Don’t Let RPCs Constrain Your API

Daniel Bittman Robert Soulé

UC Santa Cruz Yale University
Pankaj Mehra Matthew Boisvert
IEEE Member UC Santa Cruz
ABSTRACT

As data becomes increasingly distributed, traditional RPC
and data serialization limits performance, result in rigidity,
and hamper expressivity. We believe that technology trends
including high-density persistent memory, high-speed net-
works, and programmable switches make this the right time
to revisit prior research on distributed shared memory, global
addressing, and content-based networking. Our vision com-
bines the code mobility of RPC with first-class data refer-
ences in a global address space by co-designing the OS and
the network around pervasive data identity. We have initial
results showing the promise of the proposed co-design.

CCS CONCEPTS

« Software and its engineering — Operating systems;
Distributed systems organizing principles; Abstraction,
modeling and modularity; - Hardware — Memory and dense
storage; Networking hardware; « Information systems —
Storage class memory.

ACM Reference Format:

Daniel Bittman, Robert Soulé, Ethan L. Miller, Vishal Shrivastav,
Pankaj Mehra, Matthew Boisvert, Avi Silberschatz, and Peter Alvaro.
2021. Don’t Let RPCs Constrain Your APL In The Twentieth ACM
Workshop on Hot Topics in Networks (HotNets °21), November 10-12,
2021, Virtual Event, United Kingdom. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3484266.3487389

1 INTRODUCTION

Modular design is the bedrock of modern software develop-
ment [24]. It improves programmer productivity by break-
ing design problems into smaller, re-usable parts that hide
implementation details and are more easily debugged. In dis-
tributed systems, module composition is often realized via

(OO

This work is licensed under a Creative Commons Attribution International 4.0 License.

HotNets "21, November 10-12, 2021, Virtual Event, United Kingdom
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9087-3/21/11.
https://doi.org/lo.l145/3484266.3487389

192

Ethan L. Miller Vishal Shrivastav
UC Santa Cruz Purdue University
Pure Storage
Avi Silberschatz Peter Alvaro

Yale University UC Santa Cruz

remote procedure calls (RPC). Decoupling components with
RPCs allows them to scale independently—in principle, devel-
opers need only agree on a common interface and message
format to leverage the benefits of software decoupling. Yet,
in reality, RPCs enforce strict interface constraints and often
trade adaptability (narrow interfaces are harder to evolve)
for simplicity (narrow interfaces limit cross-component in-
teractions), ultimately hampering the goal of scalability.
The chief problem with RPCs is that they are fundamen-
tally location- and compute-centric: RPCs force a program-
mer to decouple an application by explicitly separating the
computational endpoint or location where a function is in-
voked from the location where the function executes. As a
consequence, they are well-suited to a relatively narrow set
of use cases in which function arguments (which flow from
invoker to executor) and returns (which flow back) must be
serialized and sent in their entirety, and hence are small, and
in which reference data must be located on the executor.
Many scenarios would benefit from decoupling but are
simply not feasible using existing RPC mechanisms. For ex-
ample, the invoking endpoint may have abundant data but
limited compute, the invoker may wish to traverse a remote
data structure, or the invoker may wish to refer to data that
they lack privileges to read. In Section 2, we discuss how the
increasingly important problem of distributed inference for
edge devices can suffer from all of these problems. Rapidly
growing model sizes, privacy concerns, and the proliferation
of last-mile model customizations all exacerbate the issue.
To mitigate the problem of location-centric RPCs, data cen-
ter operators often deploy discovery services, load balancers,
or other forms of middleware [9, 12, 20, 28, 31]. These extra
indirection layers make the execution endpoint abstract, but
at the cost of increased latency and added system complex-
ity. Moreover, we argue that such systems do not address
the fundamental problem, which is we need a more general
mechanism for module composition in distributed systems.
This mechanism must be more flexible than RPCs, but
not at the cost of simplicity or performance. Satisfying these
conflicting goals requires a shift in our programming models,
from location-centric abstractions such as RPC to data-centric
abstractions more akin to distributed shared memory (DSM).
These data-centric abstractions can free programmers from


https://doi.org/10.1145/3484266.3487389
https://doi.org/10.1145/3484266.3487389
https://creativecommons.org/licenses/by/4.0/

HotNets "21, November 10-12, 2021, Virtual Event, United Kingdom

infrastructure-level concerns such as explicit data movement,
caching, prefetching, etc.

There has been renewed interest in DSM, due to technol-
ogy trends such as 100 Gig NICs, programmable switches
with throughputs upwards of 10Tb/s, and high-density, byte-
addressable, persistent memory. Reconsidering DSM designs
at this time is not, in our view, controversial. After all, while
referencing remote memory incurs 100X higher latency than
accessing local DRAM [14, 15, 23], it is 100X faster than
accessing local SSD[13, 23]. DSM allows a comparatively
unconstrained model for data sharing, easily supporting pat-
terns RPC does not. However, DSM is insufficient to subsume
RPC, since the DSM model has no notion of code mobility.

We argue for a clean-slate design that combines the code
mobility of RPC with the expressiveness of DSM-like so-
lutions. Our design wraps all code and data in the system
within a single global address space, and makes data refer-
ences a first-class abstraction. This allows applications to
invoke functions without the inefficient call-by-value seman-
tics of RPC. At the network level, our design advocates for a
convergence of memory and network protocols. We forward
and route based on explicit identifiers that correspond to ob-
ject addresses. To realize this, we co-design the network and
OS to share a common language for data and code references.

We have begun prototyping by combining the Twizzler
OS [4], which is designed for global references, with recent
work on Packet Subscriptions [17] to facilitate network-
understood data identity. We report early results in Section 4.

2 MOTIVATING EXAMPLE

To illustrate the poor fit of RPC as a decoupling mechanism
for some classes of applications, consider an example from
the distributed inference problem for edge devices. Here,
sensors in mobile devices with modest processing and stor-
age resources (e.g. mobile phones or autonomous vehicles)
are the source of observations used both for training and
inference. Recent work has focused on decoupling and dis-
tributing machine learning training across edge and cloud re-
sources to minimize client-perceived latency, provide privacy
guarantees, and maximize server-side throughput [19, 30].
In this example, we focus on the inference problem that
arises in response to device input. Ideally, small models
trained in the cloud (via a methodology such as federated
learning) are periodically shipped in their entirety to edge
devices, which perform local inference. Several trends are
upsetting this model. The first is the aggressive growth—
roughly 10x/year—of models, in particular language models.
In 2018, the largest machine translation models at Google
were 8.3 billion parameters [29]; a mere two years later, the
largest models exceeded 800 billion parameters! Inference on
sparse giant models which far exceed device resources must

193

D. Bittman et al.

be performed server side, where model serving presents
a substantial throughput bottleneck. This is further com-
pounded by last-mile model customization for end users,
in which inference tasks for different devices must be per-
formed on slightly different models. As much as 70% of the
processing time [8] for these model-serving applications is
spent deserializing and loading the sparse personalized mod-
els into main memory at request time. Finally, users prefer
local models remain local due to confidentiality concerns.
Consider a concrete example that is bedeviled by all of
these complexities at once. A mobile device, Alice, in pos-
session of a locally-trained model and an activation, wishes
to perform a classification task that requires a partition of
a sparse global model, located on cloud resource Bob. Fur-
ther, imagine that Alice cannot perform the inference locally,
either because the global model fragment is too large or be-
cause she has inadequate local compute. Finally, imagine that
Bob is overloaded, while a separate cloud resource, Carol, is
mostly idle. Figure 1, also discussed in Section 3, shows this.
An ideal solution will minimize the latency Alice perceives
and maximize the throughput offered by both Bob and Carol,
all while satisfying capacity constraints of each. It is easy to
see that while this application requires decoupling, RPC is
the wrong abstraction in terms of performance, expressivity,
and flexibility. Data movement—whether from storage to
DRAM on Bob or from Bob to Carol—requires costly serial-
ization. If moving the data to Carol and performing inference
there is the optimal solution, the application logic on Alice
must orchestrate this infrastructure-level concern, either by
pushing the data through Alice (Figure 1.1) or having the
RPC executed on Carol address Bob directly and pull (Fig-
ure 1.2), adding complexity. Further, heterogeneity among
end devices makes the “hard-coded” data movement strategy
brittle: a subsequent classification request from client device
Dave will be forced to run inference on the server side even
if it is equipped with the resources to do the work locally.
A mechanism like RPC, in which movement of computa-
tion is explicit and movement of data implicit and limited,
is a poor fit for any such use case, which we will general-
ize in Section 3. We need a flexible mechanism in which
both code and data are mobile, but in which the application
programmer need not make the movement of either explicit.
Patterns of RPC. While RPC is a poor fit here, there are
applications for which RPC provides adequate decoupling.
RPC shines in situations where decoupling in the application
meshes well with having little data movement, where an
RPC endpoint either fronts large data, large compute relative
to the invoker, or some combination, with small arguments
and return values. But call-by-small-value is a significant
constraint, and there are many classes of applications that
do not fit. We cannot paper over this problem, either. Because
RPC is disconnected from a global notion of data identity,



Don’t Let RPCs Constrain Your API

we either cannot do call-by-reference (because references
must cross machine boundaries) or we must shoehorn this
functionality into the application logic and the RPC’s APIs,
resulting in brittle, repetitive, complex code to deal with
the coordination, caching, and prefetching that comes from
distributed data and global references when data moves.

3 OUR VISION

Our core vision is to combine the code mobility of RPC with
the flexibility offered by DSM-like models in a global ad-
dress space with global references as a first-class abstraction.
By imbuing data with fundamental identity and pushing an
understanding of data references into the OS and the net-
work, we can leverage aspects of content-based networks
to reduce the coordination typically required in a shared,
distributed address space. The programmer is then free to
express their computation through references to code to run
on some references to data, instead of needing to serialize
and copy values for arguments. Today, developers are often
forced to implement functionality such as caching, prefetch-
ing, and manual data movement in preparation for some
operation. With data references as a common language be-
tween the OS, the network, and applications, we can move
this infrastructure-level functionality out of the application
and back into the infrastructure where it belongs.

3.1 Computation and References

First-class support for call-by-reference instead of by-value
allows an invoker to refer to data that they do not have locally.
This allows greater freedom in the interface design between
decoupled components. Figure 1 shows possible solutions to
a problem like the example in Section 2, wherein an opera-
tion is scheduled to run on Carol using data currently located
on Bob. Part (1) shows the naive approach where the invoker
copies the data locally (step i) before forwarding it to Carol
(step ii) and eventually invoking the intended computation
(step iii). In an attempt to alleviate an unnecessary copy, we
could implement an additional RPC on Carol that allows it
to copy data over from Bob itself (steps i and ii in part (2))
before we finally invoke our computation. Both (1) and (2) re-
quire additional logic on Alice to work—the programmer had
to perform the infrastructure level task of data movement.
Fundamentally, these issues arise because the system’s core
abstraction is location-based—the programmer is forced to
manually orchestrate machines or resort to costly copying.

Figure 1 part (3) is closer to our vision. The first step is
for the computation to move to Carol instead of first moving
data in preparation. This may seem like a minor point, but it
is not—by specifying up-front the computation we want to
perform, we open the door for lower-level optimization to
examine our requests before we go around manually moving

194

HotNets "21, November 10-12, 2021, Virtual Event, United Kingdom

(1) manual copy
Figure 1: Rendezvous of data and compute. Solid red

arrows are additional infrastructure-level tasks that
are not fundamental to the requested computation.

(2) manual copy, optimized (3) automatic copy

data. In fact, in our model the programmer would not be
directly asking Carol to perform the computation; instead
the placement decision would be made by the system. Once
the code starts executing, we can then move data on de-
mand instead of having to move the entire object. Of course,
the implementation is significant—without a global address
space like the one we are proposing, implementing (3) would
require brittle code that either tightly couples Carol and Bob
or forces Alice to participate in the data movement by asking
it to provide a location-based reference to the data on Bob'.

As discussed previously, the “good” use case of RPC is
one where code and data co-location has already been pre-
ordained by initial decoupling (after which it is rigid) and
data transfer is minimal—often manifesting as something
like a fronted key-value store service. This restricts code
mobility (as it accounts for no change to decoupling later),
and requires a myriad of RPC calls to implement all the ways
a programmer might wish to view data (one need only look
at the many S3 APIs available as an example). If we limit
ourselves to traditional RPC, any situation (such as the one
discussed in Section 2) that does not fit this pattern either
results in expensive data movement and complex application
logic, or it must be dismissed altogether and the application
redesigned. By allowing applications to pass data references
instead of just values, and by making data references a first-
class abstraction in the OS and the network, applications
become much simpler to express efficiently, even for what
would be considered pathological cases for RPC.

Serialization. In traditional host- and process-centric sys-
tems, virtual memory spaces are private to a program in-
stance and thus addresses are too. As a result, we serialize
any data that passes between hosts (and sometimes even
processes) because memory addresses on one host do not
translate to any other host. However, in our model, pointers
refer to data within the global address space, and thus a data
structure containing pointers can be copied from one host
to another with merely a byte-level copy, alleviating 100% of
the loading overhead discussed in Section 2 and leaving only
data transfer costs, which are fundamental. These transfer
costs, however, can now be included in cost-models when

1 Aside from the complexity, this also opens up TOCTTOU errors.



HotNets "21, November 10-12, 2021, Virtual Event, United Kingdom

making placement decisions more easily, as they do not need
to take the additional loading time into account.

The vision we have proposed here is, to be sure, non trivial.
We will need to build it atop a number of new services,
protocols, and low-level OS support. In the rest of this section,
we will discuss how we plan to realize our goals through
designs for reducing coordination and pushing identity and
references into the OS and the network.

Global Addressing. Our primary goal with introducing a
global address space is to reduce coordination. The idea of
a single, large, and sparse address space is not new—single
address space OSes have existed for some time [7, 10]. How-
ever, while the jump to 64 bit addresses was significant in
the 90’s, it was still insufficient to realize a distributed single
address space [3]. Instead, we are extending Twizzler [4],
which is designed around pointers that are invariant of local
contexts like processors and hosts. Thus it has a system-level
understanding of data references—precisely the abstraction
we wish to push into the network for a global address space.

Instead of providing a small 64 bit address space or a
type of host:address DSM-style addressing scheme, we
will expose a 128 bit object identifier space, where objects
are flat regions of memory that can be offset into. Objects
act like pools of memory where smaller data structures can
be placed, with references being encoded efficiently (see
below) to either data in the same, or another, object. Thus
data structures can be encoded in a machine- and process-
independent format; in Twizzler, this facilitates orthogonal
persistence, while we plan to use this feature for cheap data
movement and call-by-reference across machine boundaries.

Pointers in Twizzler are encoded efficiently, such that the
pointer itself takes up only 64 bits. This is done by having
a separate table in each object, at a known location in the
object, contain a list of external object IDs that the object
has references to. A pointer encodes an index into this table
along with an offset into the object, forming a 64 bit pointer
that nonetheless references data in a 128 bit address space.
This scheme has numerous benefits, and more details are
available in the original paper [4]. One benefit for our model
is that this table offers a translucent view into application
semantics by way of a reachability graph for each object.
This graph can be used by the system to perform prefetching
based on data identity and actual reachability instead of some
proxy for identity (e.g., adjacency, as is used today).

The advantage of a large object ID space is reduced coor-
dination. A space of 128 bits does not require a centralized
arbiter to hand out new IDs when creating objects. Instead,
programs can allocate new objects through numerous meth-
ods. Currently, Twizzler allocates object IDs in a flat names-
pace using secure random numbers, which meets our needs
in that the chance of collision is vanishingly small.

195

D. Bittman et al.

3.2 Pushing Identity Into the Network

To realize this vision, the network needs to evolve towards
a convergence between memory and network protocols. In
particular, memory protocols will be packetized and routed.
Note that this has already happened in shared-memory ma-
chines, such as the SGI UltraViolet [25, 26], where cache co-
herence protocols need to be adapted to the shared-memory
architecture. More generally, we see beginnings of the con-
vergence of coherent on-chip networks and bus standards.

Viewed from a distance, both existing networks and single-
server memory buses share two fundamental abstractions: a
small vocabulary of operations that can be performed, and
a notion of identity that characterizes the target of the op-
erations. In a single-server memory bus, the operations are
loads and stores, and the unit of identity is physical mem-
ory words. In existing IP-based networks the operations are
sending a payload (for datagram communication) or estab-
lishing a session and then reading and writing a bytestream
(for stream communication), while the only identity is the
coarse-grained notion of an address, which identifies a host.

In our view, the network and the memory bus should
converge to a common set of operations and concept of
identity. Since we provide a global address space for data, the
network can expose a more bus-like interface by including
loads and stores in its vocabulary. However, falling back to
a host:address format that allows the network to route
as it did before brings back the coordination spectre we
wish to avoid, hence the network must participate in the
understanding of references in a global address space. Thus,
we plan to implement identity in the network with objects
and IDs. Pointers, then, can be interpreted by the network
layer as well as the OS and used for routing operations to
endpoints that hold object data.

In the absence of cache coherence, memory messages are
fairly straightforward. There are a handful of message types,
consisting of requests and replies for read or write opera-
tions, followed by an address, and an optional payload with
data, where payload size is usually a cache line [11]. Cache
coherence requires additional message types, e.g., to ensure
exclusive access to data, upgrade access type, invalidate data,
etc. An example of a fairly minimal, modern memory proto-
col with cache coherence is TileLink [1], which has publicly
available implementations available for RISC-V cores.

A naive approach to networking these messages would be
to encapsulate them in an existing transport protocol (e.g.,
TCP). A less bloated approach would be to put them into
Ethernet frames and perform Layer 2 routing. However, if
we need reliable delivery, then Ethernet alone is not suffi-
cient, as it lacks a link-layer retry. Yet even Ethernet alone
is likely too much overhead, as it requires a mapping from
address identifier to MAC address. We argue that there will



Don’t Let RPCs Constrain Your API

need to be a new, light-weight form of reliable transmis-
sion, separated from the other features provided by TCP (e.g.,
slow start). Additionally, existing transport protocols offer a
fundamentally location-based abstraction. Layering address-
based routing atop transport protocols requires intermediate
name resolution steps and/or additional middleware, both of
which increase operational cost while harming performance.
Instead, our vision includes routing directly on references.

In many respects, this protocol is similar to prior work on
content-based networking 2, 6]. Our approach differs from
that prior work in that we are not proposing to redesign
the Internet. Rather, we plan to leverage high-speed pro-
grammable network devices (e.g., Intel’s Tofino) to directly
route on explicit identifiers, side-stepping the issues of cus-
tom hardware faced by other systems that routed on memory
messages (e.g., the Stanford FLASH Multiprocessor [21])

As an initial exploration into feasibility, we have proto-
typed this design using Packet Subscriptions [17], which al-
lows for pub/sub-style communication based on user-defined
packet formats. The forwarding rules generated by Packet
Subscriptions are installed in a P4-defined forwarding pipeline
on an Intel Tofino-based switch. With 64-bit ID fields, we
could store ~1.8M exact entries and with 128-bit IDs, we
could fit ~850K. To scale to larger deployments, we will
explore hierarchical identifier overlay schemes.

4 INITIAL RESULTS

To investigate the feasibility of a network and OS co-design
to implement a global object space, we implemented a NIC
driver on Twizzler for use in emulation and used Mininet [22]
to connect three Twizzler VMs to four interconnected switches
that we programmed with P4 [5], where one VM drove ac-
cesses to objects and the other two responded. Our goal was
to determine the overhead of the software-defined object ID
routing in our design and to explore the number of round
trips as objects move through the network. These experi-
ments were also performed to explore tradeoffs in the design
space of these protocols, both in the OS and in the network.

While our eventual goal is to target environments like
the ones in Section 2, our initial exploration targets a more
modest rack or row scale deployment of servers, to provide
an environment in which we can emulate more complex ones
if necessary. Thus, our initial experiments are targeted for
this interconnected environment. In the future, we plan to
continue our investigation more broadly, and will consider
overlay networks to layer on WAN routing. We performed
experiments in emulation with Mininet on Ubuntu 16.04 on
an Intel Xeon Gold 5218 (emulation affected timings).

Our experiments model discovery: i.e., how the network
learns the location of objects. We considered two approaches:
end-to-end (E2E) and controller based, which can be thought

196

HotNets "21, November 10-12, 2021, Virtual Event, United Kingdom

3000 9
U~ [%]
EZ 75 89
= 5 2000 g8
28 50 E 8
}—8 1;;3
2 S 1000 2 88
RS S O
o — S a
0 0 o

0 10 20 30 40 50 60 70 80 90

Percentage of access to new objects
Figure 2: RTT of packets as the percent of new objects
(the line) increases. Emulation impacting timings.

4000

2000

Access time
(microseconds)

0
0 10 20 30 40 50 60 70 80 90

Percentage of accesses to moved objects
Figure 3: E2E RTT as cache gets stale due to movement.

of as a decentralized scheme analogous to ARP and a more
centralized scheme using SDN controllers, respectively. In
EZ2E, hosts store a destination cache, recording a map of ob-
ject IDs and hosts that it must use broadcast to discover
on first access, while in the controller scheme, hosts notify
controllers about objects, which are then responsible for
updating forwarding tables of switches. The E2E scheme
is potentially more scalable, but has worst-case latency of
2 round-trip times (RTTs) if the cache grows stale (as this
triggers a broadcast discovery packet followed by the unicast
access packet), while the controller scheme has uniform la-
tency of 1 RTT (and is unicast). As discussed above, however,
memory constraints may impose limits at the switch. Thus,
in our prototype, we are building both schemes so we can
compare their efficacy at larger scales (and consider combina-
tions of approaches in case of limited hardware capabilities).
Figure 2 shows RTT of both methods when accessing a mix
of new and old objects. In the controller case, new objects
are advertised to the switch, while in the E2E case, the host
maintains tables. Our results show that switch processing
overhead is minimal, even as new objects proliferate.
Figure 3 shows what happens as the destination cache in
E2E grows stale. Rebroadcasts cause a significant amount of
overhead, as the average number of RTTs goes up from 1 to
2. As staleness becomes overwhelming, the variability drops
again since nearly all accesses require 2 round trips. Situa-
tions where the network can absorb some of the cost here,
meaning that hosts do not have to deal with broadcast when
staleness occurs, can reduce network traffic and latency.

5 DISCUSSION

Decoupling Through Coupling. There is an irony in our
vision for decoupling applications in a more flexible manner



HotNets "21, November 10-12, 2021, Virtual Event, United Kingdom

than RPC: this vision requires a stronger coupling between
the OS and the network. Pushing data identity into the OS
and the network as a first-class abstraction has a number
of benefits, but it does imply more rigidity in the lower-
level infrastructure. We argue that this is okay, and even
desirable. Our goal is to provide applications with flexibil-
ity, scalability, and generality. By moving some application-
level semantics like data references and identity into the
lower-level system, we can implement in one place patterns
like caching, prefetching, and query planning that often get
reimplemented at many layers because these layers lack a
common language to talk about data.

Uniformity Between Code and Data. Recently, Wang et
al. [33] proposed an extension to RPC that passes first class
immutable references as well as values in procedure calls and
returns. The goal is to preserve the functional semantics of
RPC while permitting the underlying system to avoid unnec-
essary copies and to perform memory management. Their
design is a step in the right direction, addressing some of the
weaknesses of RPC, by making it possible for the system to
transparently move data. But, it only takes us halfway: RPC
remains compute-centric and programmers must indicate
where code should execute. For example, the optimization
described in Section 2 in which Dave (the powerful edge
device) performs inference locally could not be realized via
any RPC mechanism. In our system, code (like data) is global
and referenceable from anywhere—there would be no rea-
son to provide a separate mechanism for specifying function
invocations. Instead, we place all data and code in a single
space, allowing code and data to reference each other. This
dramatically improves expressivity, decoupling, and reuse,
as we can now rely on the system to move not only data but
also code to where it needs to be on demand without man-
ual intervention and setup. In our model, the programmer
primarily orchestrates a rendezvous between code and data.

Limitations and Challenges. Many challenges lie ahead.
Perhaps foremost among them is the tension between partial
failure (inevitable in any distributed system), fault tolerance,
and mechanisms that attempt to hide the movement of com-
putation and data [32]. Masking failures via replication gives
rise to concerns about consistency; mechanisms that ensure
consistency in the presence of possible conflicts are costly
in general. We plan to address these challenges along two
separate axes. At the level of the system co-design, we will
experiment with offloading some synchronization and ar-
bitration [16, 18] concerns to the programmable network
(which now functions somewhat as a memory bus), letting
us explore the consistency and coherence space together.
At the level of programming model, we will explore how
a whole-system view of object identity and references can

197

D. Bittman et al.

interface with languages to support patterns for weakly con-
sistent replication, such as auto-merging progressive objects
like CRDTs [27] during data movement.

Although we free developers from explicitly moving data
and code, some mechanism in the system must sill do this
reasoning. We plan to explore placement issues through a
co-design between query planning and optimization, and
network-level scheduling. The structure of the global address
space in Twizzler affords the system a view into the data
layout, allowing lower levels of the stack to participate in
making more intelligent placement decisions.

Future Plans. We are currently implementing this vision.
We are adding networking support to Twizzler, which al-
ready supports global pointers in a global address space. We
plan to use programmable network switches to develop our
implementation of pointer routing. This will position us to
explore protocol designs and tradeoffs in using combinations
of traditional communication and RDMA in a global address
space. Twizzler is well-suited to this kind of responsibility
offloading because it exposes a view of objects to the NIC by
abstracting physical memory, which may greatly reduce the
costs of managing addressing in RDMA-like applications [3].

6 CONCLUSION

We are witnessing a convergence of trends: software’s de-
mands are growing; networks are becoming faster and capa-
ble of supporting richer semantics; and OSes are providing
more abstractions for operating directly on data without the
overheads of POSIX-like models. These trends strongly point
towards more decoupling of compute resources, code, and
data where the infrastructure orchestrates the rendezvous
of distributed data and compute as requested by the pro-
grammer. Now is the time to turn our traditional host- or
process-centric programming model on its head towards a
more data-centric model supported by good pieces of DSM,
content-based networks, and global address spaces. Recent
advances in hardware (network speed and intelligence) and
software (efficient global pointer abstractions) allow us to re-
consider these previously discarded ideas in a new light. We
plan to move our vision forward and realize it through the
combination of new OS abstractions and network-supported
bus-like protocols. Using Twizzler as a base, we will build a
system to demonstrate the benefits our vision can provide.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation (grants IIP-1266400, IIP-1841545), DARPAL gifts
from Cisco, eBay, and Intel, and the members of the UCSC
Center for Research in Storage Systems.



Don’t Let RPCs Constrain Your API

REFERENCES

(1]
(2]

—_
(=)
—

[10

[t

(11]

[12

—

(13

[t

—
—
S

flast

(15

=

[16

—

(17

—

(18

=

(19]

SiFive TileLink Specification 1.7.1.
documentation, 2018.

B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman.
A survey of information-centric networking. IEEE Communications
Magazine, 50(7):26-36, 2012.

D. Bittman, P. Alvaro, D. D. E. Long, and E. L. Miller. A tale of two
abstractions: The case for object space. In Proceedings of HotStorage
’19, July 2019.

D. Bittman, P. Alvaro, P. Mehra, D. D. E. Long, and E. L. Miller. Twiz-
zler: a data-centric OS for non-volatile memory. In 2020 USENIX
Annual Technical Conference (USENIX ATC 20), pages 65-80. USENIX
Association, July 2020.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker. P4:
Programming protocol-independent packet processors. SIGCOMM
Comput. Commun. Rev., 44(3):87-95, July 2014.

A. Carzaniga and A. L. Wolf. Forwarding in a content-based network.
In Proceedings of the 2003 Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communications, SSIGCOMM °03,
page 163-174, New York, NY, USA, 2003. Association for Computing
Machinery.

J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska. Sharing
and protection in a single-address-space operating system. ACM
Transactions on Computer Systems, 12(4):271-307, Nov. 1994.

A. Dakkak, C. Li, S. G. De Gonzalo, J. Xiong, and W.-m. Hwu. Trims:
Transparent and isolated model sharing for low latency deep learning
inference in function-as-a-service. IEEE CLOUD’19.

D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov, E. Mann-
Hielscher, A. Cilingiroglu, B. Cheyney, W. Shang, and J. D. Hosein.
Maglev: A fast and reliable software network load balancer. In 13th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), Mar. 2016.

G. Heiser, K. Elphinstone, S. Russell, and J. Vochteloo. Mungi: a dis-
tributed single address-space operating system. Technical Report 9314,
School of Computer Science and Engineering, University of New South
Wales, Nov. 1993.

J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quanti-
tative Approach. Morgan Kaufmann, Amsterdam, 5 edition, 2012.
IBM MQ. https://www-03.ibm.com/software/products/en/ibm-mgq,
2019.

Intel NVMe with 3D XPoint Technology chart.
/Iwww.tomshardware.com/reviews/intel-micron-3d-xpoint-
updates,4286.html#p1, 2015.

Intel Skylake. https://www.7-cpu.com/cpu/Skylake html, 2019.
Intel Xeon Processor E7-8893 v3. https://ark.intel.com/content/www/
us/en/ark/products/84688/intel-xeon-processor-e7-8893-v3-45m-
cache-3-20-ghz.html, 2019.

T. Jepsen, L. P. de Sousa, M. Moshref, F. Pedone, and R. Soulé. Infinite
Resources for Optimistic Concurrency Control. In NetCompute, Aug.
2018.

T. Jepsen, M. Moshref, A. Carzaniga, N. Foster, and R. Soulé. Forward-
ing and routing with packet subscriptions. In Proceedings of the 16th
International Conference on Emerging Networking EXperiments and
Technologies (CoNEXT), 2020.

X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and L. Stoica.
NetChain: Scale-Free Sub-RTT Coordination. In 15th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI), pages
35-49, Apr. 2018.

P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, R. G. L.

https://www.sifive.com/

https:

198

[20

[21

[22]

[23

[24]

[

—

—

HotNets "21, November 10-12, 2021, Virtual Event, United Kingdom

D’Oliveira, S. E. Rouayheb, D. Evans, J. Gardner, Z. Garrett, A. Gascon,
B. Ghazi, P. B. Gibbons, M. Gruteser, Z. Harchaoui, C. He, L. He,
Z. Huo, B. Hutchinson, J. Hsu, M. Jaggi, T. Javidi, G. Joshi, M. Khodak,
J. Konecny, A. Korolova, F. Koushanfar, S. Koyejo, T. Lepoint, Y. Liu,
P. Mittal, M. Mohri, R. Nock, A. Ozgiir, R. Pagh, M. Raykova, H. Qi,
D. Ramage, R. Raskar, D. Song, W. Song, S. U. Stich, Z. Sun, A. T. Suresh,
F. Trameér, P. Vepakomma, J. Wang, L. Xiong, Z. Xu, Q. Yang, F. X. Yu,
H. Yu, and S. Zhao. Advances and open problems in federated learning.
CoRR, abs/1912.04977, 2019.

J. Kreps, N. Narkhede, and J. Rao. Kafka: A distributed messaging
system for log processing. In Proceedings of The 6th International
Workshop on Networking Meets Databases (NetDB’11), June 2011.

J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo,
J. Chapin, D. Nakahira, ]. Baxter, M. Horowitz, and et al. The stanford
flash multiprocessor. In Proceedings of the 21st Annual International
Symposium on Computer Architecture, ISCA *94, pages 302-313, 1994.
B. Lantz, B. Heller, and N. McKeown. A network in a laptop: Rapid
prototyping for software-defined networks. In Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, New York, NY,
USA, 2010. Association for Computing Machinery.

J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee, B. Montazeri,
D. Ongaro, S. J. Park, H. Qin, M. Rosenblum, S. Rumble, R. Stutsman,
and S. Yang. The ramcloud storage system. ACM Trans. Comput. Syst.,
33(3):7:1-7:55, Aug, 2015.

D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Communications of the ACM, 15(12):1053-1058, 1972.

[25] Sgiuv3000,uv30. https://www.risc.jku.at/projects/mach2/4555.pdf,
2016.
[26] Sgiuv3000 sets new throughput records. https://www.hpcwire.com/

[27]

[28]

[29]

[30]

[31]
[32]

[33]

2016/03/25/sgi-posts-new-spec-cpu2006-results/, 2016.

M. Shapiro, N. Preguica, C. Baquero, and M. Zawirski. A compre-
hensive study of convergent and commutative replicated data types.
2011.

N. Shirokov and R. Dasineni. Open-sourcing Katran, a scalable network
load balancer — Facebook Engineering. https://code.fb.com/open-
source/open-sourcing-katran-a-scalable-network-load-balancer/,
May 2018.

M. Shoeybi. Training Multi-billion parameter models in Megatron.
https://hotchips.org/archives/hc32/, 2020.

A. Singh, P. Vepakomma, O. Gupta, and R. Raskar. Detailed comparison
of communication efficiency of split learning and federated learning.
arXiv preprint arXiv:1909.09145, 2019.

Tibco rendezvous. https://www.tibco.com/products/tibco-rendezvous,
2019.

J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A Note on Distributed
Computing. Sun Microsystems Laboratories, 1994.

S. Wang, B. Hindman, and I. Stoica. In Reference to RPC: It’s Time to
Add Distributed Memory. HotOS *21.

TResearch reported in this paper was performed in connection with

Defense Advanced Research Projects Agency (DARPA) contract number
W912CG-21-P-0012. The views and conclusions in this paper are those of

the

authors and should not be interpreted as presenting the official policies

or position, either expressed or implied, of DARPA or the U.S. Government.
The U.S. Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation hereon.


https://www.sifive.com/documentation
https://www.sifive.com/documentation
https://www-03.ibm.com/software/products/en/ibm-mq
https://www.tomshardware.com/reviews/intel-micron-3d-xpoint-updates,4286.html#p1
https://www.tomshardware.com/reviews/intel-micron-3d-xpoint-updates,4286.html#p1
https://www.tomshardware.com/reviews/intel-micron-3d-xpoint-updates,4286.html#p1
https://www.7-cpu.com/cpu/Skylake.html
https://ark.intel.com/content/www/us/en/ark/products/84688/intel-xeon-processor-e7-8893-v3-45m-cache-3-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/84688/intel-xeon-processor-e7-8893-v3-45m-cache-3-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/84688/intel-xeon-processor-e7-8893-v3-45m-cache-3-20-ghz.html
https://www.risc.jku.at/projects/mach2/4555.pdf
https://www.hpcwire.com/2016/03/25/sgi-posts-new-spec-cpu2006-results/
https://www.hpcwire.com/2016/03/25/sgi-posts-new-spec-cpu2006-results/
https://code.fb.com/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://code.fb.com/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://www.tibco.com/products/tibco-rendezvous

	Abstract
	1 Introduction
	2 Motivating Example
	3 Our Vision
	3.1 Computation and References
	3.2 Pushing Identity Into the Network

	4 Initial Results
	5 Discussion
	6 Conclusion
	References

