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You’re Not You When You’re Angry:
Robust Emotion Features Emerge by

Recognizing Speakers
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Abstract—The robustness of an acoustic emotion recognition system hinges on first having access to features that represent an
acoustic input signal. These representations should abstract extraneous low-level variations present in acoustic signals and only
capture speaker characteristics relevant for emotion recognition. Previous research has demonstrated that, in other classification tasks,
when large labeled datasets are available, neural networks trained on these data learn to extract robust features from the input signal.
However, the datasets used for developing emotion recognition systems remain significantly smaller than those used for developing
other speech systems. Thus, acoustic emotion recognition systems remain in need of robust feature representations. In this work, we
study the utility of speaker embeddings, representations extracted from a trained speaker recognition network, as robust features for
detecting emotions. We first study the relationship between emotions and speaker embeddings and demonstrate how speaker
embeddings highlight the differences that exist between neutral speech and emotionally expressive speech. We quantify the
modulations that variations in emotional expression incur on speaker embeddings and show how these modulations are greater than
those incurred from lexical variations in an utterance. Finally, we demonstrate how speaker embeddings can be used as a replacement
for traditional low-level acoustic features for emotion recognition.

Index Terms—emotion recognition, speaker recognition, speaker embeddings, speaker representations, transfer learning
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1 INTRODUCTION

THE automatic detection of emotion from the acoustics of
speech can help improve human-machine interaction by

providing the necessary context to interpret and appropriately
react to the behaviors of users. The features used to describe
the acoustic signal are a crucial aspect of any emotion recogni-
tion model. Consequently, various features have been proposed
in the literature for the task of speech emotion recognition
(e.g., [1], [2], [3]). However, the extraction of many of these pro-
posed features is susceptible to distortions due to variations in
lexical content, the presence of environmental noise, or domain
shifts. As a result, there remains a need for robust paralinguistic
features that abstract extraneous low-level variations present in
the acoustic signal and only capture speaker characteristics that
are necessary for predicting emotions.

Previous research has shown that neural networks trained
discriminatively on large and diverse datasets learn to extract
robust features that are invariant to noise and domain-shifts
(e.g., [4], [5]). These features are obtained from intermediate
representations that the trained networks extract from the input
signal. However, the main requirement for learning power-
ful features using neural networks is access to large labeled
datasets; a requirement that is still challenging to fulfill in the
affective computing community in general, and in the emotion
recognition community in particular. The challenges associated
with finding media sources that provide varied emotional data
as well as the challenges associated with annotating the data
with accurate emotion labels are the driving reasons behind
the data sparsity problem in emotion recognition.
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Many paralinguistic tasks are closely related, and thus,
the representations extracted while solving one paralinguistic
task can be used for solving other tasks [6], [7]. Specifically,
previous research showed that representations learned while
solving the emotion recognition task are useful for solving
other paralinguistic tasks, such as gender detection and speaker
identification [7]. However, unlike emotion recognition, speaker
recognition does not suffer from the problem of data sparsity;
there are multiple large-scale datasets with speaker labels
(e.g., [8], [9], [10]). In this work, we ask if speaker recognition
can help emotion recognition by attenuating the challenges
that come with having limited amounts of labeled emotion
data. We hypothesize that we can improve emotion recogni-
tion performance by leveraging speaker embeddings, feature
representations trained for the speaker recognition task. Our
work complements previous research by demonstrating that
speaker embeddings can be used as a replacement to common
paralinguistic features in emotion recognition applications.

We propose to study the relationship between emotion
and speaker embeddings and assess the embeddings’ utility
as general paralinguistic features. First, we quantify the effect
of emotion on speaker embeddings to determine if the speech
characteristics that the embeddings capture can be used for
recognizing emotional expression. We hypothesize that emo-
tionally charged vocal expressions change speech characteris-
tics that are captured by speaker embeddings (i.e., speakers
sound less like themselves when their vocal expressions are
emotionally charged). This hypothesis is supported by existing
work, which studied the effect of emotion on speaker represen-
tations (e.g., i-vector), focusing on changes in the equal error
rate (EER) in speaker verification tasks [11], [12], [13], [14].
However, the focus on the EER metric obfuscated the utility
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of speaker embeddings as paralinguistic features because the
EER metric, as used in speaker verification tasks, measures
the performance as a function of a general population of
test speakers. In other words, although emotionally charged
vocal expressions might change how identity is encoded for
a certain speaker, individual speakers might still sound more
like themselves when compared to a general population of
other test speakers. In this work, we instead quantify the effect
of emotion on speaker representations by hypothesizing that
representations extracted from neutral speech, as a group,
has more intra-group similarity, compared to the similarity
between neutral and emotional speech. We test this hypothesis
using a novelty detection framework, implemented using au-
toencoders, with reconstruction error as a proxy for similarity.
The benefit to this paradigm is that it allows us to ask not
whether the emotional speech belongs to a different speaker,
but instead if the differences in emotional speech are captured
by speaker representations. Our results suggest that emotional
speech significantly changes speaker embeddings from their
neutral representation and that these changes can be utilized
in a novelty detection framework for detecting non-neutral
speech.

Next, we assess the effectiveness of speaker embeddings for
detecting emotions by comparing them not only to state-of-
the-art paralinguistic features but also to emotion recognizers
from the literature. We expect speaker embeddings to be more
robust to the variations introduced by domain shifts com-
pared to common paralinguistic features used in the emotion
recognition literature. This is because neural networks used for
extracting the speaker embeddings are trained on large and
in-the-wild datasets, which make the extracted embeddings
invariant to changes in recording conditions and background
noises. As a result, we expect speaker embeddings to capture
high-level speaker characteristics that can be beneficial for
recognizing emotionally expressive speech while abstracting
any low-level variations present in the acoustic signal. We
test this hypothesis by running both within-corpus and cross-
corpus emotion recognition experiments. Cross-corpus setups
make the emotion recognition task more challenging as trained
models cannot rely on spurious correlations that exist within
a dataset to make predictions. Our results demonstrate that
emotion recognition models that use speaker embeddings as
features outperform those that use state-of-the-art paralinguis-
tic features, especially in cross-corpus settings.

To summarize, the novelty of this work is three-fold: (1)
we demonstrate how speaker embeddings highlight the dif-
ferences that exist between neutral speech and emotionally
expressive speech; (2) we show how speaker embeddings can
be used in a novelty detection framework for establishing a
baseline of how a speaker sounds in the neutral state, and
for detecting deviations from this baseline neutral state; and
(3) we demonstrate how speaker embeddings provide a robust
replacement to general paralinguistic features for recognizing
emotional expression. The remainder of this paper is organized
as follows. Section 2 covers related work. Section 3 covers the
proposed approach. Section 4 covers the datasets used in our
work. Sections 5 and 6 cover the experiments and results.
Finally, Section 7 includes concluding remarks and proposed
future directions.

2 RELATED WORKS

2.1 Speaker Representations and Emotional Speech
There are several works that studied the relationship between
speaker representations and emotional speech. In this section,
we cover works that looked at this relationship as it relates
to traditional (e.g., i-vectors) and neural speaker representa-
tions. i-vectors are common representations used in speaker
identification and verification applications [15]. They capture
several sources of variation (e.g., identity, age, gender) present
in the acoustic signal as represented by the Gaussian mix-
ture model (GMM) mean supervector. More recently, neural
representations have outperformed their i-vector counterparts
(e.g., [16], [17], [18]). These representations are extracted from
the intermediate layers of a neural network that was discrim-
inatively trained to classify speakers. Some common neural
representations introduced in the literature include the d-
vector and x-vector representations [9], [17], [17], [18], [19].

One question with these representations is how other
modulations (e.g., emotion) change their ability to recognize
speakers. Previous research used degradation in the EER metric
in a speaker verification task as a proxy for quantifying the
effect of emotion on speaker representations [12], [13], [14],
[20]. However, one limitation with the use of the EER metric
for this purpose is that it measures both the inter- and intra-
speaker variations in the representations. In other words, the
negative samples used when evaluating the EER for a speaker
always came from a different speaker (i.e., a speaker is always
compared to other speakers). So the metric will only be affected
if the variations due to emotions are bigger than those due to
changes in speaker identity. In contrast, we study how emotion
modulates speaker representations by treating neutral speech
from a given speaker as a group, and determining if this group
has more intra-group similarity, compared to the similarity
between neutral and emotional speech. The similarity measure
is used as a proxy for the amount of modulation that emotion
incurs on the speaker representations. The benefit of this
approach is that it allows us to determine if differences in
emotional speech are captured by speaker recognition features.

2.2 Speech Representations for Emotion Recognition
Many of the contributions in the early works in emotion
recognition came from engineering features to reflect emotion
variations in speech. Several of these features were borrowed
from acoustic analysis studies done on speech segments ex-
tracted from individuals displaying different emotions while
performing various tasks [21], [22]. One of the most common
paradigms for extracting acoustic features for emotion recogni-
tion involves two steps. First, low-level-descriptors (LLDs) are
extracted using a short sliding window (e.g., extracted every
25 milliseconds) applied to the acoustic signal. Then, a set
of statistical functions are applied to these LLDs to get a
feature representation of an utterance. Some popular feature
sets that were developed include the INTERSPEECH 2009 (IS09)
Emotion Challenge features, the INTERSPEECH 2013 Computa-
tional Paralinguistics ChallengeE (ComParE), the Geneva Min-
imalistic Acoustic Parameter Set (GeMAPS), and the extended
Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) [1], [2],
[3], [23]. The benefit of this paradigm is that it allows for a
description of how properties of the low-level acoustic features
change over the course of an utterance, obviating the need for
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a detailed focus on the short-time dynamical properties of the
features.

Yet, the short-time dynamical properties of acoustic fea-
tures convey critical cues into an individual’s emotions. Previ-
ous research has demonstrated how the application of statisti-
cal functionals in the feature extraction process can obfuscate
these cues and has shown that modeling the acoustic features
directly in neural networks can alleviate this problem [24].
However, one challenge with using low-level acoustic features
(e.g., MFCCs, pitch, etc.) to directly predict emotion is that
their extraction can be significantly affected by variations in
the recording conditions or variations in the lexical content of
the utterance [25]. In other words, the features extracted from
an utterance can look different depending on what the speaker
said or depending on the environment of the speaker during
the recording.

Representation learning, through the use of neural net-
works, has been shown to be an effective way to learn
powerful features that are invariant to lexical content and
recording conditions (e.g., [26], [27]). As a result, more re-
cent approaches to emotion recognition from speech have
focused on using neural networks to train recognition models
that rely on minimally engineered features. These works have
used spectrograms, filterbanks, or raw-waveforms for building
emotion recognition models [28], [29], [30]. However, datasets
used for building speech emotion recognition models remain
significantly smaller than those used for building other speech
models (e.g., speaker recognition). This hinders the ability of
neural networks trained for the task of emotion detection to
extract robust representations from the acoustic signal to be
used in other domains or applications.

In this work, we show that features extracted from a neural
network that was trained for speaker recognition can be used
as general features for detecting emotions. We demonstrate
how emotional expression modulates speaker embeddings
from their neutral representation, and demonstrate how these
modulations can be used for detecting emotional expression.
Finally, we show that speaker embeddings can outperform
traditional state-of-the-art features in challenging cross-corpus
emotion recognition tasks.

3 METHOD

In this work, we propose the use of speaker embeddings as
a replacement to traditional paralinguistic acoustic features for
the recognition of emotions. We introduce speaker embeddings
and the model used to extract them in this section.

3.1 Speaker Embeddings

Speaker embeddings are fixed-size vector representations of
variable-length utterances. They are typically used in speaker
recognition and diarization tasks [9], [17], [18], and can also
be used for adapting acoustic models in automatic speech
recognition systems [31]. The current standard for extracting
robust speaker embeddings is by taking the outputs from an
intermediate layer of a neural network that was discriminatively
trained to identify speakers from a large set of individuals.
Common speaker embeddings from the literature include d-
vectors, x-vectors, and embeddings extracted from the VGG-M
speaker identification network [9], [17], [18].

Speaker recognition neural networks map low-level acoustic
features (e.g., Mel-filterbanks, MFCCs, spectrograms) extracted
from utterances to speaker identities present in the training set.
The representations (i.e., transformation) that such networks
learn in the process can be used for extracting general embed-
dings to represent utterances from new speakers not seen in the
training phase. These representations encode speech charac-
teristics needed for recognizing speakers but abstract low-level
variations that are not needed for recognizing speakers.

3.2 The x-vector Model

We focus our work on speaker embeddings extracted from the
x-vector model as described in [18], [26]. We choose to work
with the x-vector system because it has been demonstrated that
it provides state-of-the-art embeddings for speaker recognition
and diarization applications [18], [32], [33], [34], and because
it is built on top of the open-source Kaldi toolkit [35]. The
network used for extracting x-vectors is summarized in Table 1,
and it consists of three parts: (1) frame-level feature extraction
sub-network; (2) statistics pooling layer; and (3) and utterance-
level classification sub-network.

The frame-level feature extraction sub-network takes in a
sequence of 30-dimensional MFCC frames, where each frame
represents 25 millisecond and outputs a sequence of 512-
dimensional features. It consists of five layers with a time-delay
architecture. The first layer stacks the current frame at t with
context frames from the previous two and the next two time
steps. The second and third layers stack the current frame at t
with context frames t ±2 and t ±3, respectively. The fourth and
fifth layers do not add any context frames and only transform
the representations at the current frame. The statistics pooling
layer summarizes the frame-level features by taking the mean
and standard deviation across the time dimension. Finally, the
utterance-level classification sub-network consists of two fully-
connected layers and a softmax layer for classifying speakers.

Given a variable-length utterance by a speaker that was
not seen in the training phase, a fixed-size representation for
this utterance can be obtained by taking the output of the
“segment6” layer (before the non-linearity) from the neural
network summarized in Table 1. We use the outputs of “seg-
ment6” layer as our embeddings for two reasons. First, previous
research has suggested that they encode information relating to
emotion, speaking style, and speaking rate [32], [36]. Second,
previous research found that they are better equipped than
other outputs for capturing speaker characteristics in speaker
verification tasks [26].

4 DATASETS

4.1 IEMOCAP

The interactive emotional dyadic motion capture (IEMOCAP)
dataset was collected to study audio-visual emotional expres-
sion in dyadic interactions [37]. Interactions in the dataset were
recorded from five dyadic sessions, each between a male and
a female actor. In each session, the actors perform a series of
scripted and improvised scenarios designed to elicit emotion
expression. The dataset contains approximately 12 hours of
speech from 10 speakers (five males and five females).

The recordings from each interaction were manually seg-
mented into utterances based on speaker turns in the dialogue.
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TABLE 1: The network architecture used in the speaker identifi-
cation task taken from [26]. Speaker embeddings are extracted
from the segment6 layer. N is the total number of speakers
used in the training phase. T is the total number of frames in
an utterances. The input size of 150 for the frame1 layer is the
result of stacking five context frames, each with a size of 30.
The input sizes of 1536 for the frame2 and frame3 layers are a
result of stacking three context frames, each with a size of 512.

Layer Layer context Total context Input × Output

frame1 [t −2, t +2] 5 150×512
frame2 {t −2, t , t +2} 9 1536×512
frame3 {t −3, t , t +3} 15 1536×512
frame4 {t } 15 512×512
frame5 {t } 15 512×1500

stats. pooling [0,T ) T 1500T ×3000
segment6 {0} T 3000×512
segment7 {0} T 512×512
softmax {0} T 512×N

Each utterance was then annotated for emotion using both the
categorical and dimensional definitions of emotion. We use the
categorical representation of emotion in this work and focus on
utterances that received majority agreement. The final subset
that we use contains 1,636 happy, 1,103 angry, 1,708 neutral,
and 1,084 sad utterances, giving a total of 5,531 utterances.
We combine happy and excited utterances to form our happy
category.

4.2 MSP-IMRPOV
The MSP-IMRPOV dataset was collected to study audio-visual
emotional expression in dyadic interactions while maintaining
partial control over lexical content [38]. Interactions in the
dataset were recorded from six dyadic sessions, each between a
male and a female actor. The actors in each dyadic interaction
improvise scenarios that lead one of them to utter a target
sentence in a specific emotion. This approach of eliciting
emotion was designed to maintain the spontaneous nature
of the interaction while controlling for lexical content. Overall
the dataset contains approximately 9 hours of speech from 12
speakers (six males and six females).

Similar to the recordings in IEMOCAP, the ones in MSP-
IMPROV were manually segmented into utterances based on
speaker turns from each dialogue. The resulting utterances
were then annotated for emotion following both the categorical
and dimensional definitions of emotion. We use the categorical
representation of emotion and utterances that received ma-
jority agreement by annotators. The final subset that we use
contains 2,644 happy, 792 angry, 3,477 neutral, and 885 sad
utterances, giving a total of 7,798 utterances.

4.3 VESUS
One limitation with both the IEMOCAP and MSP-IMPROV
datasets is that they have very few utterances where the lexical
content is the same but the emotion varies; making it difficult
to study the influence of emotion and lexical variations on
the embeddings independently. Studying these two variables
independently is necessary since emotions modulate not only
speech acoustics, but also language [39]. These modulations
can influence the sequence of phonemes that are uttered,
which can then affect the extracted speaker embeddings. As

a result, the Varied Emotion in Syntactically Uniform Speech
(VESUS) dataset was collected to provide the research commu-
nity with a lexically controlled emotional dataset [40]. Over 250
distinct phrases were uttered by 10 actors (five males and five
females) while portraying five emotional states (neutral, an-
gry, happy, sad, and fear). The phrases were chosen such
that they are semantically neutral, i.e., they don’t carry any
emotional connotation.

Overall the dataset contains approximately six hours of
speech. The utterances in the dataset contain labels assigned
based on the intended emotion by the actors and labels
assigned based on the perceived emotion collected from
10 crowd-sourced annotators. We run two separate analyses
whenever we use the VESUS dataset: one using the intended
(i.e., instructed) emotion labels, and another using utterances
that achieved at least 50% consistency among the crowd-
sourced annotators (i.e., at least five annotators agreed).

5 EXPERIMENTS

This section describes the experiments used to assess the
utility of speaker embeddings in emotion recognition tasks. The
first experiment quantifies the effect of emotion variation on
speaker embeddings; teasing out the effects on the embeddings
due to emotion variations from those due to lexical variations.
The second experiment compares the performance of an emo-
tion recognition model trained and evaluated with speaker
embeddings as features to the performance of recognition
models trained and evaluated with state-of-the-art features
used in the emotion literature.

The speaker embeddings that we use in all of our exper-
iments were extracted using a pre-trained1 x-vector model
that was discriminatively trained to identify speakers in the
combined VoxCeleb1 and VoxCeleb2 datasets [9], [10]. The
combined VoxCeleb datasets contain more than 2,000 hours
of speech (more than 1 million utterances) from more than
7,000 speaker identities. The x-vector model, summarized in
Table 1, takes in the voiced frames of an utterance as an input
and gives a speaker identity as an output. The input features to
the x-vector model are 30-dimensional Mel-frequency cepstral
coefficients (MFCCs) extracted from 16kHz utterances using a
25 millisecond sliding window. All utterances are mean nor-
malized using a three-second window before being fed into the
speaker identification network. A more detailed training recipe
for the speaker identification network can be found in [18].

5.1 Experiment 1: Speaker Embeddings and Emotions
In this experiment, we quantify the effect emotion has on
speaker embeddings to examine whether or not the em-
beddings capture speech characteristics that are changed by
emotion. We hypothesize that embeddings are modulated by
emotional speech, allowing us to either preserve or enhance
the differences that exist between a neutral expression and the
expression of emotion. We formulate this problem by asserting
that neutral speech, as a group, has more intra-group similarity,
compared to the similarity between neutral and emotional
speech. We test this hypothesis using a novelty detection frame-
work, implemented using autoencoders, with reconstruction
error as a proxy for similarity. The use of the reconstruction

1. https://kaldi-asr.org/models/m7

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 03,2022 at 16:35:21 UTC from IEEE Xplore.  Restrictions apply. 

https://kaldi-asr.org/models/m7


1949-3045 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2021.3086050, IEEE
Transactions on Affective Computing

5

error of an autoencoder for novelty detection tasks has been
studied for other applications by several works in the literature
(e.g., [41], [42], [43]). To the best of our knowledge, we are the
first to propose the use of autoencoders to analyze the effect
of the variations in emotion and in lexical content on speaker
embeddings.

We address the following two questions about the rela-
tionship between speaker embeddings and emotion in our
experiments:

• Q1: Do variations in emotion significantly modulate
speaker embeddings from their neutral representation?

• Q2: Are the modulations on the neutral embeddings due
to emotion variation larger or smaller than those due to
lexical variation?

Answering these two questions is necessary not only for un-
derstanding how emotions affect speaker embeddings, but also
for assessing their utility as general paralinguistic features in
emotion recognition tasks.

We rely on two datasets to pre-train and evaluate our
networks. All of the autoencoders that we use in this analysis
were first trained on embeddings extracted from the 100-hour
clean version of the LibriSpeech dataset and validated on the
clean development set of LibriSpeech [44]. The 100-hour clean
version of LibriSpeech contains a total of 28,539 utterances
from 585 speakers (284 males and 301 females). The pre-
training was performed to ensure that the parameters of our
autoencoders are properly tuned for encoding and decoding
speaker embeddings for general neutral speaker population
and to provide the same starting point for all speaker-specific
autoencoders. We use the VESUS dataset to test emotional
similarity because it provides us with the means to control for
both emotion and lexical content without compromising the
total number of samples available for each speaker [40].

The autoencoders that we use consist of five hierarchical
down-sampling stages and five hierarchical up-sampling stages.
The hierarchical architecture of our autoencoders is similar
to the models used in [28]. Each down-sampling layer in our
autoencoders reduces the dimensionality of its input by two
while each up-sampling layer increases the dimensionality of
its inputs by two. This reduces the effective size of speaker
embeddings to 16 features from their original 512 features
before being up-sampled. Each block (but the last) in our
autoencoders consists of a fully-connected layer followed by a
Tanh activation. The last block only includes a fully-connected
layer with no activation units. We use the mean squared error
(MSE) loss function and train our autoencoders using the
ADAM optimizer with a learning rate of 0.001 and batch sizes
of 256. We run the training for a total of 100 epochs and apply
early stopping once the validation loss does not improve for
five consecutive epochs. For fine-tuning, we use a batch size of
32 and use the same learning rate and loss functions used for
training the autoencoders. We run the fine-tuning for a total of
50 epochs and apply early stopping once the loss on a held-out
validation set does not improve for five consecutive epochs.

5.1.1 Question 1 Experimental Setup
We first pre-train the autoencoders using neutral speech from
the LibriSpeech corpus. Then, for each speaker in our test
corpus (VESUS), we partition their data into three categories:
(1) neutral training, (2) neutral testing, and (3) emotional

testing. We use the neutral training data (which consist of
70% of a speaker’s total neutral data) to fine-tune the autoen-
coder for each speaker. This allows us to construct a baseline
model for each speaker. We then create a distribution using
the reconstruction error associated with the neutral testing
data and compare the reconstruction errors obtained from the
emotional testing data to this distribution. If, in general, the
reconstruction error on the neutral speech is lower than that
of the emotional speech, this will support the hypothesis that
embeddings are modulated by emotion.

We analyze the effect emotion has on the reconstruction
errors using linear mixed effect models (LMEMs), implemented
via the lme4 package [45] in R [46]. We set the reconstruction
error as a response variable in our linear models and set the
emotion (neutral vs. non-neutral) and the gender as dependent
binary variables. We set random intercepts for speaker_ids
and utterance_duration (discretized into 3-quantiles), as well
as per-speaker random slopes. In case the linear model fails
to converge, we simplify the model by removing the per-
speaker random slope and only retain the random intercepts,
as suggested in [47]. We use likelihood ratio tests to test for
statistical significance and test a full model (with the emotion
fixed effect) against a null model (without the emotion fixed
effect).

5.1.2 Question 2 Experimental Setup

We first pre-train the autoencoders using neutral speech from
the LibriSpeech corpus. Then, for each speaker in our test
corpus (VESUS), we partition their data into four categories: (1)
neutral training, (2) neutral testing-a, (3) neutral testing-b, and
(4) emotional testing. Further, we filter utterances in partition
(4) such that we only retain those that can be matched based
on lexical content with utterances in partition (2). Note that due
to the lexically controlled nature of VESUS, the lexical content
of each utterance is unique. As a result, each neutral partition
contains utterances with unique content. We use the data in
the neutral training partition to fine-tune the autoencoder
for each speaker, allowing us to construct a baseline model
for each speaker. We then create a distribution using the
reconstruction error associated with the neutral testing-a data,
and compare the reconstruction error of the neutral testing-b
and emotional testing data to this distribution. If the difference
in reconstruction errors between partition (2) and partition (4)
is bigger than the error between and partition (2) and partition
(3), then this will support the hypothesis that modulation on
the speaker embeddings due to variations in emotion are larger
than those due to variations in lexical content.

We run a series of LMEMs to analyze the effect of emotion
variation and lexical content variation on reconstruction errors.
We set the reconstruction error as a response variable in our
linear models, and set a binary value (i.e., neutral vs. non-
neutral with same content or neutral vs. neutral with different
content) and the gender as dependent binary variables. We
set random intercepts for speaker_ids and utterance_duration
(discretized into 3-quantiles), as well as per-speaker random
slopes. We follow the same process described in Section 5.1.1
to fit the LMEMs and test for significance.
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5.2 Experiment 2: Speaker Embeddings as General
Paralinguistic Features

While the previous experiment investigates whether or not
speaker embeddings capture speech characteristics that are
changed by variations in emotion, this experiment investigates
if these disturbances can be used for recognizing emotions. We
compare the emotion recognition performance obtained with
speaker embeddings to the performance obtained with state-
of-the-art features used in the literature. We hypothesize that
emotion recognizers that use speaker embeddings as features
will outperform those that use common features from the
paralinguistics literature. Our hypothesis is based on the fact
that speaker embeddings are extracted from models that were
trained on much bigger and diverse datasets compared to the
commonly used emotion features. Specifically, the large and
in-the-wild nature of the datasets used for training the speaker
recognition models encourages the models to extract robust
representations that capture speaker characteristics from a
given audio signal, regardless of the acoustic conditions or
environmental noise present. This experiment allows us to
understand the relationship between the speaker and emotion
recognition tasks and helps us assess the prospects of replacing
low-level paralinguistic features with speaker embeddings in
emotion recognition models.

We compare the performance obtained using the extracted
speaker embeddings to baselines obtained from common par-
alinguistics feature sets. The first category is the same 30-
dimensional MFCCs used by the speaker identification model
to extract the speaker embeddings. This allows us to ask how
the transformation introduced by the speaker embeddings
improves our ability to recognize emotion. The second category
includes feature sets broadly grouped based on their use of
statistics to characterize the patterns in low-level acoustic
features. These feature sets include: the INTERSPEECH 2009
(IS09) Emotion Challenge features [1] (384 parameters), the
INTERSPEECH 2013 Computational Paralinguistics ChallengE
(ComParE) [2] features (6,373 parameters), the Geneva Mini-
malistic Acoustic Parameter Set (GeMAPS) [3] (62 parameters),
and the extended Geneva Minimalistic Acoustic Parameter Set
(eGeMAPS) [3] (88 parameters). The features for all categories
were z-normalized using the training set statistics while the
utterances for the speaker embeddings were mean-normalized
using a three-second window applied to the MFCC features of
each utterance.

We assess the utility of the features in emotion recognition
by running both within-corpus and cross-corpus recognition
experiments with the IEMOCAP and MSP-IMPROV datasets.
For the within-corpus experiments, we follow a leave-one-
speaker-out evaluation scheme. For the cross-corpus experi-
ments, we train our models using the labeled samples from
one dataset and evaluate on the other dataset (and vice versa).
The cross-corpus setup limits the effect of spurious correlations
that a trained model can use in the evaluation process. We use
unweighted average recall (UAR), which takes an average of
the recall of each emotion class, as our evaluation metric in
this experiment. This metric allows us to account for the class
imbalance in the two datasets we use in this experiment.

The emotion recognition model that we use is based on
deep neural networks (DNNs) as previous research has demon-
strated their effectiveness when used with state-of-the-art fea-

ture sets [48], [49], [50]. For the within-corpus experiments, we
follow a leave-one-speaker-out evaluation scheme, where for
each test speaker, we use the opposite gender speaker from the
test speaker’s session as our validation speaker. For the cross-
corpus experiments, we use the two speakers from the last
session (i.e., session five for IEMOCAP and session six for MSP-
IMPROV) as our validation speakers. The hyper-parameters for
our DNNs include the number of hidden layers {1,2,3} and
the width of each hidden layer {128,256,512}. We use ReLU
activation units in all of our experiments. The networks were
trained using the ADAM2 optimizer with a learning rate 10−4

on batches with 32 samples. We assign weights to our training
samples according to the inverse of their respective frequencies
in the training sets and train the models using a weighted
cross-entropy loss function for a total of 100 epochs. We use
the held-out validation set for hyper-parameter selection and
early stopping. We apply the model that yields the highest
validation performance to the unseen test data and report
the test performance. Finally, we run each setup 30 times to
account for variance from random initialization and training.

5.2.1 Additional Baselines
We compare the performance of emotion recognizers that
use speaker embeddings to the performance of recognizers
from the literature. The baselines that we use are grouped
into four categories: end-to-end models [29], [51], convolu-
tional/recurrent models [24], [52], [53], transfer learning mod-
els [54], [55], and feature engineering models [56]. For each
setup, we indicate: (1) the normalization technique that was
used; (2) if data augmentation was used; and (3) if we re-
implement the setup or report the performance as indicated by
the respective authors. For the setups that we re-implement, we
follow the same training and testing protocol described above.
For setups that utilize linear support vector machine (SVM)
classifiers, we optimize the complexity hyper-parameter using
validation data, C ∈ {10−5,10−4, . . . ,101}.

6 RESULTS

6.1 Experiment 1: Speaker Embeddings and Emotions
In this experiment, we study how emotion modulates speaker
embeddings, measured in terms of reconstruction error.
Smaller reconstruction errors indicate that the samples are
more similar to the baseline distribution of neutral utterances
while bigger reconstruction errors indicate that the samples are
different from the baseline distribution. We will treat evidence
of emotion-centric modulation, measured by reconstruction
error, as evidence of the utility of embeddings for emotion
recognition.

6.1.1 Question 1 Results
Our first question asked whether or not variations in emotion
significantly modulate speaker embeddings from their neutral
representation. We find that variations in emotion significantly
modulate speaker embeddings from their neutral representa-
tion. In addition, we find that these modulations are consistent
across male and female speakers. Figure 1a shows the recon-
struction errors associated with 3,032 utterances, grouped by
intended emotions (758 neutral, 758 happy, 758 angry, 758 sad).

2. Default parameters were used (α= 0.0001,β1 = 0.9,β2 = 0.999)
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Fig. 1: Reconstruction errors obtained from autoencoders trained with embeddings extracted from neutral utterances. Sub-
figures (a) and (b) show the reconstruction errors grouped by emotion (neutral, angry, happy, sad) and gender (females, males).
Sub-figures (c) and (d) compare the reconstruction errors obtained from neutral utterances to those obtained from emotional
utterances with lexical content fixed, and to those obtained from neutral utterances but with different lexical content.

Figure 1b shows the reconstruction errors associated with 752
utterances, grouped by perceived emotions (188 neutral, 188
happy, 188 angry, 188 sad). The perceived emotions group in-
cludes utterances whose labels achieved at least 50% agreement
between the intended and perceived emotions.

Figure 1a. We find that the reconstruction error was sig-
nificantly increased by 0.667±0.103 when moving from neutral
speech to angry speech (χ2(1)=16.475, p=4.929e-05). Similarly,
we find that the reconstruction error was significantly increased
by 0.458±0.070 when moving from neutral speech to happy
speech (χ2(1)=16.760, p=4.242e-05). Finally, we find that the
reconstruction error was significantly increased by 0.490±0.071
when moving from neutral speech to sad speech (χ2(1)=17.560,
p=2.784e-05). If we use the reconstruction error as a feature
and apply a threshold to separate neutral and non-neutral
speech, then we obtain an Area Under the Receiver Operating

Characteristic curve (AUC) of 0.782. This indicates that the
reconstruction errors obtained from an autoencoder that was
exclusively trained on neutral speech can be used for detecting
non-neutral speech.

Figure 1b. We find that the reconstruction error was sig-
nificantly increased by 0.645±0.126 when moving from neutral
speech to angry speech (χ2(1)=11.683, p=6.307e-4). Similarly,
we find that the reconstruction error was significantly increased
by 0.458±0.070 when moving from neutral speech to happy
speech (χ2(1)=11.871, p=5.703e-4). Finally, we find that the
reconstruction error was significantly increased by 0.548±0.080
when moving from neutral speech to sad speech (χ2(1)=14.606,
p=1.325e-4). If we use the reconstruction error as a feature and
apply a threshold to separate neutral and non-neutral speech,
then we obtain an AUC of 0.850. Again, demonstrating the
utility of this setup for speech novelty detection applications.
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6.1.2 Question 2 Results
Our second question asked whether the modulations due to
emotion are larger or smaller compared to those due to lexical
variation. We find that variations in the lexical content have
a non-significant effect on neutral embeddings, compared to
the significant effect observed in the emotional utterances. We
compare the reconstruction errors in three partitions of data
as described in Section 5.1: (1) control neutral; (2) non-neutral
with fixed lexical content; and (3) neutral with varying lexical
content.

Figures 1c and 1d show the reconstruction errors, grouped
by the aforementioned three partitions, associated with 1,892
and 458 utterances, respectively. Figure 1c displays the results
obtained with intended emotion labels while Figure 1d displays
the results obtained with perceived emotion labels. As before,
the perceived emotions group includes utterances whose labels
achieved at least 50% agreement between the intended and
perceived emotions.

Figures 1c. We find that the reconstruction error was
significantly increased by 0.529±0.0253 when moving from
neutral speech to non-neutral speech while keeping content
fixed (χ2(1)=384.450, p<2.2e-16). If we use the reconstruction
error as a feature and apply a threshold to separate neutral and
non-neutral speech, we obtain an AUC of 0.785. In contrast, we
find that the reconstruction error does not significantly change
when varying lexical content while keeping emotion fixed.

Figures 1d. We find that the reconstruction error was sig-
nificantly increased by 0.649±0.091 when moving from neutral
speech to non-neutral speech while keeping content fixed
(χ2(1)=14.398, p=1.480e-4). If we use the reconstruction error
as a feature and apply a threshold to separate neutral and non-
neutral speech, then we obtain an AUC of 0.840. We again
find that the reconstruction error does not significantly change
when varying lexical content but fixing emotion to neutral.

6.1.3 Experiment 1 Discussion
The findings from this experiment suggest that while neutral
speaker embeddings may be invariant to modulations due to
variations in lexical content, they are significantly changed by
variations in emotions. We find that using utterances with ma-
jority emotion agreement yields smaller overlaps between the
interquartile ranges (IQRs) of reconstruction errors obtained
from the neutral and emotional utterances, for both female
and male speakers, compared to those obtained when using all
utterances (i.e., intended emotions). One explanation for this
is that the intended emotion labels are more subtle than the
perceived emotion labels that we use in this work. As a result,
we see more pronounced modulations with the perceived labels
compared to the modulations we see when using the intended
labels. Finally, we note that none of the models we ran yielded
significant interaction between emotion and gender, suggesting
that the increases in reconstruction error per emotion (for both
intended and perceived) are consistent across female and male
speakers.

The findings suggest that speaker embeddings can be used
for establishing a baseline of how an individual sounds in
their neutral state (i.e., normal behavior). Then, disturbances
to this speaker model can be used as a proxy for measuring
deviations from this normal behavior. This property of speaker
embeddings can be beneficial in applications where we have
ample baseline data from a speaker in the neutral state, but

have limited or no access to outlier or novel data points
from the speaker in certain states (e.g., road rage detection
applications in vehicles). In the next experiment, we test if we
can utilize these observed modulations in speaker embeddings
for detecting emotions in challenging settings.

6.2 Experiment 2: Speaker Embeddings as General
Paralinguistic Features

In the first experiment, we studied the relationship between
emotion and speaker embeddings. In this section, we compare
speaker embeddings to state-of-the-art paralinguistic features
on the task of emotion recognition. We first demonstrate
the relative ability of embeddings, compared to conventional
speech emotion features, in a within-corpus experiment. We
then repeat the analysis in a cross-corpus experiment. In both
cases, we assess the efficacy of the feature sets on the IEMOCAP
and MSP-IMPROV datasets.

We first compare the emotion recognition performance
of different feature sets within-corpus. Overall, we find that
speaker embeddings, when used as paralinguistic features,
significantly outperform or perform comparably to the baseline
features described in Section 5.1. Specifically, we find that
speaker embeddings significantly outperform all baselines in
the within-corpus setup on the MSP-IMPROV dataset; and we
find that speaker embeddings only significantly outperform
MFCCs, GeMAPS, and eGeMAPS baselines in the within-corpus
setup on the IEMOCAP dataset (Table 2).

Next, we analyze the performance of these feature sets in
a more challenging cross-corpus task. We find that speaker
embeddings significantly outperform all other features when
evaluating the models on the IEMOCAP and MSP-IMPROV
datasets (Table 2). In addition, we observe a higher test perfor-
mance when we test on the IEMOCAP dataset than we do when
we test on the MSP-IMPROV dataset. Among the baselines,
we find that the ComParE feature set outperforms all other
baselines on the IEMOCAP dataset but performs comparably
to IS09 and GeMAPS on the MSP-IMPROV dataset. The results
suggest that the embeddings are more robust to domain-shifts
than baseline features.

Figure 2 shows the confusion matrices obtained when
using speaker embedding in cross-corpus emotion recognition
settings. When testing on the MSP-IMPROV corpus, we find that
the performance of detecting the neutral and happy emotions
is higher than the performance of detecting the angry and
sad emotions. In contrast, when testing on the IEMOCAP
corpus, we find that the performance of detecting the angry
and sad emotions is higher than the performance of detecting
the neutral and happy emotions. The trends displayed by the
confusion matrix in Figure 2b agree with the trends we saw
in Figures 1a and 1b. Specifically, the confusion matrix in
Figure 2b shows that we obtain the highest performance when
detecting the angry emotion, followed by both the sad and
happy emotions. However, the confusion matrix in Figure 2a
shows that the happy emotion is the easiest to detect, fol-
lowed by the angry and sad emotion. Finally, we find that
the improvements gained by using speaker embeddings over
ComParE features cannot be attributed to the improvement in
recognizing a specific emotion, but instead, can be attributed
to a consistent improvement across all emotions.
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TABLE 2: The unweighted average recall (UAR) obtained for each setup in the within-corpus and cross-corpus experiments. MSP
and IEM denote the MSP-IMPROV and IEMOCAP dataset, respectively. Models in the within-corpus experiments are evaluated
following a leave-one-speaker-out evaluation scheme. MSP under cross-corpus indicates the performance of a model that is
trained on IEMOCAP and evaluated on MSP-IMPROV; IEM under cross-corpus indicates the performance of a model that is
trained on MSP-IMPROV and evaluated on IEMOCAP. The results shown are averages (±1 standard deviation) from 30 runs with
different random seeds. The best result in each experiment is bolded. † indicates that the marked performance is significantly
higher than all baselines; ∗ indicates that the marked performance is significantly higher than MFCCs, GeMAPS, and eGeMAPS;
Significance is assessed at p < 0.05 using the Tukey’s honest test on the ANOVA statistics.

Features
Within-corpus UAR (%) Cross-corpus UAR (%)

MSP IEM MSP IEM

Chance 25.0 25.0 25.0 25.0
MFCCs 45.8 (±0.9) 52.3 (±0.9) 39.2 (±2.7) 43.7 (±3.1)
IS09 47.7 (±0.9) 58.1 (±0.6) 42.1 (±0.9) 43.7 (±2.7)
ComParE 49.0 (±1.1) 58.2 (±0.7) 42.0 (±1.1) 48.6 (±3.0)
GeMAPS 45.6 (±0.8) 56.3 (±0.6) 42.2 (±1.1) 38.7 (±2.2)
eGeMAPS 47.5 (±0.8) 57.2 (±0.7) 39.9 (±1.3) 35.9 (±3.1)
Embeddings (this work) 50.0 (±1.2)† 57.9 (±1.0)∗ 47.3 (±2.1)† 50.9 (±2.1)†

Neurtal Happy Angry Sad

N
eu
tr
al

H
ap
py

A
ng
ry

S
ad

52.6% 20.8% 7.0% 19.6%

28.4% 54.0% 8.1% 9.6%

26.4% 26.4% 42.3% 4.9%

39.7% 15.0% 5.2% 40.2%
0.1

0.2

0.3

0.4

0.5

(a) MSP-IMPROV

Neutral Happy Angry Sad

N
eu
tr
al

H
ap
py

A
ng
ry

S
ad

27.0% 17.4% 19.1% 36.4%

14.1% 43.9% 26.0% 16.0%

4.2% 20.1% 69.0% 6.7%

16.4% 10.5% 9.6% 63.6%
0.15

0.30

0.45

0.60

(b) IEMOCAP

Fig. 2: Confusion matrices obtained using speaker embeddings in the cross-corpus setting when (a) training on IEMOCAP and
testing on MSP-IMPROV; (b) training on MSP-IMPROV and testing on IEMOCAP.

6.2.1 Additional Baselines

In Table 3, we compare the performance of emotion recognizers
that use speaker embeddings to the performance of recognizers
from the literature.

End-to-end Models. Our proposed models that use speaker
embeddings outperform end-to-end models from Sarma et
al. [29] and Latif et al. [51] for the within-corpus evaluation
setting. Both of these end-to-end models were trained to detect
emotion from raw speech, obviating the need for the manual
definition and extraction of acoustic features and enabling the
extraction of features that are optimized for the end task in
a data-driven way. Our speaker embeddings have the advan-
tage of being trained on large and diverse data, making the
embeddings better at capturing the characteristics of speakers
compared to features extracted by the end-to-end models that
were only trained on emotion data.

Convolutional/Recurrent Models. Our approach outper-
forms the convolutional-recurrent model (specifically the
Vanilla model) proposed by Huang and Narayanan [52] for all
within-corpus and cross-corpus setups. Our approach, how-
ever, performs comparably to that of Li et al. [53] for the within-
corpus evaluation setup on IEMOCAP. The good performance
obtained by Li et al. could be attributed to the use of data

augmentation when training the emotion classifiers. In con-
trast, we do not use any data augmentation when training our
emotion classifiers. Finally, our approach performs comparably
to the approach of Aldeneh and Mower Provost [24] for the
within-corpus evaluation setup on MSP-IMPROV but under-
performs their approach for the within-corpus evaluation setup
on IEMOCAP. We note that the good performance obtained
by the authors in [24] is due to the use of speaker identity
information during the evaluation through the use of speaker-
level normalization. In contrast, we make no assumption about
speaker identity in this experiment and only perform utterance-
level normalization.

Transfer Learning Models. Our approach outperforms the
approach proposed by Neumann and Vu [55] for the cross-
corpus evaluation setup on MSP-IMPROV. In their approach,
Neumann and Vu integrate features learned by an unsupervised
autoencoder that is trained on out-of-domain unlabeled speech
data (i.e., Tedlium 2) into a convolutional emotion classifier.
Specifically, the features extracted by the unsupervised au-
toencoder are provided to the emotion classifier as an addi-
tional input during the training and testing phases. The results
demonstrate that embeddings which were extracted from a
speaker recognizer are better suited for emotion classification
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TABLE 3: The unweighted average recall (UAR) obtained or reported for each baseline setup in the within-corpus and
cross-corpus experiments. MSP and IEM denote the MSP-IMPROV and IEMOCAP dataset, respectively. Models in the within-
corpus experiments are evaluated following a leave-one-speaker-out evaluation scheme. MSP under cross-corpus indicates the
performance of a model that is trained on IEMOCAP and evaluated on MSP-IMPROV; IEM under cross-corpus indicates the
performance of a model that is trained on MSP-IMPROV and evaluated on IEMOCAP. When applicable, we report the standard
deviation from 30 runs with different random seeds. The best result in each experiment is bolded. “—” indicates unavailability
or inapplicability.

Method Normalization Augmentation? Re-implemented?
Within-corpus UAR (%) Cross-corpus UAR (%)

MSP IEM MSP IEM

Chance — — — 25.0 25.0 25.0 25.0
Sarma et al. [29] — 7 7 — 48.8 — —
Latif et al. [51] — 7 7 48.5 56.7 — —
Huang & Narayanan [52] Utterance-level 7 3 39.1 (±1.2) 49.7 (±0.8) 37.8 (±1.8) 36.5 (±3.4)
Li et al. [53] None 3 7 — 57.5 — —
Aldeneh & Mower Provost [24] Speaker-level 7 7 49.8 59.5 — —
Neumann & Vu [55] — 7 7 — — 45.8 —
Amiriparian et al. [54] Utterance-level 7 3 31.6 45.6 36.8 29.8
Schmitt et al. [56] Utterance-level 7 3 32.7 (±0.6) 49.7 (±0.4) 35.5 (±0.6) 36.0 (±0.8)
Embeddings (this work) Utterance-level 7 3 50.0 (±1.2) 57.9 (±1.0) 47.3 (±2.1) 50.9 (±2.1)

than those extracted using an unsupervised autoencoder. Our
results show that the deep spectrum approach, introduced by
Amiriparian et al. [54], under-performs our proposed approach
by a large margin on all evaluation setups. Deep spectrum
features are obtained by running spectrograms of input speech
utterances through convolutional networks, which were orig-
inally trained on visual tasks, and extracting the resulting
intermediate features. Once extracted, deep spectrum features
are used by a linear SVM classifier for emotion classification.

Feature Engineering Models. Our approach outperforms
the bag-of-audio-words features approach that was introduced
by Schmitt et al. [56]. In the bag-of-audio-words approach,
acoustic features (i.e., MFCCs) are first quantized according to a
vector codebook of audio words and then added to a histogram
of audio words for classification by a linear SVM. We used the
random sampling technique for generating the codebooks and
we used codebooks of size 512 to be consistent with the size of
speaker embeddings.

6.2.2 Experiment 2 Discussion
To the best of our knowledge, this is the first work to com-
pare both within-corpus and cross-corpus emotion recognition
performance obtained using speaker embeddings to the per-
formance obtained using general features commonly used in
the emotion recognition community. Our results suggest that
speaker embeddings are highly versatile, and can easily be
adapted to other paralinguistic applications such as emotion
recognition. We note that speaker embeddings also provide a
more compact alternative to some of the features sets (e.g.,
ComParE). For example, the ComParE feature set contains
6,373 parameters representing energy, spectral, and voicing
features [23]. In contrast, speaker embeddings only contain 512
parameters and are extracted from 30-dimensional MFCCs (i.e.,
spectral). Our results also demonstrate how emotion classifiers
that use speaker embeddings outperform other emotion clas-
sification methods from the literature when compared under
similar training and evaluation conditions.

7 DISCUSSION AND CONCLUSION

In this paper, we proposed the use of speaker embeddings,
representations extracted from neural networks trained on a

speaker identification task, as paralinguistic features to be used
in emotion recognition applications. Speaker embeddings cap-
ture high-level speaker characteristics and abstract extraneous
low-level variations in the acoustic signal that are not needed
for recognizing speakers. The hypothesis that drove our work
is that emotionally charged vocal expressions make speakers
sound different from how they typically sound.

We first used autoencoders to quantify the effect of emo-
tion on speaker embeddings. We trained our auto-encoders
on neutral speech from each speaker, and used the recon-
struction errors obtained for test utterances as a proxy for
measuring the effect emotion has on speaker embeddings.
Our analysis showed that embeddings extracted from expres-
sive speech resulted in significantly increased reconstruction
errors compared to neutral speech. In addition, our analysis
showed that lexical variation had a non-significant effect on
the reconstruction errors obtained from the utterances. Our
experiments also demonstrated how the reconstruction errors
obtained from the autoencoders can be used as features for de-
tecting deviations from the neutral state. Future work will study
techniques for making changes in emotions more pronounced
while maintaining speaker discriminative properties in speaker
embeddings (e.g., emotion-invariant x-vectors).

We then showed that speaker embeddings can be used
as a replacement to common paralinguistic features used in
emotion recognition tasks. We demonstrated this by showing
not only that speaker embeddings outperform baseline features
in cross-corpus emotion recognition tasks, but also that they
are more compact (i.e., fewer parameters) than state-of-the-
art paralinguistic features. Speaker embeddings outperformed
other features despite being extracted from spectral represen-
tations (i.e., MFCCs) alone. In contrast, other features used a
combination of energy, voicing, and spectral representations.
MFCCs used for extracting speaker embeddings were originally
designed based on observations from perceptual experiments
and thus, may not be optimal for all speech applications. For
example, MFCC features smooth the speech spectrum and
make it difficult to extract other narrow-band information that
is known to be predictive of emotion (e.g., pitch, formants). One
extension to the current approach is to train the speaker iden-
tification models with representations from which this fine-
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grained information is easily extractable (e.g., spectrograms,
raw waveform). Another extension to the current approach is to
combine speaker embeddings with common emotion features
to provide the recognizer access to the fine-grained information
present in the speech signal.

In conclusion, this work further contributed to our under-
standing of the relationship between emotions and speaker
representations and demonstrated how variations in emotion
manifest themselves in speaker embeddings. These manifes-
tations not only can impact the performance of a verification
system, but also can be leveraged for detecting emotions.
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