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soluble aggregate and fibril structures are spontaneously yielded [4,9, 
39–44]. Eventually, aggregation plateaus were observed under both 
temperatures. The sample aggregating at 37 ◦C undergoes a more com
plete and stable aggregation, while the 4 ◦C sample in dynamic equi
librium has much more free-floating monomer available in solution. 

3. Conclusion 

This work demonstrates the proof-of-concept of a biological nano
pore as a dynamic peptide aggregation biosensor at the single-molecule 
level. AD symptoms are thought to begin early in one’s life and progress 
as the individual senesces – hence, understanding early aggregation of 
Aβ peptides that correlate with the state of AD development is highly 
desirable. The benefit of using single molecule biosensors like the αHL 
nanopore lies in its ultra-sensitivity to conformational changes of ana
lytes. Due to the simplicity, robustness, reproducibility, and cost- 
efficiency in system configuration, as well as similarity of cell chemis
try in the sensing environment, nanopore biosensors open up new pos
sibilities for in-depth studies of Aβ aggregation that other common 
analytical chemistry technologies like ELISA, mass spectrometry, and 
HPLC may miss. However, for future clinical applications, immunopre
cipitation is necessary to separate Aβ peptides and aggregates from 
clinical specimens, as nanopores only have moderate selectivity and 
may foul due to other biomolecules in the specimen. Our future work 
involves: (1) expanding the current work towards utilizing the nanopore 
system as a drug screening device to study influences of small molecule 
drugs to the aggregation dynamics for possible AD therapeutics; (2) 
detecting low concentration AD biomarkers that can be extracted from 
common body fluids like blood, urine, and cerebrospinal fluid to inform 
early diagnosis. 
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