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Abstract
Complex causal networks underlie many real-
world problems, from the regulatory interactions
between genes to the environmental patterns used
to understand climate change. Computational
methods seek to infer these casual networks using
observational data and domain knowledge. In this
paper, we identify three key requirements for in-
ferring the structure of causal networks for scien-
tific discovery: (1) robustness to noise in observed
measurements; (2) scalability to handle hundreds
of variables; and (3) flexibility to encode domain
knowledge and other structural constraints. We first
formalize the problem of joint probabilistic causal
structure discovery. We develop an approach us-
ing probabilistic soft logic (PSL) that exploits mul-
tiple statistical tests, supports efficient optimization
over hundreds of variables, and can easily incorpo-
rate structural constraints, including imperfect do-
main knowledge. We compare our method against
multiple well-studied approaches on biological and
synthetic datasets, showing improvements of up to
20% in F1-score over the best performing baseline
in realistic settings.

1 Introduction
The problem of causal structure discovery (CSD) consists of
inferring a network of cause-and-effect relationships between
many variables using observational data and domain knowl-
edge. In contrast to the estimation of single causal relation-
ships, CSD finds consistent causal graphs over all variables,
exponentially increasing problem complexity. CSD is an im-
portant task for facilitating scientific discovery, such as deter-
mining regulatory networks amongst genes [Friedman, 2004;
Liu et al., 2016] and understanding influences between at-
mospheric patterns to better forecast climate events [Ebert-
Uphoff and Deng, 2012].
Computational methods for causal structure discovery face

several critical challenges. First, observational data is fre-
quently noisy, containing spurious correlations between vari-
ables. Second, even with simplifying assumptions, CSD re-
quires searching over exponentially many potential causal
graphs, posing a scalability bottleneck. Finally, CSD requires

incorporating heterogeneous domain knowledge of differing
reliabilities, such as ontological and experimental evidence.
Thus, successful CSD approaches must be robust, scalable,
and flexible to succeed on real-world problems.
Existing methods for CSD have largely been evaluated

in synthetic and low-noise settings that do not accurately
represent the challenges of real-world domains. Traditional
CSD approaches make locally greedy and iterative decisions,
improving scalability at the cost of robustness. However, re-
cent approaches based on logical satisfiability (SAT) [Magli-
acane et al., 2016] or linear programming (LP) [Cussens,
2011] have shown the benefits of enforcing global constraints
on the causal graph structure through joint inference.
In this paper, we extend the joint inference view and pro-

pose a novel approach, CAUSPSL, that provides an attrac-
tive compromise between robustness to noise, scalability, and
flexibility. We explore these trade-offs through extensive
experimental evaluation on biological datasets, demonstrat-
ing significant performance gains on both real-world data
and synthetic benchmarks. We formulate CSD as an infer-
ence problem by defining a joint probability distribution over
causal graphs. Our approach defines this distribution by uni-
fying constraints from statistical tests, side information, and
domain knowledge. We implement CAUSPSL using the
probabilistic soft logic (PSL) framework [Bach et al., 2017]
which defines a hinge-loss Markov random field and supports
efficient MAP inference. In experiments, we demonstrate
several key strengths of CAUSPSL:

• Robustness via Redundancy: CAUSPSL exploits re-
dundancy by using multiple statistical tests and soft con-
straints, mitigating noisy inputs.

• Efficient Performance: CAUSPSL scales to causal
graphs with hundreds of variables via exact and efficient
MAP inference.

• Flexible Modeling: CAUSPSL encodes both well-
studied structural constraints and novel long- and short-
range constraints with an easily extensible logical syn-
tax.

We validate the features of CAUSPSL on realistic experimen-
tal settings including gene regulatory networks and protein
signaling datasets, showing increases in F1-score of up to
20% over state-of-the-art CSD methods.



2 Background and Related Work
Approaches to CSD fall into two major categories: score- and
constraint-based. Our work extends constraint-based meth-
ods. Traditional constraint-based procedures, most notably
the PC algorithm [Spirtes and Glymour, 1991], start from
complete undirected graphs and iteratively prune edges be-
tween variables that are independent. These methods then
maximally orient the remaining edges with rules that enforce
faithfulness between observed conditional independences and
graph d-separation constraints. Despite soundness and com-
pleteness guarantees under perfect inputs [Spirtes and Gly-
mour, 1991; Zhang, 2008; Colombo and Maathuis, 2014;
Ramsey et al., 2006], performance of these methods suffers
under the imperfect data conditions most commonly present
in real problems. Our work is motivated by recent approaches
that cast CSD as a SAT instance, using off-the-shelf solvers
to find causal graphs that minimally violate multiple, con-
flicting independence statements weighted by their confi-
dence score [Hyttinen et al., 2014; Magliacane et al., 2016;
Hyttinen et al., 2013]. SAT-based approaches handle con-
flicting independence tests more robustly than traditional
constraint-based methods, and support latent variables and
useful feedback cycles in causal graphs while maintain-
ing soundness under perfect inputs [Hyttinen et al., 2013;
Magliacane et al., 2016]. However, SAT-based approaches
remain computationally expensive and intractable beyond
small domains.
Score-based methods to CSD evaluate possible DAGs with

penalized forms of likelihood. These approaches solve CSD
efficiently by performing either greedy hill-climbing search
[Tsamardinos et al., 2006; Chickering, 2003; De Campos
and Ji, 2011] or constrained optimization using integer lin-
ear programs (ILP) [Jaakkola et al., 2010; Cussens, 2011;
Yuan et al., 2013; Bartlett and Cussens, 2017]. ILP meth-
ods can perform exact inference [Bartlett and Cussens, 2017]
but require constraints on the number of parents per variable,
which are unknown or hard to justify in less understood bio-
logical domains.

3 Joint Probabilistic Causal Structure
Discovery

The input to causal structure discovery (CSD) is a set V =
{V1 . . . Vn} of n variables and m independent observations
ofV. Here, we assume that the observations are drawn with-
out selection bias or hidden confounders, as in PC and most
score-based methods. The problem of CSD is to infer a di-
rected acyclic graph (DAG) G⇤ = (V,E) such that each edge
Eij 2 E corresponds to Vi being a direct cause of Vj . If Vi

is a direct cause of Vj , manipulating the value of Vi changes
the marginal distribution of Vj . If Vi is an ancestor of Vk,
there exists a directed path p, denoted by sequence of edges
Vi ! · · · ! Vk, from Vi to Vk. Ancestral structure is en-
coded by DAG G⇤

A where edges represent ancestral relations
and correspond to the transitive closure of the causal graph
G⇤. Typically, CSD methods output an equivalence class of
G⇤ and G⇤

A that correspond to the optimal distribution.
The joint probabilistic CSD problem is to infer causal

graph G⇤ together with the ancestral graph G⇤
A. The problem

requires defining a suitable joint meta-distribution P over the
space of possible structures G and GA. The inputs to P are
random variables that capture structural and independence at-
tributes of G and GA. To avoid confusion with the random
variables in our probabilistic model, henceforth, we refer to
the domain variables V 2 V as vertices.
C and A are the set of variables Cij and Aij for all Vi, Vj

that denote the absence or presence of an ancestral or causal
edge, respectively. The goal of inference is to find assign-
ments for these variables. U is the set of observed variables
Uij associated with an undirected edge, or adjacency, from Vi

to Vj for all Vi, Vj . U corresponds to the skeleton graph used
in constraint-based methods. The set M of Mij variables
denotes marginal association between Vi and Vj where each
Mij is obtained by performing a statistical test of indepen-
dence Vi ?? Vj . Similarly, Sij = {SZ1

ij . . . SZm
ij } denotes the

set of variables that measure conditional association between
Vi and Vj when conditioned on a non-empty subset of vertices
Zk ⇢ V\{Vi,Vj}. Each set Zk has size between 1 and |V | - 2.
Each SZm

ij corresponds to a statistical test for Vi ?? Vj |Zm.
Finally, we optionally observe L = {Lkl . . . Lst}, local ev-
idence that captures domain knowledge or side information
about causal, ancestral or adjacency relations.
To solve the joint probabilistic CSD problem, the meta-

distribution P(C,A|U,S,M,L) is first fully defined. Then,
we perform maximum a posteriori (MAP) inference over P
to find an optimal joint assignment to variables C andA.

4 CAUSPSL Approach
Defining meta-distribution P that relates G and GA requires
a flexible modeling framework. To efficiently solve the joint
probabilistic CSD problem, P must admit tractable inference.
Our approach uses probabilistic soft logic (PSL) [Bach et al.,
2017], which offers both desired features. We provide a brief
overview of PSL and direct readers to [Bach et al., 2017] for
a full description.

4.1 Probabilistic Soft Logic
PSL is a probabilistic programming framework where vari-
ables are represented as logical atoms and dependencies be-
tween them are encoded via rules in first-order logic. Logical
atoms in PSL take continuous values and rule satisfaction is
computed using the Lukasiewicz relaxation of Boolean logic.
This relaxation into continuous space allows MAP inference
to be formulated as a convex optimization problem that can
be solved in polynomial time.
Given continuous evidence variables X and unobserved

variables Y, PSL defines the following Markov network,
called a hinge-loss Markov random field (HL-MRF), over
continuous assignments to Y:

P (Y = y|X = x) =
1

Z exp
⇣
�

MX

r=1

wr�r(y,x)
⌘

where Z is a normalization constant and �r(y,x) =
(max{lr(y,x), 0})⇢r is an efficient-to-optimize hinge-loss
feature function that scores configurations of assignments to
X and Y as a linear function lr of the variable assignments.



Rule Type Rules

Causal Orientation C1) ¬ADJ(A,B) ! ¬CAUSES(A,B)
C2) CAUSES(A,B) ! ¬CAUSES(B,A)
C3) ADJ(A,B) ^ ADJ(C,B) ^ ¬ADJ(A,C) ^ CONDASSOC(A,C, S) ^ INSET(B,S) ! CAUSES(A,B)
C4) ADJ(A,B) ^ ADJ(C,B) ^ ¬ADJ(A,C) ^ CONDASSOC(A,C, S) ^ INSET(B,S) ! CAUSES(C,B)
C5) CAUSES(A,B) ^ ASSOC(A,C) ^ CONDINDEP(A,C, S) ^ INSET(B,S) ^ ADJ(B,C) ! CAUSES(B,C)
C6) CAUSES(A,B) ^ CAUSES(B,C) ^ ADJ(A,C) ! CAUSES(A,C)

Basic Joint Rules J1) CAUSES(A,B) ! ANC(A,B)
J2) ¬ANC(A,B) ! ¬CAUSES(A,B)
J3) ANC(A,B) ^ ANC(B,C) ! ANC(A,C)
J4) ANC(A,B) ^ ADJ(A,B) ! CAUSES(A,B)
J5) ADJ(A,B)^ADJ(B,C)^ASSOC(A,C)^CONDINDEP(A,C, S)^ INSET(B,S)^CAUSES(B,A)^¬ANC(C,A) ! CAUSES(B,C)

Ancestral Orientation A1) INDEP(A,B) ! ¬ANC(A,B)
A2) ANC(A,B) ! ¬ANC(B,A)
A3) INDEP(A,C) ^ CONDASSOC(A,C, S) ^ INSET(B,S) ^ HASSIZE(S, 1) ! ¬ANC(B,A)
A4) INDEP(A,C) ^ CONDASSOC(A,C, S) ^ INSET(B,S) ^ HASSIZE(S, 1) ! ¬ANC(B,C)
A5) ASSOC(A,C) ^ CONDINDEP(A,C, S) ^ INSET(B,S) ^ HASSIZE(S, 1) ^ ANC(B,C) ^ ANC(B,A) ! ¬ANC(A,C)
A6) ASSOC(A,C) ^ CONDINDEP(A,C, S) ^ INSET(B,S) ^ HASSIZE(S, 1) ^ ANC(A,B) ^ ANC(B,C) ! ANC(A,C)
A7) ASSOC(A,C) ^ CONDINDEP(A,C, S) ^ INSET(B,S) ^ HASSIZE(S, 1) ^ ANC(C,B) ^ ANC(B,A) ! ANC(C,A)
A8) CONDINDEP(A,C, S) ^ INSET(B,S) ^ ¬ANC(A,B) ^ HASSIZE(S, 1) ! ¬ANC(A,C)

Table 1: PSL rules for causal and ancestral structure inference.

To obtain an HL-MRF, we substitute variables appearing in
the first-order logic rules with constants from observations,
producing M ground rules. We observe truth values 2 [0, 1]
for a subset of the ground atoms, X and infer values for the
remaining unobserved ground atoms, Y. The ground rules
and their corresponding weights map to �r and wr. To de-
rive �r(y,x), the Lukasiewicz relaxation is applied to each
ground rule to derive a hinge penalty function over y for vio-
lating the rule. Thus, MAP inference minimizes the weighted
rule penalties to find the minimally violating joint assignment
for all the unobserved variables. PSL uses the consensus-
based ADMM algorithm to perform exact MAP inference.

4.2 CAUSPSL Model
CAUSPSL represents statistical tests, causal and ancestral re-
lations as predicates to form orientation constraints in a HL-
MRF using the rules shown in Table 1.

Predicates
The targets of joint probabilistic inference, Cij and Aij , are
represented with predicates CAUSES(A,B) and ANC(A,B).
We represent undirected edges UAB with ADJ(A,B).

We introduce ASSOC(A,B) and INDEP(A,B) to cap-
ture marginal association and independence, corresponding
to MAB . CONDASSOC(A,B, S) and CONDINDEP(A,B, S)
denote conditional association and independence, where S
will be substituted with all possible conditioning sets Zm.
These logical atoms correspond to the SAB. To obtain substi-
tutions for these predicates, we enumerate pairwise marginal
and conditional tests with all possible conditioning sets up
to a maximum size. We threshold p values from statistical
tests to determine whether independence statements are char-
acterized as ASSOC,CONDASSOC or INDEP,CONDINDEP.
We use 1 � p as truth values for CONDASSOC, ASSOC and
p for CONDINDEP, INDEP. Since adjacencies imply depen-
dence between variables, we obtain ADJ(A,B) by retaining
ASSOC(A,B) observations that are never conditionally in-
dependent. Finally, because orientation constraints require
membership checks in conditioning sets S, we use auxiliary

predicate INSET(C, S) to indicate that vertex C is in condi-
tioning set S.

LOCAL�(A,B) predicates denote evidence from source �
for causal, ancestral or undirected edge between vertices A
and B and correspond to variables L. Obtaining local evi-
dence is domain-specific, and in our experimental evaluation,
we show applications of both intervention-based and other
side information.

Soft Constraints
Table 1 shows the rules used in CAUSPSL. The causal ori-
entation rules (C1-C6) follow from the three sound and com-
plete PC rules [Spirtes and Glymour, 1991] and the ancestral
orientation rules (A1-A8) are derived from constraints used
in the SAT-based ancestral causal inference (ACI) algorithm
[Magliacane et al., 2016]. The basic joint rules (J1-J5) con-
nect ancestral and causal edge predictions through fundamen-
tal relationships between the structures introduced in Section
3. These multiple types of well-studied constraints propagate
consistency across predictions for CAUSPSL.

Causal Orientation Rules Rule C1 discourages causal
edges between vertices that are not adjacent. Rule C2 pe-
nalizes simple cycles between two vertices. The remaining
rules ensure that observed independences match those im-
plied by the graph through d-separation. Rules C3 and C4
correspond to the PC rule which orients chain Vi � Vj � Vk

as Vi ! Vj  Vk if conditioning on Vj breaks the inde-
pendence between Vi and Vk. Unlike in PC, in CAUSPSL,
Vj appears in multiple conditioning sets. The redundancy
recovers information when Vj is incorrectly missing from a
separating set. Rule C5 captures the PC rule that orients path
Vi ! Vj � Vk as Vi ! Vj ! Vk when Vi ! Vj is probable
and Vj induces conditional independence between Vi and Vk.
Rule C6 maps to the final PC rule, and if Vi ! Vj ! Vk

and Vi � Vk, orients Vi ! Vk to avoid a cycle. PC applies
these rules iteratively to fix edges whereas in CAUSPSL, the
rules induce dependencies between causal edges to encourage
parsimonious joint inferences.



Basic Joint Rules Rule J1 encodes that causal edges are
also ancestral by definition and rule J2 is its contrapositive.
Rule J3 encodes transitivity of ancestral edges, encouraging
consistency across predictions. Rule J4 infers causal edges
between probable ancestral edges that are adjacent. These
four rules exactly encode the relationship between causal and
ancestral graphs, and suffice to recover structure under per-
fect inputs. However, in noisy settings, we gain robustness
by including additional joint constraints such as rule J5 and
ancestral rules below to recover consistent explanations from
conflicting inputs. Rule J5 orients chain Vi � Vj � Vk as a
diverging path Vi  Vj ! Vk when Vk is not likely an ances-
tor of Vi. Without ancestral constraints, statistical tests alone
cannot distinguish between diverging and linear paths.

Ancestral Orientation Rules Ancestral rules A1 and A2
are analogous to their causal orientation counterparts. Rules
A3 to A7 follow from lemmas relating minimal conditional
(in)dependence to the existence or absence of ancestral edges
[Magliacane et al., 2016; Claassen and Heskes, 2011]. Min-
imal conditional independence is defined as (X ?? Y |W [
Z) ^ ¬(X ?? Y |W) and corresponds to ancestral edge exis-
tence between Z andX or Y . Similarly, minimal conditional
dependence is ¬(X ?? Y |W [ Z) ^ (X ?? Y |W) and de-
notes ancestral edge absence between Z, and X and Y . For
compactness, we encode minimal conditional (in)dependence
by only comparing marginal associations to conditional tests
of set size one. We model ancestral edge existence with three
rules, A5 to A7, for each path orientation case: 1)  Z !
where Z is diverging, 2) Z  where Z is along linear path
from X to Y , and 3) ! Z ! where Z is along a linear path
in the opposite direction. Rule A8 translates the first novel
ancestral rule introduced in ACI [Magliacane et al., 2016].
Rules A5 to A8 introduce dependencies across ancestral edge
predictions, requiring collective inferences.

5 Experimental Evaluation

Our evaluation demonstrates three advantages of our method:
the flexibility of combining multiple structural constraints,
scalability for large causal networks, and robustness to noise.1
We evaluate our model on standard synthetic data [Hytti-
nen et al., 2014; 2013; Magliacane et al., 2016] and two
real-world biological datasets. We compare against PC
[Spirtes and Glymour, 1991], the canonical constraint-based
CSD method and Max-Min Hill Climbing (MMHC), a score-
based hybrid approach that uses the max-min parents children
(MMPC) graph pruning algorithm and has achieved state-
of-the-art performance in multiple BN structure learning do-
mains [Tsamardinos et al., 2006]. We also include compar-
isons against a bootstrapped variant of PC commonly used to
improve robustness [Ramsey, 2010; Magliacane et al., 2016].
In our experiments, scalability prevents us from comparing
against the SAT-based CSD approach [Hyttinen et al., 2014],
which becomes prohibitively expensive for domains larger
than eight variables.

1Code and data at: bitbucket.org/linqs/causpsl.

5.1 Datasets
We validate our approach using three datasets: (1) synthetic
linear acyclic models with Gaussian noise; (2) simulated gene
expression from the DREAM4 challenge [Marbach et al.,
2010; Prill et al., 2010]; (3) perturbation experiments on
protein-signaling pathways [Sachs et al., 2005].

Synthetic data
To generate synthetic observations, as in previous work [Hyt-
tinen et al., 2014; Magliacane et al., 2016; Hyttinen et al.,
2013], we randomly generate 100 ground truth DAGs over
15 variables with edge probability of 0.2 using the pcalg
package. We sample 500 observations from each using a lin-
ear Gaussian model. CSD methods typically evaluate on this
low-noise synthetic setting which serves as a contrast to the
more realistic noisy settings described below.

DREAM4 Challenge
Our second dataset from the DREAM4 challenge consists
of a gold-standard yeast transcriptional regulatory network
and simulated gene expression measurements [Marbach et
al., 2010; Prill et al., 2010]. For cross validation, we sam-
ple 10 subnetworks of sizes 20 and 30, denoted DREAM20
and DREAM30, with low Jaccard overlap. The real-valued
gene expression measurements are simulated from differen-
tial equation models of the system at 210 time points. We
perform independence tests on the measurements which yield
numerous spurious correlations. Additionally, we include
domain knowledge of undirected protein-protein interaction
(PPI) edges modeled by ANC(A,B) ^ LOCALPPI(A,B) !
CAUSES(A,B).

Protein Signaling Pathway in Human T-Cells
Our third dataset comes from a protein-signaling pathway in
human T-cells with flow cytometry measurements [Sachs et
al., 2005]. The discovered protein signaling network has been
biologically validated and used extensively as a benchmark
for evaluating CSD algorithms [Triantafillou and Tsamardi-
nos, 2015; Magliacane et al., 2016; Mooij and Heskes, 2013;
Eaton and Murphy, 2007; Peters et al., 2016]. The vari-
ables are abundance levels of 11 molecules, measured across
eight experimental conditions with 700 to 900 observations
each. The first condition activates the pathway and is con-
sidered by previous work as the steady-state observed data.
The remaining conditions are interventions on seven out of
11 proteins. Following prior work, we consider statistically
significant (↵ = 0.05) post-interventional changes as evi-
dence of an ancestral relation between the intervention target
and effected protein [Magliacane et al., 2016; Sachs et al.,
2005]. We model this intervention-based local evidence as
LOCALINTERVENTION(A,B) ! ANCESTOR(A,B).

5.2 Experimental Setup
To evaluate the result quality across methods and robustness
to noise, we compute F1 scores of predicted causal edges
against the ground truth edges from each dataset. To calculate
F1 in DREAM and synthetic settings, rounding thresholds
on the continuous outputs of CAUSPSL and Bootstrapped
PC are selected using cross-validation with 10 and 100 folds,
respectively. In the Sachs setting where the small network



Dataset PC MMHC Bootstrapped PC CAUSPSL-PC CAUSPSL-JOINT CAUSPSL-ANC CAUSPSL

Synth 0.74 ± 0.09 0.76 ± 0.12 0.72 ± 0.11 0.87 ± 0.06 0.87 ± 0.06 0.86 ± 0.06 0.87 ± 0.06
DREAM20 0.15 ± 0.04 0.17 ± 0.05 0.18 ± 0.05 0.17 ± 0.05 0.18 ± 0.05 0.19 ± 0.05 0.20 ± 0.05
DREAM30 0.16 ± 0.03 0.2 ± 0.05 0.16 ± 0.04 0.22 ± 0.03 0.23 ± 0.03 0.24 ± 0.03 0.22 ± 0.03

Table 2: Average F1 scores of methods across datasets. We show how each CAUSPSL component contributes to performance.

size prevents sampling of subnetworks for cross-validation, a
standard 0.5 threshold is used. For independence tests in all
settings, we use linear and partial correlations with Fisher’s
Z transformation for continuous data. We run both PC vari-
ants and MMHC with the pcalg and bnlearn R pack-
ages, respectively. CAUSPSL uses ADMM inference imple-
mented in PSL [Bach et al., 2017]. Without a priori prefer-
ence for rules, we set all CAUSPSL rule weights to 5.0 ex-
cept for causal and ancestral orientation rules 2 which are set
to 10.0, since they encode strong asymmetry constraints. For
both PC variants and CAUSPSL, we condition on sets up to
size two for DREAM20 and up to size one for DREAM30.
The MMPC phase of MMHC performs tests on sets up to
size |V | � 2. For Bootstrapped PC, we follow the boot-
strapping procedure used by [Magliacane et al., 2016] and
randomly sample 50% of the observations to include in 100
iteration of PC and average the predictions across multiple
runs. In DREAM and synthetic settings, ↵ thresholds on in-
dependence tests for all methods are also selected within the
cross-validation framework. Baselines use ↵ to prune undi-
rected edges while CAUSPSL uses separate ↵ values to cate-
gorize association tests and identify ADJ. Since ↵ is typically
small, we rescale truth values p for CONDINDEP, INDEP by
3
p
p to reduce right-skewness of values. For Sachs, we use

↵ = 0.05 for all methods, which has been reported to have
the best performance in prior work. We rescale p-values of
the post-interventional changes with the sigmoid function to
prevent overconfident local evidence.

5.3 Cross-validation Study of Modeling
Components

Our first evaluation investigates how each type of con-
straint in CAUSPSL bolsters performance. CAUSPSL has
three critical modeling components that contribute in dif-
fering degrees to improvements in CSD: 1) CAUSPSL-PC;
2) CAUSPSL-JOINT; and 3) CAUSPSL-ANC. Using only
the causal edge orientation rules, CAUSPSL-PC upgrades
PC with multiple independence tests and collective infer-
ences. The CAUSPSL-JOINT model combines CAUSPSL-
PC and basic joint rules for longer-range structural consis-
tency but excludes full ancestral modeling. The CAUSPSL-
ANC model extends CAUSPSL-JOINT with ancestral orien-
tation rules. Finally, we distinguish between CAUSPSL-
ANC and the complete CAUSPSL model, which includes the
novel ACI constraint [Magliacane et al., 2016]. To under-
stand the factors affecting result quality, we perform cross-
validation across the model variants of CAUSPSL and com-
pare against both PC variants and MMHC in the DREAM4
and synthetic settings. Table 2 shows average F1 scores
across all methods and datasets.

CAUSPSL-PC alone outperforms PC in all settings, with
significant gains over both PC variants in two. These im-
provements suggest that collective inference and multiple sta-
tistical tests without pruning alone provide robustness bene-
fits, even over bootstrapping the PC algorithm. CAUSPSL-
JOINT outperforms CAUSPSL-PC in two of three settings,
suggesting that modeling even transitivity and short-range
dependencies between ancestral and causal structures im-
proves performance. CAUSPSL-ANC and CAUSPSL fur-
ther gain over CAUSPSL-JOINT in two of three settings.
CAUSPSL achieves the best performance in DREAM20 with
significant gains over MMHC and PC. CAUSPSL-ANC out-
performs all methods in DREAM30 with gains of up to 50%
over both PC variants and 20% over MMHC. Our best per-
forming PSL models significantly outperform multiple base-
lines using a paired t-test on DREAM, showing the benefit of
more sophisticated ancestral-causal constraints under noisy
experimental conditions, where spurious correlations domi-
nate. On straightforward linear Gaussian data, all modeling
variants of CAUSPSL significantly outperform both PC vari-
ants and MMHCwith F1 score improvements of up to 17.5%.
However, in this synthetic setting, simpler CAUSPSL-PC and
CAUSPSL-JOINT models suffice for good performance. The
contrasting result highlights the importance of evaluating
CSD methods on more realistic settings.

5.4 Comparisons in Real-World Sachs Setting
In the real-world Sachs setting, we compare the F1

scores of causal edge predictions by CAUSPSL-ANC and
CAUSPSL against those of MMHC, the best performing
baseline method. Additionally, we compare our ancestral
edge predictions to ACI results reported by [Magliacane et
al., 2016]. CAUSPSL-ANC improves over MMHC from
0.307 to 0.32 F1 while CAUSPSL performs as well as
MMHC. For ancestral inference, ACI achieves a reported F1

score of 0.38. CAUSPSL-ANC gains over ACI with an F1 of
0.43 and CAUSPSL also improves over ACI with a score of
0.4.

5.5 Scalability
Our second evaluation focuses on the scalability of our ap-
proach. PC and MMHC scale by iteratively pruning adjacen-
cies with statistical tests, potentially sacrificing result quality
despite permitting larger conditioning set sizes. More flexi-
ble SAT-based methods enumerate all statistical tests but can-
not scale to large networks. For example, running the SAT
approach proposed by [Hyttinen et al., 2014] with nine vari-
ables and a conditioning set size of one required over 40 min-
utes [Magliacane et al., 2016]. In contrast, CAUSPSL uses
all statistical tests without pruning and requires less than a



D Size PC MMHC PSL;C=1 PSL;C=2
CI Inf CI Inf

Sy
nt
h

10 0.02 0.01 0.07 0.19 0.35 0.23
20 0.06 0.03 0.93 0.65 19.7 1.11
30 0.19 0.15 4.94 1.55 684 8.91
50 0.44 0.48 65.4 6.99 440k 159

D
R
EA

M
4 10 0.03 0.02 0.06 0.09 0.3 0.19

20 0.08 0.06 0.73 0.37 14.3 3.12
30 0.22 0.15 3.76 1.5 433 30.2
50 0.41 0.49 57.1 9.96 437k 425

Table 3: Running times in seconds for obtaining conditional inde-
pendence tests (CI) and inference (Inf). CAUSPSL scales to large
networks using multiple tests with no pruning.

second for 10 variables, overcoming the inference scalability
bottleneck. To evaluate running times, we generate synthetic
linear Gaussian networks and sample DREAM4 subnetworks
of increasing size. Our method computes all possible statis-
tical tests up to conditioning set size denoted by C and the
baseline methods prune conditioning sets through indepen-
dence. In Table 3, we present running times for all methods,
splitting up our approach into conditional independence test-
ing (CI) and inference (Inf). We show that CAUSPSL can
efficiently infer causal graphs while using more information
than competing methods.
The running time depends on the network size n and the

maximum conditioning set size C. The results indicate that
the dominant factor in the running time of our method is
enumerating all statistical tests rather than inference. For
the largest networks (n = 50, C = 1), computing sta-
tistical tests requires approximately a minute, while infer-
ence only requires 7 to 10 seconds. Larger conditioning
sets impact running time, requiring up to 10 minutes when
n = 30, C = 2. However, Table 2 shows that by enumer-
ating statistical tests, CAUSPSL outperforms pruning-based
methods with only C = 1. SAT-based methods also enjoy
this benefit [Magliacane et al., 2016] but require expensive
inference. In contrast, CAUSPSL completes inference within
10 seconds for 30- and 50-variable networks when C = 1. In
further study, CAUSPSL completed inference for a DREAM4
network with 100 variables in 27 minutes, scaling to an or-
der of greater magnitude than SAT-based methods. In future
work, statistical tests can be parallelized to admit larger C.

5.6 Robustness to Noisy Evidence
In our final evaluation, we validate the robustness of
CAUSPSL to imperfect evidence. CAUSPSL incorporates
real-valued noisy signals within joint inference, exploiting
global structural constraints to smooth local errors. In con-
trast, MMHC and PC must discretize noisy evidence and in-
corporate domain knowledge as fixed edges or non-edges.
To evaluate the robustness of CSD methods on DREAM30

subnetworks, we simulate noise with a new local ancestral
signal drawn by fixing a Bernoulli error rate and sampling
real-valued evidence from its conjugate, a � distribution. We
set a Bernoulli error rate of 1 � p. For each pair of vertices,
with probability p, true ancestral edges are sampled from

Figure 1: Average F1 score vs. synthetic evidence noise rate on
DREAM4 (n = 30, C = 1). CAUSPSL remains robust as noise
rate increases.

�(8, 2), and true non-edges are sampled from �(2, 8) which
are peaked at high-confidence and accurate soft truth values.
With probability 1 � p, incorrect values are sampled from
�(2, 5) and �(5, 2) for edges and non-edges, respectively.
For CAUSPSL, we incorporate this new signal using the lo-
cal ancestral evidence rule shown in the Sachs setting. For
MMHC and PC, synthetic values from this signal of < 0.5
are treated as fixed causal non-edges, representing the hard
version of joint rule J3 in Table 1. Synthetic values � 0.5
are intersected with PPI edges to obtain fixed causal edges,
simulating the discretized version of the PPI rule given in the
DREAM setting.
In Fig. 1, we compare average F1 scores across all modi-

fied methods as the Bernoulli error rate of the synthetic sig-
nal increases from 0.0 to 0.9. CAUSPSL remains robust as
the error increases beyond 0.3 while PC and MMHC steadily
degrade in performance. When the signal is near-perfect with
error  0.2, the baselines receive select correct causal edges
while CAUSPSL fuses the signal with imperfect statistical
tests. However, analysis of intervention-based evidence in
the Sachs setting shows that real-world local signals are in
the � 0.5 noise regime, where CAUSPSL excels over com-
pared methods.

6 Discussion and Conclusion
We propose a probabilistic model for the CSD problem that
achieves scalability despite using multiple independence tests
and global structural constraints. Our method is flexible, fus-
ing noisy ancestral and causal signals with side information
from PPI networks and interventions. Our experimental high-
lights include: 1) scaling up to networks with hundreds of
variables; 2) achieving significant performance gains over
constraint- and score-based baselines despite many spurious
correlations; and 3) showing robustness to increasingly noisy
local signals. In future work, we will extend our approach
to support latent variables and perform approximate marginal
inference to score possible causal and ancestral edges.
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