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Abstract—Robustness to environmental noise is important to
creating automatic speech emotion recognition systems that are
deployable in the real world. In this work, we experiment with
two paradigms, one where we can anticipate noise sources that
will be seen at test time and one where we cannot. In our first
experiment, we assume that we have advance knowledge of the
noise conditions that will be seen at test time. We show that we
can use this knowledge to create ‘“expert” feature encoders for
each noise condition. If the noise condition is unchanging, data
can be routed to a single encoder to improve robustness. However,
if the noise source is variant, this paradigm is too restrictive. In-
stead, we introduce a new approach, dynamic layer customization
(DLC), that allows the data to be dynamically routed to noise-
matched encoders and then recombined. Critically, this process
maintains temporal order, enabling extensions for multimodal
models that generally benefit from long-term context. In our
second experiment, we investigate whether partial knowledge of
noise seen at test time can still be used to train systems that
generalize well to unseen noise conditions using state-of-the-
art domain adaptation algorithms. We find that DLC enables
performance increases in both cases, highlighting the utility of
mixture-of-expert approaches, domain adaptation methods and
DLC to noise robust automatic speech emotion recognition.

Index Terms—Deep learning, domain adaptation, affective
computing, speech emotion recognition

I. INTRODUCTION

Automatic emotion recognition provides an opportunity to
understand how emotion patterns in daily life are associated
with health, both mental and physical [1], [2]. The inexpen-
sive production of audio recording-capable devices has made
speech emotion recognition (SER) an attractive avenue for the
deployment of emotion recognition systems. However, while
recent advances in machine learning have led to improved
accuracy in state-of-the-art SER systems, robustness to en-
vironmental noise in SER is still an open problem. In this
work, we demonstrate that we can successfully customize
feature encoders to noise conditions known at training time;
apply domain adaptation methods commonly used to gener-
alize performance across datasets to the task of generalizing
across noise conditions; and extend these improvements to the
multimodal setting using a process we describe as Dynamic
Layer Customization (DLC).

In considering how a SER system bound for real-world
deployment would be developed, it is reasonable to assume
that the system’s designers may have some knowledge of
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the noise conditions that the system will face at deployment
time, either through empirical studies or expert knowledge.
If designers do not have this knowledge, we assume that
they will also not have access to unlabelled data from the
test distribution to fine tune their models. To the best of our
knowledge, our work is the first to use knowledge of the
type of noise present in each sample to customize feature
encoders for each noise condition in an end-to-end trained
speech emotion recognition network where all noise conditions
are seen during training.

In our first Experiment, we ask the question: How well could
we recognize emotion from speech if we had access to all test
noise conditions at train time? This may seem like a quixotic
scenario, but we posit that it is not as far fetched as it may
appear. The situation where a system designer has access to all
test noise conditions at train time may be justified when a small
number of noise conditions constitutes a large majority of
samples. This is a common paradigm for technology deployed
in a static environment, for example, a single clinic.

In this Experiment, we find that by training a mixture of
experts model with individual feature encoders for each noise
condition, we can improve performance over a system with
a single feature encoder. A simple method for implementing
a mixture-of-experts model in this setting would be to group
utterances within the dataset by noise condition, and train each
“expert” on its associated subdataset. We call this Static Layer
Customization (SLC). Consider a potential training instance
consisting of an individual recording a video diary entry. First,
their dog barks in the background (noise type 1), then a fan
turns on (noise type 2), then their family member walks by
laughing (noise type 3). This type of noise variation is natural
in real life deployments [3]. We could handle this variation
by segmenting this instance into three regions of uniform
noise, but doing so would potentially disrupt the temporal flow
of the diary entry. In fact, it is this very flow of temporal
information that allows many end-to-end trained state-of-the-
art multimodal (text+acoustic) networks to understand long
term context [4], [5]. Therefore, although models performing
SLC to route samples to experts may enable noise robustness
in individual samples, this approach is likely not optimal in
end-to-end trained state-of-the-art multimodal (text+acoustic)
networks.
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We present an alternative approach, one that dynamically
routes samples during training to different feature encoders
based on properties of the noise conditions that are present.
It then recombines the outputs in the original order before
passing the outputs to the remainder of the network. We call
this process Dynamic Layer Customization (DLC).

In our second Experiment, we ask: How can we use knowl-
edge of the types of noise present in each sample at train
time to generalize across noise conditions seen at train time
to unseen noises at test time? We support the finding, from
related speech tasks, that domain adaptation can be used to
generalize across noise conditions [6], [7], and extend these
findings to the case where unlabelled target information is not
provided to the network during training. We show that do-
main adaptation methods can lead to significant performance
improvements over their ungeneralized counterparts. We run
preliminary experiments to identify the most effective domain
adaptation method on unimodal data. We then choose the
highest performing domain adaptation method over these ex-
periments, Domain Separation Networks (DSN) [8], to extend
to the multimodal setting. DSN uses separate feature encoders
for each domain. However, as discussed earlier, this strict
adherence to uniformity in the noise samples renders it brittle
to real world noise-varying conditions. Instead, we augment
DSN with DLC (DSN-DLC) to enable it to generalize across
noise conditions without disrupting the temporal ordering of
samples.

In the remainder of this paper, we detail the related
work (Section II), data (Section III), network architectures
(Section 1V), training procedure (Section V), experiments
(Section VI) and results (Section VII). In these sections, we
consider whether a mixture-of-experts approach and domain
adaptation methods can improve speech emotion recognition
networks’ performance in the presence of noise, both when
that noise is seen beforehand and when it is left unseen.
Through DLC, our novel approach which dynamically routes
samples through a network without disrupting their temporal
ordering, we show that both mixture-of-experts and domain
adaptation methods can be extended to the multimodal case,
resulting in performance improvements in that setting as well.

II. RELATED WORK

Our work builds on recent advances in domain adapta-
tion methods such as Domain Adversarial Neural Network
(DANN) [9], Multiclass Adversarial Discriminative Domain
Generalization (MADDoG) [10] and Domain Separation Net-
works (DSN) [8]. We leverage each of these approaches in
our second Experiment and describe them in Section IV.
Our work is also inspired by the promising performance of
mixture-of-experts models applied to deep learning problems
[11], [12]. Finally, as we extend our results to the multimodal
setting, there are many related works to the state-of-the-art
model we use. Zadeh et al.’s TensorFusion [13] introduced a
method of outer product pooling that, when combined with
Poria et al.’s approach to cross-utterance modeling [4] yielded
the foundation of Hierarchical Feature Fusion (HFFN) [5],
the state-of-the-art model we use to extend our findings to
the multimodal setting. Our work is also influenced by the
literature on speech enhancement. Liao’s paper [6] similarly
used domain adaptation methods to generalize across noises,
but did so by using unlabelled target data - an assumption we
do not make in this work.

III. DATA
A. Datasets

We consider three datasets in our experiments. MSP-
Improv is an acted, audiovisual emotional database which
aims to approach the naturalness of unsolicited human interac-
tions by asking the actors to embed a “target sentence” into an
improvised interaction [14]. MSP-Improv was collected over
six sessions with twelve actors and contains 8,438 utterances,
each labelled for valence and activation on a scale of 1-5. We
convert the n valence ratings into a three bin vector describing
the distribution of the sample over “low”, “medium”, and
“high” valences by binning ratings below, equal to, and greater
than the midpoint (3) and dividing by n as in [10]. MOSEI
contains 23,500 utterances extracted from “in the wild” videos
on YouTube, labelled for sentiment in the range -3 to 3
[15]. We also consider negative, neutral, and positive bins
for MOSEI, this time by partitioning ratings with 0 as the
midpoint. IEMOCAP was collected over five sessions from
ten actors (five male, five female) [16]. Each of the 10,039
utterances is labelled with emotional categories (e.g., anger,
happiness, sadness, neutrality) and dimensional labels (i.e.,
valence, activation, dominance). Though we use dimensional
labels to evaluate results on MSP-Improv and MOSEI, we
evaluate performance on IEMOCAP using categorical labels
to be consistent with prior work [4], [5].

B. Noise Augmentation

We use Librosa, along with the ESC-50 environmental noise
dataset [17], to overlay environmental noise with different
signal to noise ratios (SNR). In our experiments, we add noise
to the instances in each dataset in different profiles, selecting
randomly from among three noise conditions comprising both
a noise type — either “natural”, “human”, or “interior” — and a
signal to noise ratio (SNR). After selecting a noise condition,
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Fig. 2: The Mixture-of-Experts (MoE) DLC model. During training, batches are split by noise condition type, and samples are
routed to “expert” encoders for based on the related noise condition dynamically.

we overlay the original sample with a randomly chosen audio
file from that category (natural, human, or interior) at the
given SNR (lower means noisier). Our heterogeneous noise
profiles (hl, h2, and h3) are inspired by real life situations.
hl is inspired by a grocery store environment, with (natural,
interior, human) SNR values of (-5, -20, -20). h2 is inspired
by a sidewalk environment, with values of (-20, -1, -5). h3 is
inspired by an interior environment, with values of (-5, -30,
-10). Each instance in each dataset will be noised three times,
once for each noise profile.

C. Feature Extraction

We use the Librosa Python library [18] to extract 40
dimensional log Mel Filterbanks (MFB), which have shown
effectiveness in SER [10], [19]. We extract transcripts over
the noise enhanced audio files using Deepspeech [20] and
pre-process the transcripts using a pretrained 512-dimensional
BERT network [21].

IV. NETWORK ARCHITECTURES

In this section, we first provide an overview for the emotion
recognition architectures that we use. Next, we describe the
dynamic layer customization (DLC) and static layer cus-
tomization (SLC) approaches. Then, we describe how DLC
and SLC can be used to augment existing architectures.
Finally, we provide a summary of the models that will be
used in Experiments 1 and 2 (Section VI).

A. Emotion Recognition Architectures

1) Baseline: Our baseline network consists of a feature
encoder linked to both an emotion classifier and a decoder. Our
architectures for each component (feature encoder, classifier,
and decoder) are constant across all our networks and are
based on Khorram et al.’s approach to unimodal acoustic
emotion recognition using dilated convolutions [19]. In other
words, each time we refer to a feature encoder and classifier,
those architectures are the same as described below.

The feature encoder is implemented with three 1-D con-
volution layers with kernel size 16, 128 feature maps, and
dilation rates increasing by powers of two with each successive
layer as in [10], [19], followed by a 1-D MaxPool with
pool size 4 and 4 strides. The decoder layer for feature
reconstruction consists of two 1-D convolution layers with 128
and 40 feature maps, kernel size 3, and 2 strides, followed by
a single 1-D convolution layer with 40 feature maps, kernel
size 3, and 1 stride to mirror the encoder. The classifier
layer consists of three dense layers with two 128 unit layers
followed by a softmax layer where the number of units is the
number of emotion bins (classifier).

We test unimodal and multimodal variations of this archi-
tecture that leverage customization and domain adaptation for
our experiments. In the subsections that follow, we describe
the details of the domain adaptation methods we test and the
multimodal setting of the task.

2) Mixture of Experts (MoE) Model: The MoE model is
an augmentation of the baseline model. In the baseline model
there is a single feature encoder that is assumed to function
over all noise categories. The MoE model does not make
that assumption and introduces separate feature encoders that
are specifically trained for each category of noise. We will
discuss the gating strategies for noise type later in this section.
The network still relies upon a shared classifier and decoder,
identical to the one seen in the baseline system.

3) Domain Adversarial Neural Network (DANN): The Do-
main Adversarial Neural Network [9] is an approach to domain
adaptation in which features are passed through a feature
encoder, then the encoded features are passed through a task
classifier and an adversarial domain classifier (the latter is pre-
ceded by a gradient reversal layer). The adversary is structured
sinilarly to the classifier layer, except that the number of units
in the final layer is the number of noise conditions. In this
way, the feature encoder is encouraged to output encodings
such that using those encodings, the task classifier is able to
predict the task, but the domain classifier is unable to predict

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 03,2022 at 16:39:47 UTC from IEEE Xplore. Restrictions apply.



—> Private 1 -
Laift
Splithy —1———>
Noisy Batch ~ (—» Noise Shared Lsim
(data, noise types) Condition 5 il
Laist
—> Private 2

y
—

—>€9j
A Recombine
; Decoder Reconstructed
» N Order Clean Batch
Ltask
REETIIS Task CLF Task Prediction
in Order

L =aLrecont B Lrask + ¥ Lsim + 8 Lise

Fig. 3: The Domain Separation Network with Dynamic Layer Customization. Samples overlaid with different environmental
noises are first split by noise condition, then passed through separate encoders and a shared emotion classifier (CLF) designed

to separate signal from noise for robust emotion classification.

£ represents the total loss, £4;¢ is the difference between

shared and private encoders, £,..on 1s the reconstruction loss, £, is the task classification loss, and £;,,, is the loss between
samples from different domains. The parameters «, 3,7, and § are hyperparameters.

the domain. DANN has shown promising results on cross-
corpus vision tasks, and has been successfully applied to SER,
though the authors noted that it had difficulty converging [22].
We use DANN in Experiment 2 to generalize to our left out
noise condition.

4) Multiclass Adversarial Discriminative Domain Gener-
alization (MADDoG): The Multiclass Adversarial Discrimi-
native Domain Generalization network [10] is a variation on
DANN where the adversary (called a “critic”) uses a linear
activation with loss based on WGAN-style “earth mover’s
distance” [23] instead of cross-entropy loss with a softmax
activation. The critic is trained separately at the beginning of
each epoch and then is frozen. MADDoG has shown promising
results on the task of SER in domain generalization — a domain
adaptation variation where some labelled test samples are
available at training. We use MADDoG in Experiment 2 as
well to generalize to unseen noise conditions.

5) Domain Separation Network (DSN): The purpose of the
Domain Separation Network (DSN) [8] is to learn a “shared”
encoder that extracts features that are generalizable across
domains. DSN achieves this by learning “private” feature
encoders that encode the parts of a sample unique to each
domain, trained with losses to encourage that, for each sample:
the shared and private encoders yield different representations
(L4ifr); all information relevant to reconstruction is captured
by the normalized sum of the outputs of the shared and
private encoders (£,.cor); the shared encoding is sufficient to
classify the task (£;4s1); and the outputs of the shared encoder
for samples from different domains are so similar as to be
indistinguishable by a DANN-style adversary (£gi,). In the
original paper, DSN created batches by randomly sampling
from each domain.

6) Hierarchical Feature Fusion Network (HFFN): We use
a state-of-the-art multimodal fusion network: Hierarchical
Feature Fusion Network (HFFN) [5]. HFFN extracts inde-
pendent features for each modality (i.e., lexical, acoustic)
before “fusing” them and learning to recognize emotion using
cross-utterance context. HFFN achieves this in three steps:
divide, conquer, and combine. HFFN divides the intermediate
feature space up into local blocks corresponding to neighbor-
ing utterances, conquers by taking the outer product of the
features from neighboring utterances across modalities, and
combines by using a modified LSTM layer to learn contextual
relationships between utterances close to and farther from each
other. We refer the reader to Mai et al. [5] for additional
details.

B. SLC and DLC Noise Gating Functions

In this section, we describe the different gating functions
that are used to augment the existing architectures. In all cases,
we use a noise classifier that is trained to recognize noise type.
This classifier uses the same architecture as the feature encoder
and classifier, described in the baseline model.

We use this classifier for Mixture-of-Experts models at test
time in both SLC and DLC. SLC uses a common assump-
tion while training noise robust systems: that the data can
be segmented into groups with common noise types. This
assumption is valid when there is no value to retaining the
temporal ordering of the utterances or when the noise types
are consistent over all instances in a section of data. During
training, SLC uses oracle noise labels to separate the data into
groups of consistent noise categories. During testing, it uses
the noise classifier to automatically do this separation.

DLC addresses this challenge associated with segmenting
out noise categories by providing dynamic routing to the
different feature encoders based on the properties of the noise.
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During training, DLC takes in a batch of heterogeneously
noised utterances, with the oracle noise labels. It separates
the instances by noise category and individually trains the
feature encoders. Then, it reorders the utterances, retaining
the temporal ordering of the data. During testing, DLC then
automatically estimates noise type, routing the instances to the
correct encoder, and then recombining in the original temporal
order.

The advantage to using DLC, over SLC, comes from the
preservation of temporal ordering. Therefore, it is expected
that the results will show improvements in using DLC vs. SLC
only in the multimodal test cases, where temporal ordering
has been shown to substantially improves performance [4]. In
the unimodal cases, the models that we use do not consider
the temporal ordering of the instances and we therefore do
not expect to see improvement gains in this context. We may
see subtle differences resulting for variations due to batches
being split dynamically and other sources of randomness seen
during training. We present results from both unimodal and
multimodal tests for completeness.

C. Altering Existing Networks with SLC and DLC

The MoE and DSN unimodal networks already have the
notion of routing built in. However, the routing has historically
taken the SLC approach during training and testing. We
replace the SLC routing with DLC routing during both training
and testing. This leads to MoE-SLC/DLC and DSN-SLC/DLC.

The HFFN multimodal network is the network where the
maintenance of temporal ordering is assumed. In this case,
we replace the acoustic feature encoder, but not the lexical
feature encoder, with a domain adaptive/generalized encoder
augmented with DLC. Future work will explore how to do an
equivalent process for lexical information.

V. MODEL TRAINING

We split the videos in each dataset into train (70%), valida-
tion (10%) and test (20%) sets. The data are split before noise
enhancement, thus an original and noise enhanced sample are
always in the same set. These splits are used for both the
emotion classification and noise classification model training.

For each emotion classification system, we use the Adadelta
optimizer with learning rate le—3, cross entropy loss for the
emotion classifier, and mean squared error loss between the
clean input and the output, given noise enhanced input, to
encourage denoising. We use early stopping training with a
batch size of 32 and a patience of ten epochs (max 1000)
and report results from the model with the best validation
metric. Here we use Unweighted Average Recall (UAR) as
our metric, in line with work in the field [10], [24]. The noise
classifier, used as the gating function for MoE models at test
time (Section IV-B), is trained with the same optimizer and
learning rate over the same splits as the emotion classification
models. All experiments were run with Tensorflow 2.0 on a
single machine across 3 GPUs: 1x GTX 1080, 2x Titan X.
The code to reproduce our results can be found online.!

Thttps://github.com/abwilf/mmfusion

VI. EXPERIMENTS

We present two experiments to understand how we can
increase noise robustness in SER. In our first Experiment,
we assume that all noise conditions are known in advance.
In our second Experiment, we again assume multiple noise
conditions, but one of the noise conditions is not known a
priori.

A. Experiment 1

We first consider the case where all test noise conditions are
seen at train time, and test whether the SLC and DLC routing
approaches, permitting multiple feature encoders — one for
each noise condition — will outperform the baseline network.
The models we test are detailed below.

1) Single: Our baseline network consists of an acoustic
feature encoder connected to a decoder (to encourage
denoising through reconstruction loss with the clean
input), and a task classifier (to learn to predict emotion).
Each of these components is described in detail in
Section IV.

2) MoE-SLC: In this network, we examine statically split-
ting based on noise condition. We train separate feature
encoders for each noise condition, with shared classifier
and decoder layers, and use the noise predictor described
above for gating at test time.

3) MoE-DLC: Next, we examine dynamically splitting
based on noise condition using DLC. The difference,
moving from MoE-SLC to MoE-DLC, is that MoE-DLC
splits batches apart by noise condition during training
instead of splitting the full dataset into batches by noise
condition before training. We would expect that the two
models perform similarly in the unimodal condition in
which they are tested.

4) HFFN-Single: We extend the baseline unimodal model
to the multimodal setting using both lexical and acoustic
features, using a single acoustic feature encoder and
BERT embeddings.

5) HFFN-MoE-DLC: We incorporate a mixture-of-experts
approach to our acoustic feature encoder, using DLC
to route samples based on noise condition at train time
so our mixture-of-experts approach can be compatible
with HFFN’s end-to-end training without disrupting the
order of samples. A HFFN-MoE-SLC model would not
be possible because it would require a disruption to the
sample order of the data. We anticipate that this model
will outperform HFFN-Single due to the strength of its
mixture-of-experts approach to noise robustness in its
acoustic feature encoders.

B. Experiment 2

Next, we investigate whether performance can be improved
in the case where we leave one noise condition out during
training (a common testing approach in domain adaptation
problems [8], [10]). In this Experiment, we train the network
on data from two noise conditions and test on the third and
examine whether the domain adaptation methods described in
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Section IV can encourage the feature encoders to generalize
across noise conditions. We expect that networks trained using
domain generalization algorithms will generalize better to the
held out noise than our baseline. We identify the method with
the highest average UAR across datasets from the unimodal
tests, DSN, and use it to extend to the multimodal setting
in combination with HFFN. Again, in this Experiment we
report the average performance of the model, leaving each
noise condition out once as the unseen noise condition.

In this Experiment, we use models 1-4 from Experiment 1.
We add to these models the following:

1) DANN: We test whether DANN, a known and effective
state-of-the-art domain adaptation method [25], can be
used effectively in noise adaptation in the unimodal
context.

2) MADDoG: We test whether MADDOoOG, a known and
effective state-of-the-art domain generalization method
[10], can be used effectively in noise adaptation in the
unimodal context.

3) DSN-SLC: The original implementation of DSN created
batches by randomly sampling from each domain. This
is the protocol used in the standard SLC routing proto-
col.

4) DSN-DLC: DSN-SLC’s random sampling disrupts the
temporal ordering of the data. Through DLC, we can
both randomly sample and maintain temporal ordering,
allowing us to investigate how DSN performs in the mul-
timodal setting with HFFN. This network architecture is
described in Figure 3.

5) HFFN-DSN-DLC: HFFN requires the maintenance of
temporal ordering, which is disrupted by the random
sampling inherent in DSN batching. We leverage the
advantages of HFFN and DSN by using DLC to dynam-
ically route samples to noise-specific private encoders
and back for reconstruction and classification.

VII. RESULTS

We first discuss the accuracy of the noise-source classi-
fication, necessary to accurately route samples to different
feature encoders. The noise classifier obtained an average over
datasets and noise profiles of 87% accuracy at predicting noise
condition labels on the test set (across noise profiles, see
Section IV-B) over the three datasets (see Section III).

A. Experiment 1

We first analyze the performance of our system on unimodal
acoustic data. Our results support our hypothesis that a mixture
of experts network with multiple feature encoders specialized
for particular noise conditions (MoE-SLC) outperforms our
baseline network with a single feature encoder (Single). In the
unimodal setting, the mixture of experts network implemented
dynamically, MoE-DLC, performs similarly to the same net-
work implemented statically, MoE-SLC, and shows an average
improvement of 2.13% UAR across noise profiles and datasets
over the baseline network. This is expected as SLC and DLC
are functionally equivalent in the unimodal setting.

In the multimodal setting, the average difference between
HFFN-Single and HFFN-MoE-DLC is 1.63%. We note that
the DLC routing takes into account only the noise-variations
in the acoustic content, not the lexical content. Yet, lexical
content contributes strongly to SER performance. Therefore,
we anticipate that a larger performance gain would be possible
if lexical embeddings were also targeted. Future work may
find more improvements in the multimodal setting by using
denoised audio for transcription.

B. Experiment 2

Again, we first analyze the performance of our system on
unimodal acoustic data. In contrast with Experiment 1, we
found that the mixture of experts network with multiple feature
encoders, MoE-SLC and MoE-DLC, did not outperform the
baseline with a single feature encoder. We believe that this
is because there is no generalization within the specialized
feature encoders, so each encoder is poorly equipped to handle
samples that contained novel sources. Put another way, the
network is attempting to fit the test noise condition into one of
the train noise condition “buckets”, where it does not belong.

We found that unimodal domain adaptation methods sig-
nificantly improved upon the baseline (Single) and mixture of
experts (MoE) approaches. Of these methods, DSN performed
the best, improving over a single, ungeneralized feature en-
coder by an average of 2.49%. We implement both DSN-SLC
and DSN-DLC, anticipating that their results will be similar,
and indeed they are, differing in their h values (performance
averaged over noise profiles and datasets) by only 0.13%.

In the multimodal setting, we implemented DSN with DLC
as part of HFFN (HFFN-DSN-DLC), and found an average
improvement of 2.06% over our multimodal network with the
single ungeneralized feature encoder (HFFN-Single).

VIII. DISCUSSION

In our experiments, we find that our DLC approach unlocks
significant performance increases by extending methods’ ap-
plicability to the multimodal setting. We further observe that
a mixture-of-experts approach can improve noise robustness
when deployment noise conditions are seen during training
(Figure 4a). However, when noise conditions are novel at test
time, approaches that leverage encoders trained for particular
noise profiles (e.g., MoE) are not effective. Instead, domain
adaptation or generalization methods can be augmented with
DLC, to improve over the baseline, even when the baseline
includes a multimodal implementation (Figure 4b).

In Experiment 1, our two unimodal Mixture-of-Experts
models perform similarly as expected. Yet, it is in the multi-
modal setting that we both expect and observe performance
changes. Through DLC, we can extend performance gains
derived from the HFFN cross-utterance multimodal emotion
recognition network to a noise-enhanced condition.

In Experiment 2, we observe that when our Mixture-of-
Experts models are asked to assign an unseen noise to one of
their encoders trained on a different noise type, they perform
substantially worse than the baseline system because they

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 03,2022 at 16:39:47 UTC from IEEE Xplore. Restrictions apply.



TABLE I: UAR results for all methods on both experiments across datasets. Non-italic text indicates the unimodal setting,
italic text indicates a multimodal setting. The final column shows the average performance by noise conditions and then over
the three noise conditions, hl, h2, and h3 and averaged over all noise conditions, h.

Dataset MSP IEMOCAP MOSEI Overall
Noise Profile hl h2 h3 hl h2 h3 hl h2 h3 hl h2 h3 h
Experiment 1 Single 51.39 53,51 5499 | 5829 59.01 60.55 | 4225 4298 4340 | 50.64 51.83 5298 51.82
MoE-SLC 53.05 55.10 5695 | 60.21 6241 6245 | 4450 4475 4561 | 52.59 54.09 55.00 53.89
MoE-DLC 53.12 5497 56.89 | 6036 62.23 6270 | 44.74 4486 4572 | 52.74 54.02 55.10 53.95
HFFN-Single 5747 59.75 60.68 | 6398 66.17 66.88 | 4941 4897 50.22 | 5695 5830 59.26 58.17
HFFN-MoE-DLC | 5898 61.05 62.79 | 6537 6796 68.48 | 51.44 50.19 5197 | 58.60 59.73 61.08 59.80
Experiment 2 Single 4958 51.28 51.70 | 55.81 5694 57.92 | 39.38 40.53 4091 | 48.26 49.58 50.18 49.34
MOoE-SLC 4821 49.78 49.16 | 5224 5143 5425 | 3821 39.08 3944 | 46.22 46.76 47.62 46.87
MoE-DLC 48.16 4996 49.21 | 52.18 51.43 5429 | 38.19 39.12 3941 | 46.18 46.84 47.64 46.89
DANN 51.50 52.10 5229 | 5740 5826 59.80 | 40.15 41.23 42.18 | 49.68 50.53 5142 50.54
MADDoG 51.88 52.88 5237 | 58.16 58.28 60.48 | 40.19 41775 4274 | 50.08 5097 51.86 50.97
DSN-SLC 5343 52.46 55.3 58.59 6092 58.13 | 41.74 40.63 44.07 | 51.25 5134 5250 51.70
DSN-DLC 5222 53,13 5444 | 5792 60.12 61.61 | 41.21 4250 4332 | 5045 5192 53.12 51.83
HFFN-Single 5583 5729 5853 | 6270 64.83 66.02 | 45.62 46.66 4723 | 5472 5626 5726 56.08
HFFN-DSN-DLC | 58.28 59.31 60.66 | 66.08 66.05 67.90 | 46.66 4848 49.83 | 57.01 5795 5946 58.14
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MoE-DLC
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41 4 MADD0G
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l l DSN-DLC
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(a) Experiment 1.

MSP IEMOCAP MOSEI

(b) Experiment 2.

Fig. 4: Results relative to baselines, averaged across noise profiles, visualized with one standard deviation error bands depicted
in black. The relevant baseline is “Single” for unimodal networks, and “HFFN-Single” for multimodal networks. Striped bars
indicate a multimodal model, meaning that its baseline is “HFFN-Single”, not “Single”.

lack the capability to generalize. Yet, we find that domain
adaptation algorithms can be used to generalize to unseen
noise conditions, and that dynamically routing samples to
noise-matched feature encoders can be used to extend the
performance improvements derived from temporal ordering in
the multimodal setting to these noise-enhanced data.

We anticipate that future work may find further improve-
ments by exploring a network that leverages both the mixture-
of-experts approach and domain generalization, assigning a
sample to a “known” encoder if the noise predictor is confident
enough that the type of noise has been seen during training,
and assigning the sample to the generalized encoder if not.
We are also interested in whether future work may find that
customizing to and generalizing across noise conditions in the
ways here could inform noise robust speech recognition tasks
which, apart from their own importance, could also lead to
more noise-robust multimodal emotion recognition systems.

IX. CONCLUSION

In this paper, we present the findings of our investigation
into mixture of experts models and domain adaptation in noise

robust speech emotion recognition networks, both unimodal
and multimodal. We show that specializing feature encoders
to noise conditions by using sample-level noise information
during training when all noise conditions are known and by
using domain adaptation algorithms (without unlabelled test
data) when one noise condition is left out can improve our
algorithms’ robustness to noise. To extend our findings to the
multimodal setting, we present Dynamic Layer Customization
(DLC) as a way to route and recombine samples to preserve
their temporal ordering. We believe that this work will provide
an important baseline for future work in noise robustness
to test against, and that our findings will help shape the
deployment of SER systems in the real world.
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