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ABSTRACT

Measuring surface water temperature spatial variability is needed to estimate the interaction between surface
water and groundwater, evaluate fish habitat and thermal inertia, and to estimate streamflow frequency and
duration. Fiber optic distributed temperature sensing (FO-DTS) has been used in rivers and lakes, providing high-
resolution and sensitive temperature monitoring over large temporal and spatial scales. However, in streams with
cobbly or bedrock-lined streambeds and variable bathymetry, use of FO-DTS to measure temperature close to the
surface water and groundwater interface can be challenging if even feasible. FO-DTS can also be costly, involve
difficult installations, and require an advanced understanding of the technology, calibration, and data process-
ing. In this study, we compared FO-DTS stream temperature survey results to an alternative temperature survey
method employing a towed transect of high-resolution temperature loggers spaced at 1-m and transported in the
stream along the study reach, to measure the spatial distribution of stream-water temperature in East Fork Poplar
Creek near Oak Ridge, Tennessee, USA. We assessed the applicability and limitations of the two methods, and
quantitatively compared in-situ temperature survey results measured simultaneously with each method.
Regression results showed strong temporal and spatial correlation between the two methods. Differences were
only elevated near the stream banks in areas that were coincident with correlation slope deviations from unity,
which was attributed to shallower water and lower data density. Kriging standard errors were also low at channel
center with minor increases near the stream banks. The results suggested that the array of the individual tem-
perature sensors can provide a practical alternative to FO-DTS for thermal characterization of surface water,
providing slightly lower spatial and temporal resolution, but with higher accuracy of temperature measurement,
with greater simplicity, and with a broader range of conditions where it may be applied.

1. Introduction

groundwater-surface water interaction in the early 1960s (Sorey, 1971;
Stallman, 1965). It has also been used in streams and lakes to delineate

Quantification of the interactions between surface water and
groundwater facilitates management of water resources and maintains
the health of riparian ecosystems (Bertrand et al., 2014; Conant et al.,
2019). The bidirectional interaction is important in controlling the
transport and fate of contaminants and nutrients, evaluating ecosystem
habitat, enhancing thermal refugia and metabolism of benthic commu-
nity, and controlling the discharge and water-level fluctuations, thermal
buffering, and biogeochemical reactions in water bodies. Temperature
differential measurement was introduced as a method to estimate
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flows in the hyporheic zone, to estimate depth to salt-water interface,
and to estimate parameters for heat flow models. Temperature is
considered a relatively robust and inexpensive parameter to measure in
surface water systems, and the distinctive difference between surface
water and groundwater temperatures have allowed for the identification
of locations with colder or warmer seeps that may be attributed to
groundwater influx (Stoneman and Constantz, 2003; Winter et al.,
1988). Measurement of temperature gradients and hydraulic gradients
in at least two depths in the sediments are required to estimate the rate
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of heat transfer through the streambed, and methods to measure tem-
perature at a fine spatial resolution are often needed. Lateral spatial
temperature distributions measured at one depth of the stream or
streambed sediment may also be used as a boundary condition in
analytical solutions to the one-dimensional heat transport equation
(Keery et al., 2007; Kurylyk et al., 2019; Schornberg et al., 2010; Scotch
et al., 2021). Measurement of the temperature at the sediment interface
was also used to estimate the flow frequency and duration in temporary
or intermittent streams (Assendelft and van Meerveld, 2019; Constantz
et al., 2001; Shanafield et al., 2021). Deployment of a series of tem-
perature probes along ephemeral channels have permitted the deter-
mination of the spatial and temporal pattern of streamflow facilitating
estimates of stream flow frequency duration, travel time, and trans-
mission losses (Constantz et al., 2001). Spatial stream temperature at
variable depths has also been used in fisheries to evaluate thermal
enertia and to study the connection between the spatial distribution of
fish and locations of seeps in rivers and lakes (Collier, 2008; Fullerton
et al., 2018; Huff, 2009). The distribution of fish and their spawning and
metabolism and overall growth rates are directly affected by the tem-
perature that surrounds them (Bond et al., 2015). Thermal refugia are
critical to the survival of fish during summer months, during extreme
warming events, especially in arid and semi-arid regions (Caldwell et al.,
2020).

Three main methods have been used to map spatial stream-
temperature distributions including direct measurment using tempera-
ture sensors, fiber optic distributed temperature (FO-DTS), and remote
sensing thermal infrared imaging (TIR) (Coluccio and Morgan, 2019;
Conant, 2004; Constantz, 2008; Dzara et al., 2019; Hall et al., 2020;
Marruedo Arricibita, 2018; Selker et al., 2006a). Temperature mapping
using temperature sensors is an older method that has been known to be
simple and inexpensive. However, can be limited spatially and tempo-
rally compared to FO-DTS and TIR, and it can be challenging depending
on reach size and flow conditions (Conant, 2004; Gendaszek, 2011;
Lautz et al., 2010; Lee, 1985; Vaccaro and Maloy, 2006; White et al.,
1987). Initiation and use of FO-DTS for more than a decade to map the
horizontal temperature distribution in surface water systems has
reduced the need for point measurments to map temperatures (Selker
et al., 2006a; Selker et al., 2006c). FO-DTS has been used to quantify
contaminant and nutrient exchange and transport in the hyporheic zone
as well as to estimate vertical fluid velocities, and to monitor temporal
changes in fluid flow using heated and non-heated fiber optic reference
cables (Kurth et al., 2013; Read et al., 2014; Selker et al., 2006b; Tyler
et al., 2009). FO-DTS can generally provide high spatial and temporal
resolution, sensitive temperature monitoring, fast thermal response, and
consistent accuracy along the cable due to its integration as a single
unified system that obviates separate calibration of multiple tempera-
ture sensors (Selker et al., 2006a; Selker et al., 2006¢; Suarez et al.,
2011). FO-DTS has been found to have some limitations in measuring
the temperature in surface water systems (Roshan et al., 2014). Solar
energy penetrating through the water column can thermally affect FO-
DTS measurements (Neilson et al., 2010). Mobile bed material can
either bury the cable or separate it from the bed, complicating data
interpretation (Sebok et al., 2015). Implementing FO-DTS can also be
expensive, time consuming, and logistically challenging with increased
technical complexity both in installation and in post-processing
compared to most temperature logging sensors (Folegot, 2018).
FO-DTS temperature calibration is based on upstream and downstream
temperature reference coils (i.e. hot bath and cold bath). Therefore,
fluctuations in the temperature of the reference baths can result in
calibration complications, and may alter the precision of the cable (Tyler
et al., 2013).

Remote sensing TIR has been used to map surface-water temperature
and to identify hyporheic zone interactions (Culbertson et al., 2013;
Hare et al., 2015; Liu et al., 2016). Success with TIR methods to measure
temperature anomalies in the surface water bed is largely affected by the
depth of water and the discharge (Dugdale, 2016; Hare et al., 2015;
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Torgersen et al., 2001). Hare et al. (2015) found that a depth of less than
0.05 m and stream discharge range 0.002-0.2 m%/s were suitable to
detect seepage thermal signature due to reduced thermal stratification in
the water column. TIR provides a large spatial coverage of stream and
streambed temperature, but generally in a snapshot of time, which limits
the understanding of the diurnal effect on stream or streambed tem-
perature (Marcus, 2012; Markus and Helena, 2002; Torgersen et al.,
2001). It is also difficult to ascertain if seepage flux occurs along the
entire reach length or whether downstream temperatures are influenced
by the upstream seepage source. Additionally, TIR imagery can intro-
duce an error in estimating stream or streambed temperature due to the
effect of camera distortion and the surrounding environmental condi-
tions at the time of acquisition (Dugdale et al., 2019; Pai et al., 2017).
The TIR method may underestimate or fail to detect downwelling flux of
surface water to groundwater, which suggests the need for a direct
temperature measurement especially in streams where downwelling loss
is dominant or the upwelling flux is weak (Dole-Olivier et al., 2019).

Several studies have compared TIR to FO-DTS to evaluate the hori-
zontal spatial distribution of the temperature measurments (Dzara et al.,
2019; Hare et al., 2015); however, to our knowledge this is the first
study that has compared the horizontal spatial stream-temperature
surveys using FO-DTS method and highly sensitive individual temper-
ature sensors within similar spatial and temporal setting. Some studies
deployed FO-DTS cables with temperature loggers that had much lower
accuracy (compared to those used herein) and a lower spatial coverage
compared to the fiber optic cable (Briggs et al., 2016; Lowry et al., 2007;
Mamer and Lowry, 2013). Although FO-DTS has been utilized success-
fully to evaluate the horizontal temperature distribution along streams
and lakes (Selker et al., 2014), the FO-DTS method can be challenging at
best to implement in streams with bedrock-lined streambed channels
and variable streambed bathymetry, which emphasizes the need for a
point measurement method as a complementary or a substitute for the
FO-DTS method.

The purpose of this investigation was to develop and evaluate a
simple array of highly-sensitive temperature sensors to measure the
spatial temperature distribution within a natural stream reach. Evalua-
tion of the thermal sensors spatial survey was through direct comparison
to a survey method using FO-DTS within the identical study reach area
by identifying co-located measurement locations within the data sets of
each method, which was implemented near station 5.4 K in East Fork
Poplar Creek (EFPC), Tennessee, USA. The methods were compared to
evaluate their capabilities, limitations, strengths, and weaknesses of
these methods, and to highlight situations in which one or the other
might be a better instrument choice for monitoring or surveying stream
temperatures.

2. Methods
2.1. Study site

The temperature surveys were both conducted and compared along
a ~ 250 m long reach, with an average 13 m width, of EFPC near Oak
Ridge, Tennessee, USA (Fig. 1). EFPC is a third order stream charac-
terized with partially-exposed limestone bedrock, variable stream ba-
thymetry, and a thin veneer of sediment (about 20-60 cm deep)
overlying the bedrock in most but not all locations of the study reach
(Rucker et al., 2021; Mohamed et al., 2021). The study reach is located
in a densely forested freshwater emergent wetland with native syca-
more, boxelder, and green ash trees, providing heavy canopy cover
during summer months (Cunningham and Pounds, 1991). Starting in the
early 1950s, EFPC received contaminated flows with mercury and other
hazardous metals, affecting the creek water, sediments, and the flood-
plain along the creek (Brooks and Southworth, 2011). Water quality in
EFPC has improved substantially over the past decades, but mercury
contamination in the creek remains a persistent problem. Research over
the past several years demonstrates that diffuse legacy sources of
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Fig. 1. Maps illustrating the study site location along the East Fork Poplar Creek at station 5.4 km.

mercury contribute to the contaminant load in the creek and that
hyporheic water discharging to the surface may be an important source
of that increased mercury loading (Brooks et al., 2018; Demers et al.,
2018).

2.2. Surveying of measurement locations

The temperature study was conducted during August 2019. Prior to
the temperature measurement, the creek banks were surveyed and
georeferenced, to allow for spatial referencing of the temperature
measurements. The banks were marked with landscape stakes at 1-m
intervals along the banks. The distance across the stream between the
opposite stakes was roughly the shortest distance between the two banks
(i.e. perpendicular to the stream thalweg). The location of the stakes
were surveyed with a Leica total station TS02 (Distance measurement
with reflector: 1.5 mm + 2.0 ppm and Distance measurement without
reflector: 2 mm + 2 ppm) with lowest accuracy in the measurement
direction as + 2.5 mm.

2.3. Discrete upstream and downstream temperatures

In the morning of August 6, 2019, prior to the stream temperature
survey, a set of two temperature sensors were placed at fixed locations
near the upstream reach boundary, another set of two sensors were
placed near the downstream reach boundary, and within each set
included one sensor fixed in the stream-water column and another
sensor buried in the sediment at about 0.3 m below the top of the
streambed. The purpose of these sensors was to provide temporal-
monitoring control measurements of the temperature at those loca-
tions before and throughout the spatial temperature survey from 16:00
to 18:50 in the same day. Weather data was obtained from a U.S.
Department of Energy (DOE) operated meteorological tower (Tower
“L”) located about 5.75 km southwest of the study site.

2.4. Temperature sensor setup

Six high-sensitivity temperature sensors (model RBR Solos® T) were
used to survey the spatial temperature variability along the EFPC study
reach (Fig. 2). The reported accuracy of the sensors was + 0.002 °C with
a stability of 0.002 °C/year (ITS-90 and NIST traceable standards), with
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Fig. 2. Illustrative design of the thermal sensor array on the poles connected by 1-m long rope (A), and photograph of the temperature sensor array (B) during
operation of the in-stream temperature survey conducted by a 6 person team moving the poles from downstream to upstream while measuring temperatures every 1-

m along the stream reach length.
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response time of 0.1 s. The absolute accuracy of the sensors used in this
study ranged between + 0.004 °C and + 0.012 °C, based on the cali-
bration year. Each temperature sensor was attached to a support box at
the bottom of a 2.54-cm diameter PVC pipe (hereafter termed poles)
(Fig. 2a). The six poles were oriented vertically to position the sensor
within the stream at 0.05-m above the top of the streambed to allow for
measurement of the stream temperature. The sensors were then spaced
in a straight line (or transect) at 1-m apart from each other using equal
lengths of string. The transect of temperature sensors poles was oriented
perpendicular to the channel and stream flow, and was moved during
the sensor-array survey along the direction of the channel to measure the
temperature distribution along both the lateral and longitudinal di-
rections of the stream channel. Each of the six equidistant poles
measured along a line as they were used to move the sensors in the
stream channel along the upstream flow direction, with pole-1 as closest
to the north bank and pole-6 closest to south bank (Fig. 2b). The number
of the dataset collected with the six sensors in the array at 1-second
resolution along the entire reach was 61,296. Transect measurements
of temperature were collected and recorded every 1-m along the length
of the stream reach at the locations of the survey stakes resulting in a 1-
m by 1-m grid of streambed temperatures (Fig. 3a). The total number of
data points for the sensor-array survey transects was 1554 (the 222, 223,
227, and 228 m locations had trees logs along the bank obstructing
measurement). The distance between the stake marks and the edge of
the sensor-array survey transects was measured at each measurement
location during the survey. The reporting interval for the temperature
sensors was 1 s, and the sensors were allowed 6-7 s to equilibrate at each
location before taking the measurement. The temperature survey using
the temperature sensors started at the downstream end of the reach on
August 6, 2019, at 16:00 Eastern Standard Time zone (GMT-5), the time
with the highest temperature difference between groundwater and
surface water, and ended at the upstream location at about 18:50.

2.5. FO-DTS setup

The physics of the FO-DTS measurement is based on a temperature
dependent backscatter light mechanism including Brillouin or Raman
backscatter (Selker et al., 2006c¢). It is possible to achieve sub-meter
scale spatial and 0.01 °C thermal precision for measurement cycle
times on the order of minutes for cables extending several kilometers
(Tyler et al., 2009). The principle of the FO-DTS method is based on
releasing a pulse of laser light into the fiber optic cable and monitoring
the Raman-backscatter light to estimate the temperature (Selker et al.,
2006¢). The distance from where the light was reflected is calculated by
timing the return time of the laser pulse. Raman-backscatter reflects at a
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wavelength shorter or longer than the wavelength of the original pulse.
The reflection with the longer wavelength is referred to as Stokes
backscatter, and has an amplitude that is not temperature dependent.
The reflection with the shorter wavelength is called Anti-Stokes back-
scatter, and has an amplitude that linearly depends on temperature. By
measuring the Stokes/Anti-Stokes ratio at different return locations, the
temperature of the fiber can be measured everywhere along the cable
length.

The FO-DTS cable was mounted on a raft and was installed in the
stream on August 5th, 2019, in six passes, back and forth along the
length (parallel to the channel) of the study reach, in a zig-zag pattern to
approximately equally distribute the cable spatially along both the
width (~1-m apart) and length of the study reach (Fig. 3b). An original
goal of the study was to measure streambed temperature at a shallow
depth within the streambed to locate temperature anomalies within the
streambed that may indicate groundwater seeps. However, due to the
heterogeneous bedrock geology and variable bed bathymetry of the
study reach, burring the fiber optic cable in the sediment was only
possible for a short length of the entire 2 km cable (18%) and the ma-
jority of the cable was installed at variable depths of the water-column
but as close as possible to the streambed sediment (to a depth between
0 and 0.1 m). Thus, minimal cable was buried due to large sections of
streambed being composed of exposed bedrock or large cobbles, and
buried locations were recorded by GPS (Topcon HyperLite+) and using
the surveyed stakes. At the end of each run along the length of the reach,
an anchor was placed to support the cable against streamflow, and the
anchor was used to support the turn in the cable for the return pass in the
opposite direction. The location of the cable along the stream channel
was referenced relative to the surveyed stakes and with a GPS, and the
cable turn locations at the anchors were also surveyed. Thus, each
temperature value was referenced horizontally in 2D. The total number
of the independent temperature measurement was 6257 locations along
1934 m of installed cable (Fig. 3b). The FO-DTS interrogator measured
the fiber temperature from August 5th until the 14th, 2019. The total
number of data points during the time of the temperature survey with
the temperature sensors from 4:00 pm to 6:50 pm on August 6 was
56,313. Both ends of the fiber were connected to the FO-DTS interro-
gator allowing for double-ended measurements. Each channel in each
direction was averaged over 10 min resulting in a dataset with a 20-min
measurement interval.

Calibration of raw Stokes/Anti-Stokes values to temperature values
were completed following the single-end calibration procedure outlined
in Hausner et al. (2011) using warm and cold temperature reference
baths at the beginning and end of each channel. During the installation
of the FO-DTS cable, we encountered some problems associated with

0510 20 30 40

©  Pole_1 e Pole2 e Pole3 e Pole4 e Pole5

FO-DTS Cable

0510 20
e Meters

30 40

Fig. 3. Map of the temperature sensor measurement locations (A) and the FO-DTS cable (B) data collection locations.
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fiber optics and FO-DTS during installation and data analysis. The ab-
solute temperatures estimated with the FO-DTS method had limited
accuracy of 0.1 °C in the 20-25 °C range due to several factors including
fluctuation of ice baths temperature, which complicated the calibration.
Manufacturing and in-stream installation induced strain in the glass
fiber created signal artifacts within the length of the cable. To overcome
this defect, a calibration procedure was implemented that allowed for
the differential attenuation between Stokes and anti-Stokes to vary
spatially (Hausner et al. 2011). This reduced the average uncertainty in
each observed temperature measurement by 0.07 °C. Although the
calibration procedure was successful, it should be noted that there re-
mains a slightly higher level of uncertainty (and thus reduced precision/
resolution) in the FO-DTS temperature data than would be found in a
typical installation, as the new calibration procedure would not have
entirely removed strain induced error in temperature measurements.

2.6. Data analysis

The spatial and temporal scales for the two temperature measure-
ment methods differed, and therefore a number of steps were taken to
analyze and compare the two datasets. For the data collected with the
temperature sensors, values above the 75th percentile and below the
25th percentile for each sensor was considered an outlier, and was
removed from the dataset prior to data analysis and comparison with the
FO-DTS dataset. The outliers in this case generally were higher tem-
perature values that indicated the sensor was measuring air temperature
in between measurement locations. Eleven outliers were removed from
the temperature sensor dataset (i.e. two outliers from pole-1, four out-
liers from pole-5, and five outliers from pole-6). The total number of
temperature measurements after removing the outliers was 1479 (i.e.,
255 in pole-1, 259 in pole-2, 259 in pole-3, 259 in pole-4, 244 in pole-5,
and 203 in pole-6).

The FO-DTS temperature data were first analyzed to corroborate
visual records of fiber optic cable position as either out-of-water, in the
water column, or buried within the streambed sediment. Cable position
was determined by identifying differences in absolute temperature and
variability in hour to sub-daily temperature dynamics at each mea-
surement location. Temperature data recorded by the temperature
sensors during the study period on August 6, from 16:00 to 18:50 was
compared mainly to fiber locations within the stream-water column (i.e.
temperature comparison excluded fiber locations that were either out of
water or buried in the sediment), because the thermal sensors mea-
surements were within the stream-water column just above the top of
the streambed. Survey data of each temperature sensor measurement
and each FO-DTS measurement were used to identify the nearest loca-
tional pairs between the two datasets. Data pairs were regressed only if
their distance apart was less than 0.5 m (as noted above). To compare
temperature data between each matching location pair at similar time
stamps, the FO-DTS data was interpolated from 20-min to 1-min data
using a splined interpolation approach. Least squares linear regression
was used to fit a linear relation between temperature sensor data for
each pole and the paired FO-DTS data using Matlab R2021a. R-squared,
or coefficient of determination, values provided a goodness of fit for the
relationship. A geostatistical analysis was performed for the contour
maps of the two temperature methods created using Empirical Bayesian
Kriging method using ArcGIS (version 10.5.1). The analysis evaluated
the standard error of each prediction and the pixel difference between
the two predicted distributions against the accuracy of each temperature
method.

3. Results & discussion
3.1. Stream and weather conditions

The timing of the temperature survey was selected between 16:00
and 19:00 to minimize the transient fluctuation in stream and air
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temperatures. This time also afforded the maximum difference between
stream and streambed temperatures, which increased the potential for
detection of cooler temperature anomalies associated with groundwater
influx. Average air temperature was 24.15 + 4.84 °C during August 6,
2019, and during the time of the thermal sensors survey (from 16:00 to
18:50) air temperature was relatively constant at 30.7 4 0.39 °C (Fig. 4).
On the day of the temperature survey, the discharge was at baseflow
conditions (average value 1.48 + 0.73 m3/sec) (Brooks and Lowe,
2019), which allowed the stream discharge to be relatively constant
during the time of the spatial survey. The maximum solar radiation was
recorded at 14:15 as 1046 W/m?. The maximum difference between the
downstream stream-water and sediment temperatures was 1.3 °C at
16:00, when air temperature and stream-water column temperature
were the highest during the day.

The hourly average stream-water temperature gradually increased
from 08:00 to the end of the spatial survey measurement at 18:50
(Fig. 4), following the general trend of air temperature. The trend of the
stream-water diurnal temperatures in the downstream and upstream
boundaries of the study reach were very similar. However, stream-water
temperature at the downstream was consistently warmer than the up-
stream with a maximum difference of 0.12 °C recorded at 14:00, which
decreased by the end of the survey at 18:50 with 0.081 °C and 0.03 °C at
the downstream and upstream study reach boundaries, respectively. The
higher downstream temperature values are explained by warming of the
stream as the water flows through open-canopy sections from upstream
to downstream during the day.

The diurnal variation of the temperatures within the streambed
sediments in the upstream and downstream study reach boundaries
were slightly different (Fig. 4). As the stream-water temperature in the
downstream was consistently warmer than the upstream, we expected
the sediment temperatures to follow the same trend. However, the
downstream sediment temperature was consistently lower than the
upstream, and remained relatively stable throughout the day. The up-
stream sediment temperature increased during the day, suggesting
possible percolation of warm stream water into the sediment, causing
the increase in temperature values.

3.2. Comparison between the temperature sensor and FO-DTS
measurements

3.2.1. Raw datasets

Fig. 5 presents the spatial distribution of the measurement locations
and the values for the measured temperature at each location for both
the thermal sensors (Fig. 5a) and the FO-DTS (Fig. 5b). The temperature
trend in Fig. 5b closely followed the trend in Fig. 5a with higher tem-
perature values mostly in the downstream and lower values in the up-
stream. The maximum temperature recorded with the temperature
sensors at 16:45 was 24.00 °C, and the minimum upstream temperature
recorded at 18:49 was 23.82 °C. The difference between the maximum
and minimum values (0.18 °C) was significant, because it was higher
than the accuracy and resolution of the temperature sensors and the FO-
DTS methods, and these results were consistent with those presented in
Fig. 4. The maximum temperature measured with the FO-DTS method at
16:22 was 24.07 °C, and the minimum temperature measured at 18:50
was 23.72 °C. The difference between the maximum temperature value
measured with the FO-DTS method and that measured with the tem-
perature sensors was 0.06 °C, and the difference between the minimum
temperature measured with the FO-DTS method and that measured with
the temperature sensors was 0.1 °C. These differences were within the
accuracy of the two methods (0.4 to 0.1 °C), which suggested that these
differences were not substantial. Higher temperature values were
recorded with both methods in the downstream relative to the lower
values in the upstream portions of the study reach, and the higher
temperature values in the downstream were attributed to warming of
the stream water as it flowed from upstream to downstream, passing
through locations with less canopy cover during measurement time
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period. These two different measurement methods were able to map
significant spatial variability in stream-water temperature, which was
unexpected due to the relatively fast flowing stream water and turbulent
mixing.

3.2.2. Regression analysis

The spatial threshold value of 0.5 m (noted above) was used to
identify paired measurement locations for the two methods. The number
of data points using the 0.5 m threshold was 818 compared to 1479 total
data points. The temperature values measured with the two methods
represented mainly the temperature of the stream-water column after
removing the FO-DTS measurements from all locations that were buried

in the streambed sediments and locations that were exposed to sun
heating or were partly exposed to air temperature. Fig. 6 illustrates that
the regression lines for all poles consistently fell below the 1:1 line
indicating that FO-DTS observations were consistently lower than the
corresponding temperature sensor measurements. This was attributed to
a difference in the calibration between the two methods. The FO-DTS
was calibrated to a slightly lower temperature standard relative to the
individual temperature sensors. The regression between each pole and
the paired FO-DTS measurements showed consistent and linear positive
correlations (Fig. 6). The coefficient of determination (RZ) ranged be-
tween 0.71 and 0.83 and the slopes of the regressions ranged between
0.91 and 1.45. Each of these correlations were impacted by moderate
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Fig. 6. Regression between the temperature sensor array measurements and the matching FO-DTS measurements for each of the individual sensor locations
including (A) Pole-1, (B) Pole-2, (C) Pole-3, (D) Pole-4, (E) Pole-5, and (F) Pole-6. The dashed line in each plot is the best-fit regression model, while the solid line is

the 1:1 line.

data scatter, and the amount of scatter and the R? values were similar for
most of the poles except pole 6, which had the highest slope and inter-
cept. Despite the scatter, the regressions were significant, and the
measurements using these two methods were comparable. Spatial in-
formation was also represented in these method correlation plots using
the color scale. The zero in the legend represents the location closest to

the upstream boundary, and the color scale varies with increasing dis-
tance from upstream to the downstream boundary of the study reach
(Fig. 6). The regression results show a consistent trend with cooler
temperatures in the upstream and warmer temperature in the down-
stream, as observed in the raw dataset (Fig. 5).

The regression equation slopes were close to unity (3 to 9%
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deviation) for poles 1 through 4 (Fig. 6). Pole 5 and 6 had larger de-
viations of the slope from unity. These two poles were closer to the south
bank, which had the shallower water depth, some sediment bars, or
islands, and some fallen trees. The north bank had a somewhat deeper
water depth (relative to the south bank) suggesting that the thalweg runs
near the north bank. The increases in regression equation slopes above
unity for poles 5 and 6 were attributed to the difficulties in measurement
of shallow water temperature near the south bank of the EFPC. There-
fore, we posit that poles 5 and 6 had a larger measurement error
compared to the other four poles due to the limited stream-water depth.
Additionally, each of the RBR Solo temperature sensors had different
accuracy and precision as the sensors were calibrated in different times.
Another issue with direct comparison of the two methods was that each
of the measurements for the two methods had slightly different spatial
locations (horizontally and vertically), and the two spatial surveys had a
different time resolution. Although the times and locations of mea-
surements were coupled as closely as possible, the spatial and temporal
variability in the measurements between these survey methods may
have added to the uncertainty in the absolute temperature of the two
methods.

Similar to the individual poles, the regression including all poles and
all matching FO-DTS measurements showed a positive linear correlation
(Fig. 7) indicating a strong correlation between the two datasets.
However, the R? value of the regression including all poles and the all
matching FO-DTS measurements was 0.62, which was less than those of
the individual pole regression results. The increase in the data scatter for
the regression including all poles, relative to the individual pole
regression results, confirms that in-stream location measurement con-
ditions impacted the correlation between these two measurement types.
For example, the above noted proximity to the stream bank or stream-
water depth limitations could have impacted these measurements.
However, the relative amounts of data scatter were not variable with
noticeable trends along the length of the stream reach (i.e., color scale
for measurement location), and this relative consistency in amount of
scatter along the stream channel direction seemed to be consistent
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between each of the individual pole data sets (Fig. 6) and the combined
data set (Fig. 7).

3.2.3. Histogram of the differences

The average + standard deviation of the temperature sensors survey
was 23.91 + 0.04 °C and of the FO-DTS survey was 23.87 + 0.05 °C. The
average =+ standard deviation of the difference between the sensors and
paired FO-DTS measurements was 0.05 °C + 0.04 °C (Fig. 8). The
minimum difference value was —0.09 °C, and the maximum difference
value was 0.15 °C. The accuracy of the FO-DTS method was + 0.05 °C —
0.10 °C, and therefore all difference values within this range or below +
0.05 °C are considered biased and values greater than + 0.10 °C are
considered significant. The histogram shows that more than 95% of the
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Fig. 8. Histogram of the difference between the temperature sensor array
measurements and the matching FO-DTS measurements.
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Fig. 7. Regression between the temperature sensor array measurements and the matching FO-DTS measurements for all data collection poles combined. The dashed

line in each plot is the best-fit regression model, while the solid line is the 1:1 line.
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differences were within the accuracy of the FO-DTS method, and only
5% were significant. The shape of the distribution of the differences
between the two methods was consistent with a normally distributed
variable, which determines that the distributions of the two datasets
were close to normality. These results confirmed the null hypothesis that
the two spatial stream-water temperature survey methods were similar,
and this was also consistent with the above noted positive correlation
results between the two methods.

3.2.4. Geostatistical analysis

Contour maps of the temperature sensor measurements and the
paired FO-DTS measurements were created using Empirical Bayesian
Kriging (Fig. 9). The trend of the spatial distribution followed closely the
trend of the raw data for both measurement methods (Fig. 5), with
higher temperatures mainly in the downstream and cooler temperatures
in the upstream portions of the study reach. The mapped trends and
variability was highly comparable between the two different measure-
ment methods. Whereas, there does appear to be more variability in the
temperature contour distributions for the map generated using the FO-
DTS data.

Contour maps of the standard error of the kriging predictions
generated using the temperature sensor measurements and the paired
FO-DTS measurements are also presented (Fig. 10). The standard error
of the prediction varied, and increased away from the measurement
locations and close to the creek banks for both methods. The center of
the channel generally had low error for both methods even though the
low error along the center was not as consistently distributed for the FO-
DTS method results. The standard error for the temperature sensor
method was approximately an order of magnitude lower than that for
the FO-DTS method, mainly because the measuring points for the tem-
perature sensor method were evenly spaced and more data points were
removed from the FO-DTS measurements. However, the standard error
for both methods was low (ranging between 0.002 °C and 0.008 °C for
the temperature sensor method and 0.03 °C and 0.039 °C for the FO-DTS
method) compared to the accuracy of the two methods, suggesting that
those errors were not significant.

Fig. 11 presents difference maps for examining the spatial distribu-
tion of the difference between the two temperature survey measurement
approaches. Fig. 11la presents the map of differences between the
Empirical Bayesian kriging maps shown in Fig. 9 (i.e., temperature
sensor map minus FO-DTS map). The difference between the two spatial
maps ranged between —0.08 °C and 0.15 °C. About 90.6% of the dif-
ferences were less than 0.1 °C, and only 9.4% of the differences was
greater than 0.1 °C, which therefore were considered significant and
represented the measurable differences between the two methods. The
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locations of the larger temperature differences were mainly adjacent to
the south bank in the upstream and between 0-m and 12.5-m in the
downstream, where the stream water depth was shallower, and the
measurement error of the temperature sensor was higher, as discussed
above. Those locations with larger differences were consistent with the
results presented in Fig. 11b, which is the difference map of the raw data
that were shown in Fig. 5. The difference between the raw temperature
sensor and FO-DTS measurements (Fig. 11b) showed spatially variable
differences along the study reach with relatively higher differences
(ranged between 0.12 °C and 0.16 °C) located along pole 6 close the
south bank, and there were also a few locations of larger differences
along pole 1 (i.e., close to the north bank) at meter 165 from the
downstream boundary of the study reach. The increased measurement
difference locations that were closer to the stream banks were also
consistent with the increased regression slope deviations from unity for
pole 5 and pole 6 (Fig. 6), and those locations were also consistent with
the locations of the elevated standard error of the kriging prediction
(Fig. 10). As discussed previously, the south bank had a shallower
stream-water column, and therefore the temperature measured along
pole 6 was likely affected by the warmer air temperatures. These results
illustrate the potential limitations in the comparability of these two
stream-water temperature survey methods, which includes locations
near stream banks and where stream water depth is low. In fact, low flow
or low water depth limitations or thresholds for the applicability of these
methods might be considered, as well.

Fine spatial and temporal scales are often needed to monitor hypo-
rheic zone interaction heterogeneity for applications such as quantifying
solute transport, nutrient cycling, ecosystem assessment, and defining
thermal refugia in streams and lakes. FO-DTS can provide a continuous
measurement through a single fiber that are analogous to thousands of
traditional temperature sensors with a fixed accuracy and precision
along the cable. However, FO-DTS can be challenging to install in
streams like EFPC where streambed bathymetry is variable due to the
outcropping bedrock. FO-DTS is also relatively costly, data collection in
remote areas is challenging due to continuous power source re-
quirements, installation can be complex, the fiber is fragile and can be
easily strained or broken, the calibration process can be extremely
difficult, and the analysis can be complex and convoluted.

Some of the advantages of the temperature sensor array was its
flexibility, low cost, ease of implementation, and ability to standardize
the depth of measurement, which was not possible for the FO-DTS cable
due to the variable stream bathymetry and exposed bedrock. The array
structure also provided the flexibility to add more temperature sensors
to achieve a finer resolution of the spatial coverage of temperature
measurements. However, the method required more time to collect the
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Fig. 9. Empirical Bayesian Kriging distribution of the temperature sensor array measurements (A) and FO-DTS measurements (B).
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spatial distribution of data compared to the FO-DTS, and was not readily
repeatable over time for monitoring, which is an advantage of the FO-
DTS method if the installed cable distribution can be secured for some
time. Data implementation and analysis was also less complex with the
temperature sensors, though implementing the method required
continuous labor throughout the temperature survey.

4. Summary and conclusions

In this study, we developed a simple array of highly-sensitive tem-
perature sensors to measure the spatial temperature distribution within
a stream reach, and the approach could be extended to measurement of
streambed sediment temperatures by inserting the sensors into uncon-
solidated sediments at each measurement location. Moving a transect of
highly-sensitive temperature sensors along the stream channel produced
a 1 m by 1 m spatial survey of the stream water. The thermal sensors
spatial survey was directly compared to a survey method using FO-DTS
within the identical study reach area by identifying co-located mea-
surement locations within the data sets of each method. The regression
results between the FO-DTS measurements and the matching tempera-
ture sensor measurements showed correlations with R? values ranging
between 0.71 and 0.83 for the individual temperature sensor poles and
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0.62 for all poles combined. The regression equations were consistently
positive with slopes close to 1, which confirmed the comparability and
consistency of these two temperature surveying methods. Correlation
differences from 1-to-1 were larger for measurements in shallower water
near the south stream bank.

Comparison of these mapped spatial distributions showed similar
trends between the two methods with warmer temperatures at the
downstream and cooler temperatures at the upstream portions of the
study reach. Geostatistical map prediction standard errors were gener-
ally low, but largest errors were along the edges of the stream banks
where stream water was shallow and access limitations decreased data
density. The differences between the methods were also mapped (tem-
perature sensor measurements minus FO-DTS measurements), which
showed that only 16% of the difference values exceeded the accuracy of
the two methods. Further, the location of these significant differences
were primarily along the south stream bank. These results all suggest
that method comparability and measurement limitations likely occur in
less accessible and shallower water depths along stream banks. Despite
this limitation, the majority of the measurement locations were directly
comparable, and both methods resulted in similar high-resolution
spatial surveys of stream-water temperature despite the low amount of
temperature differences.
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These results generally support the practical utility of using the
temperature sensor method as an alternative to the use of FO-DTS in
streams where conditions are not amenable to application of the FO-DTS
method. This study illustrated that using an array of several individual
temperature sensors can provide a practical alternative to FO-DTS for
spatial characterization of low order streams, providing slightly lower
spatial and temporal resolution, but with higher accuracy of tempera-
ture measurement, with greater simplicity, and with a broader range of
conditions where it may be applied. Although the two methods were fit
to measure the water column temperature, limitations may exist to use
the two methods to measure the distributed temperature of the sediment
in similar streams with locations of bedrock outcrop along the stream-
bed and little or no unconsolidated sediment lining the streambed. The
mobile array of point temperature measurements developed herein can
be used for surveying spatially distributed stream temperatures, which
provides a comparable approach to the FO-DTS for characterization and
monitoring along stream and river corridors.
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