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Fig. 1: Learning monocular visual odometry with long-term modeling. Ex-
isting self-supervised methods only see short snippets during the training time, which
makes it hard to learn to leverage temporal consistency over long sequences. Our method,
in contrast, inspired by geometry-based visual odometry methods, combines the best of
both the geometry and learning to aggregate long-term temporal information.

Abstract. Monocular visual odometry (VO) suffers severely from error
accumulation during frame-to-frame pose estimation. In this paper, we
present a self-supervised learning method for VO with special consid-
eration for consistency over longer sequences. To this end, we model
the long-term dependency in pose prediction using a pose network that
features a two-layer convolutional LSTM module. We train the networks
with purely self-supervised losses, including a cycle consistency loss that
mimics the loop closure module in geometric VO. Inspired by prior geo-
metric systems, we allow the networks to see beyond a small temporal
window during training, through a novel a loss that incorporates tempo-
rally distant (e.g., O(100)) frames. Given GPU memory constraints, we
propose a stage-wise training mechanism, where the first stage operates in
a local time window and the second stage refines the poses with a “global”
loss given the first stage features. We demonstrate competitive results on
several standard VO datasets, including KITTI and TUM RGB-D. 1

1 Introduction

Most existing VO systems are either geometric or learning-based. In this paper,
we argue that a truly robust VO system should combine the best of both worlds

1 Project page: https://yuliang.vision/LTMVO/
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Evaluation 5-frame video-level

SfMLearner [53] 0.019 97.81
Our method 0.015 13.13

(a) SfMLearner [53] (b) Our method (c) RMSE (m)

Fig. 2: 5-frame v.s. video-level evaluation. Evaluating visual odometry requires
having a global picture of recovered trajectories. However, most self-supervised methods
only evaluate the trajectories within a short snippet, which may not reflect the holistic
performance. “5-frame” means that we evaluate the results using 5-frame snippets, and
“video-level” means that we evaluate on the entire trajectory.

(i.e., geometry and learning). In particular, we propose a self-supervised method
to learn monocular VO with long-term modeling, where the training scheme is
directly inspired by traditional geometric methods (see Figure 1).

At the heart of the state-of-the-art VO systems [8,9,10,25] is the incorporation
of several long-studied geometric modules, including keypoint tracking, motion
estimation, keyframe insertion, and bundle adjustment (BA) [39]. With all
these modules, a key insight is to optimize the states (e.g., 6-DoF camera
poses) over long-term observations such that the system suffers less from error
accumulation [28]. While being robust in normal scenarios, monocular VO still
suffers from the difficulty in initialization for slow motions [24], and the tracking
tends to fail miserably in unconstrained environments with large texture-less
regions, fast movements, or other adverse factors [49] such as rolling shutter
effect [29,54] and unknown camera intrinsics [3,55].

In contrast, learning-based VO methods [45,46,47,48] have the potential of
being more robust to the aforementioned challenges by harnessing the rich pri-
ors from data. However, training neural networks in a supervised way involves
collecting large-scale, diverse datasets with ground truth annotations, which
could be labor-extensive and time-consuming. Recently, self-supervised meth-
ods [14,21,27,43,51,53,56] have been proposed to tackle this task. Instead of
supervising the networks with ground truth labels, the idea is to couple the depth
and pose networks with photometric errors across adjacent frames and jointly
train them in an end-to-end manner. Nonetheless, the performance of these
methods still falls behind that of geometric methods [24] for general scenarios.

One of the potential reasons for their performance gap is that the pose
networks do not exploit the temporal coherence over long sequences. During
training, these networks receive short snippets (e.g., 3-frame or 5-frame) as input
and predict the ego-motions that are optimized locally for the current snippet.
When evaluating these methods in short snippets, they compare favorably even
with the state-of-the-art geometric methods [24]. However, if we concatenate all
the predictions to form the full trajectory, it is often the case that the learning-
based methods generate much larger pose errors, as illustrated in Figure 2.

In this paper, we argue that learning VO requires explicit long-term modeling
to infuse the insights from geometric methods [8,9,10,25]. To this end, we propose
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a novel self-supervised VO learning framework that draws inspiration from
geometric modules. Specifically, we build our learning framework upon a depth
network of an auto-encoder structure with skip-connections [14] and a pose
network with a two-layer LSTM module [48]. In contrast to the supervised method
by Xue et al. [48], our method incorporates extra depth information and uses a
completely different training scheme, leading to a purely self-supervised learning
framework. To mitigate error accumulation, we propose a cycle consistency
constraint between the two-layer predictions, mimicking a mini loop closure
module, which improves the pose consistency over the sequence. In order to
model long-term dependency in VO, we propose a two-stage training strategy,
which considers both short-term and long-term constraints. The proposed two
training stages correspond to the local and global bundle adjustment modules in
the geometric VO, allowing us to refine the poses within a large temporal range.

In summary, our contributions are:

– We propose a novel self-supervised VO learning framework that explicitly
models long-term temporal dependency.

– We build connections between our method and key building blocks of geo-
metric VO systems and demonstrate well-motivated designs.

– We evaluate the full pose trajectories by our method, against the state-of-the-
art geometric and learning-based baselines, and achieve competitive results
on standard VO datasets, including KITTI and TUM RGB-D.

To the best of our knowledge, our method is the first of the kind that is
able to learn from “truly” long sequences (e.g., ∼100 frames) in the training
stage. Our experiments show that our proposed method gives rise to significant
empirical benefits by explicitly considering long-term modeling.

2 Related Work

Geometric Methods. Visual odometry is a long-standing problem that esti-
mates the ego-motion incrementally [26,28] using visual input. A conventional
geometric VO system usually consists of the following components [28]: fea-
ture detection, feature matching (or tracking), motion estimation (e.g., trian-
gulation [17]), and local optimization (e.g., bundle adjustment). A keyframe
mechanism [19] is also adopted for improved robustness in motion estimation.
Incorporated with a mapping system that reconstructs the 3D scene structures,
a VO system turns to a system called Simultaneous Localization and Mapping
(SLAM) [4]. The key to the robustness of the modern VO/SLAM systems [24,38]
lies in their capability to extract reliable image measurements and optimize the
states (e.g., 6-DoF camera poses) over a large number of frames. In this work, we
leverage these geometric insights to design a robust learning-based VO system.

Fully-Supervised Methods. With the success of deep neural networks, end-to-
end learning-based methods [45,46,47,48] have been proposed to tackle the visual
odometry problem. These methods often rely on a supervised loss using the ground-
truths to regress the 6-DoF camera relative pose from a pair of consecutive images.
Recently, some methods [2,36,37,40,52] exploit CNNs to predict the scene depth
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and camera pose jointly, utilizing the geometric connection between the structure
and the motion. This corresponds to learning Structure-from-Motion (SfM) in a
supervised manner. Although the methods above achieve good performance, they
require ground-truth annotations to train the networks. In contrast, our method
is self-supervised, requiring nothing but the monocular video frames.

Self-Supervised Methods. To mitigate the requirement of data annotations,
self-supervised methods [14,21,27,43,51,53] have been proposed to tackle the SfM
task. The main supervisory signal of these methods comes from the photometric-
consistency between corresponding pixels of neighboring frames. While they
achieve good performance on single-view depth estimation, the performance of ego-
motion estimation still lags behind the traditional SLAM/VO methods. Recently,
Bian et al. [1] argue that the pose networks cannot provide full camera trajectories
over long sequences due to the inconsistent scale of per-frame estimations and
thus propose a geometry consistency constraint. However, their method only
enforces the globally consistent trajectories by propagating the consistency on
overlapping short snippets during training. In contrast, our method directly
optimizes over long sequences via long-term modeling. Inspired by the keyframe
mechanism in geometric methods, Sheng et al. [31] propose to jointly learn depth,
ego-motion, and keyframe selection simultaneously in a self-supervised manner.
Similarly, the training of this method considers only short snippets and thus is
unable to model long-term dependency.

Sequential Modeling. Sequential modeling based on recurrent neural networks
(RNNs) has been successfully applied to many applications, such as speech recogni-
tion [5], machine translation [15], and video prediction [34,41]. Aiming to estimate
the full trajectory over a long sequence of frames, VO can be naturally formu-
lated as a sequential learning problem and thus modeled with RNNs [43,45,46,47].
Recently, Xue et al. [48] propose to use a two-layer LSTM network for pose esti-
mation, where the first layer estimates the relative motion between consecutive
frames, and the second layer estimates global absolute poses.

Despite using a similar pose network, our method differs from Xue et al. [48]
in being self-supervised v.s. full-supervised and the associated training strategies.
First of all, our method further incorporates depth information, while the method
in [48] relies only on pose features. Apart from the photometric discrepancy as
to the supervisory signal, we enforce a cycle consistency between the predictions
from the two-layer LSTM modules, which serves as a mini “loop closure” module
that mimics the geometry VO system. More importantly, we decouple our network
training into two stages, allowing our method to optimize over long sequences
(more than 90 frames) during training, whereas the method in [48] only trains
with 11-frame snippets. To our knowledge, this is the first deep learning approach
for visual odometry that takes long sequences as input in the training stage.
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Fig. 3: Overview. Our method adopts a stage-wise training strategy. (a) In the first
stage of training, we jointly train all the components: the depth encoder, the depth
decoder, the pose encoder, the first and second layer of ConvLSTM (Sec. 3.2); (b) In
the second stage of training, we pre-extract features as input and fine-tune the second
layer of the ConvLSTM module only (Sec. 3.3).

3 Method

Figure 3 provides a high-level overview of the proposed monocular VO system.
Our system has two major components: a depth network and a pose network.2

The single-image depth network employs an encoder-decoder structure with
skip-connections [14]. The pose network consists of a FlowNet backbone [7], a
two-layer LSTM module [48], and two pose prediction heads (with one after
each of the LSTM layers). In the two-layer recurrent architecture, the first-layer
focuses on predicting consecutive frame motions, while the second-layer refines
the estimations from the first-layer [48].

3.1 Background

We formulate the monocular visual odometry task as a view synthesis problem,
by training the networks to predict a target image from the source image with
the estimated depth and camera pose. Such a system typically consists of two
components: a depth network which takes a single RGB image as input to predict
the depth map, and a pose network which takes a concatenation of two consecutive
frames as input to estimate the 6-DoF ego-motion.

Given two input images It and It+1, the estimated depth map D̂t and camera

pose T̂t→t+1, we can then compute the per-pixel correspondence between the two
input images. Assume a known camera intrinsic matrix K, and let pt represent
the 2D homogeneous coordinate of a pixel in It. We can find the corresponding
point of pt in It+1 following the equation [53]:

pt+1 ∼ KT̂t→t+1D̂t(pt)K
−1pt . (1)

2 Since accurate pose prediction is the primary focus of this paper, we name our method
as VO instead of SfM or SLAM.
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Appearance loss. For a self-supervised visual odometry system, the primary
supervision comes from the appearance dissimilarity between the synthesis image
and the target image. To effectively handle occlusion, we use three consecutive
frames to compute the per-pixel minimum photometric reprojection loss [14], i.e.,

LA =
1

N − 2

N−2∑
t=1

mint′∈{t−1,t+1}ρ(It, Ît′→t) , (2)

where ρ is a weighted combination of the L2 loss and the Structured SIMilarity
(SSIM) loss, Ît′→t denotes the frame synthesized from It′ using Eq. (1). To handle
static pixels, we adopt the auto-masking mechanism following Godard et al. [14].

Smoothness loss. Since the appearance loss cannot provide meaningful super-
vision for texture-less or homogeneous regions of the scene, a smoothness prior
of disparity is incorporated. We here use the edge-aware smoothness loss LS as
in Wang et al. [42].

Remark 1. The appearance loss in Eq. (2) corresponds to a local photometric
bundle adjustment objective, which is also commonly used in the geometric direct
VO/SLAM systems [8,9,44].

3.2 Cycle consistency within memory-aided sequential modeling

With the above setting, current state-of-the-art self-supervised methods estimate
the ego-motion within a local range, discarding the sequential dependence and
dynamics in the long sequences. Such information, however, is essential for a pose
network to recover the entire trajectory in a consistent manner. We thus adopt a
recurrent structure of our pose network to utilize the temporal information.

Sequential modeling. To learn to utilize the temporal information, we adopt
the recurrent network structure with a convolution LSTM (ConvLSTM) mod-
ule [32]. Previously, the pose network takes the concatenation of two frames and
outputs the 6-DoF camera pose directly. After incorporating the ConvLSTM
module, the pose network also takes the previous estimation information into
account when predicting the output. Formally, we have

Ft = PEnc(It, It−1) , (3)

Ot, Ht = ConvLSTM(Ft, Ht−1) , (4)

T̂t−1→t = g1(Ot) , (5)

where PEnc(·) is the pose encoder, Ot, Ht denotes the output and hidden state of

ConvLSTM at time t, g1(·) is a linear layer to predict the 6-DoF motion T̂t−1→t.
By doing this, the network implicitly learns to aggregate temporal information
and learns the motion pattern.

Memory buffer and refinement. In the sequential modeling setting above,
the pose network estimates the relative pose for every two consecutive frames.
However, the motions between consecutive frames are often tiny, which results
in difficulties in extracting good features for relative pose estimation. Thus,
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predicting the camera pose from a non-adjacent “anchor” frame to the current
frame could be a better option. Note that many traditional SLAM systems [24,25]
adopt a keyframe mechanism and always compute camera poses from the current
frame to the most recent keyframe.

Inspired by the keyframe mechanism, we incorporate the second-layer Con-
vLSTM and adopt the memory module proposed by Xue et al. [48]. After each
step in the first-layer ConvLSTM, we store the hidden state tensor in a memory
buffer, whose length is set to the length of the input snippet. When we read out
from the memory buffer, we compute the weighted average of all the memory
slots in the memory buffer as in [48].

We also compute the depth and pose features for the first frame and the
current frame as additional input to the second-layer ConvLSTM. This can be
formally written as

Et = DEnc(It) , (6)

Ft,abs = PEnc(I0, It) , (7)

Ot,abs, Ht,abs = ConvLSTM(Ft,abs, E0, Et,Mt, Ht−1,abs) , (8)

T̂0→t = g2(Ot,abs) , (9)

where DEnc(·) is the depth encoder, Mt is the read-out memory, Ot,abs, Ht,abs

denote the output and hidden state from the second-layer at time t, and g2(·) is
another linear layer predicting the absolute pose in the current snippet.

Remark 2. The ConvLSTMs explicitly model the sequential nature of the VO
problem and meanwhile facilitate the implementation of a keyframe mechanism.
Compared to the memory module by Xue et al. [48], which only considers pose
features, our memory module accommodates both depth and pose features. As
verified in our experiments 3, incorporating the additional depth information in
memory improves the overall performance.

Cycle consistency over two-layer poses. To train the second-layer ConvL-
STM, we utilize the photometric error between the first frame and the other
frames of the input snippet, i.e.,

LA,abs =
1

N − 1

N−1∑
t=1

ρ(I0, Ît→0) , (10)

where N is the number of frames for the input snippet, which is set to 7 in our
model.

Also, according to the transitivity of the camera transformation, we have an
additional constraint to ensure the consistency between the first and second layer
ConvLSTM (as shown in Figure 4), i.e.,

LP =
1

N − 1

N−1∑
t=1

||T̂0→t − T̂t−1→tT̂0→t−1||22 . (11)

3 Table 6 in the supplementary material.
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Fig. 4: Cycle-consistency over two-layer poses. In our model, the first layer
ConvLSTM estimates the relative pose between consecutive frames, and the second
layer ConvLSTM predicts the “absolute” pose within the current snippet. By exploiting
the transitivity of camera poses, we incorporate a cycle-consistency constraint between
the two layers. Animation can be viewed in Adobe Reader.

Thus, the overall objective is

Lfull = LA + λ1LS + LA,abs + λ2LP , (12)

where λ1, λ2 are the hyper-parameters to balance the scale of different terms,
which are empirically set to 0.001.

Remark 3. The loss in Eq. (11) can be thought of as a mini “loop closure” mod-
ule that enforces the cycle-consistency between the outputs of two ConvLSTM
layers. Note that our method is also compatible with the existing full loop closure
techniques [20], which we will consider in the future work.

3.3 Long-range constraints via stage-wise training

Although we adopt a recurrent network structure to aggregate temporal informa-
tion for better performance, the network has never seen long sequences but only
short snippets during the training time. Thus, the network may not learn how to
fully utilize the long-term temporal context. The hurdle that prevents us from
taking long sequences as input is the limited memory volume of modern GPUs.
To tackle this problem for training a long-term model, we propose a two-stage
training strategy. We first train our whole model with the full objective Lfull

using short snippets.

Once the first stage of training is finished, we run this model on each sequence
in the dataset separately, to extract the required input for the second-layer
ConvLSTM and store them. After that, we only fine-tune the lightweight second-
layer ConvLSTM, without the heavy feature extraction and depth networks,
which saves us a lot of memories. By doing this, we can now feed long sequences
into the network during the training time, allowing the network to better learn
how to utilize the temporal context. Since only the second-layer ConvLSTM is
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Algorithm 1: Stage-wise training strategy

1 First stage: short-range training ;
Input : 7-frame snippet
Trainable : Depth Encoder, Depth Decoder, Pose Encoder, First-layer

ConvLSTM, Second-layer ConvLSTM
Objective :Lfull (Eq. (12))

2 Second stage: long-range training ;
Input : 97-frame sequence
Trainable : Second-layer ConvLSTM
Objective :Llong (Eq. (13))

optimized, our loss for the second stage of training is

Llong =
1

M

M−1∑
m=0

1

N − 1

m(N−1)+N−1∑
t=m(N−1)+1

ρ(Im(N−1), Ît→m(N−1)) , (13)

where N is the number of frames of each snippet, which is set to 7; M is the
number of snippets in the input sequence, which is set to 16. Note that consecutive
snippets have one frame in common, and thus the total number of frames in
the input sequence is 97. The synthesized image Ît→m(N−1) is a function of
depth and pose, where pose encodes long-range constraints through hidden states
of ConvLSTMs, yielding an effective window of 97 frames. We summarize our
method in Algorithm 1.

Remark 4. The second training stage can be viewed as a motion-only bundle
adjustment module [24] that considers long-term modeling.

4 Experimental Results

4.1 Settings

Datasets. To evaluate our method, we conduct the main experiments on the
KITTI dataset [11,12], which consists of urban and highway driving sequences for
road scene understanding [33,6]. The odometry split of KITTI is a widely used
benchmark for odometry/SLAM evaluation. It contains 22 sequences, among
which Sequence 00-10 have ground truth trajectory labels, and the annotations of
the remaining sequences are not publicly available. Following Zhou et al.[53], we
use Sequence 00-08 as our training set and validate the models on Sequence 09
and 10. Besides, we select 18 more sequences from KITTI raw data, which have
no overlaps with the odometry split, for further evaluation. Since the ground
truth trajectories of Sequence 11-21 are not available, we run ORB-SLAM2
(stereo version) to get predictions as (pseudo) ground truth for evaluation. In
addition to these outdoor scenes, we also train and evaluate our model on the
TUM RGB-D dataset [35]. This dataset is collected by hand-held cameras in
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Table 1: Ablation study. We evaluate different variants of the proposed method on
sequences 09 and 10 of the KITTI Odometry dataset [12]. The best performance is in
bold and the second best is underlined.

Seq. 09 Seq. 10

Method RMSE (m) Rel. trans. (%) Rel. rot. (deg/m) RMSE (m) Rel. trans. (%) Rel. rot. (deg/m)

Baseline 22.71 7.55 0.028 17.87 10.43 0.046
One-layer ConvLSTM 23.45 5.59 0.016 11.93 7.23 0.023
Two-layer ConvLSTM 9.77 4.23 0.013 12.68 6.02 0.023
Two-layer ConvLSTM + Two-stage training 11.30 3.49 0.010 11.80 5.81 0.018

indoor environments with challenging conditions. We use the same train/test
split as in Xue et al. [48].

Evaluation metrics. For the KITTI dataset, we adopt the absolute trajectory
RMSE and relative translation/rotation errors for all possible subsequences of
length (100, 200, ..., 800 meters). For the TUM RGB-D dataset, we use the
translational RMSE as our evaluation metrics. For self-supervised monocular
methods, since the absolute scale is unknown, we align the trajectory globally
using the evo toolbox [16].

Implementation details. We use ImageNet pretrained ResNet-18 as our depth
encoder. Our depth decoder structure is the same as Godard et al. [14]. For the
pose encoder, we take the encoder of FlowNet-S structure until the last layer,
which is pre-trained on FlyingChairs [7] for optical flow estimation. We implement
our system using the publicly available PyTorch framework and conduct all our
experiments with a single TitanXP GPU. For both stages, we train the network
with the Adam optimizer [18] for 20 epochs. The learning rate is set to 5e-5 for
the first 15 epochs and drops to 5e-6 for the remaining epochs. The input size is
640×192, and the batch size is set to 2. In the first stage of training, the number
of frames is set to 7, while the number of frames is set to 97 in the second stage.
Note that the long-term optimization only happens in the training time. At the
test time, our model runs at 14.3 frames per second.

4.2 Results

Ablation study. To validate our design choice, we perform an ablation study on
Sequence 09 and 10 of the KITTI Odometry dataset. We consider the following
variants. 1) Baseline: the pose network takes as input the concatenation of two
consecutive frames to generate pose estimation; 2) One-layer ConvLSTM: we in-
corporate a one-layer ConvLSTM for the pose network; 3) Two-layer ConvLSTM:
we use the full model, but only conduct the first stage of training; 4) Two-layer
ConvLSTM + Two-stage training: our final model with the two-stage training
strategy.

As shown in Table 1, the performance gradually improves as we add more com-
ponents. Specifically, adding a recurrent module improves the overall performance
over the baseline; adding the second layer LSTM leads to further improvement,
which validates the effectiveness of the second layer in the self-supervised learning
setting; applying our second stage long-term training again boosts the perfor-
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(a) Full trajectories (b) Zoom-in

Fig. 5: Visual comparison on Sequence 09. We compare different variants of our
method to validate the design choice. As we can see, adding each of the components
gradually improves the overall performance. Best viewed in color.

mance, achieving a new state-of-the-art for self-supervised methods. We show a
visual comparison in Figure 5.

Comparison with the state-of-the-art methods. For comparison, we se-
lect several state-of-the-art methods, including the monocular version of ORB-
SLAM2 [25] (denoted as ORB-SLAM2-M) (with and without loop closure opti-
mization), several supervised learning methods [37,45,46,47,48], and some other
self-supervised methods [1,14,21,22,23,27,30,43,50,51,53]. Note that all super-
vised methods are trained on Sequence 00, 02, 08, 09 of the KITTI Odometry
dataset [12], except DeepV2D [37], which is trained on the Eigen split of KITTI
raw dataset [11]. As we can see in Table 2, our final model outperforms other
self-supervised methods by a significant margin. In particular, our method out-
performs the recent proposed SC-SfMLearner [1], which aims to reconstruct the
scale-consistent camera trajectory. This indicates that the explicit long-term
modeling used in our approach is more effective than propagating the geometric
constraint among overlapping short snippets in SC-SfMLearner [1]. Our model
also compares favorably with the geometric method and outperforms all super-
vised methods except Xue et al. [48] on Sequence 10.

Results on additional KITTI sequences. From the raw data of the KITTI
dataset, we select 18 short sequences that have no overlaps with either the
training or test split of the KITTI Odometry dataset.4 We then apply the same
pre-trained models on these test sequences. As we can see in Table 3, our method
outperforms other learning-based methods and even compares favorably with
ORB-SLAM2-M methods in terms of RMSE and relative translation error.

Results on KITTI test sequences. Since the ground truth trajectories of
Sequence 11-21 on the KITTI Odometry dataset are not available, we cannot
directly recover the global scale using similarity transformation. Thus, we choose
to run the stereo version of ORB-SLAM2 (denoted as ORB-SLAM2-S), which is
one of the state-of-the-art methods on these sequences. To compare with other
methods, we treat the estimations from ORB-SLAM2-S as pseudo ground truth.

4 The sequence names are available in the supplementary material.
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Table 2: Comparison with the state-of-the-art. The results of ORB-SLAM2-M
methods are the medians of 5 runs. ‘-’ means the results are not available from that
paper. For DeepV2D [37], SfMLearner [53], GeoNet [50], CC [27], DeepMatchVO [30],
and MonoDepth2 [14], we take the pre-trained models and run on the sequences to
get the results. The best performance of each block is in bold, and the second best is
underlined.

Seq. 09 Seq. 10

Method RMSE (m) Rel. trans. (%) Rel. rot. (deg/m) RMSE (m) Rel. trans. (%) Rel. rot. (deg/m)

Geo.
ORB-SLAM2-M (w/o LC) [25] 44.10 9.67 0.003 6.43 4.04 0.003
ORB-SLAM2-M [25] 8.84 3.22 0.004 8.51 4.25 0.003

Sup.

DeepVO [45] - - - - 8.11 0.088
ESP-VO [46] - - - - 9.77 0.102
GFS-VO [47] - - - - 6.32 0.023
GFS-VO-RNN [47] - - - - 7.44 0.032
BeyondTracking [48] - - - - 3.94 0.017
DeepV2D [37] 79.06 8.71 0.037 48.49 12.81 0.083

Self-Sup.

SfMLearner [53] 24.31 8.28 0.031 20.87 12.20 0.030
GeoNet [50] 158.45 28.72 0.098 43.04 23.90 0.090
Depth-VO-Feat [51] - 11.93 0.039 - 12.45 0.035
vid2depth [23] - - - - 21.54 0.125
UnDeepVO [21] - 7.01 0.036 - 10.63 0.046
Wang et al. [43] - 9.88 0.034 - 12.24 0.052
CC [27] 29.00 6.92 0.018 13.77 7.97 0.031
DeepMatchVO [30] 27.08 9.91 0.038 24.44 12.18 0.059
PoseGraph [22] - 8.10 0.028 - 12.90 0.032
MonoDepth2 [14] 55.47 11.47 0.032 20.46 7.73 0.034
SC-SfMLearer [1] - 11.2 0.034 - 10.1 0.050
Ours 11.30 3.49 0.010 11.80 5.81 0.018

Table 3: Average results on 18 additional KITTI sequences. The results of
ORB-SLAM2-M methods are the medians of 5 times. The best performance of each
block is in bold, and the second best is underlined.

Method RMSE (m) Rel. trans (%) Rel. rot. (deg/m)

Geo.
ORB-SLAM2-M (w/o LC) [25] 7.17 9.41 0.008
ORB-SLAM2-M [25] 8.12 10.64 0.008

Sup. DeepV2D [37] 10.94 11.81 0.028

Self-Sup.

SfMLearner [53] 10.79 13.82 0.041
GeoNet [50] 14.41 18.99 0.076
CC [27] 7.51 10.49 0.024
DeepMatchVO [30] 8.53 12.76 0.033
MonoDepth2 [14] 7.51 11.99 0.028
Ours 6.47 9.99 0.019
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Table 4: Results on KITTI Odometry official test split. Since ground truth
trajectories are not publicly available, we use estimations from the stereo version of
ORB-SLAM2 as pseudo ground truth. The best performance of each block is in bold,
and the second best is underlined.

Method RMSE (m) Rel. trans (%) Rel. rot. (deg/m)

Geo.
ORB-SLAM2-M (w/o LC) [25] 81.20 19.60 0.009
ORB-SLAM2-M [25] 44.09 12.96 0.007

Sup. DeepV2D [37] 221.33 24.61 0.041

Self-Sup.

SfMLearner [53] 75.00 26.54 0.045
GeoNet [50] 94.98 29.11 0.062
CC [27] 55.44 16.65 0.032
DeepMatchVO [30] 95.79 17.31 0.038
MonoDepth2 [14] 99.36 12.28 0.031
Ours 71.63 7.28 0.014

As we can see in Table 4, our method achieves state-of-the-art performance among
the learning-based methods and even compares favorably with ORB-SLAM2-
M in terms of the relative translation error. We visualize trajectories of four
sequences in Figure 6. As we can see, our method better aligns with the reference
trajectories from ORB-SLAM2-S. We also submit the globally aligned results
to the KITTI evaluation server and get similar numbers, which indicates using
ORB-SLAM2-S as pseudo ground truth for evaluation is reasonable. Please refer
to the supplementary material for more details.

Results on the TUM RGB-D dataset. The TUM RGB-D dataset was
created to evaluate the performance of RGB-D SLAM and is thus very challenging
for monocular methods. To test our model in indoor environments, we instead
compare our model with several strong baselines. For traditional methods, we
choose the monocular version of ORB-SLAM2 (denoted as ORB-SLAM2-M) and
DSO [8]. For learning-based methods, we choose the BeyondTracking method
from Xue et al. [48] and the recent DeepV2D [37]. For DeepV2D, since it is
trained on another indoor dataset, in case it cannot generalize its scale to TUM
RGB-D, we provide two options: with and without global scale alignment.

Table 5 shows that traditional methods perform well on some of the sequences,
but they failed to produce results from the remaining ones due to tracking failure.
Our method outperforms the supervised baseline DeepV2D [37] on most of the
sequences, but compares less favorably than the supervised VO method in [48].
We conjecture that this is due to the limited amount of training data available
on the TUM RGB-D dataset. Currently, we use the same amount of training
data as supervised methods. Adding more unlabeled video data to the training
might lead to better performance for our method. We also notice that the rolling
shutter issue in this dataset makes the photometric consistency assumption less
accurate, which could potentially hurt the performance of both the proposed
method and DSO.

Discussions. Our learning framework is motivated by geometric VO methods.
The FlowNet backbone mimics the tracking module to extract pair-wise image
features, and the LSTMs model the sequential nature of the VO problem. The
design of the two-layer LSTM module also resembles the keyframe mechanism of
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(a) Seq. 13 (b) Seq. 16

(c) Seq. 18 (d) Seq. 19

Fig. 6: Visual comparison on the KITTI Odometry test set. We show the
trajectories of ORB-SLAM2-S, CC [27], MonoDepth2 [14] and our method. Our method
aligns best with the reference ORB-SLAM2-S trajectories. Best viewed in color.

Fig. 7: Qualitative Results on the TUM RGB-D dataset. We overlay the first
frame of each sequence with the trajectory. Best viewed in color.

Table 5: Results on the TUM-RGBD dataset [35]. ‘-’ means that traditional
method fails in that sequence. The best performance of each block is in bold, and the
second best is underlined.

Method Seq. 1 Seq. 2 Seq. 3 Seq. 4 Seq. 5 Seq. 6 Seq. 7 Seq. 8 Seq. 9 Seq. 10 Avg.

Geo.
ORB-SLAM2-M [25] 0.041 0.184 - - - - - 0.057 - 0.018 -
DSO [8] - 0.197 - 0.737 - 0.082 - 0.093 0.543 0.040 -

Sup.
BeyondTracking [48] 0.153 0.208 0.056 0.070 0.172 0.015 0.123 0.007 0.035 0.042 0.088
DeepV2D [37] 0.232 0.651 0.186 0.167 0.171 0.029 0.435 0.106 0.085 0.082 0.214
DeepV2D (aligned) [37] 0.087 0.300 0.114 0.106 0.181 0.013 0.380 0.110 0.094 0.098 0.148

Self-Sup. Ours 0.192 0.190 0.083 0.122 0.177 0.016 0.219 0.102 0.179 0.107 0.139

geometric VO in the sense that the second LSTM predicts the motion between a
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keyframe and a non-keyframe, refining the initial consecutive estimations from
the first LSTM. The cycle consistency constraint between the two-layer LSTM
estimations serves as a mini loop closure to enforce the transitivity consistency of
poses. The second stage of training allows our network to explicitly optimize over
long sequences, which resembles the motion-only bundle adjustment module. We
combine the best of both geometry and learning by building a self-supervised VO
framework whose components (network, loss, training scheme) are fully inspired
by the well-studied geometric modules. As verified in our experiments, these
geometry inspired designs lead to significantly better results than the existing
self-supervised baselines.

Limitations. Although the proposed system achieves a good camera pose
estimation performance in terms of translation error, the improvement on the
rotation prediction is not as substantial as the translation. We conjecture that the
large rotation error may be due to the bias within the training data. Specifically,
for driving scenarios, the translational motions occur much more frequently than
the rotational ones. Training on more diverse video sequences or synthetic data
could potentially alleviate the inherent bias in the existing datasets. Also, we
observe that our system fails under the over-exposure scenarios since our method
still relies on visual input to extract information.

5 Conclusions

In this work, we learn a monocular visual odometry system in a self-supervised
manner to mimic critical modules in traditional geometric methods. We first adopt
a two-layer convolutional LSTM module to model the long-term dependency in
the pose estimation. To allow the network to see beyond short snippets (e.g., 3
or 5 frames) during the training time, we propose a stage-wise training strategy.
Combining the recurrent architecture and the proposed decoupled training scheme,
our system achieves state-of-the-art performance among self-supervised methods.
In the current form, we do not have a mechanism to detect loops and perform
full loop closure. In the future, we plan to study how to incorporate it into our
learning framework.
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Supplementary Material

In this supplementary document, we provide additional experimental results and
information to complement the main manuscript. First, we conduct additional
ablation experiments to further validate our design choices. Second, we show our
results on the KITTI Odometry leaderboard. Third, we show results on the
KITTI Odometry training split. Fourth, we show results on the snippet-level
pose and single-view depth estimation for completeness. Lastly, we provide the
list of sequences we selected from KITTI raw data. We also provide a demo
video showing the trajectories of several challenging sequences in the KITTI
Odometry dataset. Please refer to the attached file supp video.mp4.

A Ablation Study

In Table 6, we conduct an ablation study to validate the effectiveness of the
incorporated cycle consistency constraint, pose features (from I0 and It), depth
features, and the memory buffer in our two-layer ConvLSTM module. As we can
see, all the components help improve performance in the first stage of training.

Table 6: Ablation study on different components of the second-layer ConvLSTM.
The best performance is in bold and the second best is underlined.

Seq. 09 Seq. 10

Method RMSE (m) Rel. trans. (%) Rel. rot. (deg/m) RMSE (m) Rel. trans. (%) Rel. rot. (deg/m)

Two-layer ConvLSTM (w/o cycle consistency) 20.37 5.02 0.016 16.63 6.88 0.035
Two-layer ConvLSTM (w/o pose features) 14.26 5.64 0.018 14.47 7.52 0.030
Two-layer ConvLSTM (w/o depth features) 11.53 4.54 0.015 14.07 6.54 0.031
Two-layer ConvLSTM (w/o memory buffer) 12.54 5.12 0.014 13.96 7.20 0.026
Two-layer ConvLSTM 9.77 4.23 0.013 12.68 6.02 0.023

In Table 7, we conduct an ablation study to show the performance of different
input sequence lengths of the second stage of training. Our results show that the
performance gradually improves as we increase the number of input frames
during training. When the number of frames reaches the GPU memory
limitations (e.g., our default setting, 97-frame), we achieve the best performance.
Training the model on a GPU with larger memory could potentially improve the
performance further.

Table 7: Ablation study on different input sequence length of the second-stage
of training. The best performance is in bold and the second best is underlined.

Seq. 09 Seq. 10

Method RMSE (m) Rel. trans. (%) Rel. rot. (deg/m) RMSE (m) Rel. trans. (%) Rel. rot. (deg/m)

49-frame 12.50 3.83 0.011 12.30 5.99 0.018
73-frame 12.42 3.69 0.010 12.06 5.89 0.018
97-frame (default) 11.30 3.49 0.010 11.80 5.81 0.018



20 Y. Zou et al.

B Results on KITTI Odometry Test Set

In Table 8, we provide results on the KITTI Odometry leaderboard. It may be
observed that the performance of our method is close to Table 5 in the main
manuscript. This suggests that using ORB-SLAM2-S as pseudo ground truth is
a reasonable choice for evaluation.
In addition to our method, we select two state-of-the-art self-supervised methods
(CC [27] and MonoDepth2 [14]) and submit the estimated results to the server
as well. Our method compares favorably with these two self-supervised methods.
Our method also outperforms the supervised method DeepVO [45] by a large
margin.

Table 8: Results on KITTI Odometry leaderboard. Note that we use the estima-
tions from ORB-SLAM2-S [25] to align scale globally for the self-supervised methods.

Method Rel. trans (%) Rel. rot. (deg/m)

Geo.
ORB-SLAM2-S [25] 1.70 0.0028
VISO2-M [13] 11.94 0.0234
VISO2-M+GP [13,33] 7.46 0.0245

Sup. DeepVO [45] 24.55 0.0489

Self-Sup.
CC [27] 16.06 0.0320
MonoDepth2 [14] 12.59 0.0312
Ours 7.40 0.0142

In Figure 8, we show qualitative results on the remaining 7 sequences (other
than those shown in the main manuscript) from the KITTI Odometry test set.
Our method aligns best with the reference ORB-SLAM2-S trajectories.

C Results on KITTI Odometry Training Set

In Table 9, we compare the results on the training set of the KITTI Odometry
dataset. Note that all supervised methods are trained on Sequence 00, 02, 08, 09
of the KITTI Odometry dataset [12], except DeepV2D [37], which is trained on
the Eigen split of KITTI raw dataset [11]. Comparing to other self-supervised
approaches, our method achieves smaller errors on the training set, indicating
that the proposed system can effectively learn to model the camera pose
trajectory during training time. Our method also compares favorably against the
geometric-based method ORB-SLAM2.
In Figure 9, we show the qualitative results of our method on Seq. 00-08 on the
KITTI Odometry dataset.

D Snippet-level Pose Results and Depth Results

For completeness, we provide the pose estimation results when evaluating on
5-frame snippets in Table 10 and the single-view depth estimation results
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Table 9: Pose evalution on training split of KITTI Odometry dataest [12]. The
results of ORB-SLAM2-M methods are the medians of 5 times. ‘-’ means the results
are not available from that paper. For DeepV2D [37], SfMLearner [53], GeoNet [50],
CC [27], DeepMatchVO [30], and MonoDepth2 [14], we take the pre-trained models
and run on the sequences to get the results. The best performance of each block is in
bold, and the second best is underlined.

RMSE (m) Seq. 00 Seq. 01 Seq. 02 Seq. 03 Seq. 04 Seq. 05 Seq. 06 Seq. 07 Seq. 08

Geo.
ORB-SLAM2-M (w/o LC) 54.94 568.63 58.55 1.41 2.41 29.32 51.87 16.83 36.90
ORB-SLAM2-M 9.02 529.28 17.96 2.07 1.56 5.20 14.07 2.88 37.83

Sup. DeepV2D [37] 101.08 484.87 121.02 3.62 8.86 35.23 113.31 12.86 55.69

Self-Sup.

SfMLearner [53] 97.81 108.09 152.15 7.47 2.49 48.13 39.56 21.28 32.56
GeoNet [50] 148.81 168.90 293.46 17.58 7.26 86.94 17.69 13.88 138.00
CC [27] 68.31 50.41 59.19 8.89 2.25 22.49 13.02 11.31 49.29
DeepMatchVO [30] 51.34 85.96 127.99 11.03 3.09 27.59 20.98 16.71 38.71
MonoDepth2 [14] 82.05 30.81 86.64 2.40 2.00 21.49 5.16 10.42 51.83
Ours 13.13 41.38 12.61 1.61 2.22 8.24 9.16 9.92 13.98

Rel. trans (%) Seq. 00 Seq. 01 Seq. 02 Seq. 03 Seq. 04 Seq. 05 Seq. 06 Seq. 07 Seq. 08

Geo.
ORB-SLAM2-M (w/o LC) 14.11 131.75 12.70 1.21 2.40 9.12 18.50 10.34 9.72
ORB-SLAM2-M 3.23 125.63 3.69 1.73 1.97 2.31 5.92 2.15 11.68

Sup.

DeepVO [45] - - - 8.49 7.19 2.62 5.42 3.91 -
ESP-VO [46] - - - 6.72 6.33 3.35 7.24 3.52 -
GFS-VO [47] - - - 5.44 2.91 3.27 8.50 3.37 -
GFS-VO-RNN [47] - - - 6.36 5.95 5.85 14.58 5.88 -
BeyondTracking [48] - - - 3.32 2.96 2.59 4.93 3.07 -
DeepV2D [37] 12.38 56.26 7.79 4.07 8.22 6.35 16.67 4.96 6.63

Self-Sup.

SfMLearner [53] 19.27 21.71 18.99 9.73 3.17 10.02 11.00 11.68 8.67
GeoNet [50] 33.63 22.96 54.00 19.41 10.81 22.68 9.90 9.82 22.26
CC [27] 10.42 15.64 8.08 8.49 2.90 5.70 4.38 5.91 7.16
DeepMatchVO [30] 5.31 29.57 15.94 9.67 4.15 7.42 5.69 7.62 9.43
MonoDepth2 [14] 7.64 10.06 8.34 5.30 3.20 4.66 2.48 4.58 7.32
Ours 2.60 13.27 2.49 1.59 2.52 2.63 2.64 6.43 3.61

Rel. rot (deg/m) Seq. 00 Seq. 01 Seq. 02 Seq. 03 Seq. 04 Seq. 05 Seq. 06 Seq. 07 Seq. 08

Geo.
ORB-SLAM2-M (w/o LC) 0.003 0.010 0.003 0.002 0.002 0.002 0.003 0.003 0.003
ORB-SLAM2-M 0.003 0.012 0.004 0.002 0.002 0.003 0.002 0.005 0.003

Sup.

DeepVO [45] - - - 0.069 0.070 0.036 0.058 0.046 -
ESP-VO [46] - - - 0.065 0.061 0.049 0.073 0.050 -
GFS-VO [47] - - - 0.033 0.013 0.016 0.027 0.022 -
GFS-VO-RNN [47] - - - 0.036 0.024 0.025 0.050 0.026 -
BeyondTracking [48] - - - 0.021 0.018 0.012 0.019 0.018 -
DeepV2D [37] 0.051 0.051 0.030 0.021 0.034 0.027 0.073 0.030 0.031

Self-Sup.

SfMLearner [53] 0.057 0.026 0.033 0.035 0.033 0.036 0.038 0.059 0.026
GeoNet [50] 0.057 0.041 0.061 0.098 0.070 0.077 0.043 0.059 0.078
CC [27] 0.035 0.011 0.016 0.041 0.012 0.022 0.008 0.031 0.023
DeepMatchVO [30] 0.013 0.013 0.024 0.046 0.020 0.017 0.022 0.037 0.012
MonoDepth2 [14] 0.021 0.010 0.015 0.014 0.008 0.017 0.004 0.026 0.024
Ours 0.005 0.003 0.003 0.006 0.005 0.005 0.007 0.021 0.003
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in Table 11. Note that the depth network is fixed during the second stage of
training, so for the depth evaluation, we only train our model for the first stage
on the Eigen split of the KITTI raw dataset. As we can see in Table 10,
although CC [27] and DeepMatchVO [30] achieve good results on the
snippet-level, their results on the video-level are no longer the state-of-the-art.
This indicates that evaluating camera pose estimation performance on the
snippet-level could be inaccurate, and thus we need to evaluate the whole
trajectory to reflect the holistic performance. In Table 11, we also observe that
our method slightly outperforms the current self-supervised state-of-the-art
MonoDepth2 [14], which indicates that a better pose estimation module could
lead to a better depth estimation performance.

Table 10: 5-frame snippet-level results on KITTI Odometry datest [12].

Seq. 09 Seq. 10

ORB-SLAM (full) 0.014±0.008 0.012±0.011

SfMLearner [53] 0.021±0.017 0.020±0.015
vid2depth [23] 0.013±0.010 0.012±0.011
GeoNet [50] 0.012±0.007 0.012±0.009
DF-Net [56] 0.017±0.007 0.015±0.009
CC [27] 0.012±0.007 0.012±0.008
DeepMatchVO [30] 0.009±0.005 0.008±0.007
MonoDepth2 [14] 0.017±0.008 0.015±0.010
Ours 0.015±0.006 0.015±0.009

Table 11: Single-view depth estimation results on Eigen test split of KITTI raw
dataset [11].

Error metric ↓ Accuracy metric ↑
Method Abs Rel Sq Rel RMSE log RMSE δ < 1.25 δ < 1.252 δ < 1.253

SfMLearner [53] 0.208 1.768 6.856 0.283 0.678 0.885 0.957
vid2depth [23] 0.163 1.240 6.220 0.250 0.762 0.916 0.968
GeoNet [50] 0.155 1.296 5.857 0.233 0.793 0.931 0.973
DF-Net [56] 0.150 1.124 5.507 0.223 0.806 0.933 0.973
CC [27] 0.140 1.070 5.326 0.217 0.826 0.941 0.975
DeepMatchVO [30] 0.156 1.309 5.73 0.236 0.797 0.929 0.969
MonoDepth2 [14] 0.115 0.903 4.863 0.193 0.877 0.959 0.981
SC-SfMLearner [1] 0.137 1.089 5.439 0.217 0.830 0.942 0.975
Ours 0.115 0.871 4.778 0.191 0.874 0.961 0.982
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E Additional KITTI Sequences

As mentioned in the main manuscript, we selected 18 sequences from KITTI raw
data to further evaluate the methods, which have no overlaps with either KITTI
Odometry split or Eigen split. We list the sequence names in Table 12.

Table 12: Names of 18 additional KITTI sequences.

Sequence names

2011 09 26 drive 0036
2011 09 26 drive 0086
2011 09 26 drive 0101
2011 09 26 drive 0117
2011 09 29 drive 0071
2011 10 03 drive 0047
2011 09 26 drive 0059
2011 09 26 drive 0027
2011 09 26 drive 0009
2011 09 26 drive 0013
2011 09 26 drive 0029
2011 09 26 drive 0064
2011 09 26 drive 0084
2011 09 26 drive 0096
2011 09 26 drive 0106
2011 09 26 drive 0056
2011 09 26 drive 0023
2011 09 26 drive 0093
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(a) Seq. 11 (b) Seq. 12

(a) Seq. 14 (b) Seq. 15

(a) Seq. 17 (b) Seq. 20

(b) Seq. 21

Fig. 8: Visual comparison on the KITTI Odometry test set. We show the
trajectories of ORB-SLAM2-S, CC [27], MonoDepth2 [14] and our method. Our method
aligns best with the reference ORB-SLAM2-S trajectories.
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(a) Seq. 00 (b) Seq. 01
(b) Seq. 02

(a) Seq. 03 (b) Seq. 04
(b) Seq. 05

(a) Seq. 06 (b) Seq. 07
(b) Seq. 08

Fig. 9: Visual comparison on the KITTI Odometry training set. We show the
trajectories of ORB-SLAM2-M, CC [27], MonoDepth2 [14] and our method.


