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Abstract

Motivated by the desire to bridge the utility gap between local and trusted curator models of
differential privacy for practical applications, we initiate the theoretical study of a hybrid model
introduced by “Blender” [Avent et al., USENIX Security ’17], in which differentially private protocols
of n agents that work in the local-model are assisted by a differentially private curator that has
access to the data of m additional users. We focus on the regime where m � n and study the
new capabilities of this (m, n)-hybrid model. We show that, despite the fact that the hybrid model
adds no significant new capabilities for the basic task of simple hypothesis-testing, there are many
other tasks (under a wide range of parameters) that can be solved in the hybrid model yet cannot
be solved either by the curator or by the local-users separately. Moreover, we exhibit additional
tasks where at least one round of interaction between the curator and the local-users is necessary –
namely, no hybrid model protocol without such interaction can solve these tasks. Taken together,
our results show that the combination of the local model with a small curator can become part of a
promising toolkit for designing and implementing differential privacy.
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1 Introduction

Data has become one of the main drivers of innovation in applications as varied as technology,

medicine [33], and city planning [34, 52]. However, the collection and storage of personal

data in the service of innovation by companies, researchers, and governments poses significant

risks for privacy and personal freedom. Personal data collected by companies can be

breached [22]; subpoenaed by law enforcement in broad requests [44]; mis-used by companies’

employees [37, 21]; or used for purposes different from those announced at collection time [63].

These concerns alongside data-hungry company and government practices have propelled

privacy to the frontier of individuals’ concerns, societal and policy debates, and academic

research.

The local model of differential privacy [65, 43] has recently emerged as one of the promising

approaches for achieving the goals of enabling data-driven innovation while preserving a

rigorous notion of privacy for individuals that also addresses the above challenges. The

differential privacy aspect provides each participating individual (almost) with the same

protection she would have, had her information not been included [26], a guarantee that holds

even with respect to all powerful adversaries with access to multiple analyses and rich auxiliary

information. The local aspect of the model means that this guarantee will continue to hold even

if the curator’s data store is fully breached. From the utility perspective, the deployment of

local differential privacy protocols by Google, Apple, and Microsoft demonstrate that the local

differential privacy model is a viable approach in certain applications, without requiring trust

in the companies or incurring risks from hackers and intelligence agencies [28, 54, 35, 1, 23].

The adoption of the local model by major industry players has motivated a line of

research in the theory of local differential privacy (e.g., [9, 8, 17, 58, 40, 42, 41]). Alongside

algorithmic improvements, this body of work highlighted the wide theoretical and practical

gap between utility achievable in the more traditional trusted curator model of differential

privacy (where the curator ensures the privacy of its output but can perform computations on

raw individual data) and that achievable in the local differential privacy model. In particular,

the number of data points necessary to achieve a particular level of accuracy in the local

model is significantly larger than what is sufficient for the same accuracy in the curator model

(see, e.g., [11, 43, 55, 9]). This has negative consequences. First, data analysis with local

differential privacy becomes the privilege of the data-rich, handicapping smaller companies

and helping to cement monopolies. Second, in an effort to maintain accuracy the entities

deploying local differential privacy are tempted to use large privacy loss parameters [59],

ultimately putting into question the privacy guarantee [36].
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A concatenation of problems (direct-sum)

Our first example is composed of two independent learning tasks, each task can be privately

learned in one model, however, cannot be privately learned in the other model. Each data

point is parsed as two points (x, y) that are labeled (Park(x), Thrt(y)) where the former is a

parity function Park(x) = 〈k, x〉 and the latter is a threshold function Thrt(y) = 1{y≥t} (see

Section 2.4 for complete definitions). For a choice of parameters, known sample complexity

bounds imply that the parity learning part of the task can be performed by the curator but

cannot be privately computed in the local model with sub-exponential number of messages [43],

and, conversely, that the threshold learning part cannot be performed by the curator [12, 30]

but can be performed by the local model parties. It follows that for our choice of parameters

the combined task cannot be performed neither by the curator nor by the local model with

sub-exponential number of rounds (as the number of local agents is small, each agent in

the local model must send many messages), but is feasible in the hybrid model without

interaction (see the full version of this paper for a detailed analysis [10]).

Select-then-estimate

In our second example, each input point x is sampled i.i.d. from an unknown distribution

over {−1, 1}d
. Letting µ = E [x], the goal is to output a pair (i, µ̂i) where i approximately

maximizes µi (i.e., µi ≥ maxj µj − α) and µ̂i approximates µi (i.e., |µ̂i − µi| ≤ α′), where

α′ < α. That is, once we found a good coordinate i, we want to approximate its quality

with smaller error. A number of sample complexity bounds apply here (in particular, [60];

see also the full version of this paper [10]), yielding a wide range of parameters where the

task cannot be performed by the curator alone, nor by the local model parties alone. The

hybrid model, however, allows for a solution where the curator first identifies i such that

µi ≥ maxj µj −α and the estimation of µi within accuracy α′ is then performed by the local

model parties (see the full version of this paper for a detailed analysis [10]).

The select-then-estimate problem is a sub-component of many statistical and data-

mining applications [4, 57, 2]. It is also of core interest in genome-wide association studies

(GWAS), where the inputs are genomes of patients affected by a particular disease and

the goal is to (approximately) identify disease-related genome locations and estimate their

significance [3, 66, 16]. Solving the problem while ensuring privacy is particularly challenging

when the feature dimension is large compared to the number of available samples, which

is the case for GWAS [14, 3, 39, 56]. As genomic data is particularly sensitive, the hybrid

model of differential privacy appears appropriate for it from the privacy perspective – the

majority of the data would be analyzed with the guarantee of local differential privacy, and

only a small number of data points would be entrusted to a curator, whose analysis’s output

should also be differentially private [64]. As our example suggests, the hybrid model may be

useful also from the utility perspective.

We next present and study tasks that require protocols with different interaction patterns

involving both the curator and the local agents; that is, the referee needs to relay messages

from the curator to the local model agents in one problem or vice versa in a second problem.

Learning parity XOR threshold

This task, which is a twist on the above concatenation of problems, combines two independent

learning tasks. Rather than merely concatenating, in the learning parity XOR threshold

problem points are labeled by Park(x)⊕Thrt(y). A simple argument shows that (for specifically
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chosen parameters) the task cannot be performed by the curator alone or by the local model

agents with sub-exponential number of rounds. The task is, however, feasible in the hybrid

model without interaction. Observe that the local model agents can complete the task once

the parity part is done, and that Thrt(y) = 0 for the lower half of the points y or Thrt(y) = 1

for the upper half of the points y (or both). These observations suggest a protocol where

the curator first performs two parity learning tasks (splitting points according to y values),

and the task is then completed by the local model agents. This requires communication (as

the referee needs to relay a message from the curator to the local model agents), and it may

seem that this interaction is necessary for the task. However, in Section 3 we show that this

is not the case, by demonstrating a non-interactive protocol where all parties send a message

to the referee at the same round.

1-out-of-2d-parity

Our next task can be solved in the hybrid model (but neither by a small curator model nor

in the local model with sub-exponential number of rounds). This task requires interaction,

first with the local model agents and then with the curator. The task consists of a multitude

of parity problems, only one of which – determined by the input – needs to be solved. The

curator is capable of solving the parity task privately, however, the curator’s limited number

of samples does not allow solving all parity problems privately, nor does it allow distinguishing

which problem to solve. The local model agents cannot solve parity (with sub-exponential

number of rounds) [43] but can recover which problem needs to be solved (via a heavy hitters

computation [17]). Thus, the referee needs to first interact with the local agents and then

the curator. See Section 4.

Parity-chooses-secret

The third task in this part can be solved in the hybrid model (but neither with a small

curator, nor in the local model with sub-exponential number of rounds). The task requires

interaction in the reverse order from the previous task: first with the curator, then with the

local model agents. The input to this task contains shares of a large collection of secrets and

the goal is to recover one of these secrets. The secret that should be recovered is determined

by the input as the solution to a parity problem. The curator can solve the parity problem

but does not have enough information to recover any of the secrets. The local model agents

receive enough information to recover all secrets, but doing so would breach privacy (as

implied by [46]). They cannot solve the parity problem with sub-exponential number of

rounds. In the hybrid model protocol, the curator first solves the parity problem privately,

and relates the identity of the secret to be recovered through the referee to the local model

agents who then can send enough information to recover the required secret. See Section 5.

The latter two tasks highlight information and private-computation gaps between the

curator and the local model agents. The local model agents receive enough information to

solve the task, but lack the ability to privately solve an essential sub-task (when they are not

allowed to use exponentially many rounds). The curator does not receive enough information

to solve the task (even non-privately), but can solve the hard sub-task.

When the hybrid model does not help much

Although most of the results in this work are on the positive side, demonstrating that cleverly

utilizing a curator in synergy with local agents can allow for new capabilities, we also show

that for one of the most basic tasks – namely, basic hypothesis testing – the hybrid model has

ITC 2020
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no significant advantage over what can be done separately in either the local model with m

agents or in the curator model with database of size n. We show that if for two distributions

D0 and D1 there is a private protocol in the hybrid model that given i.i.d. samples from Dj

correctly identifies j, then there is a private protocol with the same sample size either in the

local model or in the curator model that correctly identifies j (with some loss in the success

probability). We then consider two distributions D0 and D1 over the the domain {0, 1},
where in D0 the probability of 1 is strictly less than 1/2 and in D1 the probability of 1 is

strictly greater than 1/2 and identify values of m and n such that in the hybrid model, where

the curator has m samples and there are n agents (each holding one sample), no protocol

exists that can differentiate whether the m + n inputs were sampled i.i.d. from D0 or from

D1. Since computing the sum of i.i.d. sampled bits from D0 or D1 can distinguish between

these distributions, the above results imply that for computing the sum, the hybrid model is

no better than each model separately. See Section 6.

A new lower bound for selection in the local model

As mentioned above, our analysis for the select-then-estimate task relies on lower bounds

on the sample complexity of selection in the local model. In the selection problem, there is

some distribution over vectors in {−1, 1}d
and each agents gets an i.i.d. sample from this

distribution; the goal is to select a coordinate such that the expected value of this coordinate

is as large as possible. Ullman [60] gives a (tight) lower bound of Ω( d log d
α2ε2 ) samples for the

non-interactive case. In the full version of this paper [10], we show that for interactive local

model protocols, the number of messages in such protocol is Ω(d1/3). For example, if the

curator interacts with the local model parties so that each party sends t messages, then the

number of parties must be at least Ω(d1/3/t). The proof is by a generic reduction from any

private PAC learning task to selection, which preserves sample complexity. The bound is

obtained by applying the reduction from privately learning parity and applying bounds on

the sample complexity of privately learning parity from [43].

1.2 Discussion and future work

Our results show that the combination of the local model with a small curator can become

part of a promising toolkit for designing and implementing differential privacy. More work is

needed to develop the theory of this model (and possibly introduce variants), and, in particular,

characterize which tasks can benefit from it. From an algorithms design perspective, now

that we know that the hybrid model can lead to significant improvements over both the

curator and local models, an exciting open question is understanding what other non-trivial

algorithms can be designed that take advantage of the synergy.

Selection bias

In this work we assume that the inputs for the curator and for the local model agents come

from the same distribution. However, the recruitment of individuals for participating via a

curator can create unintended differences between the input distributions seen by the curator

and the entire population, and hence lead to biases, an issue which is outside the scope of

the current work. Selection bias remains an important issue that needs to be addressed.
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Approximate differential privacy

Our separations between the hybrid model and the curator and local models hold for

pure differential privacy (i.e., ε-differential privacy). Specifically, we use lower bounds for ε-

differential private learning of the threshold functions in the curator model [12, 30]; these lower

bounds do not hold for (ε, δ)-differential private learning of the threshold functions [13, 18].

We also use lower bounds for ε-differential private learning of parity in the local model [43];

it is open whether these lower bounds hold for fully interactive (ε, δ)-differential private

learning protocols of parity. Possible separations for (ε, δ)-differential privacy are left for

future research.

2 Preliminaries

2.1 Protocols for differentially private computations

Let X be a data domain. We consider a model where the inputs and the computation are

distributed among parties P1, . . . , Pn. Each party is an interactive randomized functionality:

it can receive messages from the other parties, perform a randomized computation, and send

messages to the other parties. At the beginning of a computation, each party Pi receives

its input xi = (xi,1, . . . , xi,`i
) ∈ X`i . I.e., the input of party Pi consists of a sequence of

`i ≥ 0 entries taken from the data domain X, and the entire joint input to the protocol

is (x1,1 . . . , x1,`1
, x2,1, . . . , x2,`2

, . . . , xn,1, . . . , xn,`n
). The parties engage in a randomized

interactive protocol Π = (ΠP1
, . . . , ΠPn), where a message sent by a party Pi in some round is

computed according to ΠPi
and depends on its input xi, its random coins, and the sequence

of messages it has seen in previous rounds. When a party Pi halts, it writes its output to a

local output register oPi
. The number of messages in a protocol is the number of rounds

multiplied by the number of parties.

I Definition 2.1. We say that x = (x1, . . . , x`) ∈ X` and x
′ = (x′1, . . . , x′`) ∈ X` are

neighboring if they differ on at most one entry, i.e., there exists i∗ ∈ [`] such that xi = x′i
for i ∈ [`] \ {i∗}.

I Definition 2.2. We say that two probability distributions D0,D1 ∈ ∆(Ω) are (ε, δ)-close

and write D0 ≈ε,δ D1 if Prt∼Db
[t ∈ T ] ≤ eε · Prt∼D1−b

[t ∈ T ] + δ for all measurable events

T ⊂ Ω and b ∈ {0, 1}.

We are now ready to define what it means for a protocol to be differentially private in a

fully malicious setting, i.e., in a setting where an arbitrary adversary controls the behavior

of all but one party. Intuitively, a protocol is differentially private in a fully malicious setting

if there do not exist a party Pi and an adversary A controlling P1, . . . , Pi−1, Pi+1, . . . , Pn

such that A can “trick” Pi to act non-privately. More formally, we model the adversary

as an interactive randomized functionality. For a party Pi, define APi to be a randomized

functionality as follows.

1. An input of APi
consists of a sequence of `i entries taken from the data domain, x ∈ X`i .

2. APi simulates an interaction between party Pi with x as its input, and A. The simulated

Pi interacts with A following the instructions of its part in the protocol, ΠPi
. The

adversary A interacts with Pi sending messages for parties P1, . . . , Pi−1, Pi+1, . . . , Pn.

However, A does not necessarily adhere to the protocol Π.

3. The simulation continues until A halts with an output oA, at which time APi halts and

outputs oA.

ITC 2020
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I Definition 2.3 (Multiparty differential privacy [26, 43, 11, 61]). A protocol Π is (ε, δ)-

differentially private if for all i ∈ [n], for all interactive randomized functionalities A, and

all neighboring x, x
′ ∈ X`i , APi

(x) ≈ε,δ APi
(x′). When `1 = `2 = · · · = `n = 1 we say that

the protocol operates in the local model, and when n = 1 we say that the protocol (or the

algorithm) operates in the curator model. We say that a protocol Π is ε-differentially private

if it is (ε, 0)-differentially private.

Comparison to previous definitions

In contrast to [11, 61], our definition applies also to a malicious adversary that can send

arbitrary messages. The definition of [43] also applies to a malicious adversary, however

it requires that each answer of an agent preserves ε-differential privacy (i.e., if there are d

rounds, the protocol is dε-differentially private). In contrast, the definitions of [11, 61] and

our definition measures the privacy of the entire transcript of an agent.

Note that (i) Restricting the outcome oA to binary results in a definition that is equivalent

to Definition 2.3. (ii) It is possible to consider a relaxed version of Definition 2.3 where the

adversary A is “semi-honest” by requiring A to follow the protocol Π. (iii) Definition 2.3

differs from definitions of security in the setting of secure multiparty computation as the

latter also state correctness requirements with respect to the outcome of the protocol. The

difference between the setting is that secure multiparty computation implements a specified

functionality3 whereas differential privacy limits the functionality to hide information specific

to individuals, but does not specify it.

2.2 The hybrid model

A computation in the (m, n)-hybrid model is defined as the execution of a randomized

interactive protocol Π = (ΠC , ΠP1
, . . . , ΠPn , ΠR) between three types of parties: a (single)

curator C, n “local model” agents P1, . . . , Pn, and a referee R. The referee has no input, the

curator C receives m input points x = (x1, . . . , xm) ∈ Xm and the n “local model” agents

P1, . . . , Pn each receive a single input point yi ∈ X. We use the notation D to denote the

joint input to the computation, i.e., D = (x1, . . . , xm, y1, . . . , yn).

The communication in a hybrid model protocol is restricted to messages exchanged

between the referee R and the other parties C, P1, . . . , Pn (i.e., parties C, P1, . . . , Pn cannot

directly communicate among themselves). Parties C, P1, . . . , Pn have no output, whereas

when the execution halts the referee R writes to a special output register o. See Figure 1.

We require the protocol Π = (ΠC , ΠP1
, . . . , ΠPn

, ΠR) to satisfy differential privacy as in

Definition 2.3.

The hybrid model is a natural extension of well-studied models in differential privacy.

Setting n = 0 we get the trusted curator model (as C can perform any differentially private

computation), and setting m = 0 we get the local model. In this work, we are interested in

the case 0 < m � n, because in this regime, the hybrid model is closest in nature to the

local model. Furthermore, in many applications, once m is comparable to n it is possible to

drop parties P1, . . . , Pn from the protocol without a significant loss in utility.

Comparing with Blender [2], where the curator C and the referee R are the same party,

we observe that the models are equivalent in their computation power – every differentially

3 Furthermore, secure multiparty computation is silent with respect to the chosen functionality, regardless
whether it is “privacy preserving” or “secure”.
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private computation in one model is possible in the other (however, the models may differ in

the number of interaction rounds needed). Nevertheless, the separation between the curator

and the referee has merits as we now discuss.

On the separation between the curator and referee

From a theory point of view, it is useful to separate these two parties as this allows to

examine effects related to the order of interaction between the parties (e.g., whether the

referee communicates first with the curator C or with the local model parties P1, . . . , Pn).

Moreover, by separating the curator and referee, the hybrid model encapsulates a richer

class of trust models than [2], and, in particular, includes a trust model where data sent to the

curator is not revealed to the referee. In an implementation this may correspond to a curator

instantiated by a publicly trusted party, or by using technologies such as secure multiparty

computation, or secure cryptographic hardware which protects data and computation from

external processes [49].

The curator-referee separation also makes sense from a practical point of view within

a company. It is reasonable that only a small fraction of a company’s employees, with

appropriate clearance and training, should be able to access the raw data of those who

contribute their data to the trusted curator model, whereas the majority of employees should

only see the privacy-preserving version of it [53].

I Remark 2.4 (A note on public randomness). Some of our protocols assume the existence

of a shared random string. In an implementation, shared randomness can be either set up

offline or be chosen and broadcast by the referee. We stress that the privacy of our protocols

does not depend on the shared random string actually being random. Furthermore, all our

lower bounds hold even when the local agents hold a shared (public) random string.

2.3 Parity and threshold functions

A concept c : X → {0, 1} is a predicate that labels examples taken from the domain X by

either 0 or 1. A concept class C over X is a set of concepts (predicates) mapping X to {0, 1}.
Let b, c ∈ N be parameters. The following two concept classes will appear throughout the

paper:

Thresholdb =
{

Thrt : t ∈ {0, 1}b
}

where Thrt : {0, 1}b → {0, 1} is defined as Thrt(x) =

1{x≥t}, where we treat strings from {0, 1}b as integers in
{

0, . . . , 2b − 1
}

.

Parityc = {Park : k ∈ {0, 1}c} where Park : {0, 1}c → {0, 1} is defined as Park(x) =

〈k, x〉 = ⊕c
j=1kj · xj .

2.4 Preliminaries from learning theory and private learning

We recall the probably approximately correct (PAC) model of [62]. Given a collection of

labeled examples, the goal of a learning algorithm (or protocol) is to generalize the given data

into a concept (called a “hypothesis”) that accurately predicts the labels of fresh examples

from the underlying distribution. (See [62], or the full version of this paper [10], for formal

definitions.) When the learner is a protocol, its sample complexity is the total number of

labeled examples it operates on. That is, if there are n parties where party Pi gets as input

`i labeled examples, then the sample complexity of the protocol is `1 + · · ·+ `n.

I Definition 2.5. The generalization error of a hypothesis h : X → {0, 1} w.r.t. a target

concept c and a distribution D is defined as errorD(c, h) = Prx∼D[h(x) 6= c(x)]. The empirical

error of h w.r.t. a labeled sample D = (xi, yi)
m
i=1 is errorD(h) = 1

m |{i : h(xi) 6= yi}|. The

ITC 2020
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empirical error of h w.r.t. an unlabeled sample D = (xi)
m
i=1 and a concept c is errorD(h, c) =

1
m |{i : h(xi) 6= c(xi)}|. Let c : X → {0, 1} be a concept and let D ∈ (X ×{0, 1})n be a labeled

database. We say that D is consistent with c if for every (x, y) ∈ D it holds that y = c(x).

I Definition 2.6. Let C be a concept class over a domain X, and let Π be a protocol in

which the input of every party is a collection of (1 or more) labeled examples from X. The

protocol Π is called an (α, β)-empirical learner for C if for every concept c ∈ C and for every

joint input to the protocol D that is consistent with c, with probability at least 1 − β, the

outcome of the protocol is a hypothesis h : X → {0, 1} satisfying errorD(h) ≤ α.

We will be interested in PAC-learning protocols that are also differentially private.

I Definition 2.7 ([43]). A private learner is a PAC learner and that satisfies Definition 2.3.

Similarly, a private empirical learner is a protocol Π that satisfies both Definitions 2.3 and 2.6.

Dwork et al. [25] and Bassily et al. [7] showed that if a hypothesis h is the result of a

differentially private computation on a random sample, then the empirical error of h and

its generalization error are guaranteed to be close. We will use the following multiplicative

variant of their result [51], whose proof is a variant of the original proof of [7].

I Theorem 2.8 ([25, 7, 51, 29]). Let A : Xn → 2X be an (ε, δ)-differentially private algorithm

that operates on a database of size n and outputs a predicate h : X → {0, 1}. Let D be a

distribution over X, let S = (x1, . . . , xn) be a database containing n i.i.d. elements from D,

and let h← A(S). Then,

Pr
S∼Dn

h←A(S)

[

e−2ε · E
x∼D

[h(x)]− 1

n

n
∑

i=1

h(xi) >
10

εn
log

(

1

εδn

)

]

< O (εδn) .

We next state known impossibility results for privately learning threshold and parity.

I Fact 2.9 ([12, 30]). Let b ∈ N. Any ε-differentially private (α, β)-PAC learner for

Thresholdb requires Ω( b
εα ) many samples.

I Fact 2.10 ([43]). Let c ∈ N. In any ε-differentially private (α, β)-PAC learning protocol

for Parityc in the local model the number of messages is Ω(2c/3). This holds even when the

underlying distribution is restricted to be the uniform distribution.

Fact 2.10 implies, for example, that when there are poly(c) agents the number of rounds

is 2Ω(c). It is open whether there exists an ε-private protocol (or an (ε, δ)-private protocol)

for learning Parityc in the local model with poly(c) agents and any number of rounds.

I Remark 2.11. The proof of Fact 2.10 in [43] is stated in a weaker model, where in each

round the referee sends an εi-differentially private local randomizer to an agent and the agent

sends the output of this randomizer on its input to the referee, such that ε1 + · · ·+ ε` ≤ ε.

However, in their proof they only use the fact that εi ≤ ε in every round, thus, their lower

bound proof also applies to our model.

Our protocols use the private learner of [43] for parity functions, a protocol of [8] for

answering all threshold queries, a protocol of [17] for heavy hitters, and a protocol of [31] for

approximating a quantile. These are specified in the following theorems.

I Theorem 2.12 ([8]). Let α, β, ε ≤ 1, and let b ∈ N. There exists a non-interactive

ε-differentially private protocol in the local model with n = O
(

b3

α2ε2 · log
(

b
αβε

))

agents

in which the input of every agent is a single element from {0, 1}b and the outcome is a

function q : {0, 1}b → [0, 1] such that for every joint input to the protocol D ∈ ({0, 1}b)n,

with probability at least 1 − β, the outcome q is such that ∀w ∈ {0, 1}b we have q(w) ∈
|{x ∈ D : x ≤ w}| /|D| ± α.
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Theorem 2.12 does not appear explicitly in [8], but it is implicit in their analysis.

I Theorem 2.13 ([43]). Let α, β, ε ≤ 1, and let c ∈ N. There exists an ε-differentially

private algorithm in the curator model that (α, β)-PAC learns and (α, β)-empirically learns

Parityc with sample complexity O
(

c
αε log( 1

β )
)

.

I Theorem 2.14 (Heavy hitters protocol [17]). There exist constants λ1, λ2 > 0 such that the

following holds. Let β, ε ≤ 1 and X be some finite domain. There exists a non-interactive

ε-differentially private protocol in the local model with n agents in which the input of each

agent is a single element from X and the outcome is a list Est of elements from X such that

for every joint input to the protocol D ∈ Xn, with probability at least 1− β, every x that is

an input of at least λ1

ε

√

n log
(

|X|
β

)

agents appears in Est, and vice versa, every element x

in Est is an input of at least λ2

ε

√

n log
(

|X|
β

)

agents.

3 Learning parity XOR threshold

In this section we present a learning task that cannot be solved privately in the curator

model or in the local model, but can be solved in the hybrid model (without interaction).

The task we consider in this section – parity XOR threshold – is similar to the simpler task

of the direct product of parity and threshold discussed in Section 1.1. In this section we

design a non-interactive protocol in the hybrid model for the parity XOR threshold task,

which is more involved than the trivial protocol for the parity and threshold task. This

demonstrates that non-interactive protocols in the hybrid model may have more power than

one might initially suspect.

Fix b, c > 0, and let k ∈ {0, 1}c and t ∈ {0, 1}b be parameters. Define the function

fk,t
b,c : {0, 1}c × {0, 1}b → {0, 1} as follows: fk,t

b,c (x, y) = Park(x)⊕ Thrt(y) = 〈k, x〉 ⊕ 1{y≥t}
(

recall that we treat strings in {0, 1}b
as integers in

{

0, 1, . . . , 2b − 1
})

. Define the concept

class ParityThresh as follows: ParityThreshb,c =
{

fk,t
b,c : k ∈ {0, 1}c and t ∈ {0, 1}b

}

.

We show that every differentially private algorithm (even in the curator model) for

learning ParityThresh must have sample complexity Ω(b). See the full version of this paper

for details [10].

I Lemma 3.1. Every ε-differentially private algorithm for ( 1
4 , 1

4 )-PAC learning ParityThreshb,c

must have sample complexity Ω(b).

We next show that no protocol in the local model can learn ParityThresh, unless the

number of exchanged messages is very large.

I Lemma 3.2. In every ε-differentially private protocol in the local model for ( 1
4 , 1

4 )-PAC

learning ParityThreshb,c the number of messages is Ω(2c/3).

The proof of Lemma 3.2 is analogous to the proof of Lemma 3.1 (using Fact 2.10 instead

of Fact 2.9).

So, privately learning ParityThreshb,c in the curator model requires Ω(b) labeled examples,

and privately learning it in the local model requires Ω(2c/3) messages. We now show that

ParityThreshb,c can be learned privately by a non-interactive protocol in the hybrid model

with roughly O(c) examples for the curator and with roughly O(b3) local agents. We will

focus on the case where c� b. Recall that a function fk,t
b,c (x, y) ∈ ParityThreshb,c is defined
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as fk,t
b,c (x, y) = Park(x)⊕Thrt(y). The difficulty in learning ParityThresh in the hybrid model

is that we could only learn the threshold part of the target function using the local agents

(since if c� b then the curator does not have enough data to learn it), but the threshold

label is “hidden” from the local agents (because it is “masked” by the parity bit that the

local agents cannot learn). This false intuition might lead to the design of an interactive

protocol, in which the referee first obtains some information from the curator and then passes

this information to the local agents, which would allow them to learn the threshold part

of the target function. We now show that such an interaction is not needed, and design a

non-interactive protocol in which the local agents and the curator communicate with the

referee only once, simultaneously.

I Lemma 3.3. There exists a non-interactive ε-differentially private protocol in the (m, n)-

hybrid model for (α, β)-PAC learning ParityThreshb,c where m = O
(

c
α4ε log( 1

αβ )
)

and n =

O
(

b3

α4ε2 · log
(

b
αβε

))

.

Proof. We begin by describing a non-interactive protocol Π. The (joint) input to the protocol

is a database D where every point in D is of the form (xi, yi, σi) ∈ {0, 1}c × {0, 1}b × {0, 1}.
At a high level, the protocol works by using the local agents to obtain an approximation

to the CDF of the (marginal) distribution on the yi’s (this approximation is given to the

referee). In addition, the trusted curator solves 1/α parity leaning problems. In more detail,

the trusted curator sorts its database according to the yi’s, divides its database into 1/α

chunks, and then applies a private learner for parity functions on each of the chunks. The

trusted curator sends the referee the resulting 1/α parity functions. The referee then defines

the final hypothesis h that, given a point (x, y), first uses the approximation to the CDF

(obtained from the local agents) to match this input point to one of the chunks, and then

uses the parity function obtained for that chunk from the trusted curator to predict the label

of the point.

The key observation here is that the threshold part of the target function is constant on

all but at most one of the chunks defined by the trusted curator. As we show, applying a

learner for parity on such a “consistent chunk” results in a good predictor for the labels of

elements of that chunk. Hence, provided that the approximation for the CDF of the yi’s

is accurate enough, this results in an accurate learner for ParityThresh. We now formally

present the protocol Π.

Local agents on a (distributed) input D = (xi, yi, σi)
n
i=1 ∈

(

{0, 1}c × {0, 1}b × {0, 1}
)n

:

Run the protocol from Theorem 2.12 on the (distributed) database D̂ = (y1, y2, . . . , yn)

with privacy parameter ε and utility parameters α2, β; thereafter, the referee obtains a

function q : {0, 1}b → [0, 1] that approximates all threshold queries w.r.t. D̂.

The curator on input S = (xi, yi, σi)
m
i=1 ∈

(

{0, 1}c × {0, 1}b × {0, 1}
)m

:

Sort S according to the yi’s in non-decreasing order.

Divide S into blocks of size αm: S1, S2, . . . , S1/α. For ` ∈ [1/α] we denote S` =

(x`,i, y`,i, σ`,i)
αm
i=1.

For every ` ∈ [1/α], apply an αε-differentially private (α2, αβ)-PAC learner for Parity

on the database Ŝ` = (x`,i ◦ 1, σ`,i)
αm
i=1 ∈

(

{0, 1}c+1 × {0, 1}
)αm

to obtain a vector

k` ∈ {0, 1}c+1 (using Theorem 2.13), and end k1, . . . , k1/α to the referee.

The referee:

Obtain the function q and the vectors k1, . . . , k1/α.

Define a hypothesis h : {0, 1}c × {0, 1}b → {0, 1} as h(x, y) = 〈x ◦ 1, kI(y)〉, where

I(y) =
⌈

q(y)
α

⌉

and output h.
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The privacy properties of the protocol Π are straightforward, as both the local agents and

the curator apply ε-differentially private computations: the local agents apply the algorithm

from Theorem 2.12, and the curator applies an αε-differentially private computation on each

of the blocks S1, . . . , S1/α (note that changing one element of S can change at most one

element of each of these blocks).

We now proceed with the utility analysis. Fix a target function fk∗,t∗

b,c ∈ ParityThreshb,c

and fix a target distribution D on {0, 1}c × {0, 1}b. We use Dc and Db to denote the

marginal distributions on {0, 1}c and {0, 1}b, respectively. We will make the simplifying

assumption that Db does not give too much weight on any single point in {0, 1}b, specifically,

Prw∼Db
[w = y] ≤ β/m2 for every y ∈ {0, 1}b. This assumption can be enforced by padding

every example with O(log(m/β)) uniformly random bits.

Let S and D (the inputs to the curator and the local agents) be sampled i.i.d. from D
and labeled by fk∗,t∗

b,c . We next show that w.h.p. the resulting hypothesis h has low empirical

error on S. By standard generalization arguments, such an h also has low generalization

error.

First observe that there is at most one index `∗ ∈ [1/α] such that Thrt∗(y`∗,1) 6=
Thrt∗(y`∗,αm). In all other blocks S` we have that Thrt∗(·) is constant on all the y`,i’s of that

block. We will show that w.h.p. the hypothesis h has small empirical error on every such

block. Fix ` 6= `∗, and let ν ∈ {0, 1} be the value of Thrt∗(·) on the y`,i’s of the `th block

(that is, for every i ∈ [αm] we have Thrt∗(y`,i) = ν). Recall that since the elements of S are

labeled by fk∗,t∗

b,c , for every i ∈ [αm] we have that

σ`,i = fk∗,t∗

b,c (x`,i, y`,i) = 〈k∗, x`,i〉 ⊕ Thrt∗(y`,i) = 〈k∗, x`,i〉 ⊕ ν = 〈k∗ ◦ ν, x`,i ◦ 1〉.

Hence, the elements of Ŝ` are all labeled by the parity function defined by k∗ ◦ ν. Therefore,

as k` is the outcome of the learner from Theorem 2.13 on Ŝ`, for m ≥ O
(

c
α2ε log( 1

αβ )
)

, with

probability at least 1− αβ we have that errorŜ`
(Park`

) ≤ α2, that is, 〈k`, x ◦ 1〉 is a good

predictor for the label of the elements in block S`.

Recall that the hypothesis h matches inputs (x, y) to the vectors k1, . . . , k1/α using the

function q obtained from the local agents, that is, on input (x, y), the hypothesis uses kdq(y)/αe.

Therefore, to complete the proof we need to show that most of the elements from block S` are

matched by the hypothesis h to the vector k`. To that end, let #S(w) = |{(x, y, σ) ∈ S : y ≤
w}|, and consider the following event E1 : ∀w ∈ {0, 1}b it holds that

∣

∣q(w)− 1
m ·#S(w)

∣

∣ ≤
4α2.

We first conclude the proof assuming that Event E1 occurs. Fix ` 6= `∗, and recall that

the elements of S (and in particular the elements of S`) are sorted in a non-decreasing

order according to their yi’s. Now fix 8α2m ≤ i ≤ αm − 8α2m. By our simplifying

assumption (that the distribution Db does not put a lot of mass on any single point),

we may assume that all the yi’s in S are distinct, which happens with probability at

least 1 − β. In that case, we have that #S(y`,i) = max{0, ` − 1} · αm + i, and hence,

max{0, `− 1} ·α + 8α2 ≤ 1
m #S(y`,i) ≤ max{0, `− 1} ·α + α− 8α2. By Event E1 we get that

max{0, `− 1} · α + 4α2 ≤ q(y`,i) ≤ max{0, `− 1} · α + α− 4α2,

and so,
⌈

q(y`,i)
α

⌉

= `. That is, for all but at most 16α2m elements of the block S` we get

that h(x`,i, y`,i) = 〈x`,i ◦ 1, k`〉 = Park`(x`,i,y`,i). Recall that Park`
errs on at most α2m

elements of S`, and so the hypothesis h errs on at most 17α2m elements of the block S`.

That is, h errs on at most 17α2m elements of every block S` for ` 6= `∗, and might err on all

of S`∗ which is of size αm. So, h errs on at most 1
α · 17α2m + αm = 18αm elements of S.
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Standard generalization bounds now state that, except with probability at most β, we get

that errorD(h, fk∗,t∗

b,c ) ≤ O(α) (in particular, this follows from the generalization properties

of differential privacy; see Section 2.4 for more details). Overall, with probability at least

1−O(β) the resulting hypothesis has generalization error at most O(α).

It remains to show that Event E1 occurs with high probability. First, Theorem 2.12

ensures that for n ≥ O
(

b3

α4ε2 · log
(

b
αβε

))

with probability at least 1−β the function q is such

that ∀w ∈ {0, 1}b it holds that
∣

∣q(w)− 1
n #D̂(w)

∣

∣ ≤ α2, where #D̂(w) = |{y ∈ D̂ : y ≤ w}|.
Second, by standard generalization arguments, assuming that n and m are big enough,

we would also have that 1
n#D̂(w) and 1

m#S(w) are both within α2 from Pry∼Db
[y ≤ w].

Specifically, by the Dvoretzky-Kiefer-Wolfowitz inequality [24, 45], assuming that n and m

are at least Ω
(

1
α4 log( 1

β )
)

, this happens with probability at least 1− β. Assuming that this

is the case, by the triangle inequality we have that Event E1 holds. This shows that Event

E1 happens with probability at least 1− 3β, and completes the proof. J

We remark that it is possible to design a more efficient learner for ParityThresh (in terms

of sample complexity) by constructing a protocol in which there are multiple rounds of

communication between the referee and the local agents (but this communication is still

independent from the message that the curator sends to the referee). See the full version of

this paper for more details [10]. We summarize our possibility and impossibility results w.r.t.

learning ParityThresh in the next theorem (which follows from Lemma 3.1 and Lemma 3.2

and from Lemma 3.3).

I Theorem 3.4. Let c ∈ N and b = c2. Then there is a non-interactive 1
4 -differentially

private ( 1
4 , 1

4 )-PAC learner for ParityThreshb,c in the (m, n)-hybrid model with m = O(c)

samples for the curator and n = O(c6 log c) local agents. However, every such learner in the

local model with o(2(n/ log n)1/6

) local agents requires 2Ω((n/ log n)1/6) rounds, and every such

learner in the curator model requires Ω(m2) samples.

4 The 1-out-of-2d-parity task

In this section we describe a task that cannot be privately solved neither in the curator

model nor in the local model with sub-exponential number of rounds. In the hybrid model,

this task can only be solved with interaction, first with the local agents and then with the

curator. In this task there are many instances of the parity problem and the referee needs to

solve only one instance, which is determined by the inputs. The local agents can determine

this instance (using a heavy hitters protocol) and the curator can now solve this instance.

The curator cannot solve all instances since this will exceed its privacy budget, and by the

definition of the task the curator will not have enough information to determine the instance;

thus interaction with both the local agents and the curator is required.

I Definition 4.1 (The 1-out-of-2d-parity task). The inputs in the 1-out-of-2d-parity task are

generated as follows:

1. Input: 2d strings (rj)j∈{0,1}d , where rj ∈ {0, 1}c
for every j ∈ {0, 1}d

, and m + 1

elements s1, . . . , sm+1 ∈ {0, 1}d
.

2. Set s = s1 ⊕ · · · ⊕ sm+1.4

4 The strings s1, . . . , sm+1 are an m + 1-out-of-m + 1 secret sharing of s, that is, together they determine
s, but every subset of them gives no information on s.



A. Beimel, A. Korolova, K. Nissim, O. Sheffet, and U. Stemmer 14:15

3. Each sample x1, . . . , xm and y1, . . . , yn is generated independently as follows:

with probability half choose x ∈R {0, 1}c
with uniform distribution and output (x,

(〈x, rj〉)j∈{0,1}d) (that is, every point contains a string x of length c and 2d bits which

are the inner products of x and each of the rj’s).

with probability half choose t ∈R [m + 1] with uniform distribution and output (t, st)

(that is, every point contains a number t and the t-th string st).

The goal of the referee in the 1-out-of-2d-parity task is for every (rj)j∈{0,1}d and s1, . . . , sm+1

to recover rs with probability at least 1− β, where the probability is over the generation of

the inputs in Step 3 and the randomness of the parties in the protocol.

We design a protocol for this task and obtain the following lemma (see the full version of

this paper for details [10]).

I Lemma 4.2. Let β > 1/m and assume that m = Ω
(

c log(1/β)
ε

)

and n = Ω
(

m2

ε2 log( m2d

β )
)

.

The 1-out-of-2d-parity task can be solved in the (m, n)-hybrid model by an ε-differentially

private protocol with three rounds, where in the first round each local agent sends one message

to the referee (without seeing any other messages), in the second round the referee sends one

message to the curator, and in the third round the curator sends one message to the referee.

We next prove that, unless the database is big, the 1-out-of-2d-parity task requires

interaction. To prove this result, we first convert a protocol for the 1-out-of-2d-parity task

to a private algorithm in the trusted curator model that recovers all strings (rj)j∈{0,1}d .

We then prove, using a simple packing argument, that, unless the database is “big”, such

algorithm cannot exist. For our proof, we define the all-2d-parity task as the task in which

all inputs are of the form (x, (〈x, rj〉)j∈{0,1}d) and the goal of the referee is to reconstruct all

strings (rj)j∈{0,1}d .

B Claim 4.3. Let m < n. If there is an ε-differentially private protocol for the 1-out-of-2d-

parity problem in the (m, n)-hybrid model in which the curator and the referee can exchange

many messages and then the referee simultaneously sends one message to each local agent

and gets one answer from each agent, then there is an ε-differentially private algorithm in

the trusted curator model for the all-2d-parity problem for a database of size O(nd).

Proof. Let Π be an ε-differentially private protocol with the above interaction pattern for the

1-out-of-2d-parity task in the (m, n)-hybrid model in which the referee reconstructs rs with

probability at least 1− β. We construct, in three steps, an algorithm A for the all-2d-parity

task in the trusted curator.

First, we construct from Π a protocol Π′ in the (O(md), O(dn))-hybrid model that

reconstructs rs with error probability at most β/2d (e.g., execute Π with disjoint inputs O(d)

times and take the value rs that is returned in the majority of the executions).

Next, we construct from protocol Π′ a protocol Π′′ for the the all-2d-parity task in the

(O(md), O(nd))-hybrid model (with error probability ≤ β). In Π′′, the parties holding inputs

of the all-2d-parity problem simulate Π′ on inputs for the 1-out-of-2d-parity task as follows:

The curator on input (xi, (〈xi, rj〉)j∈{0,1}d)m
i=1:

Chooses random s1, . . . , sm+1 ∈R {0, 1}d
.

For each i ∈ [m], with probability 1/2 replaces its i-th input by (ti, sti
) for a uniformly

distributed ti ∈R [m + 1].

Exchanges messages with the referee as specified by Π′ on the new input. In addition

it sends to the referee s1, . . . , sm+1 and an index ` such that (`, s`) does not appear in

its new input.
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The referee after getting the message from the curator:

Chooses a set A ⊆ [n] with uniform distribution.

For every i /∈ A, sends its message in Π′ to the i-th agent and gets an answer Mi from

the agent.

For every i ∈ A, chooses a random qi ∈R [m + 1]. Let B = {i ∈ A : qi = `}.
For every i ∈ A \B, computes (without any interaction) its message in Π′ to agent Pi

and the answer Mi of agent Pi with input (qi, sqi
).

For every i ∈ B and s ∈ {0, 1}d
, computes (without any interaction) its message in Π′

to agent Pi and the answer Mi,s of agent Pi with input (`, s⊕⊕

k 6=` sk).

For every s ∈ {0, 1}d
, reconstructs rs from the messages of the curator in Π′, (Mi)i/∈B ,

and (Mi,s)i∈B .

As the curator holds m samples and there are m + 1 values s1, . . . , sm+1, there exists an

index ` such that (`, s`) does not appear in the new input of the curator. Thus, the referee

for every s ∈ {0, 1}d
can choose a value s′` such that it is consistent with the messages of the

curator in Π′ and s = s′` ⊕
⊕

k 6=` sk. Furthermore, each of x1, . . . , xm, y1, . . . , yn is replaced

with probability half with a value (t, st) for a uniformly distributed t, thus, these inputs are

distributed as required for the 1-out-of-2d-parity task. This implies that for every s ∈ {0, 1}d

the referee reconstructs rs from the messages of the curator in Π′, (Mi)i/∈B , and (Mi,s)i∈B

with probability at least 1− β/2d. By the union bound, the referee correctly reconstructs all

(rj)j∈{0,1}d with probability at least 1− β.

Finally, we construct the desired algorithm A from Π′′. The trusted curator simply

simulates the referee, the curator, and the agent in Π′′, that is, it takes its database with

O((m + n)d) samples and partitions it to (x1, . . . , xO(md)) (the input of the curator) and

y1, . . . , yO(nd), computes without any interaction a random transcript of Π′′ on these inputs,

and reconstructs the output (rj)j∈{0,1}d . Since the transcript preserves ε-differential privacy

and computing the output is post-processing, algorithm A is ε-differential private. C

B Claim 4.4. If there is exists an ε-differentially private algorithm in the trusted curator

model for the all-2d-parity task with strings of length c, then n = Ω
(

c2d+ln(1−β)
ε

)

.

Proof. The proof is by a simple packing argument. For every strings (rj)j∈{0,1}d , with

probability at least 1− β, the algorithm returns (rj)j∈{0,1}d when the samples are generated

with (rj)j∈{0,1}d . By the group privacy of ε-differential privacy, with probability at least

e−nε(1−β) the algorithm returns (rj)j∈{0,1}d when the samples are generated with (0c)j∈{0,1}d .

As there are 2c2d

options for (rj)j∈{0,1}d and the above events are disjoint, 2c2d

e−nε(1−β) ≤ 1,

i.e., n = Ω
(

c2d+ln(1−β)
ε

)

. C

I Lemma 4.5. Let m < n. If there is an ε-differentially private protocol for the 1-out-of-2d-

parity task in the (m, n)-hybrid model with β = 1/4 in which the curator and the referee can

exchange many messages and then the referee simultaneously sends one message to each local

agent and gets one answer from each agent, then n = Ω(c2d/dε).

Proof. By Claim 4.3, if there exists an ε-differentially protocol in the (m, n)-hybrid model for

the 1-out-of-2d-parity task, then there exists an ε-differentially private algorithm in trusted

curator model for the all-2d-parity task with database of size O(dn). Thus, by Claim 4.4

with β = 1/4, dn = Ω( c2d

ε ). J
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Lemma 4.5 is valid also if the local agents are allowed to hold a shared (public) random

string as this string can be sent by the referee to each agent as part of its message (without

adding extra rounds of communication). We summarize the possibility and impossibility

results for the 1-out-of-2d-parity task in the following theorem, where, for convenience, we

choose specific parameters that highlight these results.

I Theorem 4.6. Let ε = 1/4, β = 1/4. For every integer c, there are d = Θ(log c), m = Θ(c),

and n = Θ(c2 log c) such that

1. There exists an ε-differentially private protocol for the 1-out-of-2d-parity task with strings

of length c in the (m, n)-hybrid model where first each local agent sends one message to

the referee and then the referee exchanges one message with the curator.

2. There does not exist an ε-differentially private protocol for this task in the (m, n)-hybrid

model in which the referee first exchanges messages with the curator and then simultane-

ously exchanges one message with the local agents.

3. In any ε-differentially private protocol for this task in the local model with n agents the

number of rounds is 2Ω(c) = 2Ω(
√

n/ log n).

4. There is no algorithm in the trusted curator model that solves this task with m examples.

Proof. Item 1 follows directly from Lemma 4.2.

For Item 2, by Lemma 4.5, with ε = 1/4, β = 1/4, and d = 2 log c + log log c, it must hold

that n = Ω
(

c2d/(dε)
)

= Ω(c3), contradicting the choice of n = Θ(c2 log c).

For the impossibility result in Item 3, recall that by Fact 2.10 the number of messages

sent to the referee in an ε-differentially private learning protocol in the local model for parity

of strings of length c with respect to the uniform distribution is 2Ω(c). By simple simulation,

an ε-differentially private protocol in the local model for the 1-out-of-2d-parity task implies

an ε-differentially private protocol in the local model for learning parity with respect to the

uniform distribution (with the same number of messages). Specifically, since the number of

agents is n = O(c2 log c), the number of rounds is 2Ω(c)/(c2 log c) = 2Ω(
√

n/ log n).

For Item 4, observe that a curator receiving m input points obtains less than m + 1 shares

of s and hence obtains no information about rs. Hence, such a curator cannot solve the

1-out-of-2m-parity task alone, even without privacy constraints. J

5 The parity-chooses-secret task

We now present another task that cannot be privately solved neither in the curator model

nor in the local model with sub-exponential number of rounds. This task can be solved

in the hybrid model; however, it requires interaction, this time first with the curator and

then with the local agents. This task (as well as 1-out-of-2d-parity task) highlights both the

information and private-computation gaps between the curator and the local model agents.

The local model agents receive enough information to solve the task, but lack the ability to

privately solve an essential sub-task. The curator does not receive enough information to

solve the task (even non-privately), however the curator can be used to privately solve the

hard sub-task. Once the hard sub-task is solved, this information is forwarded to the local

agents, which now can solve the task.

I Definition 5.1 (The parity-chooses-secret task). The inputs in the parity-chooses-secret

task are generated as follows:

1. Input: A string r ∈ {0, 1}c
and 2c vectors of m + 1 bits: a vector (sj,1, . . . , sj,m+1) ∈

{0, 1}m+1
for every j ∈ {0, 1}c

.
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2. Set sj = sj,1 ⊕ · · · ⊕ sj,m+1 for every for j ∈ {0, 1}c
, i.e., sj is a random bit shared via

an m + 1-out-of-m + 1 secret-sharing scheme, with the shares being sj,1, . . . , sj,m+1.

3. Each sample x1, . . . , xm and y1, . . . , yn is generated independently as follows:

Choose x ∈R {0, 1}c
and t ∈R [m + 1] and output (x, 〈x, r〉, t, (sj,t)j∈{0,1}c) (that is,

every point contains a string of length c, its inner product with r, an integer t, and the

t-th share of each sj).

The goal of the referee in the parity-chooses-secret task is for every
(

(sj,1, . . . , sj,m+1)
)

j∈{0,1}c

and every r to recover sr with probability at least 1 − β, where the probability is over the

generation of the inputs in Step 3 and the randomness of the parties.

We design a protocol for this task and obtain the following lemma (see the full version of

this paper for details [10]).

I Lemma 5.2. Let β > 1/m and assume that m = Ω
(

c log(1/β)
ε

)

and n = Ω
(

m2

ε2 log( n
ε )

)

.

The parity-chooses-secret task can be solved in the (m, n)-hybrid model by an ε-differentially

private protocol with three rounds, where in the first round the curator sends one message to

the referee, in the second round the referee sends one message to the local agents, and in the

third round each local agent sends one message to the referee.

We next prove that, unless the database is big, the parity-chooses-secret task requires

interaction. Furthermore, we rule-out protocols in which first the referee simultaneously

sends one message to each local agent, then receives an answer from each local agent, and

finally exchanges (possibly many) messages with the curator. In particular, we rule-out

the communication pattern used in Lemma 4.2 for the 1-out-of-2d-parity task. To prove

this result, we first convert a protocol Π for the parity-chooses-secret task with the above

communication pattern to a protocol Π′ in the hybrid model with the same communication

pattern for a similar task (which we call the parity-chooses-secret’ task, defined below). We

then convert the protocol Π′ to a non-interactive protocol Π′′ in the local model for another

related task, and complete the proof by showing an impossibility result for the related task.

We define the parity-chooses-secret’ task as the task in which the input of the curator is

generated as in the parity-chooses-secret task and the input of each local agent only contains

shares, that is, it is of the form (t, (sj,t)j∈{0,1}c). The goal of the referee remains the same –

to recover sr.

B Claim 5.3. Assume that m = Ω
(

c log(1/β)
ε

)

. If there is an ε-differentially private protocol

for the parity-chooses-secret task in the (m, n)-hybrid model with error at most β in which

in the first round the referee simultaneously sends one message to each local agent, in

the second round gets an answer from each agent, and then the referee and the curator

exchange (possibly many) messages, then there is a 2ε-differentially private protocol for the

parity-chooses-secret’ task in the (m, n)-hybrid model with error at most 2β with the same

communication pattern.

Proof. Let Π be an ε-differentially private protocol for the parity-chooses-secret task in the

(m, n)-hybrid model with the communication pattern as in the claim in which the referee

reconstructs sr with probability at least 1−β. We construct from Π a 2ε-differentially private

protocol Π′ with the same communication pattern for the the parity-chooses-secret’ task

in which the referee reconstructs sr with probability at least 1− 2β. In Π′, each agent Pi,

holding an input (t, (sj,t)j∈{0,1}c), chooses with uniform distribution a string xi ∈R {0, 1}c

and sends two messages of Π, one message, denoted Mi,0, for the input (xi, 0, t, (sj,t)j∈{0,1}c)

and one message, denoted Mi,1, for the input (xi, 1, t, (sj,t)j∈{0,1}c). In addition, the agent
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sends xi to the referee. The referee sends the messages that it gets from the local agents

(i.e., (xi, Mi,0, Mi,1)i∈[n]) and its random string to the curator. The curator does as follows:

Privately learns r by executing the ε-differentially private algorithm of [43] (see Theo-

rem 2.13) for learning parity with α = 1/4, β, and the m inputs (x, 〈x, r〉).
For each agent Pi, computes bi = 〈xi, r〉 and Mi = Mi,bi (that is, the curator chooses the

correct message from the two messages the agent sends).

Simulates the communication between the curator and the referee in Π assuming that the

curator gets the messages (Mi)i∈[n] in the first round and reconstructs sr as the referee

reconstructs it in Π.

Sends sr to the referee.

As each party executes two ε-differentially private algorithms on its input, the resulting

protocol is 2ε-differentially private. Each agent Pi chooses xi with uniform distribution (as

in the parity-chooses-secret task). Furthermore, as m is big enough, with probability at least

1 − β, the curator computes the correct value r. Thus, (xi, bi, t, (sj,t)j∈{0,1}c) is an input

distributed as required in the parity-chooses-secret task, and the curator reconstructs sr with

probability at most 1− 2β. C

We next state a result of [46] showing that the mutual information between the input and

output of a differential private algorithm is low. In this result and in the proofs that follow,

H(X) is an entropy of a random variable and I(X; Y ) is the mutual information between

the random variables X and Y .

I Theorem 5.4 (Differential privacy implies low mutual information [46]). Let A : Xn → Y be

an ε-differentially private mechanism. Then for every random variable V distributed on Xn,

we have I(V ; A(V )) ≤ 1.5εn.

I Lemma 5.5. Assume that m = Ω
(

c log(1/β)
ε

)

. If there is an ε-differentially private protocol

for the parity-chooses-secret task in the (m, n)-hybrid model with error at most β in which

in the first round the referee simultaneously sends one message to each local agent, in the

second round gets an answer from each agent, and then the referee and the curator exchange

(possibly many) messages, then n ≥ (1−2β)2c

3ε .

Proof. We convert the protocol for the parity-chooses-secret task to a protocol Π′′ in the

local model with n agents, where the input of each agent contains 2c bits (sj)j∈{0,1}c . If the

inputs of all agents are equal, then for every r ∈ {0, 1}c
the referee should output the bit sr

with probability at least 1− β. We will show at the end of the proof that such protocol can

exist only if n is big.

By Claim 5.3, under the assumption of the lemma there is a 2ε-differentially private

protocol Π′ for the parity-chooses-secret’ task in the (m, n)-hybrid model with error at most

2β and communication pattern is as in the lemma. We construct the following protocol Π′′

in the local model with n agents:

Input of each agent Pi: (sj)j∈{0,1}c .

The referee chooses with uniform distribution 2c vectors of m + 1 bits: a vector

(sj,1, . . . , sj,m+1) ∈R {0, 1}m+1
for every j ∈ {0, 1}c

.

The referee chooses with uniform distribution m indices t1, . . . , tm ∈R [m + 1]m. Let ` be

an index that does not appear in this list.

The referee chooses with uniform distribution m strings (x1, . . . , xm) ∈R ({0, 1}c
)m.

The referee sends ((sj,1, . . . , sj,m+1))j∈{0,1}c and ` to each agent.
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Each agent Pi chooses with uniform distribution an index t ∈ [m + 1]. If t 6= `, it sends to

the referee its message in Π′ on input t, (sj,t)j∈{0,1}c . If t = `, it sends to the referee its

message in protocol Π′ on input `,
(

sj ⊕
⊕

k 6=` sj,k

)

j∈{0,1}c
. Denote this message by Mi.

For every r ∈ {0, 1}c
, the referee does the following:

Computes (without interaction) the communication, denoted MC,r, exchanged in

Π′ between the referee and the curator with input (x1, 〈x1, r〉, t1, (sj,t1
)j∈{0,1}c),

. . . , (xm, 〈xm, r〉, tm, (sj,tm
)j∈{0,1}c).

The referee reconstructs sr from the messages MC,r, M1, . . . , Mn using the reconstruc-

tion function of Π′.

Protocol Π′′ is 2ε-differentially private, since Π′ is 2ε-differentially private. Furthermore,

if all the inputs of the local agents are equal, then MC,r, M1, . . . , Mn are distributed as in

Π′, thus, for every r ∈ {0, 1}c
, the referee reconstructs sr with probability at least 1− β.

We complete the proof by showing that n must be large enough in Π′′ (hence, also in

Π). Assume we execute protocol Π′′ when (sj)j∈{0,1}c is choosen with uniform distribution

and denote its input by (sj)j∈{0,1}c and its output by (s′j)j∈{0,1}c . As the output in Π′′

is computed from the transcript of Π′, the post-processing property of differential privacy

implies that the algorithm that first executes protocol Π′ and then computes the output

from the transcript is 2ε-differentially private. By Theorem 5.4,

I
(

(sj)j∈{0,1}c ; (s′j)j∈{0,1}c

)

≤ 3εn. (1)

On the other hand, Pr[sj0
= s′j0

] ≥ 1− 2β for a given j0 ∈ {0, 1}c
, thus H(sj0

|(s′j)j∈{0,1}c) ≤
H(sj0

|s′j0
) ≤ 2β, and H

(

(sj)j∈{0,1}c |(s′j)j∈{0,1}c

)

≤
∑

j0∈{0,1}c H
(

sj0
|(s′j)j∈{0,1}c

)

≤ 2β2c.

Thus,

I
(

(sj)j∈{0,1}c ; (s′j)j∈{0,1}c

)

= H
(

(sj)j∈{0,1}c

)

−H
(

(sj)j∈{0,1}c |(s′j)j∈{0,1}c

)

≥ 2c − 2β2c = (1− 2β)2c. (2)

Inequalities (1) and (2) imply that (1− 2β)2c ≤ 3εn. J

We next summarize the possibility and impossibility results for parity-chooses-secret.

I Theorem 5.6. Let ε = 1/4, β = 1/4. For every integer c, there are m = Θ(c) and

n = Θ(c2 log c) such that

1. There is an ε-differentially private protocol for the parity-chooses-secret task with strings

of length c in the (m, n)-hybrid model where first the curator sends one message to the

referee and then the referee simultaneously exchanges one message with each local agent.

2. There does not exist an ε-differentially private protocol for this task in the (m, n)-hybrid

model in which the referee first simultaneously exchanges one message with the local agents

and then exchanges messages with the curator.

3. In any ε-differentially private protocol for this task in the local model with n agents the

number of rounds is 2Ω(c).

4. There is no algorithm in the trusted curator model that solves this task with m examples.

Proof. Item 1 follows directly from Lemma 5.2. Item 2 is implied by Lemma 5.5, since

n� 2c. Item 3 follows from Fact 2.10 as in the proof of Theorem 4.6. For Item 4, observe

that a curator receiving m input points obtains less than m+1 shares of (s1, . . . , sj) and hence

obtains no information about sr. That is, such a curator cannot solve the parity-chooses-secret

task alone, even without privacy constraints. J
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6 A Negative Result: Basic hypothesis testing

Here, we show that for one of the most basic tasks, differentiating between two discrete

distributions D0 and D1, the hybrid model gives no significant added power.

I Definition 6.1 (The simple hypothesis-testing task). Let 0 < β < 1 be a parameter, X be a

finite domain, and D0 and D1 be two distributions over X. The input of the hypothesis-testing

task is composed of i.i.d. samples from Dj for some j ∈ {0, 1} and the goal of the referee is

to output ĵ s.t. Pr[ĵ = j] ≥ 1−β.

I Theorem 6.2. If there is an ε-differentially private protocol in the (m, n)-hybrid model for

testing between distributions D0 and D1 with success probability 1/2 + γ, then either there is

an ε-differentially private protocol for this task in the curator model that uses m samples and

succeeds with probability at least 1/2 + γ/4 or there is an ε-differentially private protocol for

this task in the local model with n agents that succeeds with probability at least 1/2 + γ/4.

Proof. Let Π be a protocol guaranteed by the theorem, that is, when the inputs of the

curator and the local agents are drawn from Dj , the referee in Π returns j with probability at

least 1/2 +γ. Consider an execution of the protocol when the inputs of the curator are drawn

from D0 and the inputs of the local agents are drawn from D1 and let p be the probability

that the referee in Π returns 1 in this case.

We first assume that p ≥ 1/2 and show that there exists an ε-differentially private protocol

Πlocal for this task in the local model with n agents that succeeds with probability at least

1/2 + γ/4. The referee in protocol Πlocal with probability γ/2 outputs 1 and with probability

1 − γ/2 draws m samples from D0, executes protocol Π, where the referee simulates the

messages of the curator using the m samples, and returns the output of Π.

We next analyze this protocol. If the inputs of the local agents are drawn from D1, then

the probability that the referee in protocol Π returns 1 is at least 1/2 and the probability that

the referee in Πlocal returns 1 is at least γ/2 + (1−γ/2) · 1/2 = 1/2 + γ/4. If the inputs of the

local agents are drawn from D0, then the probability that the referee in Πlocal returns 0 is at

least (1− γ/2) · (1/2 + γ) ≥ 1/2 + γ/4 (since γ ≤ 1/2). For the case that p < 1/2, it can be

shown, using an analogous construction, that there exists an ε-differentially private protocol

Πcurator for this task in the curator model with m samples that succeeds with probability at

least 1/2 + γ/4. J

Recall that the total variation distance (also known as the statistical distance) of two

discrete distributions D0,D1 over a domain X is dTV(D0,D1) = supT⊂X |D1(T )−D0(T )| =
1
2

∑

x∈X |D1(x)−D0(x)|. The squared Hellinger distance between two distributions D0,D1

over a domain X is defined as dH2(D0,D1) = 1
2

∑

x∈X

(

√

D0(x)−
√

D1(x)
)2

. For the rest

of the discussion in this section, fix the domain X = {0, 1}, and some α > 0. We define two

distributions D0 and D1 where under D1 we have Prx∼D1
[x = 1] = 1

2 (1 +α) and under D0 we

have Prx∼D0
[x = 1] = 1

2 (1− α). It is a fairly simple calculation to see that dTV(D0,D1) = α

and α2

2 ≤ dH2(D0,D1) ≤ α2. We prove that for some setting of the parameters n and m,

the hypothesis-testing task between D0 and D1 is impossible in the (m, n)-hybrid model.

The following Theorem follows by combining Theorem 6.2 with [40, Theorem 5.3] and

with [19, Theorem 3.5]. See the full version of this paper for more details. [10]

I Theorem 6.3. There are constants c0, c1 such that in the (m, n)-hybrid model, with

m ≤ c0

(

1
α2 + 1

εα

)

and n ≤ c1 · 1
ε2α2 , there is no ε-differentially private protocol that succeeds

in determining whether all m + n input points are drawn from D0 vs. D1 w.p. ≥ 0.75.
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