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ABSTRACT
The dearth of cumulate magmatic roots in accretionary orogens is a cornerstone of models 

that postulate redistribution of mass and energy within the crust for the genesis of intermedi-
ate to silicic magmatism. Likewise, the origin of the evolved Acadian (Devonian) plutonism in 
the New England Appalachians (northeastern USA) has long been explained by closed-system 
crustal melting due to the absence of associated coeval deep mafic counterparts. Here, we 
report the discovery of Acadian hydrous ultramafic cumulate rocks that formed by deep-
seated (∼1.1 GPa) fractional crystallization processes from a mantle-derived parental melt 
(Connecticut, southern New England, USA). These rocks are the first of their kind identi-
fied in the Appalachian orogen, and one of only a handful of preserved deep subarc hydrous 
cumulates worldwide. We propose a genetic link between the studied rocks and the evolved 
coeval plutonism in central-southern New England, where the former represent the missing 
deep cumulate roots of the same magmatic arc. Our findings support the hypothesis that dif-
ferentiation of mantle-derived hydrous magmas by fractional crystallization and assimilation 
processes in the deep crust is a fundamental process in the production of intermediate to 
silicic magmatism and the geochemical evolution of the continental crust.

INTRODUCTION
Whereas basaltic magmas constitute the 

main flux of material through the mantle-crust 
boundary in subduction zones, the bulk conti-
nental crust displays a more felsic, andesite-
like composition (Rudnick and Gao, 2014). 
Resolving this paradox requires a comprehen-
sive understanding of the genesis of intermediate 
to silicic magmas in accretionary orogens. An 
enduring model holds that significant evolved 
magmatism is produced in lower-crustal zones 
of anatexis, where the main mass contributor 
is preexisting crustal rocks (White and Chap-
pell, 1983; Davidson and Arculus, 2005; Sis-
son et al., 2005; Collins et al., 2020). An alter-
native view is that fractional crystallization of 
mantle-derived basalts following the formation 
of subarc ultramafic cumulates coupled with 
melting and assimilation processes in the lower 
crust are largely responsible for the production 
of evolved magmatism (Gill, 1981; Ague and 
Brimhall, 1988; Hildreth and Moorbath, 1988; 
Annen et al., 2006; Jagoutz and Kelemen, 2015). 
However, direct testing of the crystal-fraction-
ation linkage of deep ultramafic and/or mafic 
roots complementary to evolved magmatism has 

proven challenging because terranes exposing 
deep subarc magmatic crust are scarce.

Recent studies in the exhumed arc sections of 
Talkeetna (Alaska, USA), Kohistan (Pakistan), 
and Famatina (Argentina) as well as xenolith-
based crustal reconstructions and experimental 
results have demonstrated that subarc magmatic 
cumulates that formed by fractionation of hydrous 
magmas display distinctive geochemical signa-
tures (Greene et al., 2006; Jagoutz et al., 2011; 
Nandedkar et al., 2014; Walker et al., 2015; Mün-
tener and Ulmer, 2018; Melekhova et al., 2019). 
For instance, whereas cumulates produced after 
fractional crystallization of dry magmas at mid-
crustal levels display a continuous decrease of 
Mg# [Mg# = 100 × MgO / (MgO + FeO) molar 
proportions] with increasing SiO2 content, the 
cumulate line of descent (CLD) of hydrous paren-
tal magmas at subarc pressures (0.7–1.3 GPa) 
exhibits a Z-shaped trend in Mg# versus SiO2 
space (Müntener and Ulmer, 2018). Thus, these 
geochemical signals allow better testing of the 
links between ultramafic/mafic and evolved mag-
matic rocks in more complex settings such as 
accretionary orogens, where field relations are 
commonly obscured by intense tectonism.

The Acadian orogen of the northern Appala-
chians (New England, USA, and eastern Canada) 
is related to the collision of the microcontinent 
Avalonia with the Eastern margin of Laurentia 
(ca. 423–385 Ma) (Van Staal et al., 2009). Classic 
studies in New England attribute much of the oro-
gen’s associated intermediate to silicic plutonism 
to closed-system partial melting of a metasedi-
mentary crust triggered by crustal thickening 
and the associated radiogenic and shear heat-
ing (Lux et al., 1986; Chamberlain and Sonder, 
1990; Brown and Pressley, 1999). The paucity of 
identified mafic roots is a key argument in favor 
of such models. In contrast, Dorais and Paige 
(2000) and Dorais (2003) argued for the need of 
a mantle-derived component in the genesis of the 
Acadian plutonism in New England. Thus, this 
controversy embodies the debate on the processes 
behind the production of intermediate to silicic 
magmatism in accretionary orogens.

Here we present the discovery of a hydrous 
ultramafic/mafic mélange complex in the Aca-
dian orogen (southern New England, USA). 
Textural relations, whole-rock and in situ min-
eral geochemistry, and zircon U-Pb and Lu-Hf 
isotopic data reveal that the rocks represent the 
missing subarc hydrous cumulate roots of the 
Acadian orogen in the New England Appa-
lachians. We suggest that the segregation of 
hydrous ultramafic cumulates from mantle-
derived parental melts in a deep crustal hot zone 
was a fundamental process driving the genesis 
of evolved Acadian plutonism.

GEOLOGICAL AND PETROLOGICAL 
BACKGROUND

The field area lies within the Brimfield Schist 
in the Central Maine terrane, a lithotectonic unit 
of the Acadian orogen in New England (Figs. 1A 
and 1B). Ultrahigh-temperature (∼1000 °C, 
∼1 GPa) and high-pressure (∼1040 °C, ∼1.8 GPa) 
metamorphic rocks of the Brimfield Schist indi-
cate that the thrust sheets of the southern Central 
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Maine terrane sampled the Acadian orogenic 
roots during the assembly of composite Laurentia 
(Ague et al., 2013; Keller and Ague, 2018). The 
studied rocks are olivine-pyroxene hornblendites, 
olivine-hornblende pyroxenites, norites and/or 
orthopyroxenites, hornblendites (hereafter ultra-
mafic rocks), and gabbros and common anortho-
site veins (hereafter mafic rocks). They occur as 
a mélange of decimeter to multi-meter blocks 
along thrust faults within a sequence of metasedi-
mentary and metavolcanic rocks (Figs. 1C and 
1D). The mélange matrix preserves a carbon-
ate-bearing amphibole-chlorite-talc assemblage 
(Fig. 1D). The rocks are generally fresh with rare 
olivine serpentinization and phlogopite chloriti-
zation. They dominantly consist of large amphi-

bole (<3 cm) and orthopyroxene (<20 cm) oiko-
crysts enclosing submillimeter cumulus olivine, 
orthopyroxene, phlogopite, and rare clinopyrox-
ene (Figs. 2A–2C). Hornblendites and anortho-
sites display subhedral to idiomorphic granoblas-
tic textures (Fig. 2D). In the most differentiated 
norites and gabbros, plagioclase appears as an 
intercumulus phase (Fig. 2E). Detailed petro-
graphic descriptions are provided in Section S1 
of the Supplemental Material1.

RESULTS
Bulk-Rock Geochemistry

The ultramafic rocks display elevated Mg# 
(70.4–83.5) at variable SiO2 contents (41.4–
53.4 wt%) (Fig. 2F). Their Al2O3 contents are 
relatively low (5.6–10.3 wt%, excepting horn-
blendites) and correlate with increasing SiO2 
(Fig. 2G). The lower Al2O3 concentrations in 
the SiO2-poorer samples correspond to lower 
CaO (1.4–9.8 wt%). This is consistent with 
Al2O3 and CaO being dominantly hosted by 
amphibole and with the scarcity or absence 
of clinopyroxene and plagioclase. In contrast, 
the mafic rocks display a wider range of Mg# 
values (77.3–41.8) that correlate directly with 
SiO2 (47–51.8 wt%) and inversely with Al2O3 

1Supplemental Material. Detailed petrographic 
descriptions, methods, modeling, and tables. Please 
visit https://doi​.org/10.1130/GEOL.S.12921599 
to access the supplemental material, and contact 
editing@geosociety.org with any questions.
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Figure 1.  (A) Geologic map of the major terranes of New England, USA (Aleinikoff et al., 2007). ME—Maine; NH—New Hampshire; VT—Vermont; 
MA—Massachusetts; CT—Connecticut; RI—Rhode Island. (B) Detailed geologic map and cross section of the study area (Rodgers, 1985). 
Major thrust faults are labeled. (C,D) Field relations of ultramafic/mafic mélange rocks. Qtz—quartz; Felds—feldspar.
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(8.2–19.2 wt%) and CaO (6.1–11.4 wt%), con-
sistent with a modal increase of intercumulus 
plagioclase (Figs. 2F and 2G). The entire suite 
has elevated FeO (mean ∼11 wt%) and TiO2 con-
centrations (mean ∼0.85 wt%; Table S1 in the 
Supplemental Material).

Zircon U-Pb and Lu-Hf Isotope 
Constraints

Zircons from an olivine-pyroxene horn-
blendite and an orthopyroxenite were analyzed 
for their U-Pb (Figs. 3A–3G; Table S2) and 
Lu-Hf isotopic compositions (Fig. 3H; Table 
S3) to constrain their timing of crystallization 

and the source of the parental magmas. Most 
zircons have subhedral to anhedral forms and 
inner domains with typical oscillatory magmatic 
zonation (Figs. 3C–3F). The zircons from the 
olivine-pyroxene hornblendite record four main 
episodes at 410 ± 4.6, 392.6 ± 4.4, 360.7 ± 4.2, 
and 337.4 ± 3.9 Ma (2σ) (Fig. 3A). The zircons 
from the orthopyroxenite record two dominant 
episodes at 406.6 ± 5.5 and 359.2 ± 4.2 Ma (2σ) 
(Fig. 3B). Several individual grains have older 
cores and significantly younger overgrowths 
(Figs. 3D and 3F). The range of εHf(t) values for 
all zircons is between 4.2 and −3.7 (Fig. 3H). 
Whereas the εHf(t) values for zircons from the 

olivine-pyroxene hornblendite are always posi-
tive (0.4–4.2; n = 29), zircons from the orthopy-
roxenite range from −3.7 to 1.5 (n = 43), with 
74% of the zircons having negative values.

Temperature, Pressure, and Nature of the 
Parental Magma

We use in situ mineral compositions from 
a high-Mg# and low-SiO2 ultramafic rock to 
constrain the petrogenesis of the studied rocks. 
Two-pyroxene thermobarometry (Putirka, 
2008, and references therein) indicates equili-
bration temperatures of 1025 58

116± °C and pres-
sures of 1 1 0 27

0 24. .
.±  GPa (Fig. 4A; Tables S4, S5). 
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Thermobarometric estimates based on the 
composition of pristine and clearly magmatic 
amphibole using the approaches of Ridolfi and 
Renzulli (2012) and Larocque and Canil (2010) 

yield consistent values at 995 11
7± °C and 1 13 0 08

0 06. .
.±  

GPa, and ∼1.2 ± 0.1 GPa, respectively (Fig. 4A; 
Table S6). These estimates indicate depths of 
40–45 km and are compatible with those obtained 

for the associated ultrahigh-temperature meta-
morphic rocks (>1 GPa; Ague et al., 2013).

Considering our petrographic observations 
(Figs. 2A and 2B), we assume that the parental 

Figure 4.  (A) Two-
pyroxene (gray circles) 
and amphibole (white 
circles) thermobarometry. 
Star indicates mean 
two-pyroxene pressure-
temperature (P-T) value. 
(B) Simplified geological 
model of tectonic and 
petrogenetic processes 
for genesis of evolved 
Acadian plutonism in 
central-southern New 
England, USA.
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melt was in equilibrium with amphibole. Thus, 
we estimate the parental magma composition 
by means of the Fe/Mg partitioning between 
amphibole and basaltic melt. Calculated equi-
librium parental melts using representative horn-
blende (Mg# 81–82) have a Mg# between 56 
and 63 (Kdamph liq

Fe Mg
/

/  [Fe/Mg partition coefficient 
between amphibole and liquid] = 0.31 to 0.38; 
Pichavant and Macdonald, 2007; Table S6).

DISCUSSION
Deep Subarc Hydrous Magmatic 
Cumulates

The elevated Mg# of the ultramafic rocks 
(Mg# ∼77 and as much as 28.2 wt% MgO) as 
well as their distinctive orthocumulate to adcu-
mulate textures are best explained by the accu-
mulation of a liquidus assemblage of a primitive 
parental melt. In contrast to the FeO- and TiO2-
poor cumulates formed at mid-ocean ridges, 
the elevated FeO and TiO2 concentrations of 
the cumulates studied here are similar to those 
formed in subarc settings (Chin et al., 2018).

Cumulates from hydrous parental magmas 
at subarc pressures define three distinctive seg-
ments in the Mg# versus SiO2 and Al2O3 ver-
sus SiO2 spaces (Jagoutz et al., 2011; Walker 
et al., 2015; Müntener and Ulmer, 2018). The 
first segment denotes an increase in SiO2 at high 
Mg# and relatively low Al2O3 (Figs. 2F and 2G). 
The second segment is characterized by a SiO2 
and Mg# decrease and a significant increase in 
Al2O3 (Figs. 2F and 2G). The third segment rep-
resents an increase in SiO2 at low Mg# and high 
Al2O3. The suite of cumulate rocks studied here 
clearly reproduce the first and second segments 
of this CLD (Fig. 2F). Thus, the major-element 
systematics and CLD of the studied ultramafic/
mafic rocks also reveal a deep (∼1.1 GPa) subarc 
hydrous origin.

Although the most primitive ultramafic 
cumulates studied here display lower Mg# 
and higher Al2O3 contents compared to those 
of the Talkeetna and Kohistan sections, their 
CLD closely resembles that of the Famatina 
arc section (Walker et al., 2015; Fig. 2F). Such 
compositions could result after differentiation 
of primary melts prior to the segregation of the 
cumulate rocks via earlier fractional crystalli-
zation or melt-rock reaction. This is consistent 
with the relatively low Mg# nature (56–63) of 
the parental melt, which matches the parental 
melts in Famatina (Walker et al., 2015).

Crystallization Age and Source of Magmas
The zircon U-Pb ages record the Acadian, 

Neoacadian, and early Alleghanian orogenies 
of the northern Appalachians (Figs. 3A and 
3B). Magmatic cores indicate that the cumulate 
suite formed during the Acadian crust-forming 
event ca. 410 Ma. Mantling overgrowths rep-
resent recrystallization processes during the 
subsequent orogenic events (Figs.  3D and 

3F). Positive εHf(t) values for the zircons in the 
olivine-orthopyroxene hornblendite indicate 
that the parental magma derives from a Lu-Hf 
radiogenic source (Fig. 3H). Thus, although the 
parental melt was evolved with respect to a pri-
mary mantle melt during the crystallization of 
the cumulates (Table S6), the εHf(t) shows that it 
originated from a mantle source. Conversely, 
the range of εHf(t) values found in zircons from 
the orthopyroxenite (−3.7 to 1.5) suggests that 
the mantle-derived parental magmas underwent 
assimilation of crustal material during evolution 
in the deep crust (Fig. 3H).

Linkage to Evolved Acadian Plutonism in 
New England

The Acadian plutonism in central-southern 
New England was emplaced within the same 
magmatic arc and includes calc-alkaline plutons 
of the Merrimack belt (ca. 400 Ma; Watts et al., 
2000), the New Hampshire Plutonic Suite (e.g., 
Kinsman Granodiorite: 411 ± 19 Ma; Bethle-
hem Granodiorite: 410 ± 5 Ma; Spaulding 
Tonalite: 393 ± 5 Ma; Dorais, 2003), and other 
metaigneous (e.g., Canterbury Gneiss), gabbroic 
(e.g., Lebanon gabbro), and related intrusions 
(Emerson, 1917; Snyder, 1964; Fig. 2F).

Our zircon U-Pb data reveal a remarkable 
temporal link with the evolved Acadian pluto-
nism in central-southern New England (Fig. 3), 
indicating a potential genetic relationship. 
Importantly, Dorais (2003) showed that the gen-
esis of much of the Acadian plutonism involved 
a mantle and/or lower crust magmatic compo-
nent. One possibility is that the ultramafic/
mafic hydrous cumulates represent a source of 
fluids that triggered fluxed-crustal melting of 
the overlying crust (Collins et al., 2020). Alter-
natively, they could represent the residues left 
after fractional-crystallization processes that led 
to the production of derivative evolved Acadian 
magmas. Available data for the New Hampshire 
Plutonic Suite shows decreasing Dy/Yb with 
increasing SiO2 weight percent, suggesting 
amphibole fractionation during differentiation 
(excepting some samples with SiO2 >65 wt%; 
Fig. 2H; Davidson et al., 2007). This trend con-
verges well with that of the rocks studied here, 
and in view of their amphibole-dominated CLD, 
a crystal-fractionation linkage to the evolved 
Acadian plutonism in central-southern New 
England is plausible.

To test this, we provide a fractional crys-
tallization-assimilation model adopting the 
approach of Jagoutz (2010). The composition 
of the parental melt, fractionated cumulates, 
and assimilated material are provided in Table 
S7. Results show that fractionation of the stud-
ied hydrous cumulates, including some crustal 
assimilation, can produce significant SiO2-rich 
(∼60 wt%) derivative magmas (Fig. 2F). Further 
SiO2 enrichment would require additional frac-
tionation, assimilation, and/or partial melting 

at shallower crustal levels. The above discus-
sion supports a genetic relationship between the 
hydrous cumulate rocks and the evolved coeval 
plutonism in New England, where the former 
constitutes the missing cumulate roots of the 
same Acadian magmatic arc (Fig. 4B).

CONCLUSIONS AND IMPLICATIONS
We report the discovery of a hydrous ultra-

mafic/mafic mélange complex in the southern 
Central Maine terrane of the New England 
Appalachians. Textural relations, whole-rock 
and mineral major-element systematics, and 
zircon U-Pb and Lu-Hf isotope geochemistry 
reveal that the rocks are ultramafic/mafic mag-
matic cumulates crystallized from a mantle-
derived hydrous parental melt in the lower crust 
(40–45 km depth) during the Acadian orogeny. 
We suggest that they represent the missing sub-
arc cumulate roots complementary to much of 
the Acadian plutonism in New England. Our 
findings indicate that the production of the inter-
mediate to silicic Acadian magmatism involved 
the differentiation of mantle-derived parental 
melts after the segregation of hydrous ultramafic 
cumulates and concurrent assimilation processes 
in a deep crustal hot zone (Fig. 4B), in con-
trast to models involving only closed-system 
crustal melting. Our results are consistent with 
the hypothesis that the formation of subarc ultra-
mafic magmatic cumulates is a necessary step 
in the genesis of evolved magmatism and the 
geochemical evolution of the continental crust.
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