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Flash-based storage is replacing disk for an increasing number of data center applications, providing orders

of magnitude higher throughput and lower average latency. However, applications also require predictable

storage latency. Existing Flash devices fail to provide low tail read latency in the presence of write operations.

We propose two novel techniques to address SSD read tail latency, including Redundant Array of Independent

LUNs (RAIL) which avoids serialization of reads behind user writes as well as latency-aware hot-cold separa-

tion (HC) which improves write throughput while maintaining low tail latency. RAIL leverages the internal

parallelism of modern Flash devices and allocates data and parity pages to avoid reads getting stuck behind

writes.We implement RAIL in the Linux Kernel as part of the LightNVM Flash translation layer and show that

it can reduce read tail latency by 7× at the 99.99th percentile, while reducing relative bandwidth by only 33%.
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1 INTRODUCTION

Flash-based storage devices are replacing disks for an increasing number of applications in data

centers. Transistor scaling, multi-level cell technology, and 3D integration have delivered a con-

tinuous increase in capacity, while new Flash controllers have leveraged high degrees of archi-

tectural parallelism and new software interfaces such as NVMe to signi�cantly increase perfor-

mance [6, 55]. As a result, Flash devices now provide up to onemillion I/O operations per second

(IOPS) and read latencies as low as 70µs [39, 64]. However, data center applications also require

predictable performance. Low read tail latency is particularly important for high fan out applica-

tions that access thousands of servers to process a single request [22]. Existing Flash devices fail
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Fi g. 1.  R e a d l at e n c y  C C D F f or r e a d/ writ e  mi x.

t o pr o vi d e pr e di ct a bl e t ail r e a d l at e n c y [3 0 , 4 2 ]. Fi g ur e 1 s h o ws t h e r e a d l at e n c y c o m pli m e nt a r y
c u m ul ati v e di st ri b uti o n f u n cti o n (C C D F ) f or a  mi x e d r e a d/ writ e  w or kl o a d o n a n  N V M e b as e d
s oli d st at e di s k (S S D ) fr o m C N E X L a bs.1 W hil e  m ost of t h e r e a ds c o m pl et e i n u n d er 1 0 0 μ s t h er e
is als o a l o n g t ail  wit h s o m e r e a ds c o m pl eti n g at j ust u n d er 6 ms r es ulti n g i n o v er 5 0× di ff er e n c e
b et w e e n t h e a v er a g e a n d 9 9. 9 9t h p er c e ntil e l at e n c y.

Pri or  w or k h as f o c us e d o n r e d u ci n g hi g h t ail l at e n c y b y o pti mi zi n g g a r b a g e c oll e cti o n (G C )[6 7 ,
7 8 , 8 0 ], i nt erf er e n c e b et w e e n a p pli c ati o ns[2 8 , 3 5 ] or b y o v er- pr o visi o ni n g Fl as h c a p a cit y b y u p t o
3 0 – 5 0 % [ 5 6 ].  W hil e t h es e t e c h ni q u es i m pr o v e p erf or m a n c e t o s o m e d e gr e e, t h e y f ail t o e nf or c e
stri ct t ail l at e n c y g u ar a nt e es a n d, f urt h er m or e, i ntr o d u c e si g ni fi c a nt o v er h e a ds i n t er ms of c a p a cit y
a n d b a n d wi dt h. F or i nst a n c e,  Ti n y T ail [ 8 0 ] l e v er a g es a  R AI D [5 8 ] a p pr o a c h t o a v oi d i nt erf er e n c e
b et w e e n r e a ds a n d  G C, a d dr essi n g t h e 6 ms t ail s h o w n i n Fi g ur e 1 .  H o w e v er,  Ti n y T ail d o es n ot
pr ot e ct a g ai nst t h e c o m m o n r e a d- aft e r- w rit e (R a W ) s eri ali z ati o n, i n cr e asi n g t ail l at e n c y b y u p
t o 2 0× . F urt h er m or e,  Ti n y T ail i ntr o d u c es si g ni fi c a nt  writ e o v er h e a ds t o a c hi e v e is ol ati o n b et w e e n
r e a ds a n d  G C.

T o a d dr ess t h es e c h all e n g es,  w e pr es e nt R e d u n d a nt  Ar r a y o f I n d e p e n d e nt L U N s (R AI L ), a n
S S D d e vi c e-l e v el t e c h ni q u e t h at eli mi n at es t h e p ossi bilit y of r e a ds b ei n g st all e d b y a n y hi g h l at e n c y
o p er ati o n.  R AI L l e v er a g es r e d u n d a n c y t o pr o vi d e a n alt er n ati v e r e a d p at h i n t h e c as e a p arti c ul ar
N A N D c hi p is t e m p or aril y i n a c c essi bl e d u e t o p erf or mi n g a hi g h l at e n c y o p er ati o n.  U nli k e pr e vi-
o us  w or k,  R AI L r e d u c es t ail l at e n c y at all p er c e ntil es, i n p arti c ul ar, b y 7 × o v er e xisti n g a p pr o a c h es
f or t h e 9 9. 9 9t h p er c e ntil e a n d f or o ur t ests al w a ys c o m pl et es r e a ds i n u n d er 1 ms.  T o r e d u c e t h e
writ e b a n d wi dt h o v er h e a ds,  R AI L i ntr o d u c es l at e n c y- a w a r e  h ot- c ol d s e p a r ati o n (H C ) t o s e p a-
r at e h ot us er  writ es a n d c ol d  G C  writ es i nt o i n d e p e n d e nt p h ysi c al fl as h c hi ps.  Wit h t his t e c h ni q u e
i n pl a c e,  w e s h o w t h at a v oi di n g  R a G C s eri ali z ati o n, s u c h as i m pl e m e nt e d b y pri or  w or k b e c o m es
o bs ol et e a n d c a n b e s ki p p e d e ntir el y.  As a r es ult,  R AI L- H C als o r e d u c es  writ e a m pli fi c ati o n b y
2 × a n d i n cr e as es  G C  writ e b a n d wi dt h b y 4 × o v er pri or  w or k. F urt h er m or e, i n c o ntr ast t o pri or
w or ks t h at r eli e d o n si m ul ati o n,  w e pr es e nt a f ull Li n u x k er n el s oft w ar e i m pl e m e nt ati o n l e v er a g-
i n g  O p e n C h a n n el S S Ds.

1 We a n al y z e d a s et of S S Ds i n cl u di n g  C N E X  Westl a k e, I nt el P 3 6 0 0, I nt el 7 5 0, a n d S a ms u n g P M 1 7 2 5 all s h o wi n g si mil ar
b e h a vi or.

A C M  Tr a ns a cti o ns o n St or a g e,  V ol. 1 8,  N o. 1,  Arti cl e 5. P u bli c ati o n d at e: J a n u ar y 2 0 2 2.
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Table 1. RAIL vs. Prior Work

Technique Avoid Avoid Avoid Detect WR

RaW RaGC RaWL Stall Overhead

Purity [20] yes no no react high

Toleraid [30] yes no no proact high

F-on-R [70] yes no no exact high

TinyTail [80] no yes no exact high

RAIL-HC yes yes yes exact low

2 BACKGROUND

Prior Work: Prior work has leveraged redundancy to reduce tail read latency when accessing

storage. Flash-on-rails [70], ToleRAID [30], and Purity [20] use parity across drives to improve tail

ready latency by only writing to a subset of the drives at a time. Whenever a read is slow (time-

outs) another read is triggered to recompute the data from parity.While simple to implement, these

approaches can only prevent RaW serialization, however, they cannot guard against reads being

serialized behind operations such as GC and wear leveling, as those are triggered by the SSD itself.

Furthermore, waiting for a timeout at least doubles the read latency in average. TinyTail [80] iso-

lates reads from GC, however, fails to prevent RaW serialization which occurs frequently. TinyTail

also utilizes the internal copyback operation to move data which can lead to errors because NAND

chips do not have error detection and correction internally, whereas RAIL re-computes error cor-

rection bits during GC on the host. TinyTail also has only been simulated, ignoring many of the

NAND speci�c challenges of real designs discussed in Section 4. RAIL has passed an extensive two

man year validation and veri�cation phase to reach Linux kernel stability. The validation suite is

implemented in QEMU [5] and emulates read/write/erase errors as well as static and grown bad

blocks in a random constrained way to automatically test RAIL in di�erent con�gurations.

All related works above [20, 30, 70, 80] achieve a tail latency reduction by throttling write band-

width. By combining RAID with HC, RAIL-HC signi�cantly reduces the negative impact on write

performance. Table 1 compares the capabilities of prior approaches against RAIL. It shows whether

a technique is capable of preventing RaW, read-after-GC (RaGC), and read-after-wear-leveling

(RaWL) stalls. It also shows whether the techniques require timeouts (react) to detect a RaW stall

or if they always assume a stall (proact) or if they can determine whether a read will be stalled

(exact). The last column shows the bandwidth overheads introduced by the approaches for reduc-

ing read latency. As we will show in this article, to guarantee low read latency at the very tail,

all sources of high latency need to be addressed. We �nd that this can only be achieved by con-

trolling SSD device properties on the hardware level exposing us to the intricate details of NAND

Flash such as bad blocks, managing meta information, and handling write errors. RAIL overcomes

these challenges by leveraging OpenChannel SSDs providing strict tail latency guarantees up to

the 99.99th percentile.

Internal device parallelism: Modern Flash devices have multiple levels of internal paral-

lelism [1, 16]. A Flash controller interfaces with multiple channels which are shared by multiple

NAND dies. We refer to units of parallelism on Flash as logical units (LUNs). On a typical Flash

device, a LUN typically corresponds to a die, since each NAND die typically supports one outstand-

ing operation at a time.2 Tables 2 and 3 show the device speci�cation for the SSD we use in our

experiments. The device contains 128 LUNs in total, thus the number of concurrent operations is

2Most devices support multi-plane operations, which allow multiple identical operations per die, increasing throughput

but not latency.

ACM Transactions on Storage, Vol. 18, No. 1, Article 5. Publication date: January 2022.
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Table 2. Open-Channel SSD

SSD Properties

Channels 16

LUNs per Channel 8

Total LUNs 128

Channel Bandwidth 280 MB/s

Table 3. LUN Properties

LUN Properties

Sector Size 4 KB

Page Size 64 KB

Blocks 1067

Block Size 256 pages

Table 4. Per-LUN Performance

Op. Bandwidth Latency Size

Read 280 MB/s 65µs 32 KB

Write 25 MB/s 1,700µs 32 KB

Erase N/A 6,000µs 4 MB

limited to 128. With 64 KB pages, 256 pages per block and 1,067 blocks per LUN, each LUN has

over 16 GB of capacity.

NAND properties: In NAND technology, erase operations are performed at the granularity

of blocks, writes at the granularity of pages, and reads at the granularity of sectors. Writes can

only set bits in a single direction (from one to zero). Thus, pages cannot be updated in place;

they must �rst be erased. Table 4 shows the performance of read, write, and erase operations

per LUN. Although SSDs deploy battery backed DRAM caches to complete writes to software

instantaneously, a write can only be sent to a chip if all prior writes have persisted. Although,

erases take 8 times as long as writes, they are a more e�cient operation since they operate on 4MB

of data. Due to the asymmetric read, write, and erase latencies and the serialization of operations,

read latency increases signi�cantly when the requested data page resides on a LUN occupied by a

write or erase operation.

Flash Translation Layer (FTL): The FTL is an essential layer in the Flash storage stack, man-

aging L2P address mapping, GC, and wear-leveling while presenting a simple block interface to the

operating system. User applications submit read and write requests to logical block addresses

(LBAs). Each logical block in the address space represents a sector-sized data segment (usually

4 KB) which the FTL maps to a sector of a physical page on Flash. Policies for physical data lay-

out and GC (choosing which blocks to erase and when) in the FTL directly in�uence read/write

performance of user applications on Flash.

LightNVM and OpenChannel SSDs: OpenChannel SSDs do not implement the FTL in

�rmware, but instead, expose the internal parallelism of SSDs to the host, enabling the operat-

ing system to manage physical storage [8]. The Linux kernel is an example of an operating sys-

tem that supports OpenChannel SSDs through an abstraction layer called LightNVM [9, 11]. The

LightNVM subsystem is an open-source host-based FTL that provides a generic media manager

for wear-leveling and bad block management, uses a physical page address (PPA) I/O interface

to communicate with the SSD (still over the standard NVMe speci�cation), and exposes the Open-

Channel SSD as a traditional block I/O device to user applications. We develop RAIL as part of

LightNVM.

3 DESIGN

RAIL enforces strict tail latency guarantees by eliminating reads being stalled behind high latency

operations such as writes and erases. Therefore, RAIL maintains redundant parity data for recom-

puting sectors, that reside on a LUN that currently serves a high latency operation. RAIL draws

ACM Transactions on Storage, Vol. 18, No. 1, Article 5. Publication date: January 2022.
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Fi g. 2. S S D s e ct or pl a c e m e nt.

fr o m t e c h ni q u es s u c h as  R AI D [5 8 ], h o w e v er, utili z es r e d u n d a n c y f or l at e n c y r e d u cti o n i n a d di-
ti o n t o i m pr o vi n g f a ult t ol er a n c e.  R AI L p arit y c o m p ut ati o n is p erf or m e d  wit hi n st ri d e s , w h er e a
stri d e of si z e S c o nsists of o n e p arit y el e m e nt a n d S - 1 d at a el e m e nts.  D at a el e m e nts ar e  X O R’ e d
t o g et h er t o c o m p ut e t h e p arit y el e m e nt. E a c h el e m e nt of a stri d e r esi d es o n a s e p ar at e L U N. I n t h e
c as e  w h er e a L U N, f or i nst a n c e, L U N _ 0 , is s er vi n g a hi g h l at e n c y o p er ati o n, r e a ds t ar g eti n g L U N _ 0
ar e s er v e d b y r e a di n g t h e c orr es p o n di n g s e ct ors fr o m L U N _ 1 , L U N _ 2 , a n d L U N _ 3 a n d c o m p uti n g
t h e ori gi n al s e ct or r esi di n g o n L U N _ 0 .  We r ef er t o s u c h  m ulti- L U N r e a ds as a R AI L r e a d . N ot e
t h at bl o c k d e vi c es pr o vi d e n o or d eri n g g u ar a nt e es f or r e a ds a n d  writ es i n t h e a bs e n c e of fl us h es,
e n a bli n g  R AI L r e a ds t o c o m pl et e b ef or e pri or  writ es. 3 T o e nf or c e t ail l at e n c y g u ar a nt e es,  R AI L
e ns ur es t h at o nl y o n e L U N  wit hi n a stri d e s er v es a hi g h l at e n c y o p er ati o n at all ti m es, i m p a cti n g
writ e b a n d wi dt h.

3. 1  P a rit y S e ct o r  Pl a c e m e nt ( R AI L)

I n t his s e cti o n,  w e d es cri b e h o w  R AI L  m a n a g es s e ct ors a n d pl a c es d at a a n d p arit y o n t h e S S D. S S Ds
us e d e vi c e s p e ci fi c u nit si z es f or r e a ds,  writ es, a n d er as es. F or i nst a n c e,  C N E X p erf or ms r e a ds at
t h e u nit of s e ct ors ( 4  K B),  writ es at t h e u nit of p a g es ( 6 4  K B), a n d er as es at t h e u nit of bl o c ks
( 1, 0 2 4  K B). E a c h L U N c o nt ai ns  m ulti pl e bl o c ks, e n u m er at e d b y a n I D.  All bl o c ks  wit h t h e s a m e I D,
f or i nst a n c e, t h e first bl o c k of all L U Ns, ar e c o m bi n e d t o f or m a li n e. F urt h er m or e, all  writ e u nit
( p a g e) si z e d el e m e nts t h at h a v e t h e s a m e p a g e I D a n d bl o c k I D ar e d e fi n e d as a st ri p e .  R AI L n e e ds
t o all o c at e s e ct ors f or p arit y d at a t o e n a bl e  R AI L r e a ds.  O n e o pti o n  w o ul d b e t o  m ai nt ai n a d diti o n al
i nf or m ati o n as p art of t h e l o gi c al t o p h y si c al (L 2 P ) bl o c k tr a nsl ati o n t a bl e,  w hi c h e n a bl es t o fi n d
t h e ot h er s e ct ors a n d p arit y d at a i n c as e of a  R AI L r e a d.  As t h e L 2 P alr e a d y c o ns u m es  m ulti pl e  G B
i n h ost  m e m or y f or  T B si z e d S S Ds,  w e pl a c e p arit y d at a t o fi x e d l o c ati o ns  wit hi n a stri p e usi n g
si m pl e  m o d ul o o p er ati o ns t o d et er mi n e t h e t ar g et p h ysi c al a d dr ess es of a  R AI L r e a d.  We distri b ut e
R AI L stri d es o v er stri p es t o  m a xi mi z e  writ e b a n d wi dt h a n d pl a c e p arit y d at a o n t h e hi g h or d er
L U Ns of a stri p e as p arit y c a n o nl y b e c o m p ut e d aft er all d at a s e ct ors of a stri d e h a v e b e e n  writt e n.
Fi g ur e 2 s h o ws h o w  R AI L  m a n a g es s e ct ors, bl o c ks, stri p es, a n d li n es as  w ell as h o w it pl a c es d at a
a n d p arit y el e m e nts. I n t h e e x a m pl e, t w o  R AI L stri d es ar e s h o w n,  w h er e stri d e 0 c o nsists of D a t a 0 0 ,
D a t a 0 1 , D a t a 0 2 , a n d P a r i t y 0 .

3 Or d eri n g n e e ds t o b e e nf or c e d b y t h e fil es yst e m or a p pli c ati o n.

A C M  Tr a ns a cti o ns o n St or a g e,  V ol. 1 8,  N o. 1,  Arti cl e 5. P u bli c ati o n d at e: J a n u ar y 2 0 2 2.
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3.2 Latency-Aware Hot-Cold Separation (HC)

Vertical hot-cold separation [24, 48, 72] reduces write ampli�cation by separating frequently writ-

ten LBAs (hot) and rarely written LBAs (cold) into separate �ash blocks. This increases the proba-

bility that all sectors within hot blocks are overwritten by user writes before the block is garbage

collected, minimizing the number of valid blocks that need to be moved by GC. Hot-cold sepa-

ration is implemented by maintaining two open blocks per NAND chip whereas user writes are

applied to the hot block and GC writes are applied to the cold block. We introduce horizontal hot-

cold separation, separating user and GC writes for the purpose of reducing tail latency. In contrast

to prior approaches that applied GC and user writes to separate blocks, our technique allocates

hot and cold partitions from separate NAND chips guaranteeing that user and GC writes do not

utilize the same LUN. For workloads with a zip�an distribution, reads are likely to access hot data

and hence the probability is low that reads are serialized behind cold writes. As a result, it is no

longer mandatory to throttle writes to only one LUN per stride for the cold block, eliminating the

write overhead introduced by avoiding RaGC serialization. Horizontal hot-cold separation intro-

duces no capacity or bandwidth overheads and hence represents a more e�ective technique than

prior approaches [67, 78, 80] focusing on the read-GC interference. Enabling horizontal hot-cold

separation is challenging as the ratio of the number of hot to cold blocks depends on the dynamic

write ampli�cation factor. Therefore, RAIL-HC continuously monitors the user and GCwrites and,

every 1M total writes, based on the the write-ampli�cation factor, it assigns LUNs to user and GC

lines accordingly, rounding-up the number of LUNs assigned to GC. To avoid high tail read latency

when re-assigning LUNs between hot and cold lines, RAIL-HC supports LBA live migration. For

instance, if a user LUN is re-assigned to a GC line, the old data continues to be accessible via RAIL

reads, while new written pages are allocated according to the most recent partitioning scheme. As

blocks are invalidated and erased over time, all blocks within a LUN gradually converge to the

new partitioning scheme. Consequently, blocks within the same LUN may be part of a di�erent

line con�guration. Therefore, every line contains less than 100 bits of additional meta information

de�ning the stride width and GC/user con�guration enabling the correct line-speci�c RAIL read

access pattern. Note that migrating LUNs occurs rarely (after millions of writes) as even an abrupt

change of the user write pattern, for instance, from random to sequential, su�ers from inertia. In

particular, a large fraction of the SSD needs to be overwritten by a new user write pattern before

the GC behavior starts to change. Furthermore, a temporally non-optimal allocation of user and

GC LUNs only reduces write bandwidth but does not a�ect tail read performance. For instance, if

there are not enough cold LUNs, GC will need to be performed on hot lines reducing user write

bandwidth, however, without a�ecting user read latency.

3.3 RAIL Implementation

RAIL is implemented within the Linux kernel’s PBLK [11] subsystem in 1,618 C lines of code.

Figure 3 provides an overview of PBLK and the RAIL modi�cations in blue.

Write path: Write requests updating a particular LBA are inserted into a single shared ring

bu�er by all blk-mq [10] kernel threads. Written sectors are immediately completed to the block

I/O layer and bu�ered in DRAM until enough sectors are available to write a whole page. In the

case of a �ush (sync) operation, available sectors are padded with empty sectors to form a page and

then mapped to a PPA. PBLK then sends the write operation to the Flash hardware controller over

the standard NVMe interface [55] using the PPA as the address. Writes are performed round-robin

across LUNs within a stripe in the hot line to maximize LUN parallelism and bandwidth.

To implement RAIL, we add a PPA to write bu�er entry (P2B) mapping table (16 KB) which

references all write bu�er entries forming a RAIL stride. The P2B is required, as there is no static

ACM Transactions on Storage, Vol. 18, No. 1, Article 5. Publication date: January 2022.
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Fi g. 3.  R AI L ar c hit e ct ur e.

fi x e d  m a p pi n g b et w e e n  writ e b u ff er e ntri es a n d h ar d w ar e s e ct ors b e c a us e of e xisti n g b a d bl o c ks,
p a d d e d s e ct ors, a n d  m et a d at a.  R AI L e xt e n ds t h e P P A  m a p pi n g  m e c h a nis m s u c h t h at,  w h e n e v er,
a p arit y L U N ( e. g., P a r i t y 0 i n Fi g ur e 2 ) is t o b e  m a p p e d, t h e  R AI L p arit y e n gi n e is tri g g er e d
t o g e n er at e a p arit y  writ e.  T h e  R AI L p arit y e n gi n e q u eri es t h e P 2 B, c o m p ut es t h e p arit y fr o m
t h e c a c h e d s e ct ors, a n d g e n er at es t h e P P A f or  writi n g t h e p arit y t o t h e S S D.  R AI L i ntr o d u c es
stri d e s e m a p h or es t o e nf or c e t h at at  m ost o n e L U N p er  R AI L stri d e is  writt e n or er as e d at a ti m e
r e d u ci n g  writ e b a n d wi dt h t o 1 ÷ S .  H o w e v er, t his o nl y a p pli es t o h ot  writ es.  B y l e v er a gi n g h ot- c ol d
s e p ar ati o n,  R AI L- H C d o es n ot r e q uir e t o t hr ottl e c ol d  writ es,  mi ni mi zi n g t h e n e g ati v e i m p a ct o n
writ e b a n d wi dt h. F urt h er m or e, tr a di n g- o ff  writ e b a n d wi dt h f or l o w t ail l at e n c y is a c c e pt a bl e f or
t h e f oll o wi n g r e as o ns: ( 1)  M a n y d at a c e nt er  w or kl o a d st u di es [1 8 , 3 2 , 3 6 , 4 3 , 6 2 , 6 3 ] h a v e s h o w n
r e a d t o  writ e r ati os of 4 t o 1 a n d hi g h er.  As o ur S S D pr o vi d es t h e s a m e  m a xi m al r e a d a n d  writ e
b a n d wi dt h of 1. 6  G B/s, a p pli c ati o ns ar e g e n er all y li mit e d b y r e a d a n d n ot  writ e b a n d wi dt h. ( 2)  D u e
t o s h ar e d r es o ur c es ( P CI e, c h a n n els, a n d c o ntr oll er) t h e  m a xi m u m b a n d wi dt h is s h ar e d b et w e e n
r e a ds a n d  writ es.  H e n c e, e v e n f or a 1 t o 1 r e a d/ writ e r ati o,  R AI L o nl y r e d u c es  writ e b a n d wi dt h
b y 5 0 % e ff e cti v el y. ( 3)  R AI L d et e cts  writ e- m ostl y ( < 1 K r e a d I O P S)  w or kl o a ds a n d a ut o m ati c all y
dis a bl es L U N t hr ottli n g. ( 4)  As s h o w n i n S e cti o n 5 a p pli c ati o ns s u c h as  M o n g o D B a n d  R o c ks D B
ar e n ot p erf or m a n c e li mit e d b y  writ e b a n d wi dt h.

R e a d p at h: R e a ds ar e s er v e d b y l o o ki n g u p t h e L B As ( m ulti pl e L B As i n t h e c as e of  m ulti-s e ct or
r e a ds) i n t h e L 2 P t o d et er mi n e t h e P P A. Si n c e bl k- m q t hr e a ds dir e ctl y s er v e r e a d r e q u ests,  m ulti pl e
t hr e a ds c a n h a v e  m ulti pl e as y n c hr o n o us r e a d r e q u ests i n fli g ht at t h e s a m e ti m e.  T o i nt e gr at e
R AI L,  w e c h e c k, f or e a c h P P A,  w h et h er t h e t ar g et L U N c urr e ntl y s er v es a hi g h l at e n c y o p er ati o n.
I n t his c as e,  w e p erf or m a  R AI L r e a d b y tr a nsf or mi n g t h e P P A i nt o its c orr es p o n di n g S - 1 R AI L
P P As.  We iss u e as y n c hr o n o us r e a d r e q u ests f or all P P As a n d, i n t h e i nt err u pt h a n dl er, c o m pl et e
t h e I/ O b y c o p yi n g t h e r e c o m p ut e d r e v ers e- p arit y of t h e  R AI L P P As i nt o t h e ori gi n al k er n el bl o c k
I/ O (s t r u c t b i o ).

G a r b a g e c oll e cti o n a n d  W e a r L e v eli n g: I n a d diti o n t o  m a n a gi n g us ers p a c e I/ O, P B L K g e n er-
at es  writ e a n d er as e o p er ati o ns t o i m pl e m e nt  G C a n d  W L. P B L K p erf or ms  G C at t h e gr a n ul arit y of
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lines by reading all valid 4K sectors from a line and then writing them into the same write bu�er

into which user writes are placed. From the write bu�er they are written to the next open line

as any other user write. To implement hot-cold separation we tag the write bu�er entries so that

GC’ed sectors are written to the cold line and user sectors to the hot line. We also implemented

an alternative approach utilizing separate bu�ers for GC and user writes which performed equally

well. PBLKs original GC mechanism greedily determines the line with the least amount of valid

sectors, moves them to a new line and then erases all blocks within the line. With hot-cold sepa-

ration it becomes bene�cial to prefer cold lines over hot lines [72]. RAIL does not require further

modi�cation of the GC path, except formarking parity sectors as invalid so that they are notmoved

by GC. Note that overwriting LBAs does not a�ect parity computation of other sectors within the

same stripe. As sectors are never updated in place, the physical sectors can still be used for parity

computation although they have been logically invalidated.

3.4 RAIL Overheads

RAIL enforces low tail latency at the cost of storage capacity and bandwidth. However, RAIL also

o�ers fault tolerance guarantees over a non-RAID approach.

Capacity overheads: RAIL induces capacity overheads of 1 ÷ S, where S is the stride size, to

store parity data. For instance, for S=4 the capacity overhead is 25%, for S=16 the capacity overhead
is 6.25%. Note that RAIL enables fault tolerance as provided by RAID. In applications where RAID

needs to be deployed anyways, RAIL’s capacity overheads can be zero. RAIL-HC only requires

parity blocks for hot data, hence, depending on the distribution of hot and cold data the capacity

overheads are reduced, often by 2× as shown in Figure 6. Furthermore, Section 5.1.5 shows that

RAIL allows to reduce over-provisioning compensating RAIL’s capacity overheads.

Bandwidth overheads: RAIL a�ects total device bandwidth (TotalBW) which is shared among

reads, writes. and erases and also e�ects read andwrite bandwidth individually. TotalBW is reduced
by UserWrBW ÷ S as additional parity data needs to be written to the SSD. For RAIL (but not for

RAIL-HC), TotalBW is reduced by GcWrBW ÷ S as additional parity data needs to be written for

garbage collected sectors. UserWrBw is limited to 1 ÷ S to ensure that only a single LUN is serving

a high latency operation at a time. Note that for mixed read-write workloads this is generally

not an issue as the remaining bandwidth TotalBW − 1 ÷ S can be used for reads. If maximum

write bandwidth is required such as for preconditioning or bulk-loading data, RAIL automatically

disables LUN throttling in the presence of <1K read IOPS while maintaining parity computation.

E�ective user read bandwidth is reduced by the read ampli�cation of RAIL reads. We quantify the

e�ect of read ampli�cation in Section 5.1.4.

4 IMPLEMENTATION CHALLENGES

Implementing RAIL on real hardware has been a challenging endeavor due to the technology

speci�c properties of NAND Flash. In the following sections, we list the most challenging issues

we faced and addressed.

4.1 Bad Blocks

NAND Flash is an inherently unreliable storage medium. New devices generally contain a number

of bad blocks that are unusable and, furthermore, write and erase operations wear out NAND

memory over time, increasing the number of bad blocks over time. The number of erase cycles

before a block wears out is technology dependent and determined, for instance, by the number

of voltage levels (single level vs. multi level cells). LightNVM supports bad block management by

maintaining a list of bad blocks to guarantee that LBAs are nevermapped to a bad sector. Bad blocks

and, in particular, grown bad blocks are problematic, as RAIL utilizes a �xed mapping between the
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data/parity sectors of a RAIL stride and the LUNs. As a result, whenever performing a RAIL read,

the read path needs to determine the number of bad sectors within a stride so that it can issue the

correct number of sector reads. Similarly, on the write path RAIL needs to be aware of bad blocks

such that they can be skipped during parity computation. The P2B on the write path described

in Section 3 maintains all valid PPA to write bu�er entry and invalid (bad block) mappings to

compute the correct parity in the presence of strides with fewer than S sectors.

4.2 Meta Data

LightNVM maintains meta data to store information about bad sectors, overwritten sectors that

can be GC’ed, sequence numbers and other information required for recovery in the case of a

power cycle. Meta data is stored on Flash within the start and end sectors of a line and hence meta

sectors are not available for storing data. Even worse, due to potential bad blocks at the start or end

of a line, the location of meta sectors is not �xed. There exist many corner cases in the presence

of bad and meta sectors which need to be considered to compute correct parity in all cases both

on the read and write path.

4.3 Flushes

Block devices support �ushes to enforce the required consistency guarantees of �lesystems and

databases. For instance, in ACID databases, durability can be enforced by issuing a �ush operation

before committing a transaction. Flushes require LightNVM to immediately issue all writes in prior

to the �ush to the storage device by padding the �ushed sectors with zeros to form a full page, the

unit of writes. As the padded sectors do not traverse the write bu�er, RAIL maintains additional

information to correctly compute parity for the padding sectors.

4.4 Reverse LBA Map

The logical block (LBA) to physical sector (PPA) mapping table (L2P) is resident in main memory

and lost during a power cycle. LightNVM recovers the L2P during boot up from the recovery data

stored as part of the meta section on the device. To store the actual LBA that maps to a particular

sector, LightNVM utilizes out-of-band memory on Flash to store a reverse L2P. In addition to

recovery, LightNVM leverages the out-of-band LBA data for veri�cation purposes. On every read,

the out-of-band LBA information is compared to the expected LBA from the memory resident L2P.

For RAIL reads, this veri�cation check fails as the sectors utilized to re-compute the original page

are mapped to di�erent LBAs. We address this issue by computing a parity LBA for each RAIL

parity page by XOR’ing all LBAs of a RAIL stride. On the read path, this enables to re-compute the

original LBA for read veri�cation. XOR’ed RAIL LBAs are skipped during L2P recovery.

4.5 Multi-Sector Reads

To support di�erent read sizes, PBLK allows to read multiple sequential LBAs as part of a single

access, although they might be mapped to non-consecutive PPAs. To implement this capability,

PBLK utilizes scatter operations composed of a vector of PPAs. In the case of RAIL, it is possible

that some of the sectors need to be read utilizing conventional reads, some sectors are read using

RAIL reads and some sectors are read from the write cache. To reduce the number of permutations

and corner cases, we re-factored the code to o�er three di�erent code paths re�ecting the poten-

tial location of a sector. We then scan the entire multi-sector request before emitting up to three

separate asynchronous read requests which �nally get assembled to complete the original block

I/O (bio) request.
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4.6 Locking and Synchronization

Linux kernel developers need to deal with various concurrency issues. LightNVM leverages the

blk-mq interface to enable concurrent access of multiple readers to the NVMe block device. For

performance reasons, each reader can issue multiple overlapping asynchronous reads and also

needs to handle completion events (interrupts) that can preempt the read path at any time. While

the CNEX OC driver and SSD can process multiple outstanding reads at a time, it can only process

one write or erase operation which needs to be enforced via per LUN semaphores. RAIL has been

carefully designed to complywith all the locking and synchronization policies built into LightNVM

and has been validated using an extensive veri�cation suite.

4.7 Write Bu�er Races

The write bu�er introduces a potential race condition which occurs when transferring sectors

from the bu�er to the device in the presence of concurrent reads to the same sectors. In particular,

it is possible that some sectors of a RAIL stride are persisted to the SSD while some are still in the

write bu�er. Additionally, NAND chips specify the concept of upper and lower pages, distributed

within a block at a certain distance whereas the upper page can only be read after both the lower

and upper page have been written. We guarantee consistent reads under all these conditions by

delaying the L2P update such that reads are only served from the device if all above conditions are

met.

5 EVALUATION

We evaluate RAIL on the CNEX Westlake Open-Channel SSD [8] with the properties shown in

Table 2. The SSD is connected over a PCIe ×8 interface to the host server, an Intel Xeon Broadwell

E5-2630 with 20 cores, and 40 SMT threads running at 2.2 GHz with 64 GB of DRAM. Our system

runs Ubuntu 18.4 Linux with a 5.1 kernel for the unmodi�ed PBLK baseline. We utilize nvme-cli

to initialize LightNVM’s media manager and expose the Open-Channel SSD as a block device.

We compare RAIL and RAIL-HC against two baselines: PBLK which represents the unmodi�ed

LightNVM subsystem and LinuxTinyTail, our Linux re-implementation of TinyTail [80]. Linux-

TinyTail conceptually resembles TinyTail, in that it leverages redundancy to reduce tail latency in

the presence of GC. In particular, whenever the GC mechanism issues writes or erases, it accesses

only one unit of the RAID array at a time to avoid GC overheads impacting read tail latency. Linux-

TinyTail is entirely implemented in software on top of LightNVM and hence our implementation

lacks the (simulated) hardware acceleration of the original TinyTail proposal. We evaluate RAIL

with microbenchmarks using the Flexible I/O tester (FIO) [40] and two database applications:

RocksDB and MongoDB. We also evaluated Twitter’s Fatcache [60] but omit the results for brevity

(RAIL shows a 4× tail latency reduction over PBLK for Fatcache). For all tests, we precondition the

SSD with sequential writes and then 4K random writes. For all tests, if not mentioned otherwise

we utilize S = 4 for both RAIL and RAIL-HC.

5.1 Flexible I/O Tester

We perform a series of microbenchmarks using FIO. All tests are performed directly on the block

device without a �lesystem and page cache (O_DIRECT). We use a thread count of 40, and low queue

depth of 2 for all tests. We enable the Kyber [65] I/O scheduler for all tests and set it to a target

read latency of 500µs. While the SSD device can be saturated by two threads, high queue depth

has a detrimental e�ect on latency due to request batching. We leave optimizing the Linux block

I/O layer for low tail latency as future work.
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Fi g. 4.  R AI L- H C pr o vi d e s pr e di ct a bl e, l o w t ail r e a d l at e n c y at hi g h  writ e t hr o u g h p ut.

5. 1. 1 R e a d L at e n c y vs.  Writ e I O P S. As d es cri b e d i n S e cti o n 3 , hi g h r e a d t ail l at e n c y is c a us e d
b y r e a ds b ei n g s eri ali z e d b e hi n d hi g h l at e n c y o p er ati o ns s u c h as  writ es, er as es, a n d  G C.  O ur first
s eri es of  mi cr o b e n c h m ar ks s h o w n i n Fi g ur e 4 pl ots r e a d l at e n c y a g ai nst  writ e I O P S o n t h e X -
A xis. F or t his t est,  w e utili z e t h e e ntir e S S D c a p a cit y b y pr e c o n diti o ni n g all L B As usi n g a st a n d ar d
o v er- pr o visi o ni n g r ati o of 1 2 %.  W h e n e x e c uti n g n o n-s e q u e nti al  writ e  w or kl o a ds o n a f ull S S D,  G C
ki c ks i n i m m e di at el y.  T h e r es ulti n g  writ e a m pli fi c ati o n r a n g es fr o m 1 × − 1 0 × d e p e n di n g o n t h e
writ e distri b uti o n, o v er- pr o visi o ni n g r ati o a n d h ot- c ol d s e p ar ati o n t e c h ni q u e. F or r e alisti c zi p fi a n
distri b uti o ns, t h e o bs er v e d  writ e a m pli fi c ati o n r ati o g e n er all y r a n g es b et w e e n 1 .8 × a n d 4 .5 × [2 3 ,
3 3 , 7 3 ].  T o r u n o ur t ests,  w e e x e c ut e 4 0 t hr e a ds t h at iss u e 1 0 0 % 4 K si z e d r a n d o m r e a ds  wit h a
zi p fi a n distri b uti o n a n d o n e  writ e t hr e a d t h at iss u es 4 K si z e d r a n d o m  writ es  wit h t h e s a m e zi p fi a n
distri b uti o n.  T h e t est utili z es a fi x e d r e a d b a n d wi dt h of 3 5 0  KI O P S  w hi c h is cl os e t o t h e S S D’s
p e a k r e a d o nl y t hr o u g h p ut of 3 8 0 K I O P S a n d  w e s w e e p t h e t ar g et  writ e I O P S fr o m 1 K t o 9 6 K
I O P S.  N ot e t h at, b e c a us e of  writ e t hr ottli n g, t h e f o ur a p pr o a c h es s u p p ort di ff er e nt  m a xi m u m  writ e
p erf or m a n c es. I n p arti c ul ar, f or t his s et u p, t h e a p pr o a c h es r e a c h a  m a xi m u m  writ e I O P S (i n t h e
a bs e n c e of r e a ds) of 1 6 9 K f or P B L K, 8 0 K f or  R AI L- H C, 4 9 K f or Li n u x Ti n y T ail, a n d 4 1 K f or  R AI L.
We e v al u at e  writ e p erf or m a n c e i n  m or e d et ail i n S e cti o n 5. 1. 3 .  As s h o w n i n Fi g ur e 4 ( a), f or all
a p pr o a c h es r e a d l at e n c y g e n er all y i n cr e as es i n t h e pr es e n c e of  writ es.  R AI L pr o vi d es a 2 0 % a v er a g e
l at e n c y r e d u cti o n o v er P B L K at  m a xi m u m  writ e I O P S. F or t h e 9 0t h p er c e ntil e t ail l at e n c y, s h o w n
i n Fi g ur e 4 ( b),  R AI L r e d u c es l at e n c y fr o m 6 0 0μ s t o b el o w 3 4 0 μ s. F or t h e 9 9. 9t h p er c e ntil e,  R AI L
a g ai n s h o ws a 5 x l at e n c y r e d u cti o n alr e a d y f or l o w  writ e b a n d wi dt h s u c h as 8 K I O P S.  At t h e
9 9. 9 9t h p er c e ntil e, s h o w n i n Fi g ur e 4 (f),  R AI L pr o vi d es a r e a d l at e n c y of b el o w 9 0 0μ s f or all  writ e
r at es,  w h er e as f or P B L K, t ail l at e n c y i n cr e as es t o 5 3 0 0 μ s f or  m a xi m u m  writ e I O P S. Fi g ur e 4 s h o ws
t h at Li n u x Ti n y T ail s u c c essf ull y a d dr ess es r e a d aft er er as e st alls t h at i n P B L K i ntr o d u c e u p t o 6ms
l at e n c y ( T a bl e 4 ), h o w e v er, it o nl y pr o vi d es littl e p erf or m a n c e i m pr o v e m e nt o v er t h e P B L K b as eli n e
as it c a n n ot a v oi d  R a W s eri ali z ati o n.  T his s h o ws t h at a v oi di n g  G C i nt erf er e n c e is n ot e n o u g h;
R a W st alls n e e d t o b e a d dr ess e d as  w ell.  R AI L- H C p erf or ms al m ost o n p ar  wit h  R AI L.  T h e zi p fi a n
distri b uti o n of t h e t est  w or kl o a d e ns ur es t h at  m ost r e a ds hit t h e h ot d at a p artiti o n a n d o nl y f e w
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Fi g. 5. T ail l at e n c y  wit h o ut  G C.

r e a ds ar e s er v e d fr o m t h e c ol d p artiti o n.  As a r es ult,  R a G C s eri ali z ati o n is al m ost n o n- e xist e nt
a n d h e n c e  R AI L- H C e n a bl es l o w t ail l at e n c y  wit h o ut t hr ottli n g  writ e p erf or m a n c e as si g ni fi c a ntl y.
N ot e t h at  R AI L- H C o nl y  w or ks  w ell f or  w or kl o a ds t h at f oll o w a zi p fi a n distri b uti o n. F or c o m pl et el y
u nif or m distri b uti o ns, t h er e e xists a hi g h pr o b a bilit y t h at r e a ds hit c ol d d at a i n  w hi c h c as e  R AI L-
H C d o es n ot pr o vi d e s u ffi ci e nt r e a d- writ e is ol ati o n. F or s u c h  w or kl o a ds,  R AI L is t h e o nl y a p pr o a c h
t h at e nf or c es l o w t ail l at e n c y.

5. 1. 2 R e a d L at e n c y vs. P erc e ntil e L at e n c y ( N o  G C). We als o e v al u at e d t ail l at e n c y f or t h e c as e
w h er e t h er e e xists s u ffi ci e nt fr e e s p a c e ( 7 5 %) o n t h e S S D. I n t his c as e, t h er e e xist 4 × as  m a n y
p h ysi c al t h a n l o gi c al bl o c ks o n t h e S S D  w hi c h d el a ys  G C si g ni fi c a ntl y a n d h e n c e r e d u c es  writ e
a m pli fi c ati o n t o 1 .0 5 × .  As t h e  G C tr a ffi c is si g ni fi c a ntl y r e d u c e d, Li n u x Ti n y T ail pr o vi d es v er y
littl e l at e n c y b e n e fits o v er P B L K,  w hil e t h e  R AI L a p pr o a c h es c o nti n u e t o  m ai nt ai n l o w t ail l at e n c y.
Fi g ur e 5 s h o ws t h e r es ults of t h e n o n- G C  w or kl o a ds i n c o n d e ns e d f or m.  We us e t h e s a m e s et u p as
i n S e cti o n 5. 1. 1 w hil e o nl y filli n g t h e S S D t o 2 5 %.  R AI L c o nsist e ntl y pr o vi d es l o w er l at e n c y r a n gi n g
fr o m 1 0 0μ s i n a v er a g e t o 5 8 5 μ s at t h e 9 9. 9 9t h p er c e ntil e. I n c o ntr ast, P B L K s h o ws a t ail l at e n c y
of 4 3 5 8 μ s a n d Li n u x Ti n y T ail s h o ws a 9 9. 9 9t h p er c e ntil e l at e n c y of 2 8 3 4 μ s.  R AI L o ut p erf or ms t h e
b as eli n es at all p er c e ntil es  w h er e as Li n u x Ti n y T ail c a n o nl y a v oi d t h e r ar e r e a d b ei n g st all e d b e hi n d
er as e s c e n ari os  w hil e it s u ff ers fr o m t h e  m u c h  m or e fr e q u e nt  R a W st alls.  D u e t o t h e l a c k of  G C
tr a ffi c,  R AI L, a n d  R AI L- H C p erf or m al m ost i d e nti c al i n t er ms of r e a d l at e n c y a n d  writ e t hr o u g h p ut.

5. 1. 3  Writ e P erf or m a n c e a n d R e q u est Si z e. We o mit  writ e l at e n c y gr a p hs as, i n a bs e n c e of
fl us h es,  writ es ar e i m m e di at el y c o m pl et e d  w h e n t h e y e nt er t h e  D R A M  writ e b u ff er.  As a r e-
s ult,  writ es g e n er all y c o m pl et e i n l ess t h a n 2 0 μ s i n d e p e n d e nt of t h e e v al u at e d  m e c h a nis m.  Writ e
t hr o u g h p ut as  m e as ur e d b y FI O is r e d u c e d b y all l at e n c y a v oi d a n c e t e c h ni q u es.  T h e  writ e o v er h e a d,
h er e b y, d e p e n ds o n t h e  G C  writ e a m pli fi c ati o n, t h e stri d e  wi dt h S a n d  w h et h er r e a ds ar e is ol at e d
o nl y fr o m  G C  writ es, fr o m us er  writ es or fr o m all o p er ati o ns.  We e v al u at e t h e  writ e o v er h e a d of
t h e di ff er e nt t e c h ni q u es f or S = 4 a n d di ff er e nt  writ e a m pli fi c ati o n f a ct ors usi n g a  writ e  w or kl o a d
wit h zi p fi a n distri b uti o n.  Usi n g FI O,  w e v ar y t h et a- zi pf t o g e n er at e  writ e a m pli fi c ati o n f a ct ors of
2. 3, 3. 2, 4. 1, a n d 5. 0  w hi c h  m at c h o ur o bs er v ati o ns of r e al a p pli c ati o ns as  w ell as pri or  w or k o n
writ e a m pli fi c ati o n a n al ysis [ 2 3 , 3 3 , 7 3 ]. Fi g ur e 6 s h o ws t h e a c hi e v e d  m a xi m u m  writ e t hr o u g h p ut
of t h e di ff er e nt a p pr o a c h es n or m ali z e d t o P B L K.  R AI L pr o vi d es t h e stri ct est t ail l at e n c y g u ar a n-
t e es at t h e c ost of r e d u ci n g b a n d wi dt h t o a p pr o xi m at el y 1 ÷ S .  Ti n y T ail a n d  R AI L- H C o nl y t hr ottl e
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Fi g. 6.  Writ e b a n d wi dt h o v er h e a d. Fi g. 7.  C a p a cit y v s. l at e n c y.

c ol d  G C, r es p e cti v el y, h ot us er  writ e tr a ffi c a n d h e n c e li mit t h eir i m p a ct o n  writ e p erf or m a n c e.
F or a  writ e a m pli fi c ati o n r ati o of 5 × R AI L- H C c a n  m ai nt ai n 6 2 % of P B L K’s ori gi n al b a n d wi dt h,
w h er e as  Ti n y T ail a c hi e v es o nl y 2 9 %,  w hil e  R AI L- H C e nf or c es  m u c h stri ct er t ail l at e n c y g u ar a n-
t e es t h a n  Ti n y T ail as s h o w n i n S e cti o n 5. 1. 1 .  We  will s h o w i n S e cti o ns 5. 2 a n d 5. 3 t h at o v er all,
writ e t hr ottli n g h as a s m all e ff e ct o n e n d-t o- e n d a p pli c ati o n p erf or m a n c e.

We als o e v al u at e d t h e p erf or m a n c e of  R AI L a n d P B L K f or di ff er e nt r e q u est si z es. I n P B L K,  writ es
ar e al w a ys p erf or m e d at t h e gr a n ul arit y of 6 4 K, i n d e p e n d e nt of t h e si z e of t h e ori gi n al r e q u est, b y
sli ci n g a n d r e ass e m bli n g s e g m e nts i n t h e  writ e b u ff er. F or r e a ds, i n t h e c as e of  R AI L,  w e c o ul d
n ot s e e a n y si g ni fi c a nt p erf or m a n c e i m p a ct of l ar g er r e q u ests a n d h e n c e o mit t h e r es ults h er e f or
br e vit y.  T h e r e as o n is t h at r e a d r e q u ests ar e al w a ys s c att er e d i nt o a s eri es of 4  K B r e q u ests a n d  R AI L
e mits  R AI L r e a ds f or a n y of t h e 4 K s e ct or r e a ds t h at  w o ul d b e bl o c k e d b y a hi g h l at e n c y o p er ati o n.
I n t h e c as e of P B L K, t ail l at e n c y i n f a ct i n cr e as es f or l ar g er r e q u est si z es as t h e pr o b a bilit y i n cr e as es
t h at o n e of t h e 4  K B r e a ds is s eri ali z e d b e hi n d a  writ e o p er ati o n. F or i nst a n c e, f or 2 5 6  K B s e q u e nti al
r e a ds P B L K alr e a d y s h o ws a l at e n c y of gr e at er t h a n 2ms f or t h e 8 0t h p er c e ntil e.

5. 1. 4 R AI L Stri d e  Wi dt h. As d es cri b e d i n S e cti o n 3. 3 t h e stri d e  wi dt h S r ef ers t o t h e n u m b er of
s e ct ors t h at ar e us e d t o c o m p ut e a p arit y s e ct or.  A hi g h stri d e  wi dt h is a d v a nt a g e o us as it r e d u c es
t h e c a p a cit y o v er h e a d of  R AI L. F or i nst a n c e, a stri d e  wi dt h of 1 6 ( R AI L- 1 6) o nl y i ntr o d u c es a
c a p a cit y o v er h e a d of 6. 2 5 % t o st or e r e d u n d a nt p arit y i nf or m ati o n.  O n t h e ot h er h a n d,  R AI L- 1 6
als o r e d u c es  m a xi m u m  writ e b a n d wi dt h b y 1 6 x a n d i n cr e as es r e a d a m pli fi c ati o n, as o n a  R AI L
r e a d 1 5 s e ct ors h a v e t o b e r e a d t o r e c o m p ut e t h e ori gi n al s e ct or. Fi g ur e 7 c o m p ar es t hr e e  R AI L
c o n fi g ur ati o ns a n d t h eir i m p a ct o n r e a d I O P S a n d 9 0t h p er c e ntil e l at e n c y.  We r u n 1  writ e t hr e a d
iss ui n g 3 0 K I O P S a n d 3 2 r e a d t hr e a ds t h at s w e e p t h eir a g gr e g at e I O P S fr o m 3 2 K t o 3 8 4 K I O P S.
D u e t o r e a d a m pli fi c ati o n,  R AI L- 1 6 r e d u c es t h e  m a xi m u m r e a d I O P S b y 6 4 K a n d i n cr e as es t h e t ail
l at e n c y b y 2 2 0μ s.  C o n fi g uri n g stri d e  wi dt h e n a bl es us ers t o tr a d e- o ff c a p a cit y, I O P S, a n d l at e n c y
i n a n a p pli c ati o n s p e ci fi c  w a y.

5. 1. 5  O v er- pr o visi o ni n g vs. T ail L at e n c y. S S D v e n d ors o v er- pr o visi o n  N A N D Fl as h  m e m or y t o
c o m p e ns at e f or  G C o v er h e a ds, b y e x p osi n g f e w er c a p a cit y t o t h e us er t h a n a v ail a bl e o n t h e S S D.
T h e a m o u nt of c a p a cit y r es er v e d f or  G C d et er mi n es t h e n u m b er of v ali d s e ct ors t h at n e e d t o b e
m o v e d b et w e e n bl o c ks, si g ni fi c a ntl y a ff e cti n g t h e r e a d- writ e i nt erf er e n c e [ 5 2 , 7 1 , 7 3 ].  D at a c e nt er
o p er at ors c o m m o nl y r es er v e u p t o 3 0 – 5 0 % of r a w S S D c a p a cit y f or s p a c e o v er- pr o visi o ni n g t o
i m pr o v e pr e di ct a bilit y i n t h e pr es e n c e of r a n d o m  writ es [5 6 ].  We e v al u at e t h e i m p a ct of o v er-
pr o visi o ni n g f or  R AI L b y c o m p ari n g t hr e e o v er- pr o visi o ni n g f a ct ors: 2 0 %, 1 1 %, a n d 7 %.  As Fi g ur e 8
s h o ws,  R AI L c o m pl et el y eli mi n at es r e a d st alls e v e n f or v er y l o w o v er- pr o visi o ni n g f a ct ors a n d
o p er at ors  m a y b e a bl e t o c h o os e l o w er o v er- pr o visi o ni n g f a ct ors r e d u ci n g c a p a cit y o v er h e a ds.
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Fi g. 8. L at e n c y v s. o v er- pr o vi si o n. Fi g. 9.  R o c k s D B l at e n c y.

Li n u x Ti n y T ail i m pr o v es t ail l at e n c y as it d o es n ot s u ff er fr o m t h e i n cr e as e d  G C o v er h e a ds i n d u c e d
b y l o w o v er- pr o visi o ni n g f a ct ors b ut t ail l at e n c y is still a ff e ct e d b y  R a W st alls.

5. 2  R o c k s D B

We e v al u at e t h e p erf or m a n c e of  R AI L usi n g t h e  R o c ks D B k e y- v al u e st or e d at a b as e i n v ersi o n 5. 1 0. 3.
T o r u n  R o c ks D B,  w e cr e at e a n E xt 4 fil es yst e m t o pl a c e b ot h t h e d at a b as e a n d  writ e a h e a d l o g o nt o
t h e  m o u nt e d S S D.  As l o a d g e n er at or  w e utili z e d b _ b e n c h c o n fi g ur e d  wit h t h e d ef a ult p ar a m et ers.
We B ul kl o a d 1 0 0 M k e y/ v al u e p airs i nt o t h e d at a b as e  wit h 2 0 b yt e k e ys a n d 4 0 0 b yt e v al u es  w hi c h
c o m pl et es i n 4, 3 0 0 s e c o n ds f or b ot h P B L K a n d  R AI L. B ul kl o a d g e n er at es a  writ e b a n d wi dt h of
2 3 3  M B/s  w hi c h is b el o w t h e 4 0 0  M B/s  R AI L s u p p orts i n a n S = 4 c o n fi g ur ati o n a n d  w ell b el o w
t h e 1. 6  G B/s s u p p ort e d b y P B L K a n d  R AI L i n  writ e- o nl y  m o d e. Fi g ur e 9 s h o ws t h e t ail l at e n c y
of d b _ b e n c h’s R e a d W hil e Writi n g (R W W ) a n d R e a d W hil e M e r gi n g (R W M ) w or kl o a d f or  R AI L
a n d P B L K utili zi n g 1 t hr o u g h 3 2 t hr e a ds.  We o mit d b _ b e n c h’s ot h er b e n c h m ar ks as t h e y ar e eit h er
r e a d- o nl y or  writ e- o nl y.  R AI L s h o ws 4 × l o w er t ail l at e n c y at t h e 9 9. 9t h p er c e ntil e t h a n P B L K f or
l ess t h a n 3 2 t hr e a ds  w h er e as f or hi g h t hr e a d c o u nts s oft w ar e q u e ui n g i n cr e as es l at e n c y f or b ot h a p-
pr o a c h es. Fi g ur e 1 0 lists t h e q u e ri e s p e r s e c o n d (Q P S ) t h at c a n b e a c hi e v e d  wit h b ot h a p pr o a c h es.
1 4 0 K  Q P S tr a nsl at e i nt o 3 3 0  M B/s  w hi c h is b el o w t h e t hr ottl e d b a n d wi dt h of  R AI L  w hi c h e x pl ai ns
t h at all a p pr o a c h es ar e a bl e t o a c hi e v e si mil ar p erf or m a n c e.  Ti n y T ail p erf or ms si mil ar as P B L K
(l ess t h a n 1 0 % l at e n c y i m pr o v e m e nt)  w hil e  R AI L- H C cl os el y f oll o ws t h e p erf or m a n c e of  R AI L.

5. 3  M o n g o D B

We e v al u at e t h e p erf or m a n c e of  R AI L  wit h t h e d o c u m e nt- ori e nt e d  N o S Q L d at a b as e  M o n g o D B [ 3 ,
1 9 ].  We utili z e  M o n g o D B v ersi o n 3. 4. 7, pl a ci n g t h e d at a b as e fil e o n t h e  O p e n- C h a n n el S S D, utili zi n g
t h e  X F S fil es yst e m as r e c o m m e n d e d b y  M o n g o D B.  As a  w or kl o a d g e n er at or,  w e l e v er a g e Y a h o o
Cl o u d S e r v e r  B e n c h m a r k (Y C S B ) [2 1 ].  We first l o a d t h e d at a b as e  wit h 1 billi o n e ntri es of 1K B
i n si z e t o g e n er at e a 1.2T B b a c ki n g fil e, filli n g u p t h e S S D t o 7 5 % c a p a cit y.  As  m ost b e n c h m ar ks
utili z e r a n d o m  writ es, t his fill l e v el l e a ds t o si g ni fi c a nt  G C.  We r u n 1 M tr a ns a cti o ns of e a c h of
t h e  w or kl o a ds d e fi n e d b y Y C S B. Fi g ur e 1 1 s h o ws t h e 9 9. 9t h p er c e ntil e r e a d l at e n c y as r e p ort e d b y
Y C S B f or P B L K, Li n u x Ti n y T ail, a n d  R AI L.  W or kl o a ds  B,  C,  D ar e r e a d- h e a v y ( 9 5 % r e a ds) a n d h e n c e
all t hr e e i m pl e m e nt ati o ns p erf or m  w ell pr o vi di n g s u b  millis e c o n d t ail l at e n c y.  R AI L o ut p erf or ms
t h e t w o b as eli n es f or  w or kl o a d  A ( 5 0 % r e a ds/ 5 0 %  writ es) a n d F  w h er e as F s h o ws r e a d a n d F 2
s h o ws t h e r e a d- m o dif y- writ e l at e n c y p erf or m e d b y  w or kl o a d F.  We o mit t h e r es ults f or  w or kl o a d
E f or br e vit y  w hi c h p erf or ms s c a ns t h at t a k e 3 0 ms t o c o m pl et e f or all 3 a p pr o a c h es. Fi g ur e 1 2
s h o ws t h e a g gr e g at e d r e a d/ writ e t hr o u g h p ut  m e as ur e m e nts f or t h e s a m e s et of  w or kl o a ds.  All
t hr e e a p pr o a c h es a c hi e v e t h e s a m e  Q P S a n d b e n c h m ar k e x e c uti o n ti m e.
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Fi g. 1 0.  R o c k s D B t hr o u g h p ut. Fi g. 1 1.  M o n g o D B l at e n c y.

Fi g. 1 2.  M o n g o D B t hr o u g h p ut. Fi g. 1 3.  M o n g o D B i nt erf er e n c e.

We n o w st u d y a p pli c ati o n i nt erf er e n c e b y r u n ni n g t h e s a m e  M o n g o D B  w or kl o a d as a b o v e  w hil e
r u n ni n g a n FI O  w or kl o a d c o n c urr e ntl y t h at g e n er at es a st e a d y  writ e  w or kl o a d of 1 0 K I O P S.  T h e
p erf or m a n c e of  M o n g o D B s u ff eri n g fr o m a p pli c ati o n i nt erf er e n c e is s h o w n i n Fi g ur e 1 3 . W hil e
R AI L p erf or m a n c e is u n a ff e ct e d, t ail l at e n c y i n cr e as es b y u p t o 3 × f or P B L K i n t h e pr es e n c e of
a p pli c ati o n i nt erf er e n c e.  T his s h o ws t h at  R AI L c a n n ot o nl y e nf or c e l o w t ail l at e n c y  wit hi n a si n gl e
a p pli c ati o n, b ut t h at it als o r eli a bl y a v oi ds a p pli c ati o n i nt erf er e n c e.

6  DI S C U S SI O N

6. 1 F T L- A p pli c ati o n  T r a d e- o ff s

W hil e  R AI L c o ul d b e i m pl e m e nt e d i n h ar d w ar e, t h e b e n e fit of o ur h ost- b as e d, s oft w ar e F T L a p-
pr o a c h is t o e x p os e d esi g n tr a d e- o ffs t o us ers.  B as e d o n a p pli c ati o n r e q uir e m e nts a n d d e vi c e c h ar-
a ct eristi cs, us ers c a n t u n e t h e stri d e si z e a n d o v er- pr o visi o ni n g f a ct or, t o tr a d e- o ff c a p a cit y, b a n d-
wi dt h, a n d l at e n c y. F or i nst a n c e, if  writ e b a n d wi dt h is  m or e i m p ort a nt t h a n  mi ni mi zi n g c a p a cit y
o v er h e a ds,  R AI L c a n b e c o n fi g ur e d i n  R AI D- 6  m o d e  w hi c h utili z es t w o p arit y L U Ns p er stri d e.
R AI D- 6  m o d e d o es n ot c h a n g e t h e t ail l at e n c y b e h a vi or, h o w e v er, it f urt h er i n cr e as es  writ e b a n d-
wi dt h ( as 2 L U Ns c a n b e  writt e n at a ti m e) at t h e c ost of a d diti o n al c a p a cit y. I n p arti c ul ar, i n a
c o n fi g ur ati o n  wit h t hr e e d at a L U Ns a n d t w o p arit y L U Ns,  writ e t hr o u g h p ut a n d c a p a cit y o v er-
h e a ds b ot h i n cr e as e b y 1 .6 × .

6. 2  T ail  L at e n c y  A w a r e  O S e s

R AI L e nf or c es pr e di ct a bl e l o w t ail l at e n c y f or Fl as h a c c ess es.  N e v ert h el ess, i n d e p e n d e nt s oft w ar e
l a y ers c a n i ntr o d u c e hi g h t ail l at e n c y, j e o p ar di zi n g  R AI L’s e ff e cti v e n ess.  W hil e t h e Li n u x bl o c k I/ O
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layer has signi�cantly improved scalability and throughput to support high performance NVMe

storage devices, achieving low end-to-end tail latency remains a challenge. We provide three

insights, that we believe are crucial to achieve low tail latency storage access on existing Linux

systems.

Filesystem Bypass: Running the same workload in FIO over an Ext4 �lesystem increases tail

latency by 2 − 3× over directly accessing the I/O device. As a result, to achieve low tail latency,

applications need to operate on block devices directly bypassing the �lesystem layer. Block de-

vice virtualization techniques such as provided by PBLK, enables sharing devices among multiple

applications without the need of a �lesystem.

Read/Write Separation: RAIL eliminates reads being stalled by independent writes. In addi-

tion, developers need to guarantee to never serialize any reads behind writes on the application

layer. This design principle can be implementedwith relative ease for databases or caches that have

limited consistency and atomicity requirements but becomes challenging when implementing a

database with strict ACID properties.

Over-provisioning of cores is costly, although, data plane operating systems such as Arrakis [59],

IX [4], and ReFlex [46] have shown that low tail latency can be achieved without sacri�cing

throughput and e�ciency while user level networking (DPDK) and storage (SPDK) stacks have

also shown to provide predictable high performance. POSIX OSes such as Linux need to be re-

architected with tail latency as a �rst order concern to enable end-to-end low latency systems.

6.3 Hardware Acceleration

Open-Channel SSDsmove compute cycles from the SSD controller to the host processor in order to

increase �exibility and programmability. As host processors represent a costly resource, this may

negatively a�ect the total cost of ownership (TCO). We believe that both programmability and

cost e�ciency can be achieved by anOpen-Channel design that leverages the following techniques.

Parity Acceleration: RAIL consumes 10% of the compute cycles of a modern Intel Skylake

class processor core for parity computation. We propose a new NVMe command that, given a set

of source PPAs and a destination PPA, computes parity of the source sectors and writes it into the

destination sector. This hardware o�oad would also reduce PCIe bandwidth as the parity sector

would not have to be transferred from the host to the SSD, while maintaining the �exibility of

performing the sector mapping in software.

Garbage Collection: GC overheads can be reduced by introducing an NVMe memcpy com-

mand that copies the sector of one PPA to another. With this approach, the over-provisioning

factor, GC aggressiveness, remapping strategy, and line selection remains fully programmable in

software while PCIe bandwidth and host CPU cycles are reduced signi�cantly.

Flash Architecture: When designing a Flash chip, NAND architects need to trade-o� cost,

capacity, bandwidth, and latency. For instance, to amortize the high cost of erases, they are per-

formed on a large block granularity, sacri�cing latency for throughput.Writes are also batched (see

Section 3) to increase throughput, however, batching is limited as it can lead to high tail latency

when a read is stalled behind a write. With RAIL, write latency becomes irrelevant and hence very

large pages can be supported that can improve write throughput. Furthermore, with RAIL, SSDs

no longer need to support a large amount of LUNs to reduce RaW serialization.

7 RELATEDWORK

Data center level techniques have been proposed to improve storage tail latency performance

for maintenance [2], video serving [7], and remote storage access [46] while Limplock [25] ana-

lyzes the performance impact of unreliable storage hardware.These approaches are application

speci�c and cannot provide the same guarantees as RAIL. Many Flash-based systems account
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for asymmetrical read-write latency in I/O scheduling decisions [57, 66, 68]. LOCS, a key-value

store database implemented directly on an Open-Channel SSD, schedules read, write, and erase

operations using a least-weight-queue-length policy to maximize Flash utilization and through-

put [76]. ParaFS also weighs requests as part of its parallelism-aware scheduling algorithm [82].

Prefetching [14] has been proposed to reduce tail latency. In contrast to prior techniques, RAIL is

the �rst device-level technique that supports strict tail latency guarantees.

Redundancy: Storage systems use replication or erasure coding to improve reliability [13, 26,

34, 37, 38, 45, 50, 51, 69]. Several systems and studies have shown that redundancy is an e�ective

way to reduce tail latency [22, 27, 75, 79]. EC-Cache uses erasure codes and late binding of redun-

dant requests to reduce tail latency and improve load balance for in-memory cache systems [61].

These approaches requires application-level changes while RAIL provides stronger guarantees

while being transparent to the application layer.

Data placement: Priorwork has examined various page allocation schemes on Flash to leverage

internal device parallelism [17, 41, 74]. Gordon [12] uses a 2-D striping scheme to leverage channel

and die-level parallelism, increasing throughput. OFSS is an object-based FTL co-designed in hard-

ware/software to reduce write ampli�cation [53]. Chopper [31] and F2Fs [47] are two �le system

proposals that improve performance for Flash based storage devices. Autostream [81] separates

writes into streams to improve data placement. RAIL di�ers from these systems by making data

placement decisions based on reducing the probability of read-write con�ict, thus improving tail

latency.

Garbage Collection: Several systems [15, 20, 29, 44, 49, 54, 77, 80] have determined GC as the

culprit for high tail latency and try to reduce or eliminate its e�ect.While GC arguably has a strong

impact on tail latency, we showed that addressing read-write interference is even more important.

User writes increase read latency by an order of magnitude and so far have been ignored by prior

work.

8 CONCLUSION

We described RAIL, a Flash management technique that relies on redundancy to improve the tail

read latency in the presence of high latency operations. We showed that RAIL’s page placement al-

gorithm and parity-based read datapath eliminates the possibility of a read operation getting stuck

behind writes and erases, allowing RAIL to achieve 7× lower tail read latency than a conventional

SSD. We implemented RAIL within Linux PBLK, a host-side, software FTL whose design param-

eters can be tuned by users to balance trade-o�s between tail latency QoS, bandwidth, capacity,

and fault-tolerance according to application requirements and device properties. RAIL contributes

over prior approaches by avoiding RaW serialization, enforcing stricter tail latency guarantees and

by reducing write overheads by leveraging HC.
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