is a constant input applied between p(*) and ¢(¥), and T,
is the sampling period, which is assumed to be identical for all
snapshots. Note that consecutive snapshots do not have to be
generated by consecutive measurements.

By definition, the action of the discrete time Koopman opera-
tor K, advances the value of observables one time-step. There-
fore, the best matrix approximation of it in the least-squares
sense, denoted Cr,, is the minimizer to

bu(@ )], 4

K
. 2
min > [|KT(p®), u®) — (g™, u®)| . @)
K k=1 2

Note that the control input u(*) describes the constant input
value held berween %) and t*) + T, not the instantaneous
input applied at either time instance.

_ With an approximation of the discrete time Koopman operator
K, inhand, we can solve for the corresponding continuous time
Koopman operator K by inverting (4):

_ 1
K= T log KCr,

where log denotes the principal matrix logarithm [16, Chap-
ter 11].

(28)

B. Linear Model Realization

The Koopman matrix K on the subspace spanned by a set of
observables {t; : X x U — R}Y™ can be constructed such
that it is decomposable into a linear system representation. One
way to achieve this is to define the first N basis functions as
functions of the state only, and the last m basis functions as
projections onto each component of the input, i.e.

2 ez, fortr=1,...,N
i =
Tu; N

2
cU, fori=N+1,... N+m
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where 7, denotes the projection onto the i component of the
input. This choice ensures that the input only appears in the last
m components of the lifted vector (&, @).

The Koopman matrix can be identified from data according
the steps laid out in Section III-A. Then, by construction, the
coefficients for a linear realization of the form specified in (12)
are embedded within the first N rows of the transpose of the
Koopman matrix in the following manner,

_ Anxny  Binxm
T = { . } { .X } (30)
where
a1 an b11 bim
A= . B= 31)
anN1 aN N le bNm

and the subscripts in curly brackets denote the dimensions of
each matrix.

For convenience, we can define the first n basis functions as
projections onto each component of the state, i.e.

V=T, EXCZ fori=1,....n (32)

Then, the coefficients of the output equations of (13) can be

defined as simply
o 1, fori=j
70, fori#j

C. Bilinear Model Realization

With a suitable choice of observables {1} 0"+ the
Koopman matrix IC can be constructed such that it is decom-
posable into a bilinear system representation. The first N ob-
servables are defined as functions of the state only, the next
Nm observables are defined as the product of the first NV basis
functions and each component of the input, and the last m basis
functions are defined as projections onto each component of the

input, i.e.

(33)

zi € Z,

Zi*N : Trul i

fortr=1,...,N
fori=N+1,...,2N

fori=Nm+1,...,N(m+1)
fori=N(m+1)+1,...,
Nm+1)+m

Zi—Nm " T, s

eu,

7Tuz>N(m+1)

(34)

The Koopman matrix can be identified from data according
the steps laid out in Section III-A. Then, by construction, the
coefficients for a bilinear realization of the form specified in
(12) are embedded within the first N rows of the transpose of
the Koopmn matrix in the following manner,

(A H H, B
K'=|. . o (35)

where A and B are defined as in (31) and
hi11 hiin
H; = (36)

hin1 hinn
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Just as with the linear model realization, we can define the
first n basis functions as in (32), and define the coefficients of
the output equation by (33)

D. Nonlinear Model Realization

If the Koopman matrix K is identified on a subspace spanned
by a set observables {1, : X x U — R}, other than the type
specified in Sections III-B and III-C, then the realization it pro-
duces will be nonlinear, i.e. it may contain nonlinear functions
of the input. Such a representation takes the form of a linear
combination of the basis functions for each component of the
State:

fori=1,...,n (37

M
;= E cijby,
i=1

Assuming once again that the first n observables are defined
as projections onto each component of the state as in (32), by
construction, the coefficients are embedded within the first n
rows of the transpose of the Koopman matrix, i.e.

KT = (38)

E. Model Predictive Control

Model predictive control algorithms optimally choose a se-
quence of control inputs given a desired output trajectory and
system model [4]. This system model can be either linear or
nonlinear, but linear models have computational advantages
over nonlinear ones. Namely, the MPC optimization problem
for linear models is convex, while for nonlinear models it is not.

Since the linear MPC optimization problem is convex, it
has a unique globally optimal solution that can be efficiently
computed without initialization even for high-dimensional mod-
els [19]-[21]. This is not the case for the nonlinear MPC
problem which has nonlinear constraints that render it non-
convex [22]. As a result, algorithms to solve such problems
typically require initialization, can struggle to find globally
optimal solutions [23], and take longer to solve per iteration.
Though techniques have been proposed to improve the speed and
accuracy of nonlinear MPC algorithms [24]-[26] they are still
often unable to achieve the computational efficiency required
for real-time control.

In this letter we implement three model predictive controller
algorithms which we refer to by the following abbreviations:

e K-MPC: Koopman-based linear MPC

e K-BMPC: Koopman-based bilinear MPC

e K-NMPC: Koopman-based nonlinear MPC

The K-MPC and K-NMPC controllers are standard model
predictive controllers that use linear and nonlinear Koopman
model realizations to generate predictions, respectively. Simi-
larly, the K-BMPC controller uses a bilinear Koopman model
realization to generate predictions. However, bilinear constraints
would render the problem non-convex, so we instead rely on a
linear approximation constructed by fixing the value of the lifted
state in the bilinear terms over the prediction horizon, N;. The
dynamics constraints in the K-BMPC optimization problem then

4373
become:
m N
zit+1] = Zauz] +sz]u] ]—|—ZZhwkzk [t
j=1k=1
(39)
N m N
= ayzltl+) (bij + > hijrzk [0]> u,[t]
j=1 j=1 k=1
(40)
fori=1,...,Nandt =1,..., Ny, where |-] denotes a discrete

time index. The resulting linear dynamics approximate the be-
havior of the bilinear realization in a neighborhood of the initial
lifted state {2;]0]} Y ;. This introduces prediction error, but turns
it into a convex quadratic program which can be solved quickly
enough to be updated at every time-step.

Beyond the dynamics constraints, all three MPC controllers
can accommodate additional linear state and input constraints.
Constraints on nonlinear functions of the unlifted state & can
be included as linear constraints as long as such functions are
included in the set of observables over which a realization is
defined. In this way, nonlinear constraints on & can be imposed
while still preserving the convexity of the K-MPC and B-MPC
optimization problems.

The main difference between the K-BMPC controller and
the other MPC algorithms is that it does not generate optimal
solutions with respect to the model upon which it is based.
Instead, the solutions it generates are optimal with respect to
a linear approximation of the actual bilinear MPC problem. It is
important to note, however, that all finite-dimensional Koopman
realizations constructed from data are mere approximations of
the true dynamics of a system. Hence, even the optimal solu-
tions to the linear/nonlinear MPC problems are not necessarily
optimal with respect to the true dynamics of the system.

IV. EXPERIMENTS AND RESULTS

To evaluate the relative performance of linear, bilinear, and
nonlinear Koopman realizations for modeling systems with un-
known dynamics, we applied the methods from Section III to a
collection of randomly generated dynamical systems as well as
a simulated planar arm system. The code used to generate these
results can be found in a publicly accessible repository.'

A. Description of Systems

20 systems with one-dimensional input u(¢) € R and state
z(t) € R were generated with dynamics of the following form,

i(t) = e ™" (Z ix(t)u(t)? + k4u(t)> — tan" ! (xz(t))
i=1 )

where the coefficients A; ~ unif(—1,1) and the exponents
i, o; ~ unif{0, 1,2} for each system were selected from the
continuous and discrete uniform distributions, respectively. Note
that these systems are not strictly control-affine, since higher
order input terms are permitted. The exponential and inverse
tangent terms ensure the state of each system remains finite
under arbitrary inputs while still allowing for large variability
in behavior. The data used to identify Koopman realizations

![Online]. Available: https:/github.com/roahmlab/koopman-realizations.git
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Fig. 1. The model prediction error versus the number of basis functions for
several linear, bilinear, and nonlinear realizations of 20 randomly generated
systems. Dots indicate the median prediction error and the lower and upper
bounds of the shaded regions signify the lower and upper quartiles, respectively.
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Fig. 2. The model prediction error for several linear, bilinear, and nonlinear

Koopman model realizations of the simulated arm system. As the number of
basis functions increases, the error of the linear model changes little while the
error of the bilinear and nonlinear models decrease monotonically.

of each of the systems was a set of 10 000 snapshots with a
time-step of 75 = 0.01s collected over a range of randomized
initial conditions and inputs.

In addition to these randomly generated systems, a simulated
planar arm system was also considered (Fig. 3). The arm has
3-links each of mass 100 g and length 0.33 m and 3 joints
each with a stiffness of 1 x 10~ N/rad and a viscous damping
coefficient of 1 Ns/rad. The input into the system is a set of
m = 3 applied joint torques and the output is the location of
the end of each link expressed as a n = 6 dimensional vector of
Cartesian coordinates,

u(t) = [11(t), 72(t), T3(t)]
x(t) = [on (1), Bu(t), aa(t), Ba(t), as(t), Bs(t)]"  (43)

The data used to identify Koopman realizations of the arm sys-
tem was a set of 12 000 snapshots with a time-step of 75 = 0.05s
collected over a range of randomized initial conditions and
inputs.

(42)

B. Model Prediction Comparison

The predictive accuracy of various models identified using the
Koopman approach depends on both the model type (e.g. linear,
bilinear, or nonlinear) as well as the number of basis functions.
We identified several models of each type on subspaces spanned
by monomial basis functions.
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TABLE I
NUMBER OF MONOMIAL BASIS FUNCTIONS FOR MODELS OF ARM
# of basis functions, i.e. M
P Linear Bilinear Nonlinear
1 10 28 10
2 31 112 55
3 87 336 220
4 213 840 715
5 465 - -
6 927 - -

The sets of basis functions used for identifying the linear
models consisted of all monomials of the components of the
state up to a specific degree denoted p, plus the projections onto
each component of the input, i.e.

(i@, w)hsy = {2372 lpr+ -+ pn < p}
U{ali € {1,...,m}} 44)
where M = N +mand N = (n + p)!/(n!p!). The sets of basis
functions used for identifying bilinear models consisted of the

same monomials as well as the product of each monomial with
each component of the input, i.e.

{i(@, @)}l = {@" - & )alpr + -+ pn < p,
@€ {l,iy,....an}} 45)

where M = (N + 1)(m+!)and N = (n + p)!/(n!p!). The sets
of basis functions used for identifying nonlinear models con-
sisted of monomials up to degree p of both the input and the
state, i.e.

{i(@,w)hly = {@ - ap) @

pr+ -+ prrm < p}
where M = (n+m + p)!/((n+m)!p!).

For each of the 20 randomly generated systems, 20 linear
models were identified for values of p = {1, ..,20}, 10 bilinear
models were identified for values of p = {1, .., 10}, and 5 non-
linear models were identified for values of p = {1,..,5}. The
prediction accuracy of each model was evaluated by comparing
a model simulation to validation data for a 10 s trial, computing
the average error over all time-steps, then normalizing by the
average error incurred by the zero response over all time-steps.
Fig. 1 displays the median prediction error over all random
systems versus the number of basis functions used to identify
the Koopman operator matrix, i.e. dim(¢)(Z,%)). The median
prediction error of the bilinear and nonlinear realizations gen-
erally decreases then plateaus as the number of basis functions
increases, whereas it varies more erratically for the linear real-
izations.

For the planar arm system, 6 linear models were identified
for values of p = {1, .., 6}, and 4 bilinear and nonlinear models
were identified for values of p = {1, ..., 4}. Table L indicates the
total number of basis functions, used for identifying the Koop-
man operator matrix for each model. The prediction accuracy of
each model was evaluated by comparing model simulations to
validation data for a 20 s trial and computing the average error
over all time-steps. This error was quantified as the Euclidean
distance between the predicted and real outputs in RS, normal-
ized by the average Euclidean distance error incurred by the zero
response over all time-steps.

.. ﬂﬁ;l+"'L)|

(46)
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Fig. 3.

Three link planar arm system with input defined as joint torques and output defined as the locations of link tips (left). The end effector trajectories generated

by the K-MPC (middle-left), K-BMPC (middle-right), and K-NMPC controllers (right) are superimposed over a reference trajectory, shown in grey.

Fig. 2 displays the prediction error versus the dimension of the
Koopman operator matrix for each model. The accuracy of the
linear model increases very little, even when the dimension of the
system is increased by several orders of magnitude. The bilinear
and nonlinear models become more accurate as the dimension
increases.

C. Control Performance Comparison

To highlight the relative strengths and weaknesses of the
Koopmans-based control techniques described in Section IV-B,
we applied them to the simulated 3-link planar arm system. A K-
MPC controller, K-BMPC controller, and K-NMPC controller
was constructed from the linear, bilinear, and nonlinear model
realizations identified in Section IV-B for p = 3, respectively.
Each controller was then employed to perform the same trajec-
tory following task. Video of this experiment can be found in a
supplementary video file.?

Each controller computed solutions over a Np, = 10 step
horizon and had identical cost functions. The desired task was
to move the end effector of the arm along a planar reference
trajectory. Therefore, a cost function was chosen that penalizes
the distance between the actual end effector coordinates (a3, O3)
and the desired coordinates (a5, 35T) as well as the control
effort at each time-step.

The control experiment was conducted in simulation. At each
time-step, the current output of the system is measured and used
to initialize the MPC optimization problem. Once a solution
is computed, the system is simulated forward one time-step
(Ts = 0.05 seconds) under the optimal input. This procedure
is repeated until the end of the reference trajectory is reached.

The reference trajectory traces out the shape of a block letter
M over a time period of 15 seconds, starting from the robot’s
hanging position. Fig. 3 shows the path of the end effector
using each of the controllers, and Fig. 4 displays the mean
tracking error and mean computation time over all time-steps.
The tracking error at each time-step is quantified as the Euclidean
distance between the actual and desired end effector locations.
The computation time per iteration is the amount of time it takes
to solve the MPC optimization problem and does not include the
time to simulate the response of the system. All three trials were
run on a computer with 64 GB RAM and a 2.4 GHz CPU.

2[Online]. Available: https://youtu.be/F-vJoBbAdJE

10° 10*

§ B
5 .2 743 1.16e+03 1,3 b
2 10 10 =
L =
2 a1 2 "
_E 10 88 310 g_
o}

O 0 1 38
= 10 310

c G
@© 9}
] 10-1 0 S
=

K-MPC K-BMPC K-NMPC T, = 50
Fig.4. The mean tracking error (blue) and the mean computation time (orange)

for each controller plotted on a logarithmic scale. The K-BMPC controller
has a mean tracking error comparable to K-NMPC and a mean computation
time comparable to K-MPC, proving it to be both accurate and computationally
efficient.

V. DISCUSSION AND CONCLUSION

The results of the model prediction comparisons described in
Section IV-B illustrate the advantages of bilinear realizations for
systems with unknown dynamics. As seen in in both Fig. 1 and
Fig. 2, as the number of basis functions increases, the prediction
error of the bilinear model realizations decreases, indicating
progress toward a true infinite-dimensional bilinear realization.
The linear model realizations, on the other hand, do not con-
sistently improve with the inclusion of more basis functions,
indicating that an infinite-dimensional linear realization over
monomial basis functions probably doesn’t exist.

This phenomenon emerges even for dynamical systems, like
those governed by (41), which are known not to be control-
affine, as shown in Fig. 1. The bilinear realizations outperform
the linear realizations in terms of both accuracy and consistency,
as indicated by their lower median error and narrower quartile
range. In Section II, we only proved the existence of infinite-
dimensional bilinear realizations for control-affine systems, but
these results suggest bilinear realizations may exist for a wider
class of systems. This should be a topic of further study.

Bilinear Koopman realizations have benefits when it comes to
control as well. It is clear by inspection of Fig. 3 that the K-MPC
controller performs very poorly. This is confirmed quantitatively
in Fig. 4 which shows that its mean tracking error is more
than 15x larger than that of the other controllers. This poor
performance can be attributed to the inaccuracy of the linear
Koopman model realization upon which it is based, which is
documented in Fig. 2. The K-BMPC and K-NMPC controllers
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track the desired trajectory with much greater fidelity, reflecting
the greater accuracy of the bilinear and nonlinear model realiza-
tions upon which they are based.

In Section II-B, we asserted that K-NMPC is much less
computationally efficient than the other controllers, and that is
confirmed by the results of this experiment. As seen in Fig. 4,
the mean computation time for K-NMPC is more than 100x
larger than that of the other two controllers. This computation
time greatly exceeds the 50 ms duration of a single time-step,
making it incompatible with closed-loop operation. Hence, if
this robot were a real physical system, the control inputs would
have to be computed offline.

Based on the results of this experiment, only K-BMPC would
be a viable closed-loop controller for this system. Its mean
computation time is much less than a single time-step, and
despite the suboptimality of its solutions, its mean tracking error
is nearly equivalent to that of K-NMPC. Roughly speaking,
K-MPC fast but inaccurate, K-NMPC is accurate but slow, and
K-BMPC is both fast and accurate.

This works shows that when the dynamics of a system
are completely unknown, a bilinear Koopman realization con-
structed from data is likely to yield better overall modeling and
control results than a linear or nonlinear Koopman realization.
This is justified theoretically in Section II and demonstrated
practically in Section IV. We proved that control-affine systems
have infinite-dimensional bilinear realizations but not neces-
sarily linear ones. Therefore, approximate bilinear realizations
constructed from generic sets of basis functions improve as the
number of basis functions increases, whereas approximate linear
realizations may not.

Bilinear realizations combine the computational efficiency
of linear realizations with the prediction accuracy of nonlinear
realizations. However, the bilinear model predictive control
framework used in this letter could likely be improved. Other
techniques have been successfully applied to solve optimal
control problems with bilinear constraints in [27], [28] without
relying on a linear approximation at each time-step. Further
work should compare the performance of these existing bilinear
optimal control approaches, investigate theoretical guarantees
for bilinear controllers, and explore new approaches to optimal
control of bilinear dynamical systems.
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