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ARTICLE INFO ABSTRACT

Editor: Michael E. Boettcher The coastline of Peru lacks long-lived marine organisms useful for paleoclimatic reconstructions generating a
need for novel archives. Short-lived (<5 years) bivalves are commonly found in geological and archaeological
deposits and thus can provide “snapshots” of past climatic variability (i.e., seasonal range), similar to data ob-
tained by individual foraminifera analysis, rather than continuous, cross-dated time series (e.g., trees and corals).

Previous studies have found success using the short-lived intertidal clam Mesodesma donacium. However,
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Scl h 1 . . . . .
E;;r(;)c ronology M. donacium are vulnerable to die-offs from the warmer sea surface temperatures (SST) associated with El Nino
Peru events and are functionally extinct in northern Peru thus limiting the possibility of modern analog studies for that

region. Here we investigate the short-lived (1-3 years) surf clam, Donax obesulus, commonly found in northern
Peru, as a paleoclimate archive. Donax obesulus populations are able to survive the warmer SSTs present during EI
Nino years although they are vulnerable to colder SSTs associated with La Ninas. We assessed the environmental
drivers underlying subannual §'80 variability in D. obesulus from live collected shells from fish markets and
coastal beaches near the Nepena Valley, Peru in 2012 (La Nina), 2014 (ENSO-neutral), and 2016 (El Nino).
Forward modeling of pseudo-shell 5!80 reveals that SST variations are a dominant driver with secondary con-
tributions from seasonally-varying seawater 5'0 (8'%0gy). By accounting for varying 6!80y,, we isolated the
temperature dependent variable resulting in a paleotemperature equation for D. obesulus 5'0. We verified our
results with the §'80 record of a D. obesulus shell collected in 2006. Our results suggest that the paleotemperature
equation we developed is useful for reconstructing El Nino-Southern Oscillation (ENSO)-related climatic varia-
tions in this region and the pseudo-shell approach may be useful for understanding shell §'%0 in other locations.

1. Introduction

Sclerochronology (the study of accretionary hard parts) has emerged
as a useful tool for developing paleoclimate reconstructions, similar to
dendrochronology (the study of tree-rings), to establish a biological
chronology for that organism (Buddemeier et al., 1974; Hudson et al.,
1976; Jones, 1983). The physical and chemical variations along that
biological chronology may record the environmental conditions, such as
temperature, when that layer was formed and thus has come to be
known as sclerochemistry (Grocke and Gillikin, 2008). Bivalve shells
typically form layers as they grow and thus contain a record of the
environment. These geochemical proxies can be assigned a date of
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occurrence thus forming a paleoclimate reconstruction (Schone, 2008;
Schone and Gillikin, 2013; Schone and Surge, 2014). Long-lived bivalves
have been used to build reconstructions of temperature, pollution,
climate patterns, upwelling and other parameters (e.g., Butler et al.,
2013; Reynolds et al., 2013; Schone et al., 2011; Steinhardt et al., 2016).
Although they have provided valuable environmental information on
interannual to centennial time scales (Schone et al., 2003), bivalve shells
can also be used to reconstruct information on seasonal cycles and intra-
annual climate variability (Butler and Schone, 2017).

Short-lived (<5 years) bivalves have emerged as a novel and robust
paleoceanographic and climatological archive available for coastal Peru
(e.g., Carré et al., 2012b, 2013; Carré et al., 2014; Etayo-Cadavid et al.,
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2013; Etayo-Cadavid et al., 2018). Whereas their relatively short life-
spans make long temporal reconstructions difficult (though, not
impossible see Schone, 2003), their ability to record environmental
signals over the course of a year or more makes them useful to recon-
struct seasonal to interannual environmental variability (Carré et al.,
2012a; Carre et al., 2013). Stable oxygen isotope values (6180) in shells
of most bivalve species vary on intra- and interannual time scales in
equilibrium with sea surface temperature (SST) after accounting for the
580 value of ambient seawater (5'%0gy) during shell biomineralization
(Epstein et al., 1953; Grossman and Ku, 1986; Mook and Vogel, 1968;
White et al., 1999). Seawater 8'80 values can vary with evaporation-
precipitation, ocean advection, upwelling, and fluvial input in coastal
areas, all of which are influenced by El Nino-Southern Oscillation
(ENSO) variability in coastal Peru. The ubiquitous presence of short-
lived bivalves and other mollusk shells in Peruvian archaeological
sites spanning the Holocene Epoch makes them uniquely positioned to
leverage the reconstruction of past climatic shifts and variability coeval
with human-environment dynamics (Carré et al., 2009; Sandweiss,
2003; Sandweiss and Kelley, 2012; Sandwess et al., 2001).

Previous researchers in Peru targeted the surf clam Mesodesma
donacium (known locally as machas), an intertidal bivalve that can live
for up to five years. Unfortunately, due to fisheries pressure and
increased El Nino frequency and intensity since the 1980s M. donacium
are functionally extinct (Riascos et al., 2008, 2011; Tarifeno-Silva,
1980) north of ~16°S (Fig. 1), thereby limiting the opportunity for
modern analog studies. However, there are other extant short-lived
mollusks frequently recovered from archaeological contexts in north-
ern Peru (Chicoine and Rojas, 2012, 2013; Rosello et al., 2001). In this
paper, we examine the 5'%0 signals recovered from individuals of one
such bivalve species, Donax obesulus, and discuss how these variations
are driven by environmental signals including SST, 61805w, and ocean-
ographic processes related to ENSO phase. Understanding these factors
is crucial for refining the utility of Donax obesulus as a potential paleo-
climatic archive, especially given the complexities of the oceanography
along the Peruvian coastline.

The goals of this study are thus:
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1) To assess the relationship between D. obesulus 5'80 and SST and
within the range of 51804, variations in the region and assess the
influence of §'%0g, on shell §'%0.

2) To develop a paleotemperature equation for D. obesulus and identify
uncertainties in its use for paleoclimate reconstruction.

1.1. Eco-climatology and biology of Donax obesulus

Our study area is located in coastal Ancash, a region of northern
Peru. Local SST (1952-1987, 1996-2018; 1 m water depth; 9.08°S,
78.61°W, 250 m offshore, 20 km north of the study region; IMARPE,
2019; Dominguez et al., 2017) and satellite sea surface salinity (1° x 1°
SSS; Zuo et al., 2019) records show that oceanographic and climatic
conditions are fairly uniform for the coastal region during non-ENSO
years (68.6% of all months) with monthly SST ranging from 18 to
22 °C (Fig. 2B). During strong El Nino events, SST can exceed 25 °C for
several months (3.1% of all months) whereas during strong La Nina
events SST can drop below 16 °C, though only rarely (1% of all months).
Salinity ranges from 34 to 35 psu (Fig. 2A), though occasional extreme
precipitation events can drive salinity down to 33 psu (Grados et al.,
2018). In this region, La Nina events can cause drought conditions
lasting for months that increase salinity up to 35 psu, and on the other
hand El Nino events increase precipitation and river runoff into the
coastal environment that causes a decrease in salinity down to 34 psu.
ENSO usually produces compounded cold-dry (i.e., more saline) and
warm-wet (i.e., less saline) conditions driven by La Nina and El Nino
events, respectively in this region (Fig. 2). These changes from cold-dry
to warm-wet conditions produce an additive signal in the §'80 of car-
bonate shells of marine mollusks such that as temperature increases and
salinity decreases the shell 5'%0 (61805},611) values become relatively
lower and vice versa. Occasionally, highland pluvial events can cause
freshening signals in coastal areas (March to May 2012, Fig. 2) during La
Nina years; however, these anomalies are present in the SSS data as
decreases in salinity. Additionally, there is evidence that central Pacific
La Nina events can drive precipitation increases in coastal Peru similar
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Fig. 1. (A) Biological ranges of the bivalve species examined and (B) our study area in northern coastal Peru. (A) The average annual (or seasonal) range of SST from
the World Ocean Atlas 2009 (Locarnini et al., 2010) climatology are plotted as the annual range of SST is a target metric for short-lived bivalve reconstructions. The
historical (dashed) and current (solid) ranges of M. donacium (cyan) and Donax obesulus (black) (Carstensen et al., 2010) are shown along the coast. (B) Shells were
purchased in Chimbote in 2012 and 2014, and IMARPE maintains a monitoring station for SST nearby. The beaches where live shell collection occurred in 2016 are
marked with orange triangles. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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SST (°C)

Fig. 2. (A) Monthly SSS from the European Centre for Medium-Range Weather
Forecasts (ECMWF) Ocean Reanalysis System 5 (ORAS5) (Zuo et al., 2019) for
the 1° grid cell centered on 9.5°S, 79°W and (B) monthly SST from the Instituto
del Mar del Peru (IMARPE) decentralized laboratory in Chimbote, Peru
(IMARPE, 2019), see Fig. 2 for location. In (A) and (B), black dashed lines
represent the mean of each record, whereas the colored dashed lines represent 1
standard deviation of each record. The gray shaded areas are this study’s time
interval and the verification time interval. Black stars represent strong El Nino
(> + 1.5 °C) events and unfilled stars represent strong La Nina (> —
1.5 °C) events.

to eastern Pacific El Nino events (Lavado-Casimiro and Espinoza, 2014).

Donax obesulus is a short-lived, aragonitic, intertidal bivalve that
occupies the surf zone of dynamic, sandy beaches from southern
Ecuador to southern Peru (Fig. 1A), and on occasion into northern Chile
(Coan, 1983; Etayo-Cadavid et al., 2013; Talledo, 1980). Donax obesulus
is an important species for present-day artisanal fisheries and foodways.
Despite their relatively small size (~15 mm x 30 mm), these clams have
been consumed by populations along the Peruvian coast for millennia
(Sandweiss et al., 2001). Previous research (Coan, 1983; Paredes and
Cardoso, 2001) suggests the existence of at least two separate species
(D. obesulus and D. marincovichi, sometimes also D. peruvianus);
although, a recent study (Carstensen et al., 2009) posits that these are
separate ecomorphs of the same species. We follow the recommendation
of Carstensen (2010) in using the designation D. obesulus.

Whereas internal increments are usually used as a marker for sea-
sonal growth in bivalves (Schone, 2008), D. obesulus growth increments
are difficult to interpret and thus not necessarily useful for time
assignment outside of general age at capture (i.e., if there is an annual
growth increment in the shell it is likely at least one year old). Other
methods for estimating age and growth rates are thus necessary when
discussing D. obesulus growth and age estimation. Previous research has
identified von Bertalanffy (1957) growth curves as a useful tool for
understanding bivalve growth patterns in other species (Palmer et al.,
2021). Various length-age studies using von Bertalanffy growth curves
for D. obesulus (Arntz et al., 1987; Paz and Alzamora, 2014; Paz et al.,
2007; Ramirez et al., 2016) set the theoretical upper age limit at
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approximately 36 months, with most individuals living less than 24
months. The study of Paz and Alzamora (2014) generated a von Berta-
lanffy growth curve for D. obesulus based on specimens they collected
between 2001 and 2009 in the Bahia de Samanco, which is located in
our study area (Fig. 1B). Their growth curve is based on a repeated
length-age assignment of size classes (in 1 mm intervals) sampled
annually and they calculated D. obesulus shells reach a length of 22 mm
at one year of age. They included shells from an 8-year study window
that included La Nina, ENSO-neutral, and El Nino conditions (NOAA,
2020) thus averaging out any potential bias related to ENSO phases that
could influence their D. obesulus growth curve and equation.

1.2. Previous D. obesulus and Donax spp. geochemical studies

Some studies have examined Slsosheu and other geochemical signals
in D. obesulus and other species of the genus Donax. Perrier et al. (1994)
examined whole shell §'%0 for D. obesulus among other species from
both modern and archaeological samples as a proxy for SST and found a
correlation with modern local mean annual SST when using the Epstein
etal. (1953) equation for calcium carbonates. Other geochemical studies
using D. obesulus investigated pre-bomb radiocarbon signals as an up-
welling proxy along with internal shell §'80 profiles as SST range in-
dicators using the Grossman and Ku (1986) and Bohm et al. (2000)
equations for mollusks (Etayo-Cadavid et al., 2013; Etayo-Cadavid et al.,
2018). Those authors note that there is no correlation between the two
proxies suggesting that fast water mixing on a time scale of 40-90 days
equilibrates water temperature before radiocarbon from the atmosphere
can equilibrate with seawater (Etayo-Cadavid et al., 2018). Further-
more, other studies suggest species-specific 5180-sST equations are
needed for accurate paleotemperature reconstruction in mollusks (Carré
et al.,, 2005a, 2005b; Chamberlayne et al., 2021; Royer et al., 2013;
Tynan et al., 2014).

Efforts to develop geochemical proxies for temperature in other
Donax spp. have produced equivocal results. Jones et al. (2005) found
strong correlations between SST and the SISOShen of modern Donax
variabilis from northeast Florida using the mollusk-specific paleo-
temperature equation developed by Grossman and Ku (1986). On the
other hand, Galimberti (2010) found the §'®Oghen profiles of Donax serra
from South Africa required an offset of 0.7%o when using the Grossman
and Ku (1986) equation to correlate to SST that they attribute to vital
effects. Jew et al. (2016) tested the 5'80ge-SST relationship of Donax
denticulatus from the Caribbean Island of Nevis using various published
temperature equations and found SST reconstructed from 5'804hen Was
statistically indistinguishable from SST recorded at their study site when
using Eq. 1 of Grossman and Ku (1986). Combined, these studies high-
light the potential of the genus Donax but also the necessity of a closer
examination of the 50gher relationship to temperature and 5'%0 of
seawater (5'804,). Whereas D. obesulus is expected to precipitate their
shells in equilibrium with seawater like other aragonitic mollusks (IMook
and Vogel, 1968), these studies also illustrate that species-specific vital
effects alongside variability in local §'80g, are important factors to
consider.

Each of these aforementioned Donax studies employed different
sampling strategies, a tenet that may partly explain the diversity of their
5'80-SST calibration results, as has been found with other marine car-
bonates and mollusks (Twaddle et al., 2016). Jones et al. (2005), Jew
et al. (2016), and Etayo-Cadavid et al. (2013, 2018) micromilled the
convex outer surface of the shell without taking cross-sections to extract
samples for 5180 analysis. Galimberti (2010) cut D. serra shells into thin
cross-sections and then hand-milled them (i.e., Dremel ™ tool) along the
growth increments to remove samples. In our study, given the success of
similar micromilling methods in larger bivalve species (Carré et al.,
2005a, 2005b; Hallmann et al., 2009; Schone et al., 2005), we use thick
cross-sections of D. obesulus micromilled at approximately monthly in-
tervals to extract enough shell material for §'%0 analysis.

In this study, we first generate growth models for each shell using the
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previously determined von Bertalanffy growth equation for D. obesulus
(Paz and Alzamora, 2014) to confirm that the shell’s 80 values span at
least 12 months and to assign time to each shell chronology. To better
understand the environmental signal driving the 5'80gnen values, we
construct a forward model (pseudo-shell) based on observed SST and
SSS-calculated 61805‘,\,, similar to methods that are used in shell, coral,
and foraminifer studies (e.g., Carré et al., 2012a; Peharda et al., 2019;
Thirumalai et al., 2013; Thompson et al., 2011) to calculate expected
618Osheu values. Finally, we assess and validate the paleotemperature
calibration equations based on the application of observed seasonal
618Osw values from the region.

2. Materials and methods
2.1. Specimen collection

D. obesulus are relatively easy to capture, only requiring an individ-
ual to wade up to about one meter of seawater depth and dig about 50
mm into the sandy substrate. Specimens of D. obesulus were collected
live from beaches (July 2016) or purchased alive (August 2012 and July
2014) from the La Sirena fish market in Chimbote, Department of
Ancash, Peru. Live collections come from two beaches (Vesique and
Atahualpa) along the Bahia de Samanco of the Nepena Valley, Depart-
ment of Ancash, Peru and one slightly farther south (Los Chimds). Those
purchased at the fish market come from the Bahia de Samanco, making
specimens from all three years geographically comparable (Fig. 2B).
Each collection of shells (2012, 2014, and 2016) were purchased or
collected during one day thus we assume the same death day for each
collection.

A
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2.2. Specimen preparation and sampling

After collection or purchase, we sacrificed specimens, removed their
meat, dried the shells, and then packed them into Whirlpaks ™ (sterile
collection bags) for transport. In the lab, we rinsed the shells with
deionized water, manually removed any remaining visible flesh, and
cleaned them with a Branson 400 sonifier digital ultrasonic cell dis-
ruptor in deionized water to remove any remaining tissue. This cleaning
method does not introduce possible isotopic shifts that can occur with
oxidative cleaning or other chemical cleaning methods (Roberts et al.,
2018). We then dried the shells in an oven at 40 °C for 12 h. Left valves
from six specimens from each collection year (total = 18) were selected
for further analysis based on their larger shell size and integrity (no signs
of predation, parasitism, or damage). Selected valves were set into West
System ™ two-part epoxy for 12 h. Next, we cut two thick sections from
each shell, each ~1 mm thick, along the axis of maximum height from
the umbo to the ventral margin of the left valve of each specimen
(Fig. 3A) using a Buehler Isomet slow speed saw equipped with a
diamond-edged blade. One thick section was processed for imaging
growth increments and archival purposes and the other thick section for
microsampling for isotopic analysis. Both sections were cleaned in a
sonicator bath without heat to remove cuttings.

Individual D. obesulus shells often do not generate readily visible
increments due to their short lifespan and ecological niche in swash and
surf zones, yet tidal increments and annual growth checks can be pre-
sent. The visibility of these increments is minimal without processing of
thick sections using methods that render them unsuitable for
geochemical analysis via micromill sampling (e.g., making them too
thin, or possible alteration of primary chemistry via cleaning and
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polishing if temperatures exceed 100 °C (Waite and Swart, 2015)) or
staining. We thus used a second thick section for imaging. As a result, we
only used increments that were visible when specimens were manually
polished with silicon carbide powder (14, 10, 8.0, and 1.0 pm) for time
assignment and life span assessment. Specifically, we used annual
growth checks as an indicator of at least one year of growth.

We sampled each shell using a 0.5 mm carbide drill bit mounted on a
TAIG Micromill ™ guided by SuperTech SuperCam XP software (DeLong
et al., 2011). Sample paths were drawn in the micromill software as
either points or lines at 0.5 to 1.0 mm intervals and then computer
milled to a depth of 0.5 to 1.0 mm (Fig. 3B). The resulting shell cuttings
(~ 80 pg for analysis and an archive aliquot) were collected using a
scoopula and placed into microcentrifuge tubes for storage. Sampling
paths were drawn (length and sampling depth) to span as much of the
shell’s cross-section as possible guided by growth checks (areas of tight
bundles of increments) and increment patterns when visible.

2.3. Time assignment

To assign time to our samples, we used the von Bertalanffy (1957)
growth equation calculated for D. obesulus by Paz and Alzamora (2014).
This equation was developed using the length at capture of individuals
collected live in Samanco Bay from 2001 to 2009 and includes the three
phases of ENSO (Paz and Alzamora, 2014). To adjust the growth equa-
tion to our sampling strategy, we applied the height to length ratio of
each shell sampled in this study to the expected length at daily resolu-
tion. We then calculated how many days a 0.5 mm sampling interval
would span from the calculated age at capture (i.e., oldest shell age
sample) to the most interior sample (i.e., youngest shell age sample)
along the axis of maximum height.

2.4. Stable isotope analysis

Shell samples were dissolved in phosphoric acid at 70 °C and
analyzed at the Stable Isotope Geosciences Facility at Texas A&M Uni-
versity on a Thermo Scientific MAT 253 equipped with a Kiel IV device.
Data were adjusted using an empirical slope measured vs the known
Vienna PeeDee Belemnite (VPDB) standard. Analytical precisions are
40.06%o (10) for 5180 and + 0.04%o (10) for 513C based on long-term,
replicate (6 samples/day) analyses of carbonate standards NBS-19
(8'80 = —2.20%o, 5'°C = 1.95%c) and IAEA-603 (3'80 = —2.37 +
0.04%o, 513C = 2.46 + 0.01%o). All isotopic values are reported in delta
notation as per mil units (%o) relative to the VPDB isotopic standard.

3. Results
3.1. Sample temporal resolution

Growth modeling using shell growth checks and the growth equation
of Paz and Alzamora (2014) provided an estimate of the number of days
per sample and showed our sampling method yielded at least one annual
cycle in 5'%0 per shell. We obtained isotopic measurements (5*%0 and
513C) for 18 shells (six each for 201 2, 2014, and 2016) with the number
of samples per shell varying from 12 to 26 (Tables S1-S3), a sampling
resolution of 22 samples per year on average. The growth models sug-
gest that we were able to sample between 175 and 460 days from each
shell, with an average of 350 days per shell. Each sample represented 17
days on average (+6 days, 1o; range from 9 to 42 days) (Tables S1-S3).

3.2. Stable isotope results

Correlations between raw 61805he11 and 513Cshe11 for each shell varied
from 0.79 to —0.81 among all 18 shells suggesting the lack of a
consistent relationship (Tables S1-S3). Interpretation of 5'3Cehenr is not
straightforward and will not be examined further in this report; how-
ever, the data are included in the supplementary information for
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posterity (Tables S1-S3).The raw shell 5180 values (Table 2; Fig. 4) show
subtle seasonal differences for each of the three intervals investigated. In
2012 (La Nina), between 18 and 26 samples per shell were analyzed
with an average 6180511511 of —1.01%o (+0.35%o, 16) and average range of
0.98%o (+0.24%o, 16). In 2014 (Neutral), between 18 and 23 samples per
shell were analyzed with an average 6180511611 of —1.09%o (+0.31%o, 10)
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and average range of 0.90%o (+0.21%o, 15). In 2016 (El Nino), between
12 and 18 samples per shell were analyzed with an average 61805},311 of
—0.70%o (+0.33%o, 16) and average range of 0.80%o (+0.31%o, 10). In
general, the slsosheu for each interval has similar annual cycles with
increasing disagreement among contemporaneous samples as the sam-
ple number from the ventral edge increased (assumed to be the same
day), especially after the 12th sample. For each set of contemporaneous
samples, the differences in shell !0 are less than analytical precision
(20), especially for the first ~12 samples that should be approximately
the same time interval. In 2016 (El Nino), the seasonal cycle is relatively
flat with an overall more positive mean slsoshen. In 2012 (La Nina) and
2014 (Neutral), the seasonal cycle contains subtle but visible winter and
summer shifts.

3.3. Sample time assignment

To achieve approximately monthly §'80 values for comparison to
monthly SST records (Fig. 5), samples representing less than 60% (17
days) of one month (28 days) were averaged together (n = 196) with the
next sample of a similar time span. We physically resampled any sections
representing more than 150% (42 days) of one month (n = 2) at a higher
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Fig. 5. As in Fig. 4 but samples are assigned to a month and averaged to
monthly values as needed.
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resolution (i.e., with a smaller spatial increment of sample sizes) on the
reverse side of the thick section. We included those samples rather than
the original lower resolution samples in our analysis. If physical
resampling was not possible, we omitted those samples from the analysis
(n=1).

4. Discussion
4.1. 580, SST, and 50y,

The seasonal cycle among contemporaneous shells is similar sug-
gesting a common environmental forcing that is distinct for each time
interval (Fig. 4). We first assess the influence of SST alone on the growth-
modeled Donax obesulus 51805he11 via calculation of Pearson’s correlation
coefficient between monthly SST and monthly average 5'804he11. Most
(83.3%) of our individual monthly growth-modeled 61805}1611 records do
not correlate with local SST (IMARPE, 2019) at the 5% significance level
(77.8% do not correlate at the 10% significance level) (Table 1) nor does
the averaged 8804y for each year. This lack of correlation may be
partly due to uncertainty in the growth model used to assign time to each
shell 5'80 value (Fig. 3) or the fact we did not align the shell §%0 to SST
for time assignment as is done with other proxies (e.g., corals, and
coralline algae) or the low number of samples increasing the threshold
for a correlation to be significant. In the 2012 and 2014 shells, SST and
61805}1@11 diverge approximately 7 to 10 months before sample collection,
or during the austral winter (Fig. 6). However, in the 2016-collected
shells, the preceding austral summer (3-9 months prior to collection)
is the point where divergence occurs (Fig. 6). This seasonal divergence
suggests a seasonal influence of slsosw on 6180511911.

To understand the environmental forcing driving our Donax obesulus
5180 values, we generated “pseudo-shell” forward models (akin to
pseudo-corals as in Thompson et al., 2011 or calculated 5'%0 as in
Goodwin et al., 2003 and Peharda et al., 2019) of the expected 580 for
each of the time intervals (2011-2012, 2013-2014, and 2015-2016)
during which the shells grew. For temperature, we used monthly SST
from Chimbote (IMARPE, 2019), close to our study site (Fig. 2). We first
developed these forward models using the §'0-SST equation (Eq. 1)
developed by Grossman and Ku (1986), then also used that developed by
Carré et al. (2005a, 2005b) for M. donacium (Eq. 2), as it is the only such
equation developed for an intertidal bivalve species in western South

Table 1
Pearson’s correlations for monthly growth-modeled
8'804hen and monthly average SST.

Shell Correlation P n

VBTBI12-17 -0.02 095 |15
VBTBI12-25 -0.15 0.63 |13
VBTB12-37 0.24 041 |14
VBTBI12-118 0.12 0.70 | 13
VBT12-270 0.13 0.61 |18
VBTBI12-360 -0.59 0.02 | 15
CMD14-8 -0.53 0.08 | 12
CMD14-123 0.28 047 |9

CMD14-129 0.05 0.87 | 14
CMD14-134 0.51 0.05 |15
CMD14-142 -0.17 0.57 | 14
CMD14-144 0.17 0.61 |12
16AP-6 -0.48 0.10 | 14
16AP-26 0.25 042 | 14
16AP-37 0.01 098 | 14
16AP-51 -0.05 0.88 | 12
16AP-71 -0.66 0.06 |9

16LC-168 -0.88 0.01 |7

Interval averages | 0.99 0.09 |3

Note: Shells highlighted in light gray are significant at
the 5% level and in dark gray are significant at the 10%
level. SST from Chimbote, Peru (IMARPE, 2019).



J.P. Warner et al.

-2.0 1 La Nifia 25
L 24
6 - 23
o L 22
Q.12
s L 21 &
33 -
< - 203
0-0.8 2
g - 19
04 4 - 18
L 17
00 +—r—+—7-—"7—r—r—r"—r—r—r—1r7r7T17177+ 16
PENVEPIELESFPRLERENVH PRI ®
NN NN
N A N A A A A A O A A A A A A A A MM
R P A S Vv VA VA VA VA
2.0 - ENSO-Neutral r 25
L 24
1.6 | o3
) L 22
£ -1.2 1
[ 9]
>° . 21(ﬁ
£ =
< L 20° S
©-08 A e
g - 19
04 - L 18
Hoy
00 7T 16
SHEPIESIE 08 &SNS P LS
NN N NN NN N NNNNN NN N NN
R A N
-2.0 7 El Nifio - 25
- 24
-1.6 1 L 23
o - 22
Q.12 n
= 21 @
] =
< - 2073
0 -0.8 A <2
g L 19
_0.4_ '18
L 17
0.0 T r T T T T T T T T T T 16
PSP LSSIsr e
N' N' N N N N N' N N N N N N
FTFTEFTFTLFT O TS F
Month

Fig. 6. Comparison of average monthly 6180511911 (color circles) with monthly
average SST (gray triangles). Error bars for 5'80gpen are one standard deviation
of the mean for each month (for n > 2, otherwise not given), whereas error bars
for SST are +0.3 °C based on instrumental precision. The monthly SST is from
the IMARPE decentralized laboratory at Chimbote (IMARPE, 2019). The 580
axes are reversed so that warmer values are up.

America and both M. donacium and D. obesulus are aragonitic bivalves
(Carré et al., 2005a, 2005b; Etayo-Cadavid et al., 2013). We used the
LeGrande and Schmidt LeGrande and Schmidt (2011) 81SOSW-SSS
equation for the tropical Pacific (Eq. 5) to calculate monthly 51804, from
the ECMWF ORASS5 (Zuo et al., 2019) monthly SSS product. First, we
solved Egs. 1 and 2 for 5'80ghen resulting in Egs. 3 and 4 and then
determined the §'%0 pseudo-shells records for 2012, 2014, and 2016
from observed SST and calculated SIBOSW.

SST = 20.60-4.34(5'"* Oypen—(5'°0,,-0.27) ) @

SST = 17.41-3.66(5" 041—5'*0y ) @
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5" 0gpen = — 0.23(SST) +4.75+8"%0,,, +0.27 3
5" 0gpen = — 0.27(SST) +4.76 +8'%0,,, 4
8"80,, = 0.27(SSS)-8.88 (5)

We found that most months of the pseudo shells and observed
5'80gnen did not agree in value, with the Carré et al. (2005a, 2005b)
based model outperforming the Grossman and Ku (1986) based model
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Fig. 7. Comparison of Carré et al. (2005a, 2005b) (dark gray triangles) and
Grossman and Ku (1986) (gray squares) modeled 8'804pe11 to observed §'80gpen
(colored circles). Organized as in Fig. 6; however, shell model error bars are the
root mean square error (RMSE) calculated by Carré et al. (2005a, 2005b) of
40.40%0 (16) and calculated for Grossman and Ku (1986) as £0.46%o (16). The
5180 axes are reversed so that warmer values are up.
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(Fig. 7) in predicting average 5'804hen. However, the Grossman and Ku
(1986) based model did better at predicting the range of 6180511511, sug-
gesting a difference in slope and intercept would both be necessary to
accurately predict D. obesulus alsosheu. We note that after accounting for
offsets, the disagreement between predicted and observed 5'80gpen (or
residuals) is seasonal, with observed 61805},311 from the preceding winter
more anomalously negative compared to forward-modeled values than
warmer seasons.

We next explored the contribution of seasonal changes in 880y, to
6180511911 with the pseudo-shell model and Eq. 4. We did so because the
mean offset between the Carré et al. (2005a, 2005b) based model and
our observed values (0.62 + 0.26%o) is reduced compared to the offset
observed with the Grossman and Ku (1986) based model (1.66 + 0.24%o)
and the 580, values that would need to be applied to Eq. 1 would be
greater than that observed in coastal Peru. To constrain slsosw, we held
model 580y, to 0%o. The residuals between the SST-only modeled 5'%0
values and the observed shell §'0 values suggest an influence from
ambient seasonal 8'%0y,, shifts, assuming neither original modeling
equation is appropriate for Donax obesulus, thus the residuals represent
the contribution from 580, along with error. We then subtracted
seasonal 61805W variations for one year (2003) documented by Carré
et al. (2013) from Huacho, Peru 240 km south of our research location
(Fig. 2) from our observed 6180511511 values. We do so because this is the
only published 880y, data set from Peru that includes seasonal 580
values throughout a calendar year. These values vary from 0.03%o in the
spring to —0.66%o in the winter. Unfortunately, there are no additional
5180y, data sets from Peru spanning the years of our study, and these
data represent an ENSO-neutral year. We thus expanded these values to
include those in the range of —0.7 to 0.2%o during La Nina and ENSO-
neutral conditions for our location-based on unpublished 5'80,,, mea-
surements from northern Peru (Fred Andrus-personal communication
June 2020).

We used our pseudo-shell models to guide our application of 5'%0g,
values, as these models using a negligible 5'%0,, input represented an
SST-only approach for the three years of our study (2012, 2014, 2016).
For months where there was a residual between the model and observed
5180y values (i.e., pseudo shell — shell = residual), we applied the
seasonal 5'%0y, value from the designated range closest to the residual
value (e.g., if the difference was —0.8%o, we applied a §'80g,, value of
—0.7%o). For the 2016 shells, a different approach was needed as the
observed values for an ENSO neutral year (—0.7 to 0.2%o) did not fit the
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0.0 to 0.6%o that represent open ocean conditions in the tropical eastern
Pacific (LeGrande and Schmidt, 2006). We do so as we infer the differ-
ence between the 2016 model and observed 6180511911 is driven by
advection of open-ocean waters into coastal bays during the 2015-2016
El Nino event (Muis et al., 2018; Peng et al., 2020; Piecuch and Quinn,
2016). As a result of applying these §!%0g, values, the agreement be-
tween 5804 and our forward models was improved (overall 5'80hen
— model r = 0.17; after §'804, adjustment r = 0.85). These results sug-
gest there are seasonally and interannually varying 580y, shifts and
that a single 5'%0g, value cannot be applied to solve for SST (Conroy
et al., 2017).

When we subtract 61805‘,\, values from 51805he11 guided by the pseudo-
shell model residuals (i.e., 8'80g,.qw) much of the original seasonal and
mean variability among individuals and years remains the same for the
2012 and 2014 collected shells. However, there is a statistically signif-
icant (using Student’s t-test) 580 shift (—0.33%o, t = 3.792, p = 0.001, o
= 0.05) in mean values for shells collected in 2016 (Tables 2, S4-S6). For
all intervals, the range for 61805h_5w varies from 0.73 to 1.38%o (Fig. 8),
though most shells have ranges around 1%o (average for all shells = 1.04
=+ 0.25%o, 16). Considering the limited seasonal range of SST in the study
region during the study period (~4-6 °C) and limited seasonal range of
SSS (~0.1-2 psu) these adjusted range values are within expected ranges
for bivalve 5'%0 assuming a §'%0g, to SSS relationship of 0.27%o/psu for
the Tropical Pacific (LeGrande and Schmidt, 2006; 2011). This approach
is similar to fitting the 5'804hen to a SST record (e.g., Peharda et al.,
21081 9) for time assignment except here we are fitting 61SOSW to the
8 "Oshell-

4.2. Calibration of 51804pent to SST

We use reduced major axis regression (RMA) with PAST 3.21 soft-
ware (Hammer et al., 2001) with local monthly-averaged SST mea-
surements from daily measurements at the Chimbote station (IMARPE,
2019; Fig. 2B) with the monthly Donax obesulus 5'80gpnenn with 8804y,
removed (61805h_5w) to describe the relationship between 61805h_5w and
SST. This regression technique is used because it includes bivariate
uncertainty in both regressors (Thirumalai et al., 2011). Regression of
average monthly 5'804h.sw tO monthly SST using all shells (Fig. 9) results
in the following equation with a Root Mean Square Error (RSME) of
+0.21%o or 1.01 °C.

18

residuals, thus we applied a set of seasonal §'80y,, values ranging from 870w = 3.18(£0.14)-0.20( £ 0.01)SST, (n = 231) (6)

Table 2

Monthly 8804 summary without and with §'80y,, adjustment applied.
Shell Year Minimum Minimum Mean Mean Median Median Maximum Maximum Range Range SST n

8'%0gpenr 8"%0mow  8'%Omen  8'%0a  8'%0gar  8'%0m. 8Os 8'%0how 5'%0spen  8'°0Ogn.  range  (months)
sw sw w (9]

VBTB12-17 2012 —1.53 —-1.51 —-0.99 —0.88 —-0.95 —-0.87 —0.56 —0.51 0.97 1.00 4.55 15
VBTB12-25 2012 —1.34 —1.44 —1.02 —0.91 —-1.12 —0.88 -0.27 —0.30 1.04 1.04 4.55 13
VBTB12-37 2012 —-1.63 -1.31 —0.98 —0.81 —0.96 —0.81 -0.35 -0.37 1.28 0.85 4.55 14
VBTB12-118 2012 —-1.55 -1.19 —-1.25 —-0.95 —-1.23 —-0.94 —-0.99 —-0.63 0.56 0.90 4.55 13
VBTB12-270 2012 —1.48 —~1.02 —0.92 —0.78 —0.92 —0.80 —0.45 -0.36 1.04 0.88 4.55 18
VBTB12-360 2012 -1.36 -1.38 -0.87 —0.81 -0.97 -0.74 —0.38 —0.34 0.98 1.08 4.55 15
Mean —-1.48 -1.31 -1.01 —0.86 -1.03 —0.84 —0.50 —0.42 0.98 0.96 4.55 14.7
CMD14-8 2014 -1.36 -1.28 -1.01 -0.78 —0.98 -0.78 —-0.75 —0.26 0.61 1.22 4.94 12
CMD14-123 2014 -1.59 -1.21 -1.07 -0.70 -1.13 —-0.72 —0.62 —0.35 0.97 0.86 4.80 9
CMD14-129 2014 —-1.56 -1.39 -1.07 -0.77 -1.02 -0.77 —0.52 —0.25 1.04 1.27 5.85 14
CMD14-134 2014 -1.79 —-1.28 -1.27 —-0.91 -1.25 —-0.92 —-0.79 —0.55 1.00 1.01 5.85 15
CMD14-142 2014 -1.27 -1.37 —1.03 —0.86 —1.04 —0.85 —0.61 —0.46 0.66 0.98 5.85 14
CMD14-144 2014 -1.66 -1.35 -1.10 —-0.99 -1.07 —1.00 —0.56 -0.59 1.10 1.16 4.94 12
Mean —1.54 —-1.31 —1.09 —0.84 —1.08 —0.84 —0.64 —0.41 0.90 1.08 5.37 12.7
16AP-6 2016 —-1.44 —-1.84 -0.78 —1.04 —0.81 —1.04 —0.46 —0.46 0.98 1.38 5.63 13
16AP-26 2016 -1.14 -1.25 —0.64 —0.95 —0.62 -1.00 —0.45 —0.52 0.69 0.73 5.63 13
16AP-37 2016 -1.07 -1.36 —0.82 -1.05 —0.80 -1.06 —0.34 —0.34 0.73 1.02 5.63 13
16AP-51 2016 -1.21 -1.75 —0.85 -1.14 —0.84 -1.11 —0.68 —-0.70 0.53 1.05 5.63 12
16AP-71 2016 -1.39 —1.64 —0.80 -1.14 —0.60 -1.20 —0.40 —0.51 0.99 1.13 5.63 9
16LC-168 2016 —-0.90 -1.50 —0.32 —-0.92 -0.19 -0.79 0.01 -0.29 0.91 1.21 5.63 7
Mean -1.19 -1.56 -0.70 —1.04 —0.64 —-1.03 -0.39 —0.47 0.81 1.09 5.63 11.2




J.P. Warner et al.

-2.0 1 La Nifa
154
1]
£
S .10 z
A g
€ 3
3 [
2-0.5 1 o
1% L 08 3
° 0.0 - ‘BE [ 0-6¢
048
L 022
0.5 - + 00 3
W«?{\'@Wﬁwé”wff’ r\:’x\wo“’q/&\&\é” ':\"’\é\ \4%’\«?'\&\/\'3’\(\‘?\\« '§~"
BRE R G R IR R NE B O R RTINS N
PPPPPPPPPRPRPPPRPP PP PP
-2.0 1 ENSO-Neutral
-1.5 4
o
g
> -1.0 A z
g )
€ &
= ] [
Og-os B
< - -0.8 3
o n - -06¢
0.0 - o
- 04 8
F-02 2
0.5 - - 00 &
SN DO A REODDOCA DD DDA D
\““D\VP\“‘E\VFL\“\\“‘0\“6(’-’9»{5%\”;‘\\'56\'5%(’-’6\'5&(’-’%'{5{1’0\(56
O O S S D o S S S e e S S S D S S S
PPRP PP PP PRPRPP P PP
-2.0 1 El Nifio
151 —S¢
5 » :
g / 2
> -1.0 4 = S —8 ?
£ o
[ / 9
3054 ¢ ®
i o1
1% L 08 &
0.0 = - 06¢
‘ . - 048
oS = 008
O D D d A DO DD O A DD
KRR IR R AR SR SRR SRR IR RS
SIS S ST S S S S WS
PP F PR PP PP P
Month

Fig. 8. Shell values with 580, were subtracted as guided by residuals be-
tween our model and observed §'%0gpq. The x-axis is the month represented by
the subsample, the colored line is the average of all samples for that month and
light gray lines are individual shell records. The secondary y-axis is the §'%0g,,
value applied to address the residual. The primary y-axis is inverted so that
warmer values are up. The 2012 and 2014 secondary y-axes are also inverted.

La Nina (2012) and ENSO-neutral (2014) shells’ monthly 618Osh_sw
generally overlap, though the overall range of 2014 monthly averages is
slightly greater (Fig. 9). El Nino (2016) shells have overall more nega-
tive '80gp.qw monthly averages compared to the other years. When the
influence of 61805w is removed, Donax obesulus slsosh_sw significantly
correlates with SST (% = 0.76, p = 0.001, & = 0.05).

Given that we know the exact dates of shell collection, we can also
examine the annual range of 61805},311 as a proxy for the annual range of
SST. We compare the annual range (i.e., seasonal cycle) of SST measured
at Chimbote (IMARPE, 2019) for each individual shell’s lifespan with
the calculated SST ranges from slsosheu and 61805h,sw using our slope of
—0.20%0/°C (Eq. 5; Table 3). Of our 18 unadjusted shells, 10 (55.6%)
were within 1 °C of the expected SST range, and 11 (61.1%) were within
1.5 °C (or equivalent to the range of SISOSW). A total of 15 (83.3%) shells
with adjustment for 5804, were within 1 °C, which increases to 17
(94.4%) shells if we loosen the criteria to 1.5 °C.
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Fig. 9. Scatterplot of average monthly §'®0g,.¢, for each study interval and
Chimbote monthly SST (IMARPE, 2019) and linear regression fit determined
using RMA. Error bars in both variables are their respective standard error of
the mean.

4.3. Verification

We obtained data for §'80gey of a D. obesulus specimen purchased
live from a fish market in Huanchaco, Peru July 31, 2006 (Miguel Etayo-
Cadavid, personal communication April 2021) by Etayo-Cadavid
(2010). This shell was sampled using a smaller spatial resolution (0.08
mm) along the outside of the shell that had not been cross-sectioned or
placed into epoxy. We thus consider it a good opportunity to test the
fidelity of our method and Eq. 5 for D. obesulus sampled with a different
method. Given the smaller drill bit, Etayo-Cadavid was able to obtain
100 individual measurements spanning the entire life of the specimen.
Based on the von Bertalanffy growth equation for D. obesulus these
measurements represent ~408 days in total. The 2006 shell’s §'%0
ranges from —2.3 to 0.2%o, with a distinct seasonal cycle (Fig. 10). Given
that the shell lived through both ENSO-neutral and La Nina conditions,
the minimum shell §'®0 values would translate into anomalously warm
temperatures.

Applying Eq. 6 to the 2006 504, we estimate temperatures
ranging from 15 to 27.5 °C. Unfortunately, IMARPE does not have data
spanning 2005-2006 for Huanchaco as their monitoring of SST at that
station did not begin until late 2008, but the nearest Optimum Inter-
polation Sea Surface Temperature (OISST) (Huang et al., 2021) 1° grid
contains values ranging from 16.3-22.8 °C during the shell’s life span.
Given that the 2006 shell was sampled at what is likely sub-weekly
resolution, and the OISST data are monthly average values, we aver-
aged the 6180511611 values together in groups of seven to represent
approximate monthly 8'80gen. The resulting averaged values, when
applied to Eq. 6, equate to SST ranging from 16.8-25.9 °C, or a reduction
of 27% in range. Comparatively, the Carré et al. (2005) equation results
in SST values ranging from 18.1-24.7 °C, and Grossman and Ku (1986)
eq. 1 results in SST values from 22.6-30.5 °C. Importantly, as in our
2012-2016 sampled shells, there appears to be a breakdown in the
61805he11—SST relationship in the first winter of life, as all equations
overestimate the SST for the 2005-2006 austral winter (Fig. 11) and
underestimate the SST for the 2006-2007 austral winter. If seasonally
varying 8'%0g,, values are applied, the estimated SST range from the
2006 shell becomes 16.7-22.9 °C, which considering an RMSE of 1 °C
replicates the range of SST for the Huanchaco region almost exactly.
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Table 3
Calculated SST ranges from unadjusted shells and shells adjusted by %0y,

Shell Local SST | 880shen | 8'8Osh-sw | SST- 8'80shen | SST-8180sh-sw
range (°C) | (°C) (U9) CO O

VBTB12-17 4.55 4.85 5.00 -0.30 -0.45

VBTB12-25 4.55 5.20 5.20 -0.65 -0.65

VBTB12-37 4.55 6.40 4.25 -1.85 0.30

VBTB12-118 | 4.55 2.80 4.50 1.75 0.05

VBTB12-270 | 4.55 5.15 4.40 -0.65 0.15

VBTB12-360 | 4.55 4.90 5.40 -0.35 -0.85

CMD14-8 4.94 3.05 5.10 1.89

CMD14-123 4.80 4.85 4.30 -0.05 0.50

CMD14-129 5.85 5.20 5.70 0.65 -0.5

CMD14-134 5.85 5.00 3.65 0.85 0.80

CMD14-142 5.85 3.30 4.55 2.55 0.95

CMD14-144 4.94 5.50 3.80 -0.56 -0.86

16AP-6 5.63 4.90 6.90 0.73

16AP-26 5.63 3.45 3.65 2.18 1.98

16AP-37 5.63 3.65 5.10 1.98 0.53

16AP-51 5.63 2.65 5.25 2.98 0.38

16AP-71 5.63 4.95 5.65 0.68 -0.02

16LC-168 5.63 4.55 6.05 -0.42

Within £1 °C 55.6% 83.3%

Within £1.5 °C 61.1% 94.4%

Note: Local SST ranges determined from IMARPE (2019) for Chimbote for the sampled portion of each
shell’s lifespans determined by the growth model, which are approximately one seasonal cycle. Values
highlighted in light gray are those within +1 °C of the known SST range, whereas those highlighted in
darker gray are within +1.5 °C.
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Fig. 10. 2006 Donax obesulus specimen 5'80gpnen. Error bars are analytical
precision (+0.1%o, 10) reported by Etayo-Cadavid (2010). The direction of
growth is right to left. The 5'%0 axis is reversed so that warmer values are up.

4.4. Potential causes of anomalies in D. obesulus 5'804henl

The overall shell mean values for ENSO-neutral and La Nina years
follow the expected pattern associated with SST and SSS trends in
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Fig. 11. Comparison of monthly average SST (black triangles) with monthly
average calculated temperatures from the 2006 Donax obesulus specimen using
three eqs. G + K = Grossman and Ku (1986), Carré = Carré et al., 2005. Error
bars represent +0.5 °C for SST, an RMSE of +2 °C for Grossman and Ku (1986)
based on our calculations, an estimated error of +1.5 °C for Carré et al., 2005
based on their calculations, and an RMSE of +1 °C for the equation developed
in this study.
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5'80gpen (warmer-fresher conditions result in more negative values,
colder-saltier conditions would be more positive), whereas the !0 in E1
Nino shells are anomalously higher. There are several possible expla-
nations for this departure:

1. Shells are precipitated out of equilibrium with seawater.

2. Environmental stressors limited growth and thus truncated the 580
signal in El Nino years.

3. Advection of open-water marine water masses into coastal areas
introduced anomalous 8'80y, signals.

4. Other undetected hydrologic factors introducing anomalous §'80,
signals (e.g., subsurface groundwater mixing with seawater, local
evaporation effects).

5. Our sampling method could also have introduced some anomalies
based on the small size of the shell compared to the diameter (0.5
mm) of the drill bit used.

6. The Carré equation is not representative of D. obesulus and different
intercepts alongside different slopes are possible for different species
thus explaining the offsets.

Oceanographic processes in our study area require careful consid-
eration when interpreting D. obesulus 5'8Ogey1. El Nifio and La Nifia years
do not always follow expected patterns of warm-wet and cold-dry con-
ditions (Fig. 1). Moreover, we suggest caution as the SSS data we
reference is a reanalysis product (Zuo et al., 2019) with a spatial reso-
lution of 1° x 1°. Direct observations of SSS for coastal Peru are limited
and thus reanalysis products may not accurately reflect the complex
hydrology of coastal Peru. Our use of an extended range for §'80g, in the
far eastern Pacific is supported by Conroy et al. (2017), who found
complex spatial and temporal trends in hydroclimate in the Galapagos
that resulted in a 61805‘,\, range of —0.7 to 0.5%o.

Contrary to previous work (Carstensen et al., 2010), we do not find
evidence for La Nina cold events negatively influencing the life span of
our shells or §'80gpey results (Table 2). The study of Carstensen et al.
(2010) performed in vitro experiments using wild-caught specimens of
D. obesulus transplanted into aquaria that were suitably modified to
resemble typical ENSO phase (La Nina, ENSO-neutral, El Nino) tem-
peratures for coastal Chile. That study found that D. obesulus populations
experience statistically significant reductions in shell growth and mass
mortality when subjected to La Nina-like temperature (14.9 + 0.3 (10)
°C), but no such reductions in growth or increases in mortality occurred
during ENSO-neutral or El Nino-like temperatures (17.8 + 0.3 (10) °C
and 24.6 + 0.3 (10) °C, respectively). It is worth noting that Carstensen
et al. (2010) chose their temperatures to reflect conditions in northern
Chile, which is the southernmost extent of D. obesulus under El Nino
conditions (Tomicic, 1985). Temperatures at our study location are
consistently warmer (2000-2016 annual average = 19.7 &+ 0.7 (15) °C)
and rarely fall below 16 °C. Therefore, D. obesulus populations in our
study area do not experience sustained La Nina temperatures in the
range tested by the study of Carstensen et al. (2010).

There are some anomalies within the aggregated shell group mea-
surements, which include limited ranges of 5'80ghen and positive
5'804nen values associated with warm SSTs. However, these anomalies
most likely reflect a combination of biological growth limitations, local
seawater dynamics, the influence of SISOSW on the overall 61805heu
signal, and uncertainties in time models (i.e., the actual time span for
each sample). Biological lower temperature limits on shell growth may
bias the earlier part (first few months) of a shell record by reducing
growth. Specifically, shells may only record warmer SSTs (i.e., above
15 °C during austral winter of strong La Nina events) when individuals
spawn in the austral spring or summer. Austral winter §'80y,, variability
could result in a reduced SST signal in some cases (i.e., advection to-
wards the coast in the early stages of El Nino events). Though mea-
surements of seasonal cycles of 580y, are relatively limited along the
coastline of Peru, they can include wide ranges (>0.5%o, Grados et al.,
2018), which can also act to enhance or suppress the reconstructed 5'80-
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SST range. Additionally, limited local SST observations from the same
bay that our samples originate from (Paz and Alzamora, 2014) suggest
that temperature can vary between the Anconcillo and Vesique beaches
by up to 1.4 °C during the summer, or by as little as 0.4 °C during the
winter. Such spatial variability in bay thermal dynamics could thus be
the source of truncated signals from some of our La Nina and El Nino
shells. For example, Bonicelli et al. (2014) found that in the southern
portion of a small bay in Chile, which was sheltered from wind activity,
diurnal temperature gradients were much lower than in the northern,
less sheltered portion of the same bay. As our market purchased (2012,
2014) shells possibly came from a mixture of several beaches, truncated
signals could thus represent areas of the bays that were more sheltered
from temperature fluctuations driven by onshore winds earlier in the
day. Similar temperature gradients and circulation patterns have been
observed in other upwelling influenced bays worldwide (Largier, 2020).

Some shells indicate possible kinetic fractionation effects in positive
correlations between 880 and 8'3Cgpen (McConnaughey and Gilli-
kin, 2008), yet all the 2016 collected shells have more positive 6180511@11
values relative to other years. Those shells that indicate possible kinetic
fractionation effects also only do so for short intervals of shell growth,
usually earlier in life (the first 1-3 months). We thus eliminate kinetic
fractionation as the likely cause as there is no consistent evidence of
kinetic fractionation in the 2016 shells or shells from other years. It is
also likely that at least some of the environmental signals related to
58041 are truncated due to the biological growth limits of D. obesulus,
but not to the extent that would be seen in these shells, as they were
collected in an area where conditions are ideal for growth (i.e., SST
rarely drops below 15 °C). Overall, correlations between models and
shell data for 2016 are robust despite offsets.

When validating our paleotemperature equation using a D. obesulus
shell collected in 2006 and sampled using a higher resolution, we found
that our paleotemperature equation outperformed both the Carré et al.
(2005) and Grossman and Ku (1986) equations in estimating minimum
SST but overestimated maximum SST and thus SST range. However, all
three equations overestimated maximum SST, and only the Carré et al.
(2005a, 2005b) equation accurately predicted the range of SST, thus
there appear to be other drivers of 5'80ghen affecting our results.
Crucially, as in our 2012-2016 sampled valves, there is an over-
estimation of SST in the first winter and summer of life, whether we use
the averaged or reported values. There is also an underestimation of SST
in the second winter. Thus, these offsets appear to be driven by local
oceanography and/or shell biology rather than sampling methodology.
With the underestimation of winter SSTs that would be near the bio-
logical limits of D. obesulus growth, we consider local oceanographic
dynamics to be the most likely source of reconstructed temperature
anomalies in the 2006 verification shell as well as our dataset.

We posit that the advection of open-ocean waters introducing
anomalous §'80g, values (option 3) is a likely scenario. Modeling and
measurements of §'0y, in the tropical eastern Pacific (LeGrande and
Schmidt, 2006) suggest that open-ocean values range from 0 to 0.6%o.
We have received anecdotal reports from residents of the Nepena
coastline of oceanic flooding events during strong El Ninos, with
advected water reaching several hundred meters inland. Several studies
(Muis et al., 2018; Peng et al., 2020; Piecuch and Quinn, 2016) support
these accounts of anomalous sea level rise and coastal flooding associ-
ated with El Nino events. During El Ninos, Ekman transport along the
coastline of Peru weakens, Kelvin waves propagate across the ocean, and
the water column expands allowing warmer, saltier ocean water to
inundate coastal bays and their shorelines usually isolated by strong
upwelling. The study of Morton et al. (2000) notes similar processes in
barrier islands offshore of Colombia during El Nino events. Modeling
and monitoring of zonal current anomalies also suggest that advection
towards the coast happens during El Nino events (Espinoza-Morriberon
et al., 2017).
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4.5. D. obesulus 880y as a paleoclimate proxy

Reconstructing SST values from individual D. obesulus shells would
require careful consideration of the potential influence of interannual
and seasonally varying §'80g,. Our calibration considered seasonally
varying 5'80g, within a range of 0.6% for each phase, which introduces
anomalies equivalent to errors of +1.5 °C (40.3%) based on our
calculated slope of —0.20%0/°C. Given that our slope is similar to that
calculated by Kim et al. (2007) for inorganically precipitated aragonite
(—0.20%0/°C) and is also close to the slopes calculated by Grossman and
Ku (1986) for mollusks (—0.21%o0/°C) and various aragonitic calcifiers
(—0.23%o0/°C), we consider it appropriate for D. obesulus. The difference
in intercepts however leads to the mean shifts between reconstructed
SST and observed SST, suggesting that equations developed for other
species are likely not appropriate for D. obesulus.

Trace elemental ratios, specifically shell Ba/Ca, have been suggested
as a method to reconstruct salinity or shifting water masses in bivalves
(Gillikin et al., 2008; Hatch et al., 2013; Marali et al., 2017; Markulin
et al., 2019; Poulain et al., 2015; Wanamaker and Gillikin, 2019). We
have archived powders from our micromilling that can be used for future
analysis that would allow us to examine Sr/Ca, Mg/Ca, and Ba/Ca from
the same temporal resolution as our 520 results but these analyses are
beyond the scope of this study. Although we have not yet examined
whether shell Ba/Ca is a proxy for salinity in D. obesulus, the results
presented in Izzo et al. (2017) are particularly encouraging and could
lead to paired elemental and isotopic analyses in future studies. A paired
proxy approach (trace elemental ratios and 5'80) could allow for inde-
pendent quantitative assessment of the influence of 8'80yg, in individual
shells (Bougeois et al., 2014; Gentry et al., 2008). However, there are
still some questions regarding the fidelity of trace elements in mollusks
as quantitative environmental proxies (Carré et al., 2006; Poulain et al.,
2015; Surge and Lohmann, 2008; Surge and Walker, 2006; Wanamaker
and Gillikin, 2019).

5. Conclusions

Peruvian D. obesulus 8'®Ogpep; shows promise as a temperature proxy
capable of providing information on paleo-ENSO. ENSO phase in-
fluences both SST and 680, at our study site, providing an opportunity
to understand how signals change during ENSO events (i.e., SST and
water mass changes occurring over weeks to months in specific temporal
patterns). There are some limitations in the impact of wide (~1%o),
seasonal and ENSO phase variable ranges of §'0g, on accurate SST
reconstructions, especially given that applying 5'%0g, values to address
residuals between modeled and observed 8'%Ogpen require prior knowl-
edge of local SST and time of shell collection. Additionally, whereas our
growth models appear successful, there are still some questions
regarding the potential error in time assignment within individual
shells. Both limitations make the application of D. obesulus to paleo-
temperature reconstructions difficult but not impossible and are targets
for future research. Understanding the dynamics of §!80s,, in the region
should also be a goal not only for improving our results but any future
attempts at developing other marine calcifiers’ 520 signals as potential
proxies for SST in the region.

Caveats aside, D. obesulus based reconstructions would provide new
insights into past intervals when increased El Nino activity disrupted the
biogeography of the colder water species M. donacium used in previous
ENSO reconstructions. We posit that D. obesulus 5'80gpey is a promising
proxy that stands to provide more detail in the reconstructed history of
paleoclimate variability along the north coast of Peru when used
cautiously (i.e., from a population statistics standpoint akin to Carré
et al. (2014) with M. donacium and when factors such as 61805‘,,, are
constrained). We also posit that this method could be extended to Donax
spp. in other regions. However, we caution that little information can
likely be drawn from individual D. obesulus specimens, necessitating
replication sampling strategies and robust statistical treatments to

12

Chemical Geology 588 (2022) 120638

reduce uncertainty in any reconstruction.

Software, samples, and data availability

Physical samples are in storage at the LSU PAST lab in Baton Rouge,
LA, USA. Isotopic data associated with this article are archived at the
World Data Service for Paleoclimatology www.ncdc.noaa.gov/data
-access/paleoclimatology-data, 325 Broadway, Boulder, Colorado;
IGBP PAGES/World Data Center for Paleoclimatology Data Contribution
Series #TBA (Contribution # to be assigned before publication). The
2006 D. obesulus individual data is archived in Miguel Etayo-Cadavid’s
dissertation, available at https://ir.ua.edu/handle/123456789/912.
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