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ABSTRACT
Deep neural networks (DNNs) are increasingly used in real-world
applications (e.g. facial recognition). This has resulted in concerns
about the fairness of decisions made by these models. Various no-
tions and measures of fairness have been proposed to ensure that
a decision-making system does not disproportionately harm (or
bene�t) particular subgroups of the population. In this paper, we
argue that traditional notions of fairness that are only based on
models’ outputs are not su�cient when the model is vulnerable to
adversarial attacks. We argue that in some cases, it may be easier
for an attacker to target a particular subgroup, resulting in a form
of robustness bias. We show that measuring robustness bias is a
challenging task for DNNs and propose two methods to measure
this form of bias. We then conduct an empirical study on state-
of-the-art neural networks on commonly used real-world datasets
such as CIFAR-10, CIFAR-100, Adience, and UTKFace and show
that in almost all cases there are subgroups (in some cases based
on sensitive attributes like race, gender, etc) which are less robust
and are thus at a disadvantage. We argue that this kind of bias
arises due to both the data distribution and the highly complex
nature of the learned decision boundary in the case of DNNs, thus
making mitigation of such biases a non-trivial task. Our results
show that robustness bias is an important criterion to consider
while auditing real-world systems that rely on DNNs for deci-
sion making. Code to reproduce all our results can be found here:
https://github.com/nvedant07/Fairness-Through-Robustness
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1 INTRODUCTION
Automated decision-making systems that are driven by data are
being used in a variety of di�erent real-world applications. In many
cases, these systems make decisions on data points that repre-
sent humans (e.g., targeted ads [44, 53], personalized recommen-
dations [3, 50], hiring [47, 48], credit scoring [31], or recidivism
prediction [9]). In such scenarios, there is often concern regarding
the fairness of outcomes of the systems [2, 18]. This has resulted
in a growing body of work from the nascent Fairness, Account-
ability, Transparency, and Ethics (FATE) community that—drawing
on prior legal and philosophical doctrine—aims to de�ne, measure,
and (attempt to) mitigate manifestations of unfairness in automated
systems [4, 9, 17, 37].

Most of the initial work on fairness in machine learning con-
sidered notions that were one-shot and considered the model and
data distribution to be static [2, 9, 15, 59–61]. Recently, there has
been more work exploring notions of fairness that are dynamic and
consider the possibility that the world (i.e., the model as well as data
points) might change over time [24, 26, 27, 38]. Our proposed no-
tion of robustness bias has subtle di�erence from existing one-shot
and dynamic notions of fairness in that it requires each partition of
the population be equally robust to imperceptible changes in the
input (e.g., noise, adversarial perturbations, etc).

We propose a simple and intuitive notion of robustness biaswhich
requires subgroups of populations to be equally “robust.” Robustness
can be de�ned in multiple di�erent ways [19, 41, 55]. We take a
general de�nition which assigns points that are farther away from
the decision boundary higher robustness. Our key contributions
are as follows:

• We de�ne a simple, intuitive notion of robustness bias that
requires all partitions of the dataset to be equally robust. We
argue that such a notion is especially important when the
decision-making system is a deep neural network (DNN)
since these have been shown to be susceptible to various
attacks [8, 40]. Importantly, our notion depends not only on
the outcomes of the system, but also on the distribution of
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distances of data-points from the decision boundary, which
in turn is a characteristic of both the data distribution and
the learning process.

• We propose di�erent methods to measure this form of
bias. Measuring the exact distance of a point from the deci-
sion boundary is a challenging task for deep neural networks
which have a highly non-convex decision boundary. This
makes the measurement of robustness bias a non-trivial task.
In this paper we leverage the literature on adversarial ma-
chine learning and show that we can e�ciently approximate
robustness bias by using adversarial attacks and randomized
smoothing to get estimates of a point’s distance from the
decision boundary.

• We do an in-depth analysis of robustness bias on popularly
used datasets and models. Through extensive empirical
evaluation we show that unfairness can exist due to dif-
ferent partitions of a dataset being at di�erent levels of ro-
bustness for many state-of-the art models that are trained
on common classi�cation datasets. We argue that this form
of unfairness can happen due to both the data distribution
and the learning process and is an important criterion to
consider when auditing models for fairness.

1.1 Related Work

Fairness in ML. Models that learn from historic data have been
shown to exhibit unfairness, i.e., they disproportionately bene�t
or harm certain subgroups (often a sub-population that shares a
common sensitive attribute such as race, gender etc.) of the popu-
lation [2, 9, 31]. This has resulted in a lot of work on quantifying,
measuring and to some extent also mitigating unfairness [1, 7, 13–
15, 20, 23, 33, 36, 43, 45, 57–61]. Most of these works consider no-
tions of fairness that are one-shot—that is, they do not consider how
these systems would behave over time as the world (i.e., the model
and data distribution) evolves. Recently more works have taken into
account the dynamic nature of these decision-making systems and
consider fairness de�nitions and learning algorithms that fare well
across multiple time steps [24, 26, 27, 38]. We take inspiration from
both the one-shot and dynamic notions, but take a slightly di�erent
approach by requiring all subgroups of the population to be equally
robust to minute changes in their features. These changes could
either be random (e.g.natural noise in measurements) or carefully
crafted adversarial noise. This is closely related to Heidari et al.
[27]’s e�ort-based notion of fairness; however, their notion has a
very speci�c use case of societal scale models whereas our approach
is more general and applicable to all kinds of models. Our work is
also closely related to and inspired by Zafar et al.’s use of a regu-
larized loss function which captures fairness notions and reduces
disparity in outcomes [60]. There are major di�erences in both
the approach and application between our work and that of Zafar
et al’s. Their disparate impact formulation aims to equalize the
average distance of points to the decision boundary, E[3 (G)]; our
approach, instead, aims to equalize the number of points that are
“safe”, i.e., E[ {3 (G) > g}] (see section 3 for a detailed description).
Our proposed metric is preferable for applications of adversarial
attack or noisy data, the focus of our paper; whereas the metric of

Zafar et al is more applicable for an analysis of the consequence of
a decision in a classi�cation setting.

Robustness. Deep Neural Networks (DNNs) have been shown
to be susceptible to carefully crafted adversarial perturbations
which—imperceptible to a human—result in a misclassi�cation by
themodel [19, 41, 55]. In the context of our paper, we use adversarial
attacks to approximate the distance of a data point to the decision
boundary. For this we use state-of-the-art white-box attacks pro-
posed by Moosavi-Dezfooli et al. [40] and Carlini and Wagner [8].
Due to the many works on adversarial attacks, there have been
many recent works on provable robustness to such attacks. The
high-level goal of these works is to estimate a (tight) lower bound
on the distance of a point from the decision boundary [10, 46, 51].
We leverage these methods to estimate distances from the decision
boundary which helps assess robustness bias (de�ned formally in
Section 3).

Fairness andRobustness. Recent works have proposed poisoning
attacks on fairness [39, 52]. Khani and Liang [32] analyze why
noise in features can cause disparity in error rates when learning a
regression. We believe that our work is the very �rst to show that
di�erent subgroups of the population can have di�erent levels of
robustness which can lead to unfairness. We hope that this will
lead to more work at the intersection of these two important sub
�elds of ML.

2 HETEROGENEOUS ROBUSTNESS
In a classi�cation setting, a learner is given data D = {(G8 ,~8 )}#8=1
consisting of inputs G8 2 R3 and outputs ~8 2 C which are labels in
some set of classes C = {21, . . . , 2: }. These classes form a partition
on the dataset such that D =

√
22C{(G8 ,~8 ) | ~8 = 2 9 }. The goal of

learning in decision boundary-based optimization is to draw delin-
eations between points in feature space which sort the data into
groups according to their class label. The learning generally tries
to maximize the classi�cation accuracy of the decision boundary
choice. A learner chooses some loss function L to minimize on a

ᶦ

ᶦ

% &

Figure 1: A toy example showing robustness bias. A.) the classi�er
(solid line) has 100% accuracy for blue and green points. However
for a budget g (dotted lines), 70% of points belonging to the “round”
subclass (showed by dark blue and dark green) will get attacked
while only 30% of points in the “cross” subclass will be attacked.
This shows a clear bias against the “round” subclass which is less
robust in this case. B.) shows a di�erent classi�er for the same data
points also with 100% accuracy. However, in this case, with the same
budget g , 30% of both “round” and “cross” subclass will be attacked,
thus being less biased.
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(a) Three-class classi�cation problem for randomly generated data. (b) Proportion samples which are greater than g away from a decision boundary.

Figure 2: An example of multinomial logistic regression.

training dataset, parameterized by parameters \ , while maximizing
the classi�cation accuracy on a test dataset.

Of course there are other aspects to classi�cation problems that
have recently become more salient in the machine learning commu-
nity. Considerations about the fairness of classi�cation decisions,
for example, are one such way in which additional constraints are
brought into a learner’s optimization strategy. In these settings,
the data D = {(G8 ,~8 , B8 )}#8=1 is imbued with some metadata which
have a sensitive attribute S = {B1, . . . , BC } associated with each
point. Like the classes above, these sensitive attributes form a parti-
tion on the data such that D =

√
B2S{(G8 ,~8 , B8 ) | B8 = B}. Without

loss of generality, we assume a single sensitive attribute. Generally
speaking, learning with fairness in mind considers the output of a
classi�er based o� of the partition of data by the sensitive attribute,
where some objective behavior, like minimizing disparate impact
or treatment [60], is integrated into the loss function or learning
procedure to �nd the optimal parameters \ .

There is not a one-to-one correspondence between decision
boundaries and classi�er performance. For any given performance
level on a test dataset, there are in�nitely many decision boundaries
which produce the same performance, see Figure 1. This raises the
question: if we consider all decision boundaries or model parame-
ters which achieve a certain performance, how do we choose among
them? What are the properties of a desirable, high-performing deci-
sion boundary? As the community has discovered, one undesirable
characteristic of a decision boundary is its proximity to data which
might be susceptible to adversarial attack [19, 41, 55]. This provides
intuition that we should prefer boundaries that are as far away as
possible from example data [5, 54].

Let us look at how this plays out in a simple example. In multi-
nomial logistic regression, the decision boundaries are well under-
stood and can be written in closed form. This makes it easy for us to
compute how close each point is to a decision boundary. Consider
for example a dataset and learned classi�er as in Figure 2a. For this
dataset, we observe that the brown class, as a whole, is closer to a
decision boundary than the yellow or blue classes. We can quan-
tify this by plotting the proportion of data that are greater than a
distance g away from a decision boundary, and then varying g . Let
3\ (G) be the minimal distance between a point G and a decision
boundary corresponding to parameters \ . For a given partition P

of a dataset, D, such that D =
√

% 2P % , we de�ne the function:

b�% (g) = |{(G,~) 2 % | 3\ (G) > g,~ = ~̂}|
|% |

If each element of the partition is uniquely de�ned by an element,
say a class label, 2 , or a sensitive attribute label, B , we equivalently
will write b�2 (g) or b�B (g) respectively. We plot this over a range of g
in Figure 2b for the toy classi�cation problem in Figure 2a. Observe
that the function for the brown class decreases signi�cantly faster
than the other two classes, quantifying how much closer the brown
class is to the decision boundary.

From a strictly classi�cation accuracy point of view, the brown
class being signi�cantly closer to the decision boundary is not of
concern; all three classes achieve similar classi�cation accuracy.
However, when we move away from this toy problem and into
neural networks on real data, this di�erence between the classes
could become a potential vulnerability to exploit, particularly when
we consider adversarial examples.

3 ROBUSTNESS BIAS
Our goal is to understand how susceptible di�erent classes are to
perturbations (e.g., natural noise, adversarial perturbations). Ideally,
no one class would be more susceptible than any other, but this
may not be possible. We have observed that for the same dataset,
there may be some classi�ers which have di�erences between the
distance of that partition to a decision boundary; and some which
do not. There may also be one partition P which exhibits this
discrepancy, and another partition P 0 which does not. Therefore,
we make the following statement about robustness bias:

D��������� 1. A dataset D with a partition P and a classi�er
parameterized by \ exhibits robustness bias if there exists an ele-
ment % 2 P for which the elements of % are either signi�cantly closer
to (or signi�cantly farther from) a decision boundary than elements
not in % .

A partition P may be based on sensitive attributes such as race,
gender, or ethnicity—or other class labels. For example, given a clas-
si�er and dataset with sensitive attribute “race”, we might say that
classi�er exhibits robustness bias if, partitioning on that sensitive
attribute, for some value of “race” the average distance of members
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Figure 3: An example of robustness bias in the UTKFace dataset. A model trained to predict age group from faces is fooled for an inputs
belonging to certain subgroups (black and female in this example) for a given perturbation, but is robust for inputs belonging to other sub-
groups (white and male in this example) for the same magnitude of perturbation. We use the UTKFace dataset to make a broader point that
robustness bias can cause harms. In the speci�c case of UTKFace (and similar datasets), the task de�nition of predicting age from faces itself
is �awed, as has been noted in many previous studies [6, 11, 12].

of that particular racial value are substantially closer to the decision
boundary than other members.

We might say that a dataset, partition, and classi�er do not
exhibit robustness bias if for all %, % 0 2 P and all g > 0

P(G,~)2D{3\ (G) > g | G 2 %,~ = ~̂} ⇡
P(G,~)2D{3\ (G) > g | G 2 % 0,~ = ~̂}. (1)

Intuitively, this de�nition requires that for a given perturbation
budget g and a given partition % , one should not have any incentive
to perturb data points from % over points that do not belong to % .
Even when examining this criteria, we can see that this might be
particularly hard to satisfy. Thus, we want to quantify the disparate
susceptibility of each element of a partition to adversarial attack,
i.e., how much farther or closer it is to a decision boundary when
compared to all other points. We can do this with the following
function for a datasetD with partition element % 2 P and classi�er
parameterized by \ :

RB(%, g) = | PG 2D{3\ (G) > g | G 2 %,~ = ~̂}�
PG 2D{3\ (G) > g | G 8 %,~ = ~̂} | (2)

Observe that RB(%, g) is a large value if and only if the elements
of % are much more (or less) adversarially robust than elements
not in % . We can then quantify this for each element % 2 P—but a
more pernicious variable to handle is g . We propose to look at the
area under the curve b�% for all g :

f (%) = �*⇠ (b�% ) ��*⇠ (Õ% 0<% c�% 0)
�*⇠ (Õ% 0<% c�% 0)

(3)

Note that these notions take into account the distances of data
points from the decision boundary and hence are orthogonal and
complementary to other traditional notions of bias or fairness (e.g.,
disparate impact/disparate mistreatment [60], etc). This means that

having lower robustness bias does not necessarily come at the cost
of fairness as measured by these notions. Consider the motivating
example shown in Figure 1: the decision boundary on the right
has lower robustness bias but preserves all other common notions
(e.g. [15, 23, 59]) as both classi�ers maintain 100% accuracy.

3.1 Real-world Implications: Degradation of
Quality of Service

Deep neural networks are the core of many real world applications,
for example, facial recognition, object detection, etc. In such cases,
perturbations in the input can occur due to multiple factors such as
noise due to the environment or malicious intent by an adversary.
Previous works have highlighted how harms can be caused due to
the degradation in quality of service for certain sub-populations [11,
28]. Figure 3 shows an example of inputs from the UTKFace dataset
where an ✓2 perturbation of 0.5 could change the predicted label for
an input with race “black” and gender “female” but an input with
race “white” and gender “male” was robust to the same magnitude
of perturbation. In such a case, the system worked better for a
certain sub-group (white, male) thus resulting in unfairness. It
is important to note that we use datasets such as Adience and
UTKFace (described in detail in section 5) only to demonstrate the
importance of having unbiased robustness. As noted in previous
works, the very task of predicting age from a person’s face is a
�awed task de�nition with many ethical concerns [6, 11, 12].

4 MEASURING ROBUSTNESS BIAS
Robustness bias as de�ned in the previous section requires a way
to measure the distance between a point and the (closest) decision
boundary. For deep neural networks in use today, a direct com-
putation of 3\ (G) is not feasible due to their highly complicated
and non-convex decision boundary. However, we show that we
can leverage existing techniques from the literature on adversarial

4
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Figure 4: For each dataset, we plot b�2 (g) for each class 2 in each dataset. Each blue line represents one class. The red line represents the mean
of the blue lines, i.e.,

Õ
22C b�2 (g) for each g .

Figure 5: For each dataset, we plot b�gB for each sensitive attribute B in each dataset. Figures for other models can be found in Appendix A.

attacks to e�ciently approximate 3\ (G). We describe these in more
detail in this section.

4.1 Adversarial Attacks (Upper Bound)
For a given input and model, one can compute an upper bound on
3\ (G) by performing an optimization which alters the input image
slightly so as to place the altered image into a di�erent category
than the original. Assume for a given data point G , we are able to
compute an adversarial image G̃ , then the distance between these
two images provides an upper bound on distance to a decision
boundary, i.e, kG � G̃ k � 3\ (G).

We evaluate two adversarial attacks: DeepFool [40] and Carlini-
Wagner’s L2 attack [8]. We extend b�% for DeepFool and CarliniWag-
ner as d�⇡�

% =
|{(G,~) 2 % |g < kG � G̃ k,~ = ~̂}|

|% | (4)

and d�⇠,% =
|{(G,~) 2 % |g < kG � G̃ k,~ = ~̂}|

|% | (5)

respectively.We use similar notation to de�nef⇡� (%), andf⇠, (%)
(f as de�ned in Eq 3). While these methods are guaranteed to yield
upper bounds on 3\ (G), they need not yield similar behavior to b�%
or f (%). We perform an evaluation of this in Section 7.1.

4.2 Randomized Smoothing (Lower Bound)
Alternatively one can compute a lower bound on 3\ (G) using
techniques from recent works on training provably robust clas-
si�ers [10, 46]. For each input, these methods calculate a radius
in which the prediction of G will not change (i.e. the robustness
certi�cate). In particular, we use the randomized smoothing method
[10, 46] since it is scalable to large and deep neural networks

and leads to the state-of-the-art in provable defenses. Random-
ized smoothing transforms the base classi�er 5 to a new smooth
classi�er 6 by averaging the output of 5 over noisy versions of G .
This new classi�er 6 is more robust to perturbations while also
having accuracy on par to the original classi�er. It is also possible
to calculate the radius XG (in the ✓2 distance) in which, with high
probability, a given input’s prediction remains the same for the
smoothed classi�er (i.e. 3\ (G) � XG ). A given input G is then said to
be provably robust, with high probability, for a XG ✓2-perturbation
where XG is the robustness certi�cate of G .

For each point we use its XG , calculated using the method pro-
posed by [46], as a proxy for 3\ (G). The magnitude of XG for an
input is a measure of how robust an input is. Inputs with higher XG
are more robust than inputs with smaller XG . Again, we extend b�%
for Randomized Smoothing as

c�'(% =
|{(G,~) 2 % |g < XG ,~ = ~̂}|

|% | (6)

We use similar notation to de�ne f'( (%) (see Eq 3).

5 EMPIRICAL EVIDENCE OF ROBUSTNESS
BIAS IN THEWILD

We hypothesize that there exist datasets and model architectures
which exhibit robustness bias. To investigate this claim, we examine
several image-based classi�cation datasets and common model
architectures.

Datasets and Model Architectures:. We perform these tests of
the datasetsCIFAR-10 [34],CIFAR-100 [34] (using both 100 classes
and 20 super classes), Adience [16], and UTKFace [62]. The �rst
two are widely accepted benchmarks in image classi�cation, while

5
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the latter two provide signi�cant metadata about each image, per-
mitting various partitions of the data by �nal classes and sensitive
attributes. More details can be found in Appendix A.

Our experiments were performed using PyTorch’s torchvision
module [42]. We �rst explore a simple Multinomial Logistic Re-
gression model which could be fully analyzed with direct compu-
tation of the distance to the nearest decision boundary. For con-
volutional neural networks, we focus on Alexnet [35], VGG19
[49],ResNet50 [25],DenseNet121 [29], and Squeezenet1_0 [30]
which are all available through torchvision. We use these models
since these are widely used for a variety of tasks. We achieve per-
formance that is comparable to state of the art performance on
these datasets for these models.1 Additionally we also train some
other popularly used dataset speci�c architectures like a deep con-
volutional neural network (we call this Deep CNN)2 and Pyra-
midNet (U = 64, depth=110, no bottleneck) [21] for CIFAR-10. We
re-implemented Deep CNN in pytorch and used the publicly avail-
able repo to train PyramidNet3. We use another deep convolutional
neural network (which we refer to as Deep CNN CIFAR1004 and
PyramidNet (U = 48, depth=164, with bottleneck) for CIFAR-100
and CIFAR-100Super. For Adience and UTKFace we additionally
take simple deep convolutional neural networks with multiple con-
volutional layers each of which is followed by a ReLu activation,
dropout and maxpooling. As opposed to architectures from torchvi-
sion (which are pre-trained on ImageNet) these architectures are
trained from scratch on the respective datasets. We refer to them
as UTK Classi�er and Adience Classi�er respectively. These
simple models serve two purposes: they form reasonable baselines
for comparison with pre-trained ImageNet models �netuned on the
respective datasets, and they allow us to analyze robustness bias
when models are trained from scratch.

In sections 7 and 8 we audit these datasets and the listed models
for robustness bias. In section 6, we train logistic regression on all
the mentioned datasets and evaluate robustness bias using an exact
computation. We then show in section 7 and 8 that robustness bias
can be e�ciently approximated using the techniques mentioned in
4.1 and 4.2 respectively for much more complicated models, which
are often used in the real world.We also provide a thorough analysis
of the types of robustness biases exhibited by some of the popularly
used models on these datasets.

6 EXACT COMPUTATION IN A SIMPLE
MODEL: MULTINOMIAL LOGISTIC
REGRESSION

We begin our analysis by studying the behavior of multinomial
logistic regression. Admittedly, this is a simple model compared
to modern deep-learning-based approaches; however, it enables is
to explicitly compute the exact distance to a decision boundary,
3\ (G). We �t a regression to each of our vision datasets to their
native classes and plot b�2 (g) for each dataset. Figure 4 shows the

1See Appendix A Table 2 for model performances, additional quantitative results and
supporting �gures.
2http://torch.ch/blog/2015/07/30/cifar.html
3https://github.com/dyhan0920/PyramidNet-PyTorch
4https://github.com/aaron-xichen/pytorch-playground/blob/master/cifar/model.py

distributions of b�2 (g), from which we observe three main phenom-
ena: (1) the general shape of the curves are similar for each dataset,
(2) there are classes which are signi�cant outliers from the other
classes, and (3) the range of support of the g for each dataset varies
signi�cantly. We discuss each of these individually.

First, we note that the shape of the curves for each dataset is
qualitatively similar. Since the form of the decision boundaries in
multinomial logistic regression are linear delineations in the input
space, it is fair to assume that this similarity in shape in Figure 4
can be attributed to the nature of the classi�er.

Second, there are classes 2 which indicate disparate treatment
under b�2 (g). The treatment disparities are most notable in UTKFace,
the superclass version CIFAR-100, and regular CIFAR-100. This
suggests that, when considering the dataset as a whole, these outlier
classes are less suceptible to adversarial attack than other classes.
Further, in UTKFace, there are some classes that are considerably
more susceptible to adversarial attack because a larger proportion
of that class is closer to the decision boundaries.

We also observe that the median distance to decision boundary
can vary based on the dataset. The median distance to a decision
boundary for each dataset is: 0.40 for CIFAR-10; 0.10 for CIFAR-100;
0.06 for the superclass version of CIFAR-100; 0.38 for Adience; and
0.12 for UTKFace. This is no surprise as 3\ (G) depends both on the
location of the data points (which are �xed and immovable in a
learning environment) and the choice of architectures/parameters.

Finally, we consider another partition of the datasets. Above,
we consider the partition of the dataset which occurs by the class
labels. With the Adience and UTKFace datasets, we have an addi-
tional partition by sensitive attributes. Adience admits partitions
based o� of gender; UTKFace admits partition by gender and eth-
nicity. We note that Adience and UTKFace use categorical labels for
these multidimensional and socially complex concepts. We know
this to be reductive and serves to minimize the contextualization
within which race and gender derive their meaning [6, 22]. Further,
we acknowledge the systems and notions that were used to reify
such data partitions and the subsequent implications and conclu-
sions draw therefrom. We use these socially and systemically-laden
partitions to demonstrate that the functions we de�ne, b�% and f
depend upon how the data are divided for analysis. To that end, the
function b�% is visualized in Figure 5. We observe that the Adience
dataset, which exhibited some adversarial robustness bias in the
partition on C only exhibits minor adversarial robustness bias in
the partition on S for the attribute ‘Female’. On the other hand,
UTKFace which had signi�ant adversarial robustness bias does
exhibit the phenomenon for the sensitive attribute ‘Black’ but not
for the sensitive attribute ‘Female’.

This emphasizes that adversarial robustness bias is dependant
upon the dataset and the partition. We will demonstrate later that
it is also dependant on the choice of classi�er. First, we talk about
ways to approximate 3\ (G) for more complicated models.

7 EVALUATION OF ROBUSTNESS BIAS USING
ADVERSARIAL ATTACKS

As described in Section 4.1, we argued that adversarial attacks can
be used to obtain upper bounds on 3\ (G) which can then be used
to measure robustness bias. In this section we audit some popularly
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(a) UTK Classi�er: DeepFool (b) UTK Classi�er: CarliniWagner (c) UTK Classi�er: Rand. Smoothing

(d) ResNet50: DeepFool (e) ResNet50: CarliniWagner (f) ResNet50: Rand. Smoothing

(g) Alexnet: DeepFool (h) Alexnet: CarliniWagner (i) Alexnet: Rand. Smoothing

(j) VGG-19: DeepFool (k) VGG-19: CarliniWagner (l) VGG-19: Rand. Smoothing

(m) Densenet: DeepFool (n) Densenet: CarliniWagner (o) Densenet: Rand. Smoothing

(p) Squeezenet: DeepFool (q) Squeezenet: CarliniWagner (r) Squeezenet: Rand. Smoothing

Figure 6: UTKFace partitioned by race. We can see that across models, that di�erent populations are at di�erent levels of robustness as
calculated by di�erent proxies (DeepFool on the left, CarliniWagner in the middle and Randomized Smoothing on the right). This suggests
that robustness bias is an important criterion to consider when auditing models for fairness.
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used models on datasets mentioned in Section 5 for robustness bias
as measured using the approximation given by adversarial attacks.

7.1 Evaluation of c�⇡�
% and d�⇠,%

To compare the estimate of 3\ (G) by DeepFool and CarliniWag-
ner, we �rst look at the signedness of f (%), f⇡� (%), and f⇠, (%).
For a given partition % , f (%) captures the disparity in robustness
between points in % relative to points not in % (see Eq 3). Consider-
ing all 151 possible partitions (based on class labels and sensitive
attributes, where available) for all �ve datasets, both CarliniWag-
ner and DeepFool agree with the signedness of the direct com-
putation 125 times, i.e., %

⇥
sign(f (%)) = sign(f⇡� (%))

⇤
= 125 =

%
⇥
sign(f (%)) = sign(f⇠, (%))

⇤
. Further, the mean di�erence be-

tween f (%) and f⇠, (%) or f⇡� (%), i.e., (f (%) � f⇡� (%)), is 0.17
for DeepFool and 0.19 for CarliniWagner with variances of 0.07 and
0.06 respectively.

There is 83% agreement between the direct computation and the
DeepFool and CarliniWagner estimates of b�% . This behavior pro-
vides evidence that adversarial attacks provide meaningful upper
bounds on 3\ (G) in terms of the behavior of identifying instances
of robustness bias.

7.2 Audit of Commonly Used Models
We now evaluate �ve commonly-used convolutional neural net-
works (CNNs): Alexnet, VGG, ResNet, DenseNet, and Squeezenet.
We trained these networks using PyTorch with standard stochastic
gradient descent. We achieve comparable performance to docu-
mented state of the art for these models on these datasets. A full
table of performance on the test data are described in Table 2 (Ap-
pendix). After training each model on each dataset, we generated
adversarial examples using both methods and computed f (%) for
each possible partition of the dataset. An example of the results for
the UTKFace dataset can be see in Figure 7.5.

With evidence from Section 7.1 that DeepFool and CarliniWagner
can approximate the robustness bias behavior of direct computa-
tions of 3\ , we �rst ask if there are any major di�erences between
the two methods. If DeepFool exhibits adversarial robustness bias
for a dataset and a model and a class, does CarliniWagner exhibit
the same? and vice versa? Since there are 5 di�erent convolutional
models, we have 151 ·5 = 755 di�erent comparisons to make. Again,
we �rst look at the signedness of f⇡� (%) and f⇠, (%) and we see
that %

⇥
sign(f⇡� (%)) = sign(f⇠, (%))

⇤
= 708. This means there

is 94% agreement between DeepFool and CarliniWagner about the
direction of the adversarial robustness bias.

To investigate if this behavior is exhibited earlier in the training
cycle than at the �nal, fully-trained model, we compute f⇠, (%)
and f⇡� (%) for the various models and datasets for trained models
after 1 epoch and the middle epoch. For the �rst epoch, 637 of the
755 partitions were internally consistent, i.e., the signedness of f
was the same in the �rst and last epoch, and 621 were internally
consistent. We see that at the middle epoch, 671 of the 755 partitions
were internally consistent for DeepFool and 665 were internally
consistent for CarliniWagner. Unsurprisingly, this implies that as
the training progresses, so does the behavior of the adversarial

5Our full slate of approximation results are available in Appendix A

robustness bias. However, it is surprising that much more than 80%
of the �nal behavior is determined after the �rst epoch, and there
is a slight increase in agreement by the middle epoch.

We note that, of course, adversarial robustness bias is not neces-
sarily an intrinsic value of a dataset; it may be exhibited by some
models and not by others. However, in our studies, we see that
the UTKFace dataset partition on Race/Ethnicity does appear to be
signi�cantly prone to adversarial attacks given its comparatively
low f⇡� (%) and f⇠, (%) values across all models.

8 EVALUATION OF ROBUSTNESS BIAS USING
RANDOMIZED SMOOTHING

In Section 4.2, we argued that randomized smoothing can be used to
obtain lower bounds on 3\ (G) which can then be used to measure
robustness bias. In this section we audit popular models on a variety
of datasets (described in detail in Section 5) for robustness bias, as
measured using the approximation given by randomzied smoothing.

8.1 Evaluation of c�'(%
To assess whether the estimate of 3\ (G) by randomized smooth-
ing is an appropriate measure of robustness bias, we compare
the signedness of f (%) and f'( (%). When f (%) has positive sign,
higher magnitude indicates a higher robustness of members of par-
tition % as compared to members not included in that partition % ;
similarly, when f (%) is negatively signed, higher magnitude corre-
sponds to lesser robustness for those members of partition % (see
Eq 3). We may interpret shared signedness of both f (%) (where
3\ (G) is deterministic) and f'( (%) (where 3\ (G) is measured by
randomized smoothing as described in Section 4.2) as positive sup-
port for the c�'(% measure.

Similar to Section 7.1, we consider all possible 151 partitions
across CIFAR-10, CIFAR-100, CIFAR-100Super, UTKFace and Adi-
ence. For each of these partitions, we compare f'( (%) to the cor-
responding f (%). We �nd that their sign agrees 101 times, i.e.,
%
⇥
sign(f (%)) = sign(f'( (%))

⇤
= 101, thus giving a 66.9% agree-

ment. Furthermore, the mean di�erence between f (%) and f'( (%),
i.e., (f (%) � f'( (%)) is 0.08 with a variance of 0.19.

This provides evidence that randomized smoothing can also
provide a meaningful estimate on 3\ (G) in terms of measuring
robustness bias.

8.2 Audit of Commonly Used Models
Wenow evaluate the samemodels and all the datasets for robustness
bias as measured by randomized smoothing. Our comparison is
analogous to the one performed in Section 7.2 using adversarial
attacks. Figure 8 shows results for all models on the UTKFace
dataset. Here we plotf'(% for each partition of the dataset (on x-axis)
and for each model (y-axis). A darker color in the heatmap indicates
high robustness bias (darker red indicates that the partition is less
robust than others, whereas a darker blue indicates that the partition
is more robust). We can see that some partitions, for example, the
partition based on class label “40-60” and the partition based on
race “black” tend to be less robust in the �nal trained model, for
all models (indicated by a red color across all models). Similarly
there are partitions that are more robust, for example, the partition
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Figure 7: Depiction of f⇡�
% and f⇠,

% for the UTKFace dataset with partitions corresponding to the (1) class labels C and the, (2) gender, and
(3) race/ethnicity. These values are reported for all �ve convolutional models both at the beginning of their training (after one epoch) and at
the end. We observe that, largely, the signedness of the functions are consistent between the �ve models and also across the training cycle.

Figure 8: Depiction of f'(
% for the UTKFace dataset with partitions corresponding to the (1) class labels C and the, (2) gender, and (3)

race/ethnicity. A more negative value indicates less robustness bias for the partition. Darker regions indicate high robustness bias. We ob-
serve that the trend is largely consistent amongst models and also similar to the trend observed when using adversarial attacks to measure
robustness bias (see Figure 7).

based on class “0-15” and race “asian” end up being robust across
di�erent models (indicated by a blue color). Figure 6 takes a closer
look at the distribution of distances for the UTKFace dataset when
partitioned by race, showing that for di�erent models di�erent races
can be more or less robust. Figures 6, 7 and 8 (we see similar trends
for CIFAR-10, CIFAR-100, CIFAR-100Super and Adience which we
report exhaustively in Appendix A) lead us to the following key
conclusions:

Dependence on data distribution. The presence of certain parti-
tions that show similar robustness trends as discussed above (e.g.see
�nal trained model in Figs 8 and 7, the partitions by class “0-15” and
race “asian” are more robust, whereas the class “40-60” and race
“black” are less robust across all models) point to some intrinsic
property of the data distribution that results in that partition being
more (or less) robust regardless of the type decision boundary. Thus
we conclude that robustness bias may depend in part on the data
distribution of various sub-populations.

Dependence on model. There are also certain partitions of the
dataset (e.g., based on the classes “15-25” and “60+” as per Fig 8)
that show varying levels of robustness across di�erent models.
Moreover, even partitions that have same sign of f'( (%) across

di�erent models have very di�erent values of f'( (%). This is also
evident from Fig 6 which shows that the distributions of 3\ (G)
(as approximated by all our proposed methods) for di�erent races
can be very di�erent for di�erent models. Thus, we conclude that
robustness bias is also dependent on the learned model.

Role of pre-training. We now explore the role of pre-training on
our measures of robustness bias. Speci�cally, we pre-train �ve of
the six models (Resnet, Alexnet, VGG, Densenet, and Squeezenet)
on ImageNet and then �ne-tune on UTKFace. We also train a UTK
classi�er from scratch on UTKFace. Figures 8 and 7 shows robust-
ness bias scores after the �rst epoch and in the �nal, fully-trained
model. At epoch 1, we mostly see no robustness bias (indicated by
close-to-zero values of f'( (%)) for UTK Classi�er. This is because
the model has barely trained by that �rst epoch and predictions are
roughly equivalent to random guesses. In contrast, the other �ve
models already have pre-trained ImageNet weights, and hence we
see certain robustness biases that already exist in the model, even
after the �rst epoch of training. Thus, we conclude that pre-trained
models bring in biases due to the distributions of the data on which
they were pre-trained and the resulting learned decision boundary
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after pre-training. We additionally see that these biases can persist
even after �ne-tuning.

8.3 Comparison of Randomized Smoothing
and Upper Bounds

We have now presented two ways of measuring robustness bias:
via upper bounds and via randomized smoothing. While there are
important distinctions between the two methods, it is worth com-
paring them. To do this, we compare the sign of the randomized
smoothing method and the upper bounds as

%

h
sign(f'( (%)) = sign(f⇡� (%))

i
and

%

h
sign(f'( (%)) = sign(f⇠, (%))

i
.

We see that there is some evidence that the two methods agree. The
Adience, UTKFace, and CIFAR-10 dataset have strong agreement (at
or above 75%) between the randomized smoothing for both types of
upper bounds (DeepFool and CariliniWagner), while the CIFAR-100
dataset has a much weaker agreement (above but closer to 50%)
and CIFAR-100Super has an approximately 66% agreement.

It is important to point out that it is not entirely appropriate to
perform a comparison in this way. Recall that the upper bounds
provide estimates of 3\ using a trained model. However, the ran-
domized smoothing method estimates 3\ not directly with the
trained model — instead it �rst modi�es (smooths) the model of
interest and then performs an estimation. Since the upper bounds
and randomized smoothing methods are so di�erent in practice,
there may be no truly appropriate way to compare the results there-
from. Therefore, too much credence should not be placed on the
comparison of these two methods. Both methods indicate the ex-
istence of the robustness bias phenomenon and can be useful in
distinct settings.

We present the full results table in Appendix C.

9 AN “OBVIOUS” MITIGATION STRATEGY
Having demonstrated the existence of this robustness bias phe-
nomenon, it is natural to look ahead at common machine learning
techniques to address it. In Appendix B, we have done just that by
adding to the objective function a regularizer term which penalizes
for large distances in the treatment of a minority and majority
group. We write the empiric estimate of RB(%, g) as R̃B(%, g); a full
derivation can be found in Appendix B.1. Formally,

R̃B(%,g) =
�����

1’
G8%

{~ = ~̂ }

’
G8%
~=~̂

{3\ (G) > g }�

1’
G2%

{~ = ~̂ }

’
G2%
~=~̂

{3\ (G) > g }
�����

Details of a full implementation of this loss function and the
results can be found in Appendix B. Experimental results based
on that implemntation, reported in Appendix B.2, support the idea
that regularization—a typical approach taken by the fairness in
machine learning community—can reduce measures of robustness
bias. However, we do believe that this type of experimentation
belies the larger point of the present, largely descriptive, work:
that robustness bias is a real and signi�cant artifact of popular

and commonly-used datasets and models. Surely there are ways
to mitigate some of the e�ects or manifestations of this bias (as
we show with our fairly standard regularization-based mitigation
technique). However, we believe that any type of mitigation should
be taken in concert with the contextualization of these technical
systems in the social world, and thus leave “mitigation” research
to, ideally, application-speci�c future work involving both machine
learning practictioners and the stakeholders of particular systems.

10 DISCUSSION AND CONCLUSION
We propose a unique de�nition of fairness which requires all par-
titions of a population to be equally robust to minute (often ad-
versarial) perturbations, and give experimental evidence that this
phenomenon can exist in some commonly-used models trained
on real-world datasets. Using these observations, we argue that
this can result in a potentially unfair circumstance where, in the
presence of an adversary, a certain partition might be more suscep-
tible (i.e., less secure). Susceptibility is prone to known issues with
adversarial robustness such as sensitivity to hyperparameters [56].
Thus, we call for extra caution while deploying deep neural nets in
the real world since this form of unfairness might go unchecked
when auditing for notions that are based on just the model outputs
and ground truth labels. We then show that this form of bias can be
mitigated to some extent by using a regularizer that minimizes our
proposed measure of robustness bias. However, we do not claim
to “solve” unfairness; rather, we view analytical approaches to bias
detection and optimization-based approaches to bias mitigation as
potential pieces in a much larger, multidisciplinary approach to
addressing these issues in �elded systems.

Indeed, we view our work as largely observational—we observe
that, on many commonly-used models trained on many commonly-
used datasets, a particular notion of bias, robustness bias, exists. We
show that some partitions of data are more susceptible to two state-
of-the-art and commonly-used adversarial attacks. This knowledge
could be used for attack or to design defenses, both of which could
have potential positive or negative societal impacts depending on
the parties involved and the reasons for attacking and/or defending.
We have also de�ned a notion of bias as well as a corresponding
notion of fairness, and by doing that we admittedly toe a morally-
laden line. Still, while we do use “fairness” as both a higher-level
motivation and a lower-level quantitative tool, we have tried to
remain ethically neutral in our presentation and have eschewed
making normative judgements to the best of our ability.
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