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Abstract: To examine spatial and temporal scales of katabatic flow, a distributed temperature sensing
(DTS) optical fiber was deployed 2 km down a mild slope irregularly interrupted by small-scale
drainage features as part of the Mountain Terrain Atmospheric Modeling and Observation (MATER-
HORN) experiment conducted at the U.S. Army Dugway Proving Ground, Utah. The fiber was
suspended at two heights near the surface, enabling measurement of variations in lapse rate near
the surface at meter-scale spatial resolution with 1-min temporal resolution. Experimental results
derived from the DTS and tower-mounted instrumentation indicate that airflow through small-scale
drainage features regulated the local cooling rate whereas topographic slope and distance along
the drainage strongly influenced the larger-scale cooling rate. Empirical results indicate that local
cooling rate decays exponentially after local sunset and basin-wide cooling rate decreases linearly
with time. The difference in the functional form for cooling rate between local and basin-wide scales
suggests that small-scale features have faster timescales that manifests most strongly shortly after
local sunset. More generally, partitioning drainage flow by scale provides insight and a methodology
for improved understanding of drainage flow in complex terrain.
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1. Introduction

During the clear sky transition from day to night, longwave surface cooling begins
to exceed warming by solar insolation and the earth’s surface temperature decreases.
Radiant cooling on sloped terrain cools the air just above it, initiating downslope flow,
referred to as a katabatic wind or “drainage flow” [1,2]. Fundamentally, air cooled near the
surface obtains sufficient density to become negatively buoyant and air flows downbhill
despite warming by adiabatic compression. When synoptic forcing is weak, nocturnal
katabatic winds can enhance the development of persistent cold air pools that exacerbate
air pollution [3-5], crop mortality [6,7] and transportation hazards [8-10].

Laboratory and field-based experiments have identified numerous environmental
factors that influence the expression of katabatic flow across both idealized and complex
landscapes. These environmental factors include spatial measures, such as slope, elevation,
aspect, and surface roughness, as well as spatio-temporal measures of ambient atmospheric
conditions and surface energy balance (SEB) [11]. Previous field studies utilized towers,
tethered balloons, aircraft, and combinations of these platforms to host instrumentation that
acquired temperature and velocity profiles of katabatic flow [12]. A common shortcoming
of these experiments, however, has been that instrument spacing has been inadequate to
resolve the broad range of time scales of the evolving near-surface temperature field that
drives katabatic flows.
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Model simulations provide an alternate approach for examining katabatic flow de-
velopment. With model simulations, one can reduce the set of environmental factors that
contribute to katabatic flow and thereby glean understanding that would be difficult to
obtain in a field-based setting [13-17]. Yet, despite the increase in spatial and temporal
granularity afforded by ever-increasing computational power, models remain limited in
the mix of spatial and temporal scales they can simulate [18]. These limitations lead to, for
example, underestimating both scalar field heterogeneity and the effect of subgrid-scale
gradients [19]. Since the buoyancy force driving katabatic wind is strongest near the surface,
resolving the temperature deficit of air just above the surface is critical for discerning the
range of temporal scales of motion for katabatic flow.

Distributed temperature sensing (DTS) provides a synergistic technique for studying
katabatic flow with capabilities unfulfilled by tower-based instrumentation, lidar, and
model simulations. A DTS deployment can obtain precise temperature measurements at
sub-minute temporal resolution and sub-meter spatial resolution over a multi-kilometer
extent [20]. Compared with lidar, one prominent limitation of DTS is that measurements
are obtained along an optical fiber segment rather than volume averaged. Therefore, the
fiber deployment topology must be well-considered to appropriately test an experimental
hypothesis. Nevertheless, DTS capabilities enable novel hypothesis testing of the influence
that spatial measures, such as slope and downrange distance, have on katabatic flow
evolution. With DTS, we examine several questions based on how fine-scale surface
features impact the formation of near-surface vertical temperature gradients, local cooling
rates, and advection, as well as the most important spatial measures for a given topographic
scenario (e.g., slope, relative position, elevation).

The interdependency between spatial and temporal scales for katabatic wind response
was a motivating factor in designing the Mountain Terrain Atmospheric Modeling and
Observation (MATERHORN) project [21]. Similar to a modeling approach, the MATER-
HORN project constrained the set of causal environmental factors by focusing on an arid
environment, thereby reducing biotic impacts on sensible and latent heat fluxes. Results
from MATERHORN published in [11] utilized tower-mounted instruments to characterize
various elements of katabatic flow. However, [11] lacked the spatial resolution needed
to examine the fine-grained temperature evolution of katabatic winds. In contrast to a
comparative katabatic flow experiment near La Fouly, Switzerland [22], the experiment
location in this study is characterized by topographic undulations and small-scale drainage
features, enabling flow characterization over a broad range of spatial and temporal scales.

In this manuscript, we examine, in detail, how the temperature field of katabatic
flow evolves as a function of relevant spatial measures, such as slope, distance downslope
(range), and proximity to drainage features. We test the hypothesis that terrain complexity
produces a range of time scales of katabatic flow response and the functional form of
katabatic flow varies with spatial scale. The experiment site and methods are described
in Section 2. In Section 3.1, tower data are used to identify synoptic influences and subset
data to periods with minimal synoptic forcing. DTS timeseries identify near-surface
temperature gradients as a function of position on the slope. In Section 3.2, trends in
near-surface temperature lapse rate are distinguished as functions of position relative to
topographic features and downrange distance. Near-surface cooling rates are examined as
a function of height, slope, and range in Section 3.3. Coefficients for an empirically-derived
prognostic equation that describes near-surface katabatic flow evolution are estimated in
Section 4.

2. Materials and Methods

We deployed a DTS system at two heights across a 2-km transect with a mild slope,
little vegetation, and irregularly interrupted by small-scale drainage features (Figure 1).
The DTS system was deployed from 28 September through 21 October 2012 on the east
slope of Granite Peak at the U.S. Army Dugway Proving Ground, Utah. Starting ~100 m
east of tower ES2 (elevation 1351 m), the optical fiber was deployed uphill past tower
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ES5 (elevation 1440 m) at 1.0 m = 0.05 m height a.g.l. and then back downhill to ES2 at
0.5m £ 0.05 m a.g.l. At each of the two heights (0.5 and 1 m), the optical fiber was placed
in the slit of foam blocks that were affixed with zip ties to rebar stakes spaced nominally at
10-m intervals. Foam blocks minimized spurious temperature spikes due to the difference
in heat capacity between rebar and the air. In all, the DTS system was deployed over
a 23-day period but it was overrun twice by wild horses (an atypical objective danger).
Hence, in total, new fiber lines were deployed three times. In this paper, we present data
acquired between 7 October and 14 October 2014.

i _Gsat
Figure 1. The DTS fiber transect extended from tower ES2 past tower ES5 on the SE side of Granite Peak. Drainage flow is

from the WNW towards the ESE. Tower ES1 is on the playa east of ES2. (Figure contains modified Copernicus Sentinel data
[2021] processed by Sentinel Hub).

To date, DTS technology has been used for hydrologic [23,24], soil [25,26], and at-
mospheric science applications [27-29]. However, DTS is not commonly used; thus, a
brief overview of its operation is required. The primary components of a DTS are a base
station that emits monochromatic light pulses and an optical fiber through which the light
pulses traverse. As a light pulse traverses the fiber a small fraction of light backscatters
by Raman scattering. For a given emitted frequency, Raman scattering produces weak
peaks in amplitude on either side of the centerline of emitted wavelength, called the Stokes
(low frequency-shifted) and anti-Stokes (high frequency-shifted) peaks. By comparing the
amplitude of particular Stokes and anti-stokes peaks along the DTS fiber, one can derive
relative temperature differences over incremental fiber segments. Warm- and cold-water
baths serve as heat reservoirs to calibrate relative DTS measurements to absolute temper-
atures. The spatial resolution of a DTS measurement depends on the time resolution of
the DTS base station. The faster a DTS base station can acquire independent measures of
the returned signal, the finer the spatial resolution of the measurement. The return signal
degrades with distance from the base station so, for long deployments, many independent
measurements are needed to obtain a satisfactory signal-to-noise ratio. Thus, there is
a trade-off between measurement precision and temporal resolution. The composition
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and thickness of the optical fiber sheath regulates the temporal response of the fiber to
temperature changes. More detailed discussions of DTS theory and applications can be
found in [23-29].

For the MATERHORN 2014 deployment, an Oryx DTS base station generated monochro-
matic light pulses that traversed the optical fiber and also acquired and stored measure-
ments with 1-m spatial resolution. DTS data were aggregated to 1-min averages to obtain
a satisfactory signal-to-noise ratio. The 1.3-mm-diameter AFL optical fiber has a Kevlar-
reinforced jacket with a 50-um glass core. The thin sheath enabled a <7-s time response [27],
well within the one-minute time averaging interval. DTS measurements were “double-
ended” such that temperature data were acquired serially in each direction through the
optical fiber. Double-ended measurements facilitated minimizing temperature bias due
to signal loss that is not negligible for lengthy deployments. Thirty meters of optical fiber
were spooled and submerged a hot bath and another 35 m were spooled and submerged in
an ice bath before splicing the fiber ends to pigtail adapters. An air bubbler was placed
in each bath to homogenize calibration bath temperature. PT100 resistance temperature
probes placed in each bath provided reference temperatures for absolute temperature
calibration, performed every minute. The pigtail adapters enabled securely attaching the
fiber ends to the Oryx DTS base station. DTS measurements were post-calibrated using
analysis techniques described in [30].

Tower-based temperature, moisture, and wind measurements at four positions along
the DTS transect facilitated attribution of longwave cooling to katabatic flow initiation.
Vertical profiles were obtained at five heights up to at least 20 m. Heights of the shielded
Vaisala HMP-45 thermohygrometers, Young VRE 81,000 sonic anemometers, and Campbell
Scientific CSAT3 sonic anemometers that were deployed on these towers are documented
in [11]. The elevation and slope between towers ES2 and ES5 were obtained by GPS
measurements and are shown in Figure 2. The average slope between towers ES2 and ES5
was ~23° and greater than 20° above ES5 [11]. The south-east side of Granite Peak was
sparsely vegetated and, with reduced plant activity in the fall, evapotranspiration was
assumed to be negligible, as supported by eddy-covariance measurements [11]. Readers
are referred to [11,21,31] for a more complete description of the experiment site. Data
streams were acquired in UTC and converted to MST to facilitate analyses (MST = UTC —
7 h).
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Figure 2. DTS transect with tower positions relative to elevation and slope.
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The bulk Richardson number (Rig) per [37]:

Rip — g Ab, Az 1)

6 [(aT)” + (aV)’]

resolves atmospheric layers where turbulence is expressed or suppressed. In Equation (1),
g is gravity, 6, is the average virtual potential temperature over depth z, and AU and
AV are the change in horizontal wind speed components within the layer defined by z.
Red shades in Figure 4e demark times with largest positive Rip (greatest stability) and
negative Rip (light green areas) denote conditions favorable for turbulence. The range
of Rip in Figure 4e is limited to (-2, 2) to highlight transitional values between laminar
and turbulent flow. Wind, temperature, and moisture data were averaged to 30-min time
periods before computing Rip to smooth the result of this 4-day composite. After passage
of the shade front, convectively driven turbulence decayed near the surface and at the
upper extent of the tower height. Mid-level stability strengthened after approximately
0300 MST, corresponding with a time period lacking distinct wind speed maxima. After
sunrise, turbulence developed at the surface and gradually eroded the mid-level stable
layer. The lower fringe of the stability, maximum at approximately 5 m, coincided with the
height of the nocturnal katabatic jet maximum [38]. Every night exhibited some degree of
low-level stability (not shown), even when synoptic pressure gradients caused upslope
flow, in agreement with results from [39] at a different site. Features highlighted in Figure 4
are compatible with katabatic wind evolution.

3.1.2. Diurnal Evolution of Near-Surface Temperature

Diurnal evolution of the near surface (0.5 m) temperature field along the DTS de-
ployment is shown in Figure 5 for 8-9 October. On the east side of Granite Peak, higher
elevations were shaded before lower elevations as the sun dipped below the ridgeline,
delineated by the thin black line in Figure 5. This feature was called the “shade front”
in [11,22,31] and the “transition front” in [40]. In this paper, we refer to the transition
between daylight and shade as the shade front. Maximum curvature in the temperature
gradient was used to define the shade front in Figure 5 and subsequent analyses. The tilt
of the black line is consistent with a shade front propagating downslope (as expected for
an easterly aspect). After the shade front passed, radiative cooling at higher elevations
preceded lower-level cooling and initiated downslope flow. Intermittent entrainment of
warm air at high elevations constrained cooling as cold air intensified at lower elevations
due to both longwave cooling and cold air pooling. These features are consistent with
textbook cold air drainage flow [41]. Not so textbook are the subtle vertical and horizontal
banded features in the temperature trace. The vertical bands after the shade front passes
are large temperature fluctuations (LTF's —3 °C or greater temperature drops in a 30-min
period) or oscillations that [42] identified and associated with cold-air pool displacements.
The horizontal bands are not image production artefacts, but rather are signatures of
small-scale drainage channels. For example, the region enclosed by an ellipse in Figure 5
corresponds to a large gulley at an approximately 1300-m range in Figure 6b. In Figure 6
and subsequent plots, daytime averages are computed from the noon to 1 PM MST time
frame and nighttime averages are computed between midnight and 1 AM MST.
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3.2. Lapse Rate Scale Dependencies
3.2.1. Dependency of Near-Surface Lapse Rate to Flow Channel Proximity

Average daytime temperature along the fiber is plotted at the two fiber heights (0.5 m
and 1.0 m) in Figure 6a and during the nighttime in Figure 6b. For both panels in Figure 6b,
vertical shading demarks the horizontal extent of drainage features, as determined from
GPS measurements (see also Figure 2). Daytime warm air at 0.5 m at 100-m range transi-
tions to well-mixed air at approximately 1100-m ranges, as indicated by the convergence
of the 0.5- and 1.0-m temperature traces. At nighttime (Figure 6b), the DTS data indicate
statically stable conditions everywhere along the transect with cold air anomalies occu-
pying the drainage channels regardless of channel cross-sectional diameter. During the
daytime (Figure 6a), there is less correspondence between the drainage channel position
and temperature. As indicated by the daytime hatching patterns in Figure 5, solar heating
also impacts air temperature within small-scale flow channels during the day, but the
impact depends on solar aspect that varies across the channel cross-section. During the
night, cold air fills gullies that preferentially channel the coldest air.

3.2.2. Dependency of Near-Surface Lapse Rate to Downslope Distance (Range)

At the local scale, Figure 6 shows that the position relative to nearby drainage channels
highly correlates with air temperature throughout the night, but to a lesser extent through-
out the day. To what degree does distance down the slope influence local temperature
gradients? In Figure 7, the near-surface lapse rate is plotted as a function of distance
along the DTS transect. The vertical temperature gradient is computed from the difference
between 0.5-m and 1.0-m height temperatures during the day (panel a) and night (panel
b). The daytime lapse rate along the DTS transect shown in Figure 7a indicates that lapse
rate decreases in absolute magnitude from superadiabatic at low elevations to adiabatic,
although with greater variability, at higher elevations. For reference, the dry adiabatic lapse
rate (—0.0098 °C m~!) is rendered as a dotted red line in Figure 7a. The lapse rate is stable
along the DTS transect (Figure 7b) and indicates that range has little influence on the local
nocturnal lapse rate.

1 L T T T
! (a)
g 05f Day 1
€ b .
3
S -ost | -
©
_1 1 1 1 1
0 500 1000 1500 2000
Range [m]
15 T T T T
T (b)
€ 4L  Night 1
o
o
JO05F MWW “W .
|_
©
0 L 1 1 1
0 500 1000 1500 2000
Range [m]

Figure 7. Daytime (panel (a)) and nighttime (panel (b)) temperature lapse rate transects. At night,
the local lapse rate is not a function of range.
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3.3. Cooling Rate Scale Dependencies
3.3.1. Dependency of Cooling Rate to Height and Day/Night Transition

Vertical temperature profiles from tower data are used to resolve cooling rate through
a deeper layer than measured with the DTS. For 24-h periods spanning 8-9, 9-10, and
13-14 October, the ensemble averaged temperature field at five heights on tower ES5 are
plotted in Figure 8a. In Figure 8a, solar insolation produces higher temperatures near the
ground as the day progresses. After the sun is eclipsed by the Granite Peak ridgeline at
approximately 16:25 MST, the lowest levels (0.55 m and 2.14 m) cool more rapidly than
higher levels, producing a near-surface temperature inversion.
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Figure 8. Ensemble temperature averages for 8-9, 9-10, and 13-14 October at ES5 (panel (a)) and ES2 (panel (b)). Grey regions
indicate times that each station was shaded. In the absence of synoptic forcing, local temperature decays exponentially after

the shade front passes the tower location.

Between 5.1 m and 20 m at tower ES5 (panel a), a well-mixed residual layer persists
with air temperature that is approximately isothermal, consistent with relatively uniform
Rip above a 10-m height in Figure 4e. A faster cooling rate, given by the larger negative
slope of the temperature traces, is evident further downslope at tower ES2 (Figure 8b),
relative to ES5. By inspection, the localized transition from day to night exhibits a decay in
temperature that approximates exponential decay at both ES2 and ES5. Subsequently, air
temperature transitions to a more linear decrease with time. This trend was observed at
all five towers. Unlike results in [43] (Figure 3), the vertical temperature profile changes
with time. Figures 6 and 7 in [22] document similar decay in temperature after the shade
front passed over a tower on a steep slope in the Swiss Alps. Others have noted a shading-
induced temperature decay feature in different environments, including over a glacier [44],
near an airport in Nepal [9], and in an incised watershed in the Oregon Cascades [45].

DTS measurements along the fiber revealed a similar exponential decay in temperature
with time after a given fiber segment was topographically shaded. Ignoring mixing-induced
temperature variations, characteristic curves following the shade front passage suggest a
mathematical expression of the form:

% = Ae M+ Bt, )

where A and B are constants, ¢ is time after shade front passage, and A is a decay constant.
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3.3.2. Dependency of Cooling Rate to Slope Angle

DTS data provide fewer vertical levels but finer grained along-slope representation
of local cooling rate than the tower data. During a one-hour nighttime period (0000 to
0100 MST) on 8-9 October, Figure 9a shows that local cooling rate increases with slope
as predicted by [46]. For our data set, the correlation between slope and cooling rate
decreased as the slope increased above 3°. Transverse and longitudinal instability modes
possibly influenced the observed variability in cooling rate although longitudinal modes
are consequential at higher slope angle and transverse mode instability decreases with
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Figure 10. Scatter plot showing the correlation between range and BCP (panel (a)). In panel (b), scatter plot showing the

correlation between slope and BCP. This slope vs. BCP relationship is linearly correlated along the DTS transect and not

correlated with the playa at tower ES1 (red dot).

In Figure 10b, the measurement at the base of the slope (at ES1), several km east of
ES2, indicates a different BCP regime relative to the towers on the slope. To summarize,
at the onset of cooling, a position relative to topographic drainage features and local
advection dominate the cooling rate, and we observe an exponential decay in near-surface
air temperature, whilst at long timescales the large-scale drainage dominates, and the
cooling rate scales linearly with slope and range.

4. Discussion

In this discussion, we refer to the first term on the rh.s. of Equation (2) as the
exponential decay term and the second term as the linear term. As shown in Figures 8
and 9b, the exponential decay term agrees with the empirical result at local scales and was
applicable after the shade front passed. Subsequently, the cooling rate at a given tower
position was linear (Figure 8). Likewise, when the cooling rate at each DTS position was
normalized by the local-scale lapse rate, the BCP was linear relative to both range and
slope (Figure 10), corresponding to the linear limiting case in Equation (2). Three measures
of position were examined—slope, range, and position relative to drainage features, and
the influence of these parameters is scale-dependent. Equation (2) serves as an objective
measure of the range of influence for cooling rate. We acknowledge a deficiency that the
linear term lacks a representation for the time delay between buoyancy forcing as surface
air cools and when drainage flow dynamically responds, which could be addressed in
future studies.

Using tower data, the magnitudes of coefficients in Equation (2) were calculated and
plotted in Figure 11. Parameters A, A, and B are plotted in panels a, b, and c, respectively,
for towers along the DTS transect. The time span for the exponential decay in Figure 8 was
chosen to optimize the fit to the large magnitude slope change during the initial decay pe-
riod and minimize the change in slope in the transition between the period of exponentially
decreasing temperature and the linear temperature decrease period. This methodology
yielded an 1% h period for exponential decay. By comparison, [11] noted a 2-h period of
exponential decay based on MATERHORN tower data. For a steeper, smaller drainage near
La Fouly, Switzerland, [22] found exponential decay in the temperature field for a 1.5-h
period. Following the passage of the shade front, there was a ~10-min transition period
(which was height dependent) before an inflection point at which time temperature began
to decrease exponentially and the 1% h period of exponentially decreasing temperature
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contain multi-scale contributions, from local to basin-wide. We attribute the non-linearity
evident in Figure 12 to the local-scale contribution expressed in the larger scale cooling
rate.
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Neither Prandtl’s equation for drainage flow nor model simulations resolve the effe
of timescale variability due to small-scale topographic features. Since the variability :
timescales increases with terrain complexity, studies with underlying idealized topogr
phy do not capture the effect that multiple scales of topography have on drainage flo
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scales. These results indicate that partitioning between scales of influence can provide
novel insights into the evolution of drainage flow.
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