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—— Abstract

Motivated by the desire to bridge the utility gap between local and trusted curator models of
differential privacy for practical applications, we initiate the theoretical study of a hybrid model
introduced by “Blender” [Avent et al., USENIX Security '17], in which differentially private protocols
of n agents that work in the local-model are assisted by a differentially private curator that has
access to the data of m additional users. We focus on the regime where m < n and study the
new capabilities of this (m,n)-hybrid model. We show that, despite the fact that the hybrid model
adds no significant new capabilities for the basic task of simple hypothesis-testing, there are many
other tasks (under a wide range of parameters) that can be solved in the hybrid model yet cannot
be solved either by the curator or by the local-users separately. Moreover, we exhibit additional
tasks where at least one round of interaction between the curator and the local-users is necessary —
namely, no hybrid model protocol without such interaction can solve these tasks. Taken together,
our results show that the combination of the local model with a small curator can become part of a
promising toolkit for designing and implementing differential privacy.

2012 ACM Subject Classification Security and privacy — Privacy-preserving protocols
Keywords and phrases differential privacy, hybrid model, private learning, local model

Digital Object Identifier 10.4230/LIPIcs.ITC.2020.14

Related Version A full version of the paper is available at https://arxiv.org/abs/1912.08951.

Funding The work was partially done while the authors were at the “Data Privacy: Foundations
and Applications” program held in spring 2019 at the Simons Institute for the Theory of Computing,
UC Berkeley.

© Amos Beimel, Aleksandra Korolova, Kobbi Nissim, Or Sheffet, and Uri Stemmer;
37 licensed under Creative Commons License CC-BY

1st Conference on Information-Theoretic Cryptography (ITC 2020).

Editors: Yael Tauman Kalai, Adam D. Smith, and Daniel Wichs; Article No. 14; pp. 14:1-14:25

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany



14:2

The Power of Synergy in Differential Privacy

Work of A.B. and K. N. was supported by NSF grant No. 1565387 TWC: Large: Collaborative:
Computing Over Distributed Sensitive Data. This work was done when A.B. was hosted by
Georgetown University. Work of A. B. was also supported by ISF grant no. 152/17, a grant from the
Cyber Security Research Center at Ben-Gurion University, and ERC grant 742754 (project NTSC).
Work of A. K. was supported by NSF grant No. 1755992 CRII: SaTC: Democratizing Differential
Privacy via Algorithms for Hybrid Models, a VMWare fellowship, and a gift from Google.

Work of O. S. was supported by grant #2017-06701 of the Natural Sciences and Engineering Research
Council of Canada (NSERC). The bulk of this work was done when O.S. was affiliated with the
University of Alberta, Canada.

Work of U.S. was supported in part by the Israel Science Foundation (grant No. 1871/19).

Acknowledgements We thank Adam Smith for suggesting the select-then-estimate task discussed in
the introduction.

1 Introduction

Data has become one of the main drivers of innovation in applications as varied as technology,
medicine [33], and city planning [34, 52]. However, the collection and storage of personal
data in the service of innovation by companies, researchers, and governments poses significant
risks for privacy and personal freedom. Personal data collected by companies can be
breached [22]; subpoenaed by law enforcement in broad requests [44]; mis-used by companies’
employees [37, 21]; or used for purposes different from those announced at collection time [63].
These concerns alongside data-hungry company and government practices have propelled
privacy to the frontier of individuals’ concerns, societal and policy debates, and academic
research.

The local model of differential privacy [65, 43] has recently emerged as one of the promising
approaches for achieving the goals of enabling data-driven innovation while preserving a
rigorous notion of privacy for individuals that also addresses the above challenges. The
differential privacy aspect provides each participating individual (almost) with the same
protection she would have, had her information not been included [26], a guarantee that holds
even with respect to all powerful adversaries with access to multiple analyses and rich auxiliary
information. The local aspect of the model means that this guarantee will continue to hold even
if the curator’s data store is fully breached. From the utility perspective, the deployment of
local differential privacy protocols by Google, Apple, and Microsoft demonstrate that the local
differential privacy model is a viable approach in certain applications, without requiring trust
in the companies or incurring risks from hackers and intelligence agencies [28, 54, 35, 1, 23].

The adoption of the local model by major industry players has motivated a line of
research in the theory of local differential privacy (e.g., [9, 8, 17, 58, 40, 42, 41]). Alongside
algorithmic improvements, this body of work highlighted the wide theoretical and practical
gap between utility achievable in the more traditional trusted curator model of differential
privacy (where the curator ensures the privacy of its output but can perform computations on
raw individual data) and that achievable in the local differential privacy model. In particular,
the number of data points necessary to achieve a particular level of accuracy in the local
model is significantly larger than what is sufficient for the same accuracy in the curator model
(see, e.g., [11, 43, 55, 9]). This has negative consequences. First, data analysis with local
differential privacy becomes the privilege of the data-rich, handicapping smaller companies
and helping to cement monopolies. Second, in an effort to maintain accuracy the entities
deploying local differential privacy are tempted to use large privacy loss parameters [59],
ultimately putting into question the privacy guarantee [36].
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Figure 1 The hybrid model.

New models for differentially private computation have recently emerged to alleviate the
(inevitable) low accuracy of the local model, of which we will discuss the shuffle model [38, 15,
20, 6, 5, 32] and the hybrid model [2].' In the shuffle model, it is assumed that the curator
receives data in a manner disassociated from a user identifier (e.g., after the raw data has
been stripped of identifiers and randomly shuffled). Recent work has proved that protocols
employing shuffling can provide better accuracy than local protocols and sometimes match
the accuracy of the curator model [20, 6, 5, 32].2 Although the shuffle model is a promising
approach for bridging the gap between the local model and the trusted curator model, it
suffers from two weaknesses: it requires individuals’ trust in the shuffler (which itself may be
subject to breaches, subpoenas, etc., and the infrastructure for which may not exist), and,
as highlighted by [6], its privacy guarantees to an individual rely on the assumption that
sufficiently many other individuals do not deviate from the protocol.

The focus of this work is on a generalization of the hybrid model introduced by [2],
where a majority of individuals that participate in a local differential privacy computation
is augmented with a small number of individuals who contribute their information via a
trusted curator. From a practical point of view, this separation is aligned with current
industry practices, and the small number of individuals willing to contribute via a curator
can be employees, technology enthusiasts, or individuals recruited as alpha- or beta-testers
of products in exchange for early access to its features or decreased cost [47, 48, 50].

Furthermore, unlike Blender [2], in an effort to explore a rich trust and communication
model, and anticipate development of future technologies and practices, we do not assume
that the curator trusted by the opt-in users and the eventual data recipient (whom we call
the referee) are the same entity (see Figure 1). The detailed discussion of the benefits of this
modeling assumption appears after the formal model definition in Section 2.2.

1.1 This work: The power of the hybrid model

We initiate a theoretical study of the extent to which the hybrid model improves on the
utility of the local model by addition of a small curator (and vice versa, improves on the

utility of a small curator by addition of parties that participate in a local model computation).

We ask whether there are tasks that cannot be computed privately by a small curator, or in
the local model (even with many participants), but are feasible in a model that combines
both. We answer this question in the affirmative.

L Approaches which weaken differential privacy itself or justify the use of large privacy loss parameters
are outside our scope and deserve a separate discussion.

2 Furthermore, the shuffle model provides new “privacy amplification” tools that can be used in the design
of differentially private algorithms [27, 6].
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A concatenation of problems (direct-sum)

Our first example is composed of two independent learning tasks, each task can be privately
learned in one model, however, cannot be privately learned in the other model. Each data
point is parsed as two points (z,y) that are labeled (Pary(x), Thri(y)) where the former is a
parity function Par(z) = (k, ) and the latter is a threshold function Thr;(y) = 1> (see
Section 2.4 for complete definitions). For a choice of parameters, known sample complexity
bounds imply that the parity learning part of the task can be performed by the curator but
cannot be privately computed in the local model with sub-exponential number of messages [43],
and, conversely, that the threshold learning part cannot be performed by the curator [12, 30]
but can be performed by the local model parties. It follows that for our choice of parameters
the combined task cannot be performed neither by the curator nor by the local model with
sub-exponential number of rounds (as the number of local agents is small, each agent in
the local model must send many messages), but is feasible in the hybrid model without
interaction (see the full version of this paper for a detailed analysis [10]).

Select-then-estimate

In our second example, each input point x is sampled i.i.d. from an unknown distribution
over {—1, 1}d. Letting 1 = F [z], the goal is to output a pair (4, fi;) where i approximately
maximizes p; (i.e., g, > max; u; — a) and fi; approximates p; (i.e., |fi; — p;| < o), where
o’ < a. That is, once we found a good coordinate i, we want to approximate its quality
with smaller error. A number of sample complexity bounds apply here (in particular, [60];
see also the full version of this paper [10]), yielding a wide range of parameters where the
task cannot be performed by the curator alone, nor by the local model parties alone. The
hybrid model, however, allows for a solution where the curator first identifies 7 such that
p; > max; pu; — « and the estimation of p; within accuracy o/ is then performed by the local
model parties (see the full version of this paper for a detailed analysis [10]).

The select-then-estimate problem is a sub-component of many statistical and data-
mining applications [4, 57, 2]. It is also of core interest in genome-wide association studies
(GWAS), where the inputs are genomes of patients affected by a particular disease and
the goal is to (approximately) identify disease-related genome locations and estimate their
significance [3, 66, 16]. Solving the problem while ensuring privacy is particularly challenging
when the feature dimension is large compared to the number of available samples, which
is the case for GWAS [14, 3, 39, 56]. As genomic data is particularly sensitive, the hybrid
model of differential privacy appears appropriate for it from the privacy perspective — the
majority of the data would be analyzed with the guarantee of local differential privacy, and
only a small number of data points would be entrusted to a curator, whose analysis’s output
should also be differentially private [64]. As our example suggests, the hybrid model may be
useful also from the utility perspective.

We next present and study tasks that require protocols with different interaction patterns
involving both the curator and the local agents; that is, the referee needs to relay messages
from the curator to the local model agents in one problem or vice versa in a second problem.

Learning parity XOR threshold

This task, which is a twist on the above concatenation of problems, combines two independent
learning tasks. Rather than merely concatenating, in the learning parity XOR threshold
problem points are labeled by Pary (2)®Thr:(y). A simple argument shows that (for specifically
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chosen parameters) the task cannot be performed by the curator alone or by the local model
agents with sub-exponential number of rounds. The task is, however, feasible in the hybrid
model without interaction. Observe that the local model agents can complete the task once
the parity part is done, and that Thr.(y) = 0 for the lower half of the points y or Thr;(y) =1
for the upper half of the points y (or both). These observations suggest a protocol where
the curator first performs two parity learning tasks (splitting points according to y values),
and the task is then completed by the local model agents. This requires communication (as
the referee needs to relay a message from the curator to the local model agents), and it may
seem that this interaction is necessary for the task. However, in Section 3 we show that this
is not the case, by demonstrating a non-interactive protocol where all parties send a message
to the referee at the same round.

1-out-of-2%-parity

Our next task can be solved in the hybrid model (but neither by a small curator model nor
in the local model with sub-exponential number of rounds). This task requires interaction,
first with the local model agents and then with the curator. The task consists of a multitude
of parity problems, only one of which — determined by the input — needs to be solved. The
curator is capable of solving the parity task privately, however, the curator’s limited number
of samples does not allow solving all parity problems privately, nor does it allow distinguishing
which problem to solve. The local model agents cannot solve parity (with sub-exponential
number of rounds) [43] but can recover which problem needs to be solved (via a heavy hitters
computation [17]). Thus, the referee needs to first interact with the local agents and then
the curator. See Section 4.

Parity-chooses-secret

The third task in this part can be solved in the hybrid model (but neither with a small
curator, nor in the local model with sub-exponential number of rounds). The task requires
interaction in the reverse order from the previous task: first with the curator, then with the
local model agents. The input to this task contains shares of a large collection of secrets and
the goal is to recover one of these secrets. The secret that should be recovered is determined
by the input as the solution to a parity problem. The curator can solve the parity problem
but does not have enough information to recover any of the secrets. The local model agents
receive enough information to recover all secrets, but doing so would breach privacy (as
implied by [46]). They cannot solve the parity problem with sub-exponential number of
rounds. In the hybrid model protocol, the curator first solves the parity problem privately,
and relates the identity of the secret to be recovered through the referee to the local model

agents who then can send enough information to recover the required secret. See Section 5.

The latter two tasks highlight information and private-computation gaps between the
curator and the local model agents. The local model agents receive enough information to
solve the task, but lack the ability to privately solve an essential sub-task (when they are not
allowed to use exponentially many rounds). The curator does not receive enough information
to solve the task (even non-privately), but can solve the hard sub-task.

When the hybrid model does not help much

Although most of the results in this work are on the positive side, demonstrating that cleverly
utilizing a curator in synergy with local agents can allow for new capabilities, we also show
that for one of the most basic tasks — namely, basic hypothesis testing — the hybrid model has
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no significant advantage over what can be done separately in either the local model with m
agents or in the curator model with database of size n. We show that if for two distributions
Dy and D; there is a private protocol in the hybrid model that given i.i.d. samples from D;
correctly identifies j, then there is a private protocol with the same sample size either in the
local model or in the curator model that correctly identifies j (with some loss in the success
probability). We then consider two distributions Dy and D; over the the domain {0,1},
where in Dy the probability of 1 is strictly less than 1/2 and in D; the probability of 1 is
strictly greater than 1/2 and identify values of m and n such that in the hybrid model, where
the curator has m samples and there are n agents (each holding one sample), no protocol
exists that can differentiate whether the m + n inputs were sampled i.i.d. from Dy or from
D;. Since computing the sum of i.i.d. sampled bits from Dy or D; can distinguish between
these distributions, the above results imply that for computing the sum, the hybrid model is
no better than each model separately. See Section 6.

A new lower bound for selection in the local model

As mentioned above, our analysis for the select-then-estimate task relies on lower bounds
on the sample complexity of selection in the local model. In the selection problem, there is
some distribution over vectors in {—1, 1}d and each agents gets an i.i.d. sample from this
distribution; the goal is to select a coordinate such that the expected value of this coordinate

is as large as possible. Ullman [60] gives a (tight) lower bound of Q(d(jgfgd) samples for the

non-interactive case. In the full version of this paper [10], we show that for interactive local
model protocols, the number of messages in such protocol is ©(d*/?). For example, if the
curator interacts with the local model parties so that each party sends ¢ messages, then the
number of parties must be at least Q(d'/?/t). The proof is by a generic reduction from any
private PAC learning task to selection, which preserves sample complexity. The bound is
obtained by applying the reduction from privately learning parity and applying bounds on
the sample complexity of privately learning parity from [43].

1.2 Discussion and future work

Our results show that the combination of the local model with a small curator can become
part of a promising toolkit for designing and implementing differential privacy. More work is
needed to develop the theory of this model (and possibly introduce variants), and, in particular,
characterize which tasks can benefit from it. From an algorithms design perspective, now
that we know that the hybrid model can lead to significant improvements over both the
curator and local models, an exciting open question is understanding what other non-trivial
algorithms can be designed that take advantage of the synergy.

Selection bias

In this work we assume that the inputs for the curator and for the local model agents come
from the same distribution. However, the recruitment of individuals for participating via a
curator can create unintended differences between the input distributions seen by the curator
and the entire population, and hence lead to biases, an issue which is outside the scope of
the current work. Selection bias remains an important issue that needs to be addressed.
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Approximate differential privacy

Our separations between the hybrid model and the curator and local models hold for
pure differential privacy (i.e., e-differential privacy). Specifically, we use lower bounds for e-
differential private learning of the threshold functions in the curator model [12, 30]; these lower
bounds do not hold for (e, 0)-differential private learning of the threshold functions [13, 18].
We also use lower bounds for e-differential private learning of parity in the local model [43];
it is open whether these lower bounds hold for fully interactive (e, §)-differential private
learning protocols of parity. Possible separations for (e, d)-differential privacy are left for
future research.

2 Preliminaries

2.1 Protocols for differentially private computations

Let X be a data domain. We consider a model where the inputs and the computation are
distributed among parties P, ..., P,. Each party is an interactive randomized functionality:
it can receive messages from the other parties, perform a randomized computation, and send
messages to the other parties. At the beginning of a computation, each party P; receives

its input x; = (;1,...,Tie) € X%, Le., the input of party P; consists of a sequence of
£; > 0 entries taken from the data domain X, and the entire joint input to the protocol
is (@11, @1,0,,%21, -+, 2055+, &n,15---,Tnr, ). The parties engage in a randomized
interactive protocol IT = (Ilp,,...,Ip, ), where a message sent by a party P; in some round is

computed according to IIp, and depends on its input x;, its random coins, and the sequence
of messages it has seen in previous rounds. When a party P; halts, it writes its output to a
local output register op,. The number of messages in a protocol is the number of rounds
multiplied by the number of parties.

» Definition 2.1. We say that x = (x1,...,7¢) € X* and X' = (2,...,2,) € X* are
neighboring if they differ on at most one entry, i.e., there exists i* € [{] such that x; = x}

forie [f\ {i*}.

» Definition 2.2. We say that two probability distributions Dy, D1 € A(Q2) are (e, d)-close
and write Dy ~¢ s D1 if Pryop, [t € T] < € - Pryup,_, [t € T+ 9§ for all measurable events
T CQandbe{0,1}.

We are now ready to define what it means for a protocol to be differentially private in a
fully malicious setting, i.e., in a setting where an arbitrary adversary controls the behavior
of all but one party. Intuitively, a protocol is differentially private in a fully malicious setting
if there do not exist a party P; and an adversary A controlling Py,...,P;—1,Piy1,...,Pn
such that A can “trick” P; to act non-privately. More formally, we model the adversary
as an interactive randomized functionality. For a party P;, define Ap, to be a randomized
functionality as follows.

1. An input of Ap, consists of a sequence of £; entries taken from the data domain, x € X*.
2. Ap, simulates an interaction between party P; with x as its input, and A. The simulated

P; interacts with A following the instructions of its part in the protocol, IIp,. The

adversary A interacts with P; sending messages for parties Pi,..., Pi—1, Pit1,..., Py.

However, A does not necessarily adhere to the protocol II.

3. The simulation continues until A halts with an output o4, at which time Ap, halts and

outputs o4.

14:7
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» Definition 2.3 (Multiparty differential privacy [26, 43, 11, 61]). A protocol II is (e, 0)-
differentially private if for all i € [n], for all interactive randomized functionalities A, and
all neighboring x,x' € X%, Ap, (x) ~c5 Ap,(x'). When ly = by = --- = {,, = 1 we say that
the protocol operates in the local model, and when n =1 we say that the protocol (or the
algorithm) operates in the curator model. We say that a protocol 11 is e-differentially private
if it is (e,0)-differentially private.

Comparison to previous definitions

In contrast to [11, 61], our definition applies also to a malicious adversary that can send
arbitrary messages. The definition of [43] also applies to a malicious adversary, however
it requires that each answer of an agent preserves e-differential privacy (i.e., if there are d
rounds, the protocol is de-differentially private). In contrast, the definitions of [11, 61] and
our definition measures the privacy of the entire transcript of an agent.

Note that (i) Restricting the outcome 04 to binary results in a definition that is equivalent
to Definition 2.3. (ii) It is possible to consider a relaxed version of Definition 2.3 where the
adversary A is “semi-honest” by requiring A to follow the protocol II. (iii) Definition 2.3
differs from definitions of security in the setting of secure multiparty computation as the
latter also state correctness requirements with respect to the outcome of the protocol. The
difference between the setting is that secure multiparty computation implements a specified
functionality® whereas differential privacy limits the functionality to hide information specific
to individuals, but does not specify it.

2.2 The hybrid model

A computation in the (m,n)-hybrid model is defined as the execution of a randomized
interactive protocol Il = (Il¢, I p,, ..., Ip, ,IIg) between three types of parties: a (single)
curator C', n “local model” agents Py, ..., P,, and a referee R. The referee has no input, the
curator C' receives m input points x = (21,...,2,) € X™ and the n “local model” agents
Py, ..., P, each receive a single input point y; € X. We use the notation D to denote the
joint input to the computation, i.e., D = (z1,...,Zm, Y1, ---,Yn)-

The communication in a hybrid model protocol is restricted to messages exchanged
between the referee R and the other parties C, P, ..., P, (i.e., parties C, P,..., P, cannot
directly communicate among themselves). Parties C, Py, ..., P, have no output, whereas
when the execution halts the referee R writes to a special output register o. See Figure 1.
We require the protocol II = (Il¢,p,,...,Hp, ,IIg) to satisfy differential privacy as in
Definition 2.3.

The hybrid model is a natural extension of well-studied models in differential privacy.
Setting n = 0 we get the trusted curator model (as C can perform any differentially private
computation), and setting m = 0 we get the local model. In this work, we are interested in
the case 0 < m < n, because in this regime, the hybrid model is closest in nature to the
local model. Furthermore, in many applications, once m is comparable to n it is possible to
drop parties Py, ..., P, from the protocol without a significant loss in utility.

Comparing with Blender [2], where the curator C' and the referee R are the same party,
we observe that the models are equivalent in their computation power — every differentially

3 Furthermore, secure multiparty computation is silent with respect to the chosen functionality, regardless
whether it is “privacy preserving” or “secure”.
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private computation in one model is possible in the other (however, the models may differ in
the number of interaction rounds needed). Nevertheless, the separation between the curator
and the referee has merits as we now discuss.

On the separation between the curator and referee

From a theory point of view, it is useful to separate these two parties as this allows to
examine effects related to the order of interaction between the parties (e.g., whether the
referee communicates first with the curator C' or with the local model parties P,..., P,).

Moreover, by separating the curator and referee, the hybrid model encapsulates a richer
class of trust models than [2], and, in particular, includes a trust model where data sent to the
curator is not revealed to the referee. In an implementation this may correspond to a curator
instantiated by a publicly trusted party, or by using technologies such as secure multiparty
computation, or secure cryptographic hardware which protects data and computation from
external processes [49)].

The curator-referee separation also makes sense from a practical point of view within
a company. It is reasonable that only a small fraction of a company’s employees, with
appropriate clearance and training, should be able to access the raw data of those who
contribute their data to the trusted curator model, whereas the majority of employees should
only see the privacy-preserving version of it [53].

» Remark 2.4 (A note on public randomness). Some of our protocols assume the existence
of a shared random string. In an implementation, shared randomness can be either set up
offline or be chosen and broadcast by the referee. We stress that the privacy of our protocols
does not depend on the shared random string actually being random. Furthermore, all our
lower bounds hold even when the local agents hold a shared (public) random string.

2.3 Parity and threshold functions

A concept ¢: X — {0, 1} is a predicate that labels ezamples taken from the domain X by

either 0 or 1. A concept class C over X is a set of concepts (predicates) mapping X to {0,1}.

Let b, c € N be parameters. The following two concept classes will appear throughout the
paper:
Threshold, = {Thr, : t € {0,1}"} where Thr, : {0,1}* — {0,1} is defined as Thr,(z) =
1i;>¢y, where we treat strings from {0, 1}° as integers in {0, oo, 2b - 1}.
Parity, = {Pary : k € {0,1}°} where Par; : {0,1}¢ — {0,1} is defined as Pary(z) =
(k,x) = &F_1k; - x;.

2.4 Preliminaries from learning theory and private learning

We recall the probably approximately correct (PAC) model of [62]. Given a collection of
labeled examples, the goal of a learning algorithm (or protocol) is to generalize the given data
into a concept (called a “hypothesis”) that accurately predicts the labels of fresh examples
from the underlying distribution. (See [62], or the full version of this paper [10], for formal
definitions.) When the learner is a protocol, its sample complexity is the total number of
labeled examples it operates on. That is, if there are n parties where party P; gets as input
¢; labeled examples, then the sample complexity of the protocol is ¢1 + - - + £,.

» Definition 2.5. The generalization error of a hypothesis h : X — {0,1} w.r.t. a target
concept ¢ and a distribution D is defined as errorp(c, h) = Pry.p[h(x) # c¢(z)]. The empirical
error of h w.r.t. a labeled sample D = (z;, ;)1 is errorp(h) = = |{i : h(z;) # y;}|. The
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empirical error of h w.r.t. an unlabeled sample D = (x;)™, and a concept ¢ is errorp(h, c) =
L|{i s h(x;) # c(x;)}]. Let ¢ : X — {0,1} be a concept and let D € (X x {0,1})™ be a labeled
database. We say that D is consistent with ¢ if for every (x,y) € D it holds that y = c(x).

» Definition 2.6. Let C be a concept class over a domain X, and let I1 be a protocol in
which the input of every party is a collection of (1 or more) labeled examples from X. The
protocol 11 is called an («, §)-empirical learner for C if for every concept ¢ € C and for every
joint input to the protocol D that is consistent with ¢, with probability at least 1 — (3, the
outcome of the protocol is a hypothesis h : X — {0,1} satisfying errorp(h) < a.

We will be interested in PAC-learning protocols that are also differentially private.

» Definition 2.7 ([43]). A private learner is a PAC learner and that satisfies Definition 2.3.
Similarly, a private empirical learner is a protocol I1 that satisfies both Definitions 2.3 and 2.6.

Dwork et al. [25] and Bassily et al. [7] showed that if a hypothesis h is the result of a
differentially private computation on a random sample, then the empirical error of h and
its generalization error are guaranteed to be close. We will use the following multiplicative
variant of their result [51], whose proof is a variant of the original proof of [7].

» Theorem 2.8 ([25, 7, 51, 29]). Let A: X™ — 2% be an (g, §)-differentially private algorithm
that operates on a database of size n and outputs a predicate h : X — {0,1}. Let D be a
distribution over X, let S = (x1,...,x,) be a database containing n i.i.d. elements from D,
and let h < A(S). Then,

1 & 10 1
P 2. E - 7§ ;) > —log | — .
sopn | © mND[h(x)] n 4 hz:) > en 8 (55n) <O(en)
h<A(S) i=1

We next state known impossibility results for privately learning threshold and parity.

» Fact 2.9 ([12, 30]). Let b € N. Any e-differentially private (a,3)-PAC learner for
Threshold, requires Q( %) many samples.

» Fact 2.10 ([43]). Let c € N. In any e-differentially private (o, 3)-PAC learning protocol
for Parity, in the local model the number of messages is Q(2C/3). This holds even when the
underlying distribution is restricted to be the uniform distribution.

Fact 2.10 implies, for example, that when there are poly(c) agents the number of rounds
is 2%()_ Tt is open whether there exists an e-private protocol (or an (e, §)-private protocol)
for learning Parity, in the local model with poly(c) agents and any number of rounds.

» Remark 2.11. The proof of Fact 2.10 in [43] is stated in a weaker model, where in each
round the referee sends an ¢;-differentially private local randomizer to an agent and the agent
sends the output of this randomizer on its input to the referee, such that e; +---+ €, <e.
However, in their proof they only use the fact that ¢; < € in every round, thus, their lower
bound proof also applies to our model.

Our protocols use the private learner of [43] for parity functions, a protocol of [8] for
answering all threshold queries, a protocol of [17] for heavy hitters, and a protocol of [31] for
approximating a quantile. These are specified in the following theorems.

» Theorem 2.12 ([8]). Let o,fB,e < 1, and let b € N. There exists a non-interactive
e-differentially private protocol in the local model with n = O( L ~10g( b )) agents

aze? afe
in which the input of every agent is a single element from {0,1}° and the outcome is a
function q : {0,1}® — [0,1] such that for every joint input to the protocol D € ({0,1}°)",
with probability at least 1 — 3, the outcome q is such that Yw € {0,1}* we have q(w) €
Hzr €eD:z <w}|/|D|+a.
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Theorem 2.12 does not appear explicitly in [8], but it is implicit in their analysis.

» Theorem 2.13 ([43]). Let o,B,e < 1, and let ¢ € N. There exists an e-differentially
private algorithm in the curator model that (o, B)-PAC learns and (o, 8)-empirically learns

Parity, with sample complezity O (é log(%)).

» Theorem 2.14 (Heavy hitters protocol [17]). There exist constants A1, A2 > 0 such that the
following holds. Let 3,e <1 and X be some finite domain. There exists a non-interactive
e-differentially private protocol in the local model with n agents in which the input of each
agent is a single element from X and the outcome is a list Est of elements from X such that
for every joint input to the protocol D € X™, with probability at least 1 — (B, every x that is
an input of at least % nlog (%) agents appears in Est, and vice versa, every element x

in Est is an input of at least % nlog (%) agents.

3 Learning parity XOR threshold

In this section we present a learning task that cannot be solved privately in the curator
model or in the local model, but can be solved in the hybrid model (without interaction).
The task we consider in this section — parity XOR threshold — is similar to the simpler task
of the direct product of parity and threshold discussed in Section 1.1. In this section we
design a non-interactive protocol in the hybrid model for the parity XOR threshold task,
which is more involved than the trivial protocol for the parity and threshold task. This
demonstrates that non-interactive protocols in the hybrid model may have more power than
one might initially suspect.
Fix b,c > 0, and let k € {0,1}¢ and t € {0,1}" be parameters. Define the function
lﬁ’ct :40,1}¢ x {0,1}* — {0, 1} as follows: f:ct(%y) = Parg(x) @ Thry(y) = (k,z) © Tgy>p

(recall that we treat strings in {0, 1}b as integers in {0, 1,...,20 — 1}) Define the concept
class ParityThresh as follows: ParityThresh, . = { zfct : ke {0,1}¢ and ¢ € {0, l}b} :
We show that every differentially private algorithm (even in the curator model) for

learning ParityThresh must have sample complexity €2(b). See the full version of this paper
for details [10].

» Lemma 3.1. FEvery e-differentially private algorithm for (i, i)-PAC learning Parity Thresh,, .
must have sample complexity Q(b).

We next show that no protocol in the local model can learn ParityThresh, unless the
number of exchanged messages is very large.

» Lemma 3.2. In every e-differentially private protocol in the local model for (i, i)-PAC
learning ParityThresh, . the number of messages is Q(2¢/3).

The proof of Lemma 3.2 is analogous to the proof of Lemma 3.1 (using Fact 2.10 instead
of Fact 2.9).

So, privately learning Parity Thresh,, . in the curator model requires Q(b) labeled examples,
and privately learning it in the local model requires Q(2¢/%) messages. We now show that
ParityThresh,, . can be learned privately by a non-interactive protocol in the hybrid model
with roughly O(c) examples for the curator and with roughly O(b?) local agents. We will
focus on the case where ¢ < b. Recall that a function fli Ct(a:, y) € ParityThresh, . is defined
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as fct(x, y) = Parg(x) @ Thr(y). The difficulty in learning ParityThresh in the hybrid model

is that we could only learn the threshold part of the target function using the local agents
(since if ¢ < b then the curator does not have enough data to learn it), but the threshold
label is “hidden” from the local agents (because it is “masked” by the parity bit that the
local agents cannot learn). This false intuition might lead to the design of an interactive
protocol, in which the referee first obtains some information from the curator and then passes
this information to the local agents, which would allow them to learn the threshold part
of the target function. We now show that such an interaction is not needed, and design a
non-interactive protocol in which the local agents and the curator communicate with the
referee only once, simultaneously.

» Lemma 3.3. There exists a non-interactive e-differentially private protocol in the (m,n)-
hybrid model for («, 3)-PAC learning ParityThresh, . where m = O (f log(ﬁ)) and n =

0 (s 1 k) 5

Proof. We begin by describing a non-interactive protocol II. The (joint) input to the protocol
is a database D where every point in D is of the form (z;,y;,0;) € {0,1}¢ x {0,1}* x {0,1}.
At a high level, the protocol works by using the local agents to obtain an approximation
to the CDF of the (marginal) distribution on the y;’s (this approximation is given to the
referee). In addition, the trusted curator solves 1/« parity leaning problems. In more detail,
the trusted curator sorts its database according to the y;’s, divides its database into 1/«
chunks, and then applies a private learner for parity functions on each of the chunks. The
trusted curator sends the referee the resulting 1/« parity functions. The referee then defines
the final hypothesis h that, given a point (x,y), first uses the approximation to the CDF
(obtained from the local agents) to match this input point to one of the chunks, and then
uses the parity function obtained for that chunk from the trusted curator to predict the label
of the point.

The key observation here is that the threshold part of the target function is constant on
all but at most one of the chunks defined by the trusted curator. As we show, applying a
learner for parity on such a “consistent chunk” results in a good predictor for the labels of
elements of that chunk. Hence, provided that the approximation for the CDF of the y;’s
is accurate enough, this results in an accurate learner for ParityThresh. We now formally

present the protocol II.

Local agents on a (distributed) input D = (z;,y:,04);, € ({0,1}° x {0,1}* x {0,1})™:
Run the protocol from Theorem 2.12 on the (distributed) database D = (y1,¥y2,.--,Yn)
with privacy parameter ¢ and utility parameters a?, 3; thereafter, the referee obtains a
function ¢ : {0,1}* — [0, 1] that approximates all threshold queries w.r.t. D.
The curator on input S = (2;,y:,04)1, € ({0,1}¢ x {0,1}* x {0,1})™:

Sort S according to the y;’s in non-decreasing order.

Divide S into blocks of size am: Si,8S3,...,51/4. For £ € [1/a] we denote S; =

(Te,i, Y5, 00,0) 5%
For every £ € [1/a], apply an as-differentially private (a2, a3)-PAC learner for Parity
on the database Sy = (x4 0 1,00;)%™ € ({0,131 x {o, 1})am to obtain a vector
ke € {0,1}°t! (using Theorem 2.13), and end ky, ..., k; /4 to the referee.

The referee:
Obtain the function ¢ and the vectors ki, ..., ky/q-
Define a hypothesis h : {0,1}¢ x {0,1}* — {0,1} as h(z,y) = (x o 1,kr(y)), where

I(y) = [%1 and output h.
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The privacy properties of the protocol IT are straightforward, as both the local agents and
the curator apply e-differentially private computations: the local agents apply the algorithm
from Theorem 2.12, and the curator applies an ae-differentially private computation on each
of the blocks Si,...,851/, (note that changing one element of S can change at most one
element of each of these blocks).

We now proceed with the utility analysis. Fix a target function fli Z’t* € ParityThresh, .
and fix a target distribution D on {0,1}¢ x {0,1}*. We use D. and D;, to denote the
marginal distributions on {0,1}¢ and {0,1}?, respectively. We will make the simplifying
assumption that D, does not give too much weight on any single point in {0, 1}, specifically,
Pryp,[w = y] < 8/m? for every y € {0,1}". This assumption can be enforced by padding
every example with O(log(m/#)) uniformly random bits.

Let S and D (the inputs to the curator and the local agents) be sampled i.i.d. from D
and labeled by fzf, Z’t*. We next show that w.h.p. the resulting hypothesis i has low empirical
error on S. By standard generalization arguments, such an h also has low generalization
€error.

First observe that there is at most one index ¢* € [1/a] such that Thre(ye 1) #
Thri (Y« am). In all other blocks Sy we have that Thr«(-) is constant on all the y,;’s of that
block. We will show that w.h.p. the hypothesis h has small empirical error on every such
block. Fix ¢ # ¢*, and let v € {0,1} be the value of Thr.(-) on the y,;’s of the ¢th block
(that is, for every ¢ € [am] we have Thrs-(ye;) = v). Recall that since the elements of S are

labeled by ff) Z’t*, for every i € [am] we have that
o0 = fr" (@i, ye) = (K5 2ei) ® Thre (yo) = (K 200) v = (k" o, z4;01).

Hence, the elements of Sy are all labeled by the parity function defined by k* o v. Therefore,
as kg is the outcome of the learner from Theorem 2.13 on Sy, for m > O (ﬁ log(o%ﬁ)), with

probability at least 1 — o3 we have that errorSe(Parkz) < a2, that is, (k;, xo1) is a good
predictor for the label of the elements in block Sy.

Recall that the hypothesis h matches inputs (x,y) to the vectors ki, ..., k1, using the
function ¢ obtained from the local agents, that is, on input (z,y), the hypothesis uses kq(,)/a1-
Therefore, to complete the proof we need to show that most of the elements from block S, are
matched by the hypothesis h to the vector k;. To that end, let #g(w) = [{(z,y,0) € S:y <
w}|, and consider the following event E; : Vw € {0,1}" it holds that |g(w) — L - #g(w)| <
402

We first conclude the proof assuming that Event F; occurs. Fix £ # £*, and recall that
the elements of S (and in particular the elements of S;) are sorted in a non-decreasing
order according to their y;’s. Now fix 8a?m < i < am — 8a?m. By our simplifying
assumption (that the distribution D, does not put a lot of mass on any single point),
we may assume that all the y;’s in S are distinct, which happens with probability at
least 1 — 8. In that case, we have that #s(ye;) = max{0,¢ — 1} - am + i, and hence,
max{0,¢— 1} - a+8a? < L#4(y;) < max{0,{—1} o+ o —8a’ By Event E; we get that

max{0,¢ — 1} - a + 4a” < q(ys;) < max{0,£ — 1} - a + a — 4a?,

and so, [%-I = (. That is, for all but at most 16a?m elements of the block S, we get

that h(ze:,yei) = (veio 1, ke) = Parg, (e, ,y,.)- Recall that Parg, errs on at most o’m
elements of Sy, and so the hypothesis h errs on at most 17a?m elements of the block S;.
That is, h errs on at most 17a?m elements of every block Sy for £ # £*, and might err on all
of Sy« which is of size am. So, h errs on at most i -17a®m + am = 18am elements of S.
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Standard generalization bounds now state that, except with probability at most 3, we get
that errorp(h, f;ﬁ Ct) < O(a) (in particular, this follows from the generalization properties
of differential privacy; see Section 2.4 for more details). Overall, with probability at least
1 — O(pB) the resulting hypothesis has generalization error at most O(a).

It remains to show that Event F; occurs with high probability. First, Theorem 2.12
ensures that for n > O (QZ—B - log ( b )) with probability at least 1— 8 the function ¢ is such

&2 afe
that Vw € {0,1}" it holds that |q(w) — 2#4(w)| < a?, where #px(w) = {y € D:y<w}|
Second, by standard generalization arguments, assuming that n and m are big enough,
we would also have that 1# ,(w) and L#g(w) are both within o? from Pry.p,[y < w].
Specifically, by the Dvoretzky-Kiefer-Wolfowitz inequality [24, 45], assuming that n and m

are at least Q (ﬁ log(%)>, this happens with probability at least 1 — 8. Assuming that this

is the case, by the triangle inequality we have that Event E; holds. This shows that Event
E; happens with probability at least 1 — 35, and completes the proof. |

We remark that it is possible to design a more efficient learner for ParityThresh (in terms
of sample complexity) by constructing a protocol in which there are multiple rounds of
communication between the referee and the local agents (but this communication is still
independent from the message that the curator sends to the referee). See the full version of
this paper for more details [10]. We summarize our possibility and impossibility results w.r.t.
learning ParityThresh in the next theorem (which follows from Lemma 3.1 and Lemma 3.2
and from Lemma 3.3).

» Theorem 3.4. Let ¢ € N and b = c®. Then there is a non-interactive i—diﬁerentially
private (%, 1)-PAC learner for ParityThresh, . in the (m,n)-hybrid model with m = O(c)
samples for the curator and n = O(c®logc) local agents. However, every such learner in the
local model with 0(2(”/1°g")1/6) local agents requires 22"/ logn)*/%) rounds, and every such

learner in the curator model requires X(m?) samples.

4 The 1-out-of-2¢-parity task

In this section we describe a task that cannot be privately solved neither in the curator
model nor in the local model with sub-exponential number of rounds. In the hybrid model,
this task can only be solved with interaction, first with the local agents and then with the
curator. In this task there are many instances of the parity problem and the referee needs to
solve only one instance, which is determined by the inputs. The local agents can determine
this instance (using a heavy hitters protocol) and the curator can now solve this instance.
The curator cannot solve all instances since this will exceed its privacy budget, and by the
definition of the task the curator will not have enough information to determine the instance;
thus interaction with both the local agents and the curator is required.

» Definition 4.1 (The 1-out-of-2%-parity task). The inputs in the 1-out-of-2%-parity task are

generated as follows:

1. Input: 2% strings (rj)jeq0,134, where T € {0,1}° for every j € {0,1}d, and m + 1
elements s1,...,8m+1 € {0, l}d.

2. Sets =81 D5yt

4 The strings s1,. .., Smi1 are an m + l-out-of-m + 1 secret sharing of s, that is, together they determine
s, but every subset of them gives no information on s.
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3. Each sample x1,...,Tym and y1,...,Yn s generated independently as follows:
with probability half choose x €, {0,1}° with uniform distribution and output (x,
((z,75)) jeqo,134) (that is, every point contains a string x of length ¢ and 24 bits which
are the inner products of x and each of the r;’s).
with probability half choose t €, [m + 1] with uniform distribution and output (t, s;)
(that is, every point contains a number t and the t-th string s;).
The goal of the referee in the 1-out-of-2%-parity task is for every (Tj)je{o’l}d and S1,y ..., Sm+1
to recover rs with probability at least 1 — B, where the probability is over the generation of
the inputs in Step 3 and the randomness of the parties in the protocol.

We design a protocol for this task and obtain the following lemma (see the full version of
this paper for details [10]).
» Lemma 4.2. Let § > 1/m and assume that m = Q (M) andn = S (T—; log(%ﬂ))
The 1-out-of-2%-parity task can be solved in the (m,n)-hybrid model by an e-differentially
private protocol with three rounds, where in the first round each local agent sends one message
to the referee (without seeing any other messages), in the second round the referee sends one
message to the curator, and in the third round the curator sends one message to the referee.

We next prove that, unless the database is big, the l-out-of-2%-parity task requires
interaction. To prove this result, we first convert a protocol for the 1-out-of-2%-parity task
to a private algorithm in the trusted curator model that recovers all strings (r;) jefo,1ye-
We then prove, using a simple packing argument, that, unless the database is “big”, such
algorithm cannot exist. For our proof, we define the all-2¢-parity task as the task in which
all inputs are of the form (z, ((z,7;))c(0,132) and the goal of the referee is to reconstruct all

strings (1) je(0,134-

> Claim 4.3. Let m < n. If there is an e-differentially private protocol for the 1-out-of-2%-
parity problem in the (m,n)-hybrid model in which the curator and the referee can exchange
many messages and then the referee simultaneously sends one message to each local agent
and gets one answer from each agent, then there is an e-differentially private algorithm in
the trusted curator model for the all-2¢-parity problem for a database of size O(nd).

Proof. Let II be an e-differentially private protocol with the above interaction pattern for the
1-out-of-2%-parity task in the (m, n)-hybrid model in which the referee reconstructs r; with
probability at least 1 — 3. We construct, in three steps, an algorithm A for the all-2%-parity
task in the trusted curator.

First, we construct from II a protocol II' in the (O(md),O(dn))-hybrid model that
reconstructs 7, with error probability at most 3/2¢ (e.g., execute I with disjoint inputs O(d)
times and take the value r, that is returned in the majority of the executions).

Next, we construct from protocol I a protocol II” for the the all-2%-parity task in the
(O(md), O(nd))-hybrid model (with error probability < 8). In IT”, the parties holding inputs
of the all-2¢-parity problem simulate II' on inputs for the 1-out-of-2%-parity task as follows:

The curator on input (i, ((zi,75)) jefo,139) i1

Chooses random s1,. .., Sm+1 €r {0, 1}d.

For each ¢ € [m], with probability 1/2 replaces its i-th input by (¢;, s¢,) for a uniformly
distributed ¢; €x [m + 1].

Exchanges messages with the referee as specified by I’ on the new input. In addition
it sends to the referee si, ..., S;,+1 and an index ¢ such that (¢, sy) does not appear in
its new input.
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The referee after getting the message from the curator:
Chooses a set A C [n] with uniform distribution.
For every i ¢ A, sends its message in I’ to the i-th agent and gets an answer M; from
the agent.
For every i € A, chooses a random ¢; € [m+1]. Let B={i € A:q; = (}.
For every i € A\ B, computes (without any interaction) its message in II' to agent P;
and the answer M; of agent P; with input (g;, s, ).
For every i € B and s € {0,1}%, computes (without any interaction) its message in IT’
to agent P; and the answer M, s of agent P; with input (¢,s & @k# Sk)-

For every s € {0, 1}d, reconstructs 7, from the messages of the curator in II', (M;);¢ g,
and (M;s)ieB-

As the curator holds m samples and there are m + 1 values sy, ..., S;m+1, there exists an
index ¢ such that (¢, s¢) does not appear in the new input of the curator. Thus, the referee
for every s € {0, 1}d can choose a value s} such that it is consistent with the messages of the
curator in IT" and s = s, & @k# $g. Furthermore, each of z1,...,Zm,y1,..., ¥y, is replaced
with probability half with a value (¢, s;) for a uniformly distributed ¢, thus, these inputs are
distributed as required for the 1-out-of-2%-parity task. This implies that for every s € {0, 1}d
the referee reconstructs 7, from the messages of the curator in II', (M;);¢p, and (M; s)icn
with probability at least 1 — 3/2%. By the union bound, the referee correctly reconstructs all
(’l"j)je{ovl}d with probability at least 1 — .

Finally, we construct the desired algorithm A from II”. The trusted curator simply
simulates the referee, the curator, and the agent in ITI”, that is, it takes its database with
O((m + n)d) samples and partitions it to (z1,...,2o(ma)) (the input of the curator) and
Y1, - - > YO(nd), computes without any interaction a random transcript of II” on these inputs,
and reconstructs the output (r;) je{o,13e- Since the transcript preserves e-differential privacy
and computing the output is post-processing, algorithm A is e-differential private. <

> Claim 4.4. 1If there is exists an e-differentially private algorithm in the trusted curator
c2%+1In(1-8) )

€

model for the all-2%-parity task with strings of length ¢, then n = Q (

Proof. The proof is by a simple packing argument. For every strings (r;) je{0,1}9 with

probability at least 1 — /3, the algorithm returns (r;) je{0,1}4 when the samples are generated

with (r;) je{o,1}- By the group privacy of e-differential privacy, with probability at least

e~ "“(1—p) the algorithm returns (r;) ;¢ (o,13¢ When the samples are generated with (0°) ;g 13-
d d

As there are 2¢2° options for (’l"j)je{ojl}d and the above events are disjoint, 22 e~ "¢(1—f3) < 1,

ie., n:Q(M) <

€

» Lemma 4.5. Let m < n. If there is an e-differentially private protocol for the 1-out-of-2¢-
parity task in the (m,n)-hybrid model with 8 = 1/4 in which the curator and the referee can
exchange many messages and then the referee simultaneously sends one message to each local
agent and gets one answer from each agent, then n = Q(c2¢/de).

Proof. By Claim 4.3, if there exists an e-differentially protocol in the (m,n)-hybrid model for
the 1-out-of-2%-parity task, then there exists an e-differentially private algorithm in trusted
curator model for the all-2%-parity task with database of size O(dn). Thus, by Claim 4.4
with 8 = 1/4, dn = Q(<2%). <
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Lemma 4.5 is valid also if the local agents are allowed to hold a shared (public) random
string as this string can be sent by the referee to each agent as part of its message (without
adding extra rounds of communication). We summarize the possibility and impossibility
results for the 1-out-of-2%-parity task in the following theorem, where, for convenience, we
choose specific parameters that highlight these results.

» Theorem 4.6. Let e = 1/4, 3 = 1/4. For every integer c, there are d = O(logc), m = ©(c),

and n = O(c*logc) such that

1. There exists an e-differentially private protocol for the 1-out-of-2%-parity task with strings
of length ¢ in the (m,n)-hybrid model where first each local agent sends one message to
the referee and then the referee exchanges one message with the curator.

2. There does not exist an e-differentially private protocol for this task in the (m,n)-hybrid
model in which the referee first exchanges messages with the curator and then simultane-
ously exchanges one message with the local agents.

3. In any e-differentially private protocol for this task in the local model with n agents the
number of rounds is 24 = 29(v/n/logn)

4. There is no algorithm in the trusted curator model that solves this task with m examples.

Proof. Item 1 follows directly from Lemma 4.2.

For Item 2, by Lemma 4.5, with e = 1/4, 8 = 1/4, and d = 2log ¢ + loglog ¢, it must hold
that n = Q (c2%/(de)) = Q(c?), contradicting the choice of n = ©(c?log c).

For the impossibility result in Item 3, recall that by Fact 2.10 the number of messages
sent to the referee in an e-differentially private learning protocol in the local model for parity
of strings of length ¢ with respect to the uniform distribution is 2°(¢). By simple simulation,
an e-differentially private protocol in the local model for the 1-out-of-2%-parity task implies
an e-differentially private protocol in the local model for learning parity with respect to the
uniform distribution (with the same number of messages). Specifically, since the number of
agents is n = O(c? log ¢), the number of rounds is 2%(¢) /(¢? log ¢) = 22V "/ logn),

For Item 4, observe that a curator receiving m input points obtains less than m + 1 shares
of s and hence obtains no information about rs. Hence, such a curator cannot solve the
1-out-of-2"-parity task alone, even without privacy constraints. |

5 The parity-chooses-secret task

We now present another task that cannot be privately solved neither in the curator model
nor in the local model with sub-exponential number of rounds. This task can be solved
in the hybrid model; however, it requires interaction, this time first with the curator and
then with the local agents. This task (as well as 1-out-of-2%-parity task) highlights both the
information and private-computation gaps between the curator and the local model agents.
The local model agents receive enough information to solve the task, but lack the ability to
privately solve an essential sub-task. The curator does not receive enough information to
solve the task (even non-privately), however the curator can be used to privately solve the
hard sub-task. Once the hard sub-task is solved, this information is forwarded to the local
agents, which now can solve the task.

» Definition 5.1 (The parity-chooses-secret task). The inputs in the parity-chooses-secret

task are generated as follows:

1. Imput: A string r € {0,1}° and 2¢ vectors of m + 1 bits: a vector ($j1,...,8jm+1) €
{0,113 for every j € {0,1}°.
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2. Set sj =5j1® @ Sjmi1 for every for j € {0,1}°, i.e., s; is a random bit shared via
an m + l-out-of-m + 1 secret-sharing scheme, with the shares being sj1,..., 55 m+1-
3. Each sample x1,...,Tym and y1,...,Yn s generated independently as follows:
Choose x €, {0,1}° and t €, [m + 1] and output (x, (x,7),t, (s;¢)je01}c) (that is,
every point contains a string of length c, its inner product with r, an integer t, and the
t-th share of each s;).
The goal of the referee in the parity-chooses-secret task is for every ((sj71, e Sj’m+1))j€{0,1}c
and every r to recover s, with probability at least 1 — B, where the probability is over the
generation of the inputs in Step & and the randomness of the parties.

We design a protocol for this task and obtain the following lemma (see the full version of
this paper for details [10]).

» Lemma 5.2. Let § > 1/m and assume that m = ) (M) and n = Q (T—; log(%)).

The parity-chooses-secret task can be solved in the (m,n)-hybrid model by an e-differentially
private protocol with three rounds, where in the first round the curator sends one message to
the referee, in the second round the referee sends one message to the local agents, and in the
third round each local agent sends one message to the referee.

We next prove that, unless the database is big, the parity-chooses-secret task requires
interaction. Furthermore, we rule-out protocols in which first the referee simultaneously
sends one message to each local agent, then receives an answer from each local agent, and
finally exchanges (possibly many) messages with the curator. In particular, we rule-out
the communication pattern used in Lemma 4.2 for the 1-out-of-2%-parity task. To prove
this result, we first convert a protocol II for the parity-chooses-secret task with the above
communication pattern to a protocol II' in the hybrid model with the same communication
pattern for a similar task (which we call the parity-chooses-secret’ task, defined below). We
then convert the protocol II' to a non-interactive protocol II” in the local model for another
related task, and complete the proof by showing an impossibility result for the related task.

We define the parity-chooses-secret’ task as the task in which the input of the curator is
generated as in the parity-chooses-secret task and the input of each local agent only contains
shares, that is, it is of the form (2, (s;,t);je0,13)- The goal of the referee remains the same —
to recover s,..

> Claim 5.3.  Assume that m = () M) If there is an e-differentially private protocol

for the parity-chooses-secret task in the (m,n)-hybrid model with error at most 8 in which
in the first round the referee simultaneously sends one message to each local agent, in
the second round gets an answer from each agent, and then the referee and the curator
exchange (possibly many) messages, then there is a 2e-differentially private protocol for the
parity-chooses-secret’ task in the (m,n)-hybrid model with error at most 25 with the same
communication pattern.

Proof. Let II be an e-differentially private protocol for the parity-chooses-secret task in the
(m, n)-hybrid model with the communication pattern as in the claim in which the referee
reconstructs s, with probability at least 1 — 3. We construct from II a 2e-differentially private
protocol II" with the same communication pattern for the the parity-chooses-secret’ task
in which the referee reconstructs s, with probability at least 1 — 2. In II’, each agent P;,
holding an input (¢, (s;,¢)jef0,13¢), chooses with uniform distribution a string z; €x {0,1}°
and sends two messages of II, one message, denoted M; g, for the input (x;,0,%, (s5,t);e50,13°)
and one message, denoted M; 1, for the input (z;,1,¢, (s5¢);ef0,13¢). In addition, the agent
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sends x; to the referee. The referee sends the messages that it gets from the local agents
(i-e., (x4, My 0, Mi,l)ie[n]) and its random string to the curator. The curator does as follows:
Privately learns r by executing the e-differentially private algorithm of [43] (see Theo-
rem 2.13) for learning parity with o = 1/4, 8, and the m inputs (z, (z,r)).
For each agent P;, computes b; = (z;,7) and M; = M, ;, (that is, the curator chooses the
correct message from the two messages the agent sends).
Simulates the communication between the curator and the referee in II assuming that the
curator gets the messages (M;);e[n) in the first round and reconstructs s, as the referee
reconstructs it in II.
Sends s, to the referee.
As each party executes two e-differentially private algorithms on its input, the resulting
protocol is 2e-differentially private. Each agent P; chooses z; with uniform distribution (as
in the parity-chooses-secret task). Furthermore, as m is big enough, with probability at least
1 — B, the curator computes the correct value r. Thus, (z;,b;,1, (55,¢)je{0,13¢) is an input
distributed as required in the parity-chooses-secret task, and the curator reconstructs s, with
probability at most 1 — 2. <

We next state a result of [46] showing that the mutual information between the input and
output of a differential private algorithm is low. In this result and in the proofs that follow,
H(X) is an entropy of a random variable and I(X;Y") is the mutual information between
the random variables X and Y.

» Theorem 5.4 (Differential privacy implies low mutual information [46]). Let A: X™ — Y be
an e-differentially private mechanism. Then for every random variable V' distributed on X™,

we have I(V; A(V)) < 1.5en.

» Lemma 5.5. Assume that m =2 (M) If there is an e-differentially private protocol

for the parity-chooses-secret task in the (m,n)-hybrid model with error at most B in which
in the first round the referee simultaneously sends one message to each local agent, in the
second round gets an answer from each agent, and then the referee and the curator exchange
(possibly many) messages, then n > %

Proof. We convert the protocol for the parity-chooses-secret task to a protocol II” in the
local model with n agents, where the input of each agent contains 2¢ bits (s;);e(o,1}c- If the
inputs of all agents are equal, then for every r € {0,1}° the referee should output the bit s,
with probability at least 1 — 3. We will show at the end of the proof that such protocol can
exist only if n is big.

By Claim 5.3, under the assumption of the lemma there is a 2e-differentially private
protocol I’ for the parity-chooses-secret’ task in the (m,n)-hybrid model with error at most
28 and communication pattern is as in the lemma. We construct the following protocol I1”
in the local model with n agents:

Input of each agent P;: (s;);cf0,1}¢-

The referee chooses with uniform distribution 2¢ vectors of m + 1 bits: a vector

(51,1 85ma1) €x {0,1}™ T for every j € {0,1}°.

The referee chooses with uniform distribution m indices t1, ..., ¢, €x [m+ 1]™. Let £ be
an index that does not appear in this list.

The referee chooses with uniform distribution m strings (x1,...,z,) €x ({0,1}9)™.
The referee sends ((sj,1,---,5j,m+1))jefo,13 and £ to each agent.
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Each agent P; chooses with uniform distribution an index ¢ € [m+1]. If t # £, it sends to
the referee its message in II' on input ¢, (s;¢);e0,13e. If £ = £, it sends to the referee its

message in protocol II’ on input £, (sj @ @k# sj7k) oy Denote this message by M;.
je{0,1}¢

For every r € {0,1}°, the referee does the following:
Computes (without interaction) the communication, denoted M¢ ., exchanged in
IT" between the referee and the curator with input (i, (21,7),t1, (556 )5e{0,13¢)s
A (xm’ <1'ma 7‘>, tm, (Sj,tm)jé{(),l}“)'
The referee reconstructs s, from the messages M¢ ., My, ..., M, using the reconstruc-
tion function of IT'.

Protocol 11" is 2e-differentially private, since I is 2e-differentially private. Furthermore,
if all the inputs of the local agents are equal, then M¢ ., My, ..., M,, are distributed as in
IT, thus, for every r € {0,1}°, the referee reconstructs s, with probability at least 1 — 3.

We complete the proof by showing that n must be large enough in II” (hence, also in
IT). Assume we execute protocol II” when (s;);c0,13¢ is choosen with uniform distribution
and denote its input by (s;)jc(o0,13c and its output by (s});eq0,13c- As the output in I1”
is computed from the transcript of IT’, the post-processing property of differential privacy
implies that the algorithm that first executes protocol I’ and then computes the output
from the transcript is 2e-differentially private. By Theorem 5.4,

I((s5)jeq013e5 () jeq0,13¢) < 3en. (1)

On the other hand, Pr[s;, = s/ ] > 1 — 24 for a given jo € {0,1}°, thus H(s;,|(s})je{0,1}¢) <

H(sjo|s},) < 26, and H ((5)jef013°1(55)jeq0.13¢) < Xjocqonye H (5501(s5)jeq0,13¢) < 262°.
Thus,

I ((s5)jeq0,13¢5 (5)eq013e) = H ((s5)jeq0,13¢) — H ((55)jeq0,13¢1(55) jeqo,13¢)
> 2¢ —282¢ = (1 — 28)2°. 2)

Inequalities (1) and (2) imply that (1 — 23)2° < 3en. <
We next summarize the possibility and impossibility results for parity-chooses-secret.

» Theorem 5.6. Let e = 1/4, B = 1/4. For every integer c, there are m = O(c) and

n = O(c?logc) such that

1. There is an e-differentially private protocol for the parity-chooses-secret task with strings
of length ¢ in the (m,n)-hybrid model where first the curator sends one message to the
referee and then the referee simultaneously exchanges one message with each local agent.

2. There does not exist an e-differentially private protocol for this task in the (m,n)-hybrid
model in which the referee first simultaneously exchanges one message with the local agents
and then exchanges messages with the curator.

3. In any e-differentially private protocol for this task in the local model with n agents the
number of rounds is 2(¢).

4. There is no algorithm in the trusted curator model that solves this task with m examples.

Proof. Item 1 follows directly from Lemma 5.2. Item 2 is implied by Lemma 5.5, since
n < 2¢. Item 3 follows from Fact 2.10 as in the proof of Theorem 4.6. For Item 4, observe
that a curator receiving m input points obtains less than m+1 shares of (s1, ..., s;) and hence
obtains no information about s,. That is, such a curator cannot solve the parity-chooses-secret
task alone, even without privacy constraints. <
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6 A Negative Result: Basic hypothesis testing

Here, we show that for one of the most basic tasks, differentiating between two discrete
distributions Dy and Dy, the hybrid model gives no significant added power.

» Definition 6.1 (The simple hypothesis-testing task). Let 0 < 8 < 1 be a parameter, X be a
finite domain, and Dy and Dy be two distributions over X. The input of the hypothesis-testing
task is composed of i.i.d. samples from D; for some j € {0,1} and the goal of the referee is
to output j s.t. Pr[}' =j] > 1-p.

» Theorem 6.2. If there is an e-differentially private protocol in the (m,n)-hybrid model for
testing between distributions Do and Dy with success probability 1/2 4 ~, then either there is
an e-differentially private protocol for this task in the curator model that uses m samples and
succeeds with probability at least 1/2 4+ v/4 or there is an e-differentially private protocol for
this task in the local model with n agents that succeeds with probability at least 1/2 + /4.

Proof. Let II be a protocol guaranteed by the theorem, that is, when the inputs of the
curator and the local agents are drawn from Dj, the referee in II returns j with probability at
least 1/2+~. Consider an execution of the protocol when the inputs of the curator are drawn
from Dy and the inputs of the local agents are drawn from D; and let p be the probability
that the referee in II returns 1 in this case.

We first assume that p > 1/2 and show that there exists an e-differentially private protocol
I1'oca! for this task in the local model with n agents that succeeds with probability at least
1/2 4 /4. The referee in protocol I1'°°® with probability v/2 outputs 1 and with probability
1 — +/2 draws m samples from Dy, executes protocol II, where the referee simulates the
messages of the curator using the m samples, and returns the output of II.

We next analyze this protocol. If the inputs of the local agents are drawn from Dy, then
the probability that the referee in protocol II returns 1 is at least 1/2 and the probability that
the referee in I1'°°*! returns 1 is at least /24 (1 —+/2)-1/2 = 1/2+ /4. If the inputs of the
local agents are drawn from Dy, then the probability that the referee in I1'°®! returns 0 is at
least (1 —~/2)-(1/24+ ) > 1/2 4 ~/4 (since v < 1/2). For the case that p < 1/2, it can be
shown, using an analogous construction, that there exists an e-differentially private protocol
[Iewrator for this task in the curator model with m samples that succeeds with probability at
least 1/2 + /4. <

Recall that the total variation distance (also known as the statistical distance) of two
discrete distributions Dy, Dy over a domain X is drv (Do, D1) = supycx |D1(T) — Do(T)| =
13 ex |Di(z) — Do(z)|. The squared Hellinger distance between two distributions Dy, Dy

2
over a domain X is defined as dy2(Do,D1) = 3 >, cx (\/Do(x) - \/Dl(x)) . For the rest
of the discussion in this section, fix the domain X = {0,1}, and some « > 0. We define two

distributions Dy and D; where under Dy we have Pr, p, [z = 1] = (14 «) and under Dy we
have Pryp,[z = 1] = (1 — «). It is a fairly simple calculation to see that dv (Do, D1) = a

and %2 < dy2(Dy,Dy) < a?. We prove that for some setting of the parameters n and m,
the hypothesis-testing task between Dy and D; is impossible in the (m,n)-hybrid model.

The following Theorem follows by combining Theorem 6.2 with [40, Theorem 5.3] and
with [19, Theorem 3.5]. See the full version of this paper for more details. [10]

» Theorem 6.3. There are constants cg,c1 such that in the (m,n)-hybrid model, with
m < ¢g (é + i) andn <cg - ﬁ, there is no e-differentially private protocol that succeeds
in determining whether all m 4+ n input points are drawn from Dy vs. D1 w.p. > 0.75.
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