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Abstract

Key message The principal phenotypic determinants of market class in carrot—the size and shape of the root—are
under primarily additive, but also highly polygenic, genetic control.

Abstract The size and shape of carrot roots are the primary determinants not only of yield, but also market class. These
quantitative phenotypes have historically been challenging to objectively evaluate, and thus subjective visual assessment
of market class remains the primary method by which selection for these traits is performed. However, advancements in
digital image analysis have recently made possible the high-throughput quantification of size and shape attributes. It is there-
fore now feasible to utilize modern methods of genetic analysis to investigate the genetic control of root morphology. To this
end, this study utilized both genome wide association analysis (GWAS) and genomic-estimated breeding values (GEBVs)
and demonstrated that the components of market class are highly polygenic traits, likely under the influence of many small
effect QTL. Relatively large proportions of additive genetic variance for many of the component phenotypes support high
predictive ability of GEBVs; average prediction ability across underlying market class traits was 0.67. GWAS identified
multiple QTL for four of the phenotypes which compose market class: length, aspect ratio, maximum width, and root fill,
a previously uncharacterized trait which represents the size-independent portion of carrot root shape. By combining digital
image analysis with GWAS and GEBVs, this study represents a novel advance in our understanding of the genetic control
of market class in carrot. The immediate practical utility and viability of genomic selection for carrot market class is also
described, and concrete guidelines for the design of training populations are provided.

Introduction

Carrot (Daucus carota subsp. sativus) is a widely cultivated
vegetable crop of both significant economic importance—
globally, annual carrot production exceeds 40 million met-
ric tons (FAO 2020)—and nutritional value, representing
a significant source of pro-vitamin A in the human diet
(Simon 2000). Carrot roots are sold into many different
markets as a fresh product, a storage root, and a processing
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crop. In this regard, the size and shape of the edible, swol-
len taproot are key traits which not only influence yield,
but are the principal determinants of market class in carrot
(Banga 1957; Simon et al. 2008), affecting harvestability,
post-harvest handling, and marketability. For example, pro-
cessing industries (e.g., canning, freezing, dehydrating, or
juicing) prefer to purchase cultivars that can produce a large,
bulky root, which is typically grown as a long-season crop
at relatively lower densities (500,000-1,000,000 plants per
hectare). Fresh market uses, on the other hand, typically
require longer, slimmer roots, which can therefore be grown
at higher densities (1,500,000-3,000,000 plants per hectare).

While extensive diversity for root size and shape exists
within cultivated carrot germplasm, these quantitative traits
have historically been challenging to objectively evaluate.
With the mechanization of carrot production, harvest, and
post-harvest handling, these particular combinations of car-
rot root size and shape attributes have become increasingly
important breeding targets. Nevertheless, distinguishing
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among market classes continues to be primarily performed
based on a subjective visual assessment of the curvature of
the carrot root shoulder and tip, as well as its length and
width. No method for the quantification of standard size
and shape categories is currently recognized. In this con-
text, digital image analysis holds significant potential in not
only automating phenotyping tasks, but enabling the precise
measurement of the determinative components of market
class.

Such an image analysis pipeline was recently developed
specifically to provide a high-throughput method for accu-
rately evaluating both size and shape parameters in a diverse
collection of carrot germplasm (Brainard et al. 2021). This
pipeline allows for the precise characterization of the mor-
phological phenotypes which distinguish market classes
from one another. In particular, principal components anal-
ysis (PCA)-based methods of quantifying shoulder and tip
curvature, as well as size-independent variation in the full
root contour, were shown to improve discrimination between
market classes, relative to what is possible using only meas-
urements of root length, width, and aspect ratio. The quanti-
tative phenotypic data this platform provides, together with
the recent construction of a high-quality, chromosome-scale
reference genome for carrot (lorizzo et al. 2016), allows
researchers to now utilize both genome-wide association
analysis (GWAS) and genomic-estimated breeding values
(GEBVs) to analyze the genetic control of root shape in car-
rot. These methods are used widely in the study of plant
genetics, due both to their ability to improve the efficiency
of plant breeding, as well as provide a starting point for
the molecular characterization of the genetic control of key
agronomic traits.

This study utilized both of these methods, thus allow-
ing for a methodological comparison of GWAS—which
attempts to identify QTL through their non-random associa-
tion with genetic markers—and GEBVs—which are based
on an estimation of additive genotypic effects that does
not rely on prior knowledge of QTL. Although GWAS has
become a widely used tool in quantitative genetic analysis,
even in cases where marker density is high and a hetero-
geneous diversity panel is utilized, small effect QTL often
go undetected in the case of highly polygenic traits (Brachi
et al. 2011). In contrast, GEBVs calculated using an infini-
tesimal model of gene action do not use any significance
threshold for including markers in a predictive model. Since
being initially developed in the context of animal breed-
ing (Meuwissen et al. 2001), the development of efficient
methods for calculating a marker-derived relationship matrix
(VanRaden 2008) has led to the extensive use of GEBVs
in agricultural breeding programs. Many of the factors that
limit power in GWAS—such as population structure, popu-
lation size, and trait heritability—can also limit the accuracy
of such GEBVs. However, these methods have the potential
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to function in a complementary manner: while GEBVs have
proven effective when performing selection even for highly
polygenic traits, GWAS has the capacity to provide more
specific information regarding the nature of the genetic con-
trol of traits, and the location of potential candidate genes.

To date, only two studies have examined the genetic con-
trol of carrot root size and shape (Turner et al. 2018; Macko-
Podgorni et al. 2020), of which only one carried out GWAS
analyses, and neither investigated the predictive ability of
GEBVs for root shape traits. This paper therefore represents
a novel advance in terms of our understanding of the genetic
control of market class in carrot root, with implications both
for further research and breeding for these traits. By com-
bining quantitative measures of phenotypes extracted from
digital images, with a diversity panel more than twice as
large as that used in the only previously reported GWAS
analysis, these results demonstrate the potential of associa-
tion mapping in identifying QTL for root shape traits. In
addition, these findings add support to the growing body of
literature illustrating the utility of GEBVs for making selec-
tion on highly polygenic, quantitative traits, particularly in
unstructured, outcrossing plant species.

Materials and methods
Plant materials

A total of 749 accessions (also referred to throughout this
paper as “genotypes”) were utilized in this study, com-
posed mainly of Plant Introductions in the USDA National
Plant Germplasm System (USDA-NPGS) collection of
D. carota germplasm held in Ames, IA—which includes
open-pollinated varieties, inbred lines, and landraces—as
well as breeding lines from both the University of Wiscon-
sin and USDA-ARS carrot breeding programs in Madison,
WI. This panel represented all cultivated carrots available
in the USDA germplasm collection in 2016, and as such
encompassed a wide range of root shapes, sampled from
the majority of regions in which carrots are cultivated glob-
ally. A description of the geographic origin of each of the
samples included in this analysis is included in Supp. File
1. Importantly, this panel excluded all 154 wild carrot sam-
ples utilized in the association analysis reported in Ellison
et al. (2018), as these wild populations possess branched
root systems, and thus are unsuitable for analyses focussed
on market class traits.

In 2016 and 2018, the collection was grown at the
Hancock Agricultural Research Station in Hancock, WI
(44°08’N, 89°32'W); accessions were planted on May 16th
and May 24th, and harvested on August 29th and 30th,
respectively. In 2018-2019, the collection was grown at
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the University of California Desert Research and Exten-
sion Center in Holtville, CA (32°48” N, 115°26° W). In
this environment, planting occurred on October 10th, and
roots were harvested on February 25th. In both locations,
accessions were grown in 1-m long rows; in Wisconsin, one
replicate per genotype was planted, while in California, two
replicates of all genotypes were planted in a randomized
complete block design. One to fifteen roots were harvested
per replicate. In Wisconsin, higher disease pressure led to
fewer mature, undamaged roots being harvested per plot, on
average. Following harvest, carrot tops were removed, and
roots were stored at 4 °C until phenotyped.

Phenotypic evaluation

Roots were digitally phenotyped as described by Brainard
et al. (2021). In brief, after being cleaned, roots were QR
coded and placed against either a white vinyl or black felt
backdrop depending on root pigmentation. Images were
acquired using a Nikon 5600 DSLR camera tethered to a
computer running macOS 10.14. Python bindings for the
OpenCV library were used to create binary masks of the
roots by thresholding the hue-saturation-value color space.
Custom MATLAB scripts were subsequently used to remove
residual curvature in each root, and a random forest clas-
sifier was used to remove any unexpanded portion of the
taproot. Python scripts for image acquisition and production
of binary masks are available at: https://github.com/shbra
inard/carrot-phenotyping; MATLAB scripts for straighten-
ing binary masks and performing PCA on contours or cur-
vature values are available at: https://github.com/jbustamant
e35/carrotsweeper.

Following acquisition and pre-processing, phenotypes were
extracted from the straightened, de-tipped binary masks. Root
length was calculated as the distance from the center of the
root crown to the root tip, following both straightening and
elimination of the unexpanded, etiolated portion of the root.
Maximum width was measured as the distance across the wid-
est portion of the carrot, which is typically located just below
the root crown. Total root size was defined as the 2D area
of the entire binary mask. Aspect ratio was calculated as the
ratio of length and maximum width. In addition, in order to
quantify size-independent parameters of contour shape, PCA
was performed on the root contour following a normalization
procedure whereby each carrot was standardized to have a
maximum width of 1, and a length of 1000. The scores along
the first principal component quantify the degree of root fill, or
how far down the length of the carrot the maximum width of
the root is maintained; this trait accounts for over 80% of the
variation in size-independent root shape. In addition, curvature
values were computed at each point along the root contour in
both the shoulder and tip regions as described by Driscoll et al.
(2012). PCA of the first and last 50 elements of these curvature

profiles was then performed; the first principal component of
the former was used as a metric of shoulder broadness, while
the first principal component of the latter was used as a meas-
ure of tip fill (a schematic workflow of this image acquisition
pipeline is shown in Supp. Fig. 1). Together, this suite of root
traits has been found to allow for accurate classification of
roots, compared to a visual assignment of carrot market class
(Brainard et al. 2021). In this study, two carrots were included
in each raw image. With this workflow, the image acquisition
phase required one minute per root, and one additional minute
of computational time was required to perform pre-processing
of the binary masks produced during acquisition, and pheno-
typing of these standardized images using a 3.3 GHz Intel
Dual-Core i7 CPU and 16 GB of 2133 MHz LPDDR3 RAM.

Finally, prior to association analyses and construction of
genomic prediction models, the diversity panel was restricted
to those accessions that exhibited little to no branching of the
taproot. Both the nature of the root-straightening algorithm—
which depends upon identifying a carrot tip—and many of the
phenotypes themselves (length, tip fill), implicitly require that
the root be a single unbranched taproot. Small root hairs were
removed through smoothing operations, and just as forked or
split roots were discarded prior to image acquisition, acces-
sions with highly branched fibrous root systems were also
excluded on the basis of being inappropriate to an analysis of
market class traits. Together with the failure of some roots to
produce new leaf tissue following vernalization, this reduced
the total size of the diversity panel used in subsequent analyses
to 662 unique cultivated accessions.

Estimation of genotype means

A “two stage” analysis was adopted in this study whereby prior
to GWAS and genomic prediction, each genotype was first
represented by a single phenotypic value, estimated using a
mixed effects linear model. Genotype was modeled as a fixed
effect, and each of the four unique combinations of location
and replicate were combined into a single fixed “environment”
effect with four levels. Because of unequal subsampling within
environments, an additional random effect term was included
to model genotype x environment interactions. The resulting
model was equivalent to a RCBD model with subsampling:

Yy =u+G,+E+GE;+e

ij ijl

G, represents the ith genotype effect, E; the jth environment
effect, GE;; the ijth genotype x environment interaction (with
GE,-J- ~ N(O, aéE)) and Eii the ijlth residual variation (i.e.,
variance among subsamples, with €4t ~ N(O, 0'52)). Models
were fit for each trait independently using the Ime4 package
in R v4.0.4 (R Core Team 2021), and genotype means were
extracted using the package emmeans.

@ Springer


https://github.com/shbrainard/carrot-phenotyping
https://github.com/shbrainard/carrot-phenotyping
https://github.com/jbustamante35/carrotsweeper
https://github.com/jbustamante35/carrotsweeper

Theoretical and Applied Genetics

DNA extraction, genotyping, marker development

Following six weeks of vernalization at 4 °C, one root per
accession was transferred to a greenhouse environment and
planted in conical tubes containing Pro-Mix High Porosity
potting mix (Premier Tech, Quakertown, PA). Roots were
maintained at 20 °C with a 16 h photoperiod. Following emer-
gence of new leaf tissue, 1 cm? leaf samples were obtained,
and stored at — 80 °C until lyophilization. Freeze-dried tissue
was then macerated, and genomic DNA was extracted using
Macherey—Nagel NucleoSpin 96-well kits. DNA quantifica-
tion (using Quantus PicoGreen dsDNA kits), library prepa-
ration, and sequencing was performed at the University of
Wisconsin-Madison Biotechnology Center. In brief, restric-
tion enzyme-digestion was performed with ApeKI, following
which Illumina adapters and sample-specific barcodes were
annealed. Samples were then multiplexed and sequenced on
an Illumina NovaSeq 6000, generating on average 4 million,
150 bp paired-end reads per sample.

Raw, multiplexed.fastq files corresponding to forward and
reverse reads of each lane were checked for quality, and demul-
tiplexed using a custom a Java application (http://github.com/
shbrainard/gbstools/). SNPs were then identified using the
GBSv2 pipeline of TASSEL 5 (Bradbury et al. 2007), with
version 3 of the D. carota genome (lorizzo et al. 2016, 2020)
used as a reference. Missing data was imputed with Beagle
v5.1 (Browning et al. 2018), using default parameters, 20
iterations, and 300 phase states. Filtering, performed using
beftools v1.11, was used to remove markers with minor allele
frequency less than 0.05, markers with 90th quantile depth
less than 10 or greater than 500, and any non-biallelic mark-
ers. This filtering resulted in a total of 146,816 SNPs that were
used as the basis for subsequent analyses. Genome-wide link-
age disequilibrium (LD) was also calculated using bcftools, as
the square of the sample Pearson correlation between marker
genotypes (r°). Filtering on the basis of LD was performed
using the prune plugin.

Calculation of the realized-relationship matrix
For both GWAS and genomic prediction, SNPs were used to

estimate a realized relationship matrix, A, calculated using
the imputed marker data:

m>

A, = mZLT

k=1 Zpqu
where Z represents a matrix of centered genotypes (662
accessions X 146,816 markers). The scaling factor insures
diagonal elements are equal to 1 + f, where f is equal to the
intra-individual gametic correlation (Kang et al. 2008). p,
and g, indicate the minor and major allele frequency for the
k™ marker. Shrinkage estimation was also applied in the case
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of estimating breeding values, using default settings of the
A.mat function of rrBLUP v4.6.1, as described by Endelman
& Jannink (2012).

Linkage disequilibrium decay and population
structure

LD was assessed in two ways. First, correlation coefficients
between each SNP and its 100 nearest neighboring mark-
ers were calculated, and recorded along with the physical
genetic distance between each pair. Distances were then
binned, and LD regressed against genetic distance using the
decay function LD(x) ~ y; + (yy — yf)e‘“(h'w, with initial
estimates for Vs Yo and loga estimated in R using the self-
starting regression function SSasymp. Second, genome-wide
LD was visualized as a Manhattan plot by calculating the
mean LD of each SNP with its 100 nearest neighbors, having
first thinned the marker dataset to only 1 SNP per kilobase
(kb), to avoid distortions due exclusively to uneven marker
distribution across the genome.

Population structure was assessed by performing PCA on
the centered marker matrix, and plotting the first two PCs
against each other in a biplot. Scree plots of variance attrib-
uted to each component were also used to visually determine
the number of PCs to include as fixed effects in the GWAS
model.

Genome-wide association analysis

GWAS was performed using the GWASpoly package
(Rosyara et al. 2016), which implements the mixed model
described by Yu et al. (2006). This tool utilizes the so-called
Q0 + K method, whereby population structure and related-
ness between individuals is controlled for using both fixed
effects, as well as a random polygenic term calculated using
all markers following the P3D method (Zhang et al. 2010).
This resulted in the model:

y=Xp+St+Zu+¢

where y is a vector of phenotypes, which in this study
constituted the estimated genotype values from the linear
mixed model described above. 7 is a vector of SNP effects.
u is a vector of random polygenic effects, with a variance
equal to o-éK, where cé is the genetic variance, and K is
proportional to the realized relationship matrix A,, defined
above, but without scaling by p and g. Because variance
components were not re-estimated for each marker indepen-
dently, this model is equivalent to that proposed by Kang
et al. (2010). € is a vector of residual effects following a
N(O, Iaz) distribution, and g is a vector of fixed population
structure effects. X, S, and Z represent the respective inci-
dence matrices. In this study, the first principal component
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of the marker matrix was used as a fixed effect, as proposed
by Price et al. (2006) as an alternative to the groupings
provided by clustering algorithms such as STRUCTURE
(Pritchard et al. 2000).

Significance thresholds were determined on a trait-by-trait
basis by performing 1000 simulated analyses using random
permutations of each phenotype vector; this permutation
testing was conducted using the computing resources and
assistance of the UW-Madison Center for High Throughput
Computing (CHTC) in the Department of Computer Sci-
ences. Logarithm of the odds (LOD) thresholds were then
calculated to control the family-wise error rate (FWER) at
a=0.05.

Partial R? values and p-values for significant markers
were calculated using backward elimination on the basis of
a deviance parameter equal to the difference of likelihoods
of the full model (with all significant markers included) and
the reduced model (with the marker in question removed):
d =2(LL; — LL,), where LL; and LL, represented the log
likelihoods of the full and reduced models, respectively.
For peaks in the Manhattan plots with multiple signifi-
cant markers, single markers were identified by calculat-
ing, for each marker, p-values equal to the dth quantile of
the cumulative distribution function of the  *-distribution,
with degrees of freedom equal to the number of SNPs in a
given peak; peaks were then represented as the single SNP
with a p-value < 0.05. Partial R values were then computed
for these markers as: R2 = 1 — e_i, where n represented the
number of samples.

Genomic-estimated breeding values

In addition to GWAS, marker data were used to calculate
GEBVs, using best linear unbiased predictors (BLUPs)
(Henderson 1963). First, the marker matrix used for esti-
mation of kinship was thinned significantly: markers were
thinned to a maximum density of one marker per 1 kb, with
no missing data, resulting in 12,370 SNPs, with an average
distance between SNPs of 36.55 kb; this marker density is
sufficient to support maximal predictive ability, and thus was
an appropriate base marker set for all subsequent analyses,
as it allowed for each prediction accuracy-limiting variable
to be evaluated individually. The A, matrix was then cal-
culated as above. BLUPs of the additive genotypic effects
were then calculated using the rrBLUP package (Endelman
2011). The prediction error variance (PEV) of the BLUPs
was calculated using the inverse of the coefficient matrix of
the mixed model equations, scaled by the diagonal elements
of the covariance structure defined by the realized relation-
ship matrix (i.e., the variance of the given BLUP) (Hender-
son 1973); PEV is proportional to trait heritability, and thus
provides a metric for judging the reliability of BLUPs with-
out performing any form of cross-validation. Nevertheless,

cross-validation of these predictions was also performed in
order to assess predictive ability, by calculating the correla-
tion of predicted values with an estimate of the true geno-
typic value. This was performed by first randomly masking
10% of the phenotypic data (the validation population; VP);
correlation coefficients were then determined between the
BLUPs of these genotypes calculated using the remaining
90% of the panel as a training population (TP), and their true
phenotypic values. This was repeated 100 times, and average
correlations were reported as predictive ability.

Analysis of parameters affecting predictive ability

SNP density, the degree of relatedness between TP and
VP, and TP size were all evaluated in terms of their effects
on predictive ability using the cross-validation approach
described above. In each case, the same self-starting regres-
sion function SSasymp used to model LD decay was fit to
the resulting data. For any specific cross-validation analysis,
all parameters not being varied were held constant at levels
determined to not limit predictive ability.

For SNP density, VCF files were filtered according to
a range of thinning parameters to generate variably dense
marker sets. Markers were thinned to a maximum of one
SNP every 0.1 kb (resulting in 18,093 SNPs, with an aver-
age distance between SNPs of 25.02 kb), 2 kb (resulting
in 11,269 SNPs, with an average distance between SNPs
of 40.04 kb), 5 kb (resulting in 6535 SNPs, with an aver-
age distance between SNPs of 47.11 kb), 10 kb (resulting
in 4882 SNPs, with an average distance between SNPs of
56.68 kb), 100 kb (resulting in 2392 SNPs, with an aver-
age distance between SNPs of 181.17 kb), 250 kb (resulting
in 1191 SNPs, with an average distance between SNPs of
361.97 kb), 500 kb (resulting in 660 SNPs, with an aver-
age distance between SNPs of 651.80 kb), 750 kb (result-
ing in 467 SNPs, with an average distance between SNPs
of 926.63 kb), 1 megabase (Mb) (resulting in 362 SNPs,
with an average distance between SNPs of 1.20 Mb), 2 Mb
(resulting in 195 SNPs, with an average distance between
SNPs of 2.26 Mb), 3 Mb (resulting in 136 SNPs, with an
average distance between SNPs of 3.29 Mb), 4 Mb (result-
ing in 103 SNPs, with an average distance between SNPs of
4.35 Mb), and 5 Mb (resulting in 86 SNPs, with an average
distance between SNPs of 5.27 Mb). A separate VCF file
was also generated containing only markers on chromo-
some 3, thinned to a maximum of one SNP every 0.1 kb
(resulting in 5621 SNPs, with an average distance between
SNPs of 22.19 kb); this highly biased marker set provided an
extreme case with which to evaluate the effects of distorting
the genome-wide distribution of a relatively large number
of markers.

To evaluate the effect of similarity between the TP and
VP, a k-means clustering algorithm was applied to the
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principal components of the marker matrix containing 9535
SNPs. The most distant sub-grouping of 60 accessions was
adopted as the most unrelated VP, and was then progres-
sively diluted by replacing individuals in this sub-group with
random draws from the larger population, to thereby simu-
late a gradient of relatedness between the TP and VP. Dilu-
tion amounts were setto 1, 3, 5, 7, 10, 13, 15, 17, 24, 27, 31,
35, 45, and 50 individuals, with 50 replications performed
at each dilution level. “Distance” between TP and VP was
then calculated on the basis of a similarity matrix, defined as
the inverse of the distance matrix constructed from the first
100 PCs of the PCA of the marker matrix. Each individual
in a given VP was then compared against the » most similar
individuals in the TP, where n was allowed to vary between
1 and 660, depending on the distance metric being analyzed.
These distances were then averaged across all individuals
in the TP. The same 100-fold cross-validation approach as
outlined above was repeated here for every TP/VP combina-
tion, and average predictive ability was then regressed onto
the average similarity index.

To evaluate the effect of varying TP size, two distinct
approaches were taken. First, absolute TP size was varied,
while holding the relative size of the VP constant at 10%.
This was performed by sampling subsets of sizes ranging
from 10 to 660 from the full panel, repeating this sampling
process 50 times at each population size, and performing the
same 100-fold cross-validation approach as with previous
analyses. Separately, relative TP size was also varied, by
holding the absolute size of the VP constant at 60 individu-
als, and varying the total TP size from 75 to 660. As with
the previous analysis, at each level of relative TP size, the
sampling procedure was iterated 50 times, and for each itera-
tion the 100-fold cross-validation approach was performed.
Finally, relative VP size was varied, by holding the total
population size constant at 662 individuals, and sampling

Fig. 1 Representative roots
from four distinct market
classes, exemplifying varia-
tion in the four traits for which
GWAS detected significant
association with markers. a A
Parisienne-type carrot and b an
Imperator-type illustrate vari-
ation for length and maximum
width. ¢ A Nantes-type and d a
Chantenay-type illustrate varia-
tion for aspect ratio and root fill

(b)
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VPs ranging from 10 to 650, and as above, iterating each VP
size 50 times, and performing the 100-fold cross-validation
with each iteration.

Results
Phenotypic variation in the diversity panel

Representative roots drawn from four common market
classes are shown in Fig. 1, illustrating the degree of phe-
notypic differentiation between classes, as well the particu-
lar combinations of the components of root size and shape
which define specific classes. For instance, Imperator-type
roots (Fig. 1b) combine a narrow maximum width with long
root length, while the Chantenay-type (Fig. 1d) combines
a large maximum width with low degrees of root fill; as
described above, this latter trait reflects the first PC score fol-
lowing PCA on the size-normalized root contour. While all
of the carrots shown in Fig. 1 clearly exhibit distinct aspect
ratios, Fig. 1a-c all have high degrees of root fill, while only
Fig. 1d exhibits a rapid tapering along its length. This high-
lights the particular value of image analysis procedures such
as PCA, which allow for the de-coupling and independent
analysis of size and shape parameters, and the extraction
and quantification of high-dimensional phenotypes. Violin
plots for each of these component market class traits, in each
of the environments defined by a specific year and location
combination, are shown in Supp. Fig. 2.

Linkage disequilibrium and population structure

The extent and rate of decay of LD across the genome is
an important determinant of the potential resolution of

()
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association analysis, and a decisive factor in determining
the marker density necessary for performing GWAS (Oty-
ama et al. 2019; Alqudah et al. 2020). A slow decrease in
LD, as distance between pairs of markers increases, implies
both that a relatively fewer number of markers is necessary
to effectively capture the extent of historical recombina-
tion in the diversity panel, but also that large stretches of
extended haplotype blocks will likely reduce the precision
with which the size of a QTL can be estimated, due to long-
range linkage between SNPs and causal loci (Myles et al.
2009).

Results of short-range LD decay are shown in Fig. 2a.
Intersections with dashed lines representing > values of
0.2 (blue line) and 0.1 (green line) at 796 bp and 19.7 kb,
respectively, illustrate that within only several kb, there is
a rapid approach to linkage equilibrium across the panel.
The curated marker set (with filtering parameters described
above) contained SNPs separated by an average distance
of 3711 bp; while this distance varied across the genome
(Supp. Fig. 3), SNPs on average were therefore sufficiently
close to provide adequate genome-wide coverage in terms
of being in LD with putative QTL. Short-range genome-
wide LD is visualized as a Manhattan plot in Fig. 2b. While
a single peak in LD is observed on chromosome 2, average
LD is relatively minimal, with a mean of only 0.038, and
only 3.6% of all sliding windows exceeding the threshold of
#*>0.1. This demonstrates both a consistent and relatively
limited degree of LD across the genome. 7> values are accu-
rate estimates of LD even using unphased genotypes (Rogers
& Huff 2009), and thus the dense marker dataset utilized in
this study appeared well-suited to association analysis.

(a)

Mean LD
Pairwise LD

23
=
<

10k~

Distance (bp)

Fig.2 Genome-wide linkage disequilibrium in the diversity panel of
662 carrot accessions, using 29,456 SNPs represented in terms of a
decay function (a), and Manhattan plot (b). a Average LD was plotted
against the physical genetic distance between pairs of markers (black
dots; log scale), and a self-starting asymptomatic decay function was

In addition to LD, which determines an upper bound on
QTL resolution, and as such, informs appropriate marker
density, population structure is another determinative char-
acteristic of any association panel. The presence of uncon-
trolled population structure and admixture can lead to spu-
rious inflation of p-values, even in the absence of severe
linkage disequilibrium (Ewens & Spielman 1995; Pritchard
& Rosenberg 1999). A PCA bi-plot was used to assess popu-
lation structure, and the results mirror the minimal degree of
structure observed by Ellison et al. (2018) (Fig. 3a). Aside
from one primary cluster determined by scores along PC1
(which has been previously characterized as corresponding
to the pool of Western domesticated carrot germplasm (Elli-
son et al. 2018)), little clustering was detected. And indeed,
the variance captured by the first component was only ~ 10%
of the total variance of the marker matrix, with each subse-
quent component explaining roughly 1% of total variance
(Fig. 3b). Consequently, including one PC as a fixed effect
in the association analysis was judged to be sufficient.

Genome-wide association analysis

Manhattan plots illustrating the results of GWAS for four
root shape traits that are constitutive of market class are
shown in Fig. 4. Three of these traits pertain specifically to
the dimensions of the carrot root: length, maximum width
(which occurs in the shoulder region of carrot roots), and
their quotient, aspect ratio. These traits define the size of the
root, and are in principle measurable by hand. In addition,
significant associations were also found for root fill, which
corresponds to the first PC score obtained by performing

(b)

Chromosome

fit to the data (red). Intercepts with # values of 0.2 (blue line) and 0.1
(green line) are indicated as 1259 and 31,701 bp, respectively. b LD
calculated on a sliding-window basis (the mean of a given SNP and
its 100 nearest neighbors) is represented as a Manhattan plot
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Fig.3 PCA-based visualization of population structure in the car-
rot diversity panel. a PCA bi-plot representing all accessions in the
diversity panel according to their scores along the first (x-axis) and
second (y-axis) principal component. Points are colored according to
a quantitative measure of their market class following the methods of
Brainard et al. (2021). This numeric score is itself calculated as the

PCA on the length- and width-normalized root profile. This
trait represents the most significant source of variation in the
contour of the root—specifically, the extent to which a carrot
maintains its maximum width down its length. Root fill is
therefore explicitly a “shape trait”, insofar as it is a function
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Fig.4 Manhattan plots of GWAS results using a diversity panel of
662 carrot accessions and 146,821 SNPs. Significant associations
were found for 4 of the digitally-measured phenotypes quantified
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first principal component of a PCA on six market class traits—tip and
shoulder curvature, root length, maximum width, aspect ratio, and
root fill—and has previously been shown to effectively distinguish
between the primary U.S. market classes. b Scree plot of the vari-

ance explained by the first 15 principal components of the PCA of the
marker matrix

of contours that have been standardized for their size, and
as such, is not measurable by hand, though it reflects a key
aspect of market class.

The most significant SNPs corresponding to each peak in
a trait’s respective Manhattan plot are listed in Table 1, and
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box plots of the effect sizes of the individually significant
SNP for each trait (represented as a function of allele dos-
age) are shown in Fig. 5. Annotated genes from version 3 of
the carrot genome falling within a 40 kb window of the most
significant SNP in each peak are listed in Supp. Table 1.
For three traits, relatively limited numbers of peaks
were detected, with significant SNPs being located in a sin-
gle peak for root fill, and only two peaks for length and
maximum width, while for aspect ratio, seven peaks were
detected. Effect sizes of these markers were relatively small,
with partial R? values ranging from 0.01 to 0.07 (Table I,
Fig. 5). Even in the case of aspect ratio, for which 7 peaks
were detected, the R? of the complete model was only 0.22.
Two additional market class-related traits—shoulder and
tip curvature—which reflect more subtle variation in the
contour of these regions, were not found to be significantly
associated with any SNPs (Supp. Fig. 4). Due to the rela-
tively limited number of detected SNPs, and their small
effect sizes, a number of additional GWAS models were
tested to determine if the mixed linear model utilized here
was overly conservative. However, the generalized linear
model implemented in GAPIT (Lipka et al. 2012), known
to generate fewer false negatives, led to substantial inflation
(Supp. Fig. 5). The multi-locus mixed linear model imple-
mented in GAPIT (Liu et al. 2016), led to results nearly
identical to those shown in Fig. 4: all of the same peaks were
detected using the MLMM, with equivalent LOD scores,

Table 1 Significant SNPs associated with root shape traits

Trait Chromosome Position (bp) LOD score Effect R?
Root fill 2 47,341,762 10.11 -0.91 0.06
Max width 3 58,042,921 7.42 -1.78 0.04
7 6,622,754 6.97 -2.27 0.04
Length 2 42,684,849 6.60 —15.28 0.03
5 34,380,903 6.50 —12.45 0.04
L/Wratio 3 7,295,883 7.06 0.64 0.01
3 56,902,806 6.93 0.73 0.04
4 26,702,749 6.12 0.65 0.04
4 33,224,217 7.28 0.54 0.03
5 39,853,263  10.90 1.13 0.07
6 37,411,769 6.36 1.01 0.01
9 45,393,500 6.42 0.830 0.02

Associations were found for four traits (root fill, maximum width,
length, and aspect ratio) using a diversity panel of 662 carrot acces-
sions genotyped for 146,816 SNPs, and phenotyped using the meth-
ods of Brainard et al. (2021). Chromosome, position, LOD score, and
additive effect (relative to the reference allele) are listed for the most
significant SNP in each peak exceeding the permutation test-derived
—log,o(p) threshold. R* values are calculated on the basis of the dif-
ference in the log likelihood of the full and reduced models con-
structed using backward elimination of each of the significant mark-
ers for each trait

although fewer significant markers were found within each
peak (Supp. Fig. 6). The dominance model implemented
in GWASpoly led to very similar results as well, although
lower power was observed in several cases. Both of the
peaks corresponding to QTL associated with root length
were no longer detected, and three of the QTL associated
with aspect ratio were also lost (Supp. Fig. 7).

Genomic-estimated breeding values

PEV, average predictive ability, and minimum predictive
ability are listed in Table 2 for all seven root traits which
were digitally phenotyped in this study. While average pre-
dictive ability and PEV exhibited a wide range across these
traits (0.25-0.86 and 0.35-0.92, respectively), it is clear that
genomic predictions were able to provide reliable estimates
of phenotypic performance for most of the components of
market class. However, these average predictive abilities
were calculated using 12,370 markers and the entire diver-
sity panel, with 90% assigned to the TP. In applied contexts,
where costs may limit both the size of training populations
and marker datasets, it is of critical importance to under-
stand how predictive ability changes as a function of these
parameters.

i. Effects of marker density on predictive ability of GEBVs

While the general result that increasing marker density
increases predictive ability has been well-documented, the
precise nature of the relationship will vary depending on the
population and traits under consideration. Given that this
diversity panel was genotyped at a high density for the pur-
pose of GWAS, it was therefore feasible to generate marker
sets generated through progressively more stringent filtering
criteria, and thereby determine the effect of SNP density
on predictive ability through cross-validation for each of
the digitally phenotyped root traits evaluated in this study.
The results of these analyses are shown in Fig. 6, and are
well-described by an exponential function: at low marker
densities, any increase in density is met with relatively
rapid improvement in predictive ability. As marker density
is increased, however, these improvements asymptomati-
cally approach a maximum predictive ability, which in the
case of these root traits is attained at roughly 2500 SNPs.
This can be contrasted with GWAS, which, as described
above, depends on a much denser array of markers across the
genome in order to increase the likelihood that some subset
of these will be in high LD with QTL. For example, when
the marker dataset used in the GWAS analyses shown above
was thinned to only 1 marker every 100 kb (i.e., 2392 mark-
ers), all significant associations between SNPs and QTL
shown in the above Manhattan plots (Fig. 4) were no longer
detected (Supp. Fig. 8).
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Fig.5 Box plots illustrating the effect of allelic substitution at indi-
vidual significant SNPs for each of the traits shown in Fig. 4 (see
Table 1 for LOD scores). a root length; b maximum width; ¢ root fill;

Similar results were obtained by exclusively utilizing mark-
ers on a single chromosome, and comparing predictive abil-
ity against a random distribution of an equivalent number of
SNPs. As shown in Supp. Table 2, utilizing exclusively mark-
ers on chromosome 3 only reduces predictive ability by an
average of 12% across all traits. Some reduction in accuracy
is to be expected, due to the relatively higher average degree
of linkage between markers when all are located on a single
chromosome. This finding is in line with those of Daetwyler
et al. (2012), and highlights the fact that markers’ effect on
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predictive ability of GEBVs is primarily a function of their
ability to accurately model covariance between individuals,
and not their linkage with QTL.

ii. Effect of relatedness between the TP and VP
on predictive ability

Increasing relatedness between the TP and VP has generally
been found to be associated with improvements in predictive
ability (Edwards et al. 2019; Olatoye et al. 2020). This was
corroborated here by regressing predictive ability onto three
different measures of relatedness (i.e., three different values
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Table 2 Prediction error variance (PEV), and predictive ability when
the 100-fold cross validation was performed at random (Pred. abil-
ity—avg), and when relatedness between TP and VP was minimized
(Pred. ability—min) for seven carrot root traits, phenotyped using
roots grown across two locations and three growing seasons

Trait PEV  Pred. ability—avg (sd)  Pred. abil-
ity—min
Total root size 0.71 0.67 (+0.11) 0.29
Root fill 0.85 0.86 (+0.03) 0.17
Max width 0.78 0.72 (£0.06) 0.30
Length 0.80 0.77 (£0.06) 0.29
L/W ratio 0.92 0.82 (£0.05) 0.37
Tip fill 0.41 0.25 (£0.04) 0.01
Shoulder curvature 0.35 0.63 (£0.05) 0.10
0.8
0.6 Trait
Shoulder curvature
Tip fill
- Root fill

- Total root size
~ Maximum width
Length
Aspect ratio

Predictive ability
o
>
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Fig.6 Effect of marker density on predictive ability for six root size
and shape traits, as well as total root size, using the full carrot diver-
sity panel. Curves follow an asymptotic exponential function, reach-
ing their maximum at approximately 2500 markers

of n, as described above), as shown in Fig. 7. For all traits,
an exponential regression similar to that utilized in the case
of assessing SNP density was performed. Prediction accura-
cies were substantially reduced from their maximum when
similarity between the TP and VP was minimized, and as
similarity increased, predictive ability increased exponen-
tially, approaching a maximum that itself was the average
predictive ability reported above. This convergence to the
mean can be understood as a consequence of the fact that
this random sampling procedure will on average select a VP
that is extremely similar to the TP for this diversity panel,
due to the minimal degree of population structure.

In addition to this general trend, it is also clear that across
all traits, both extremely high and extremely low values of
n—i.e., the number of individuals in the TP that each mem-
ber of the VP was compared against—are more poorly mod-
eled using the exponential regression although for distinct
reasons. In the case of the former, due to oversampling,
the possible range of similarities between the TP and VP
is significantly compressed toward low values. Because
average prediction accuracies are high, this has the addi-
tional result of inflating prediction accuracies at all levels of
similarity. At the other extreme, when n=1, there is clearly
substantial noise around the exponential regression, which
is a consequence of this metric of similarity providing an
inaccurate representation of the overall similarity between
the TP and VP due to under sampling; that is, more than
one individual must be similar to each individual in the VP
in order to make accurate predictions. While these results
do not provide a basis for determining a specific value of
n that should be used for any arbitrary TP/VP combina-
tion, they do justify intermediate values of n (e.g., in this
study, 40) that are both highly precise in that they fit the
exponential regression function extremely well, while also
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being highly informative, in that they facilitate discriminat-
ing between degrees of relatedness for a wide range of TP/
VP combinations.

iii. Effect of population size on predictive ability

The third parameter evaluated in terms of its effect on pre-
dictive ability was the size of the TP. There are three dis-
tinct ways in which the effect of TP size can be modified,
as described above: absolute population size can be varied,
relative TP size can be varied, or relative VP size can be
varied. First, the effect of varying absolute population size,
with VP size held constant at 10%, was evaluated. For all
traits, predictive ability reached its asymptote at roughly 330
genotypes (Fig. 8a). Similarly, when the VP size was held
constant at 60 individuals and relative TP size is varied, all
traits appeared to follow a similar dynamic, with predictive
ability attaining its maximum again at roughly 330 geno-
types (Fig. 8b). Finally, the effect of varying relative VP
size, with the TP held constant at the total population size of
662 genotypes (less the size of the VP) was analyzed. Again,
all traits followed the relationship seen in the previous two
cross-validations: across all traits, predictive ability reached
its asymptote when the TP was less than roughly 50% of the
total population, or 330 genotypes (Fig. 8c).

Discussion

This study identified a novel set of QTL for four of the
most relevant morphological components of root market
class in carrot. This included a highly significant SNP on
chromosome 2 associated with root fill; as such, this rep-
resents the first genetic characterization of the control of
the vast majority of the variance in root shape. For three
of these four traits, only two QTL per trait were identified,
and their effect sizes were relatively small, ranging from
0.01 (for the SNP on chromosome 6 associated with aspect

Predictive ability
Predictive ability
o

[ S

0.0- . . . . )\ A
0 200 400 600 200 400

Total size of population Size of TP

Fig.8 Effect of population size on prediction accuracy for the six
traits underlying carrot market class, as well as total root size. a
Absolute population size is varied, holding the VP at 10% of the total
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ratio) to 0.06 (for the SNP on chromosome 2 associated
with root fill), with total phenotypic variance explained
ranging from 0.06 for root fill to 0.22 for aspect ratio.
This is surprising, given the relatively high heritabilities
observed for these phenotypes, both as estimated here
using genomic data, and as previously reported using a
diallel mating design (Turner et al. 2018; Brainard et al.
2021). This would suggest that the effect sizes of the iden-
tified molecular markers is being underestimated, or that
there are additional unidentified QTL, or both.

There are multiple possible explanations for these pos-
sibilities. First, as described above, carrot is a highly het-
erozygous outcrossing species, and indeed, most of the
accessions included in this diversity panel are not inbred
lines, but are instead landraces, open-pollinated varieties,
and populations. One consequence of this was the strikingly
rapid decay in linkage disequilibrium within this diversity
panel, with an average r* of 0.2 between pairs of markers
obtained within a distance of only 796 bp. Despite the dense
marker distribution used in this study, therefore, it is likely
that this rapid decay of LD led to an underestimation of
the effect size of the molecular markers that were identified
in this study, as well as the number of QTL themselves.
Further complicating this analysis is the fact that selection
for root shape morphology has likely occurred in numerous
genetic backgrounds, with multi-allelic combinations pro-
ducing similar root shapes within, e.g., Western European,
Eastern European and North American accessions, and the
USDA-NPGS collection used in this study included acces-
sions from all of these geographic regions. In this regard,
linkage mapping could provide a fruitful subsequent line of
analysis, by addressing the under-estimation of effect sizes
due to differences in frequencies between marker alleles and
QTL alleles.

Despite these limitations, a number of candidate genes
were identified on the basis of these analyses, and are
listed in Supp. Table 1. While these gene models are the
product of in silico-based annotation, most have predicted
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population; b The relative size of the TP is varied by holding the VP
constant at 60 individuals; ¢ Relative VP size is varied by keeping
total population size constant at 662 individuals
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functions based on homology to the peptide sequences of
known gene families. In particular, for three of the four mar-
ket class traits for which QTL were identified, candidate
genes were identified which have been previously described
to play a role in root development processes. For length,
the gene DCv3_Chr5.21023, located in the peak on chro-
mosome 5, is a predicted piezo-type mechanosensitive ion
channel, which has been implicated in the capacity of roots
to grow vertically through the soil profile (Mousavi et al.
2021). For aspect ratio, a gene in the peak on chromosome
9, DCv3_Chr9.36166, is a homolog of protein terminal ear],
which has been associated with abscisic acid-mediated root
growth (Wang et al. 2018). And for root fill, three genes were
identified in the highly significant peak on chromosome 2:
DCv3_Chr2.08059, which encodes a homodomain-leucine
zipper (HD-Zip) protein that has been linked to root devel-
opment (Elhiti & Stasolla 2009); DCv3_Chr2.08061, which
is a homolog of non-DNA-binding bHLH transcription fac-
tors that are involved in lateral root formation (Castelain
et al. 2012); and DCv3_Chr2.08063, which is homologous
to a AAA-ATPase protein found in Arabidopsis thaliana
that has been found to drive adventitious root formation (Xu
et al. 2018a, b). Because of the highly crop-specific nature
of the market class phenotypes evaluated in this study, it is
unsurprising that the putative functions of these genes do
not overlap precisely with the corresponding carrot traits
studied here. Nevertheless, these genes all represent viable
candidates for further investigation to elucidate a precise
mechanistic model of the molecular pathways underlying
root size and shape variation in carrot.

Tip fill (e.g., the blunt-tipped Nantes-type in Fig. 1c vs.
the pointed Chantenay-type in Fig. 1d) and shoulder broad-
ness (e.g., the highly curved Parisienne-type in Fig. 1a vs.
the straight-shouldered Imperator-type in Fig. 1b) represent
more subtle aspects of root shape variation, since they are
restricted to specific regions of the root contour. Though
evidently important in distinguishing between market
classes, no SNPs were found to be significantly associated
with phenotypic variation for these two traits. In addition,
for the components of market class for which QTL were
identified, the significant SNPs explained a small percentage
of the total variation for these traits. This is not an uncom-
mon result when the traits under consideration are quantita-
tive and highly polygenic, as would appear to be the case
here. Indeed, it is consistent with the only other published
report of a GWAS that included carrot root traits (Macko-
Podgorni et al. 2020), which reported QTL on chromosome
1 that accounted for roughly 10% of the phenotypic variation
in maximum width. The panel utilized by Macko-Podgérni
et al. (2020) differed significantly from the material used in
this study, representing 103 accessions from the Warwick
Crop Centre in Wellesbourne, UK. It is therefore not sur-
prising that the QTL identified in that genetic background

was not detected in our analysis, but nevertheless, the low
effect size is consistent with that reported here. Similarly,
a previous study that attempted to use linkage mapping
to detect QTL for carrot root traits detected no QTL for
width or aspect ratio, and three QTL associated with length
which each explained less than 10% of the phenotypic vari-
ation (Turner et al. 2018). These results are not directly
comparable with those presented here, since this popula-
tion was an F, family descended from a cross between only
two accessions, and thus represented a more limited range
of genotypic and phenotypic diversity. Nevertheless, the
low effect sizes of the QTL are consistent with this study's
findings.

The predictive ability of GEBVs was evaluated using
the same diversity panel and marker set used in the GWAS
analysis, so as to allow for an accurate assessment of their
potential complementarity. Interestingly, for all traits except
for total root size, average predictive ability was quite high;
this was true even of shoulder broadness and tip fill—traits
for which no QTL were identified via GWAS. This is not
entirely surprising, due to the fact that GWAS relies on
detecting significant associations between markers and QTL,
while GEBVs are simply the additive genotypic effects pre-
dicted using markers as the basis of a covariance matrix for
modeling relatedness. In order to assess how robust these
predictive abilities would be given various marker densi-
ties, population sizes, and degrees of relationship between
training and validation sets, cross-validation analyses were
performed.

Regarding marker density, the asymptote of the exponen-
tial relationship between SNP density and predictive abil-
ity was attained a relatively low number of markers. In the
case of GWAS, utilization of a large diversity panel which
contains a high amount of historical recombination neces-
sitates the use of a dense array of molecular markers across
the genome, in order to maximize LD between markers and
QTL. Compared to the 146,816 markers used in the GWAS
analysis, however, maximum predictive ability of GEBVs
was attained with only several thousand markers. This is
consistent with the ranges presented in previous studies
(Erbe et al. 2013; Wang et al. 2017; Wu et al. 2016; Zhang
et al. 2015), and highlights the different role that markers
play in an analysis based around testing significant associa-
tions (particularly in a species with rapid LD decay) versus
estimating genomic relatedness.

These results demonstrate the manner in which, from a
practical perspective, the genotyping costs associated with
implementing genomic selection are at least in principle less
than those associated with GWAS, though in practice this
would depend on a high-quality genotyping platform that
generated only thousands, instead of hundreds of thousands
of markers. In addition, it is important to note that loci which
were called as heterozygous in the marker dataset used here
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are segregating in the corresponding accession, and uti-
lizing the genotype of a single root will necessarily mask
this intra-accession variation. Techniques such as PoolSeq,
which utilize bulked DNA from multiple individuals for
GBS sequencing, have been found to be potentially useful in
such situations (Anand et al. 2016; Bélanger et al. 2016). By
sequencing at a high depth, it is possible to utilize continu-
ous measures of allele frequency in the linear mixed model
used to test for associations between SNPs and a given phe-
notype (instead of the categorical allele dosages used here).

With respect to population structure, because predictions
are based on a covariance matrix relating phenotyped indi-
viduals to non-phenotyped individuals, higher degrees of
relatedness between the TP and VP typically lead to higher
predictive ability. However, this phenomenon has histori-
cally been investigated qualitatively, by either compar-
ing prediction accuracies across populations with known
degrees of variable relatedness (such as full- vs. half-sib
families), or between population groupings defined through
clustering algorithms such as STRUCTURE (Riedelsheimer
et al. 2013; Sverrisdéttir et al. 2018; Lozada et al. 2019).
While it would be theoretically feasible to apply a clustering
algorithm to the panel presented in this study, this approach
would be of limited utility given this panel's limited degree
of population structure. Because this population is not
composed of well-defined, discrete subpopulations, more
relevant is the relationship between a quantitative measure
of the degree of relatedness between the TP and VP, and
predictive ability.

Furthermore, in cases where relatedness has been meas-
ured between the TP and VP quantitatively, the appropriate
metric has been assumed to be a comparison of the means
of the two groups—i.e., the measure obtained by setting the
value of n to the size of the TP, and thus comparing each
individual in the VP against each individual in the TP (e.g.,
as in Berro et al. (2019)). The cross-validations performed
in this study therefore represent an advance in terms of
the precision with which conclusions regarding the effect
of relatedness on predictive ability can be made. Not only
was increasing similarity between the TP and VP associ-
ated with improvements in predictive ability in this study,
this relationship was well-described for most traits by the
same exponential function utilized in the case of marker
density. In addition, intermediate values of n were found to
give the most precise and informative measure of similarity
in terms of defining this exponential relationship. Finally,
regarding conclusions one can draw about this particular
diversity panel, it is clear that one of the factors contrib-
uting to high prediction accuracies on average is that the
mean level of relatedness between a randomly selected
TP and VP is extremely high. Measured with n=40, aver-
age similarity was 23.1, with a standard deviation of 0.56,
which is already in the range of relatedness that defines the
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asymptotic portion of the exponential function, and thus it
is reasonable to assume that these GEBVs would be robustly
accurate to any arbitrary construction of TP and VP, given
a breeding population similar in structure to the diversity
panel analyzed here. In this regard it is important to empha-
size that while this diversity panel is relatively unstructured,
and contains a large amount of genetic variation, breeding
populations often exhibit high levels of overall relatedness
among individuals, clear structure due to defined pedigrees,
and significantly less phenotypic diversity than a global
germplasm collection. The results described here, therefore,
will not be necessarily transferable to every specific breed-
ing context.

It is interesting to note that not all traits exhibited an expo-
nential relationship between predictive ability and related-
ness equally well. Certain traits, such as root fill and aspect
ratio, clearly followed this exponential relationship (Fig. 7,
Supp. Fig. 9). Others, such as shoulder curvature, tip fill, and
maximum width displayed a more linear relationship. This
variation in the fit of the exponential regression is orrelated
with the maximum predictive ability attained for each of the
traits, and therefore would suggest that the asymptotic por-
tion of the relationship is only evident when high predictive
ability is attainable, given a wide range of simulated simi-
larity levels.

Finally, the effects of TP size were considered in this
study by explicitly considering two distinct cases. First, the
consequence of varying absolute population size was evalu-
ated. Second, the effect of changing the relative size of either
the TP or the VP was analyzed. These effects typically are
confounded with each other in studies that have examined
how to optimize the size of TPs: Xu et al. (2018a, b) consid-
ered only the effect of varying the absolute size of the TP,
by maintaining the VP at 20% of the total population size;
Tayeh et al. (2015) considered only the effect of varying the
relative size of the TP, by holding the absolute VP size con-
stant, and varying the size of the overall population; Zhang
et al. (2017) varied both the absolute size of the TP, and the
relative size of the VP at each of these levels, but averaged
across all of the relative size variations, reporting only the
effect of changes in absolute TP size.

In the cross-validations reported here, in all three cases,
an exponential relationship was found between predictive
ability and either the total size of the population, or the
relative size of the VP or TP. While it is unsurprising that
increasing the total number of individuals in the panel would
increase predictive ability, it is interesting to note that in
the case of varying relative TP size, (either by increasing
the size of the TP while holding the VP constant, or con-
versely by decreasing the size of the VP while holding the
TP constant), the key determinant was primarily the number
of individuals in the TP, scaled by the number of individu-
als for which one is attempting to predict performance. It is
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also interesting to note that the point at which the asymptotic
maximum predictive ability is attained—roughly 50% of the
total diversity panel—is consistent with reports of the mini-
mum TP size needed to attain maximum predictive ability
in squash (Hernandez et al. 2020), and carrot (Corak et al.
2019; Corak 2021).

While the results of these cross-validations are similar—
i.e., increasing the number of individuals in the TP leads
to an increase in predictive ability—they clearly differ in
their precise interpretation, and most importantly, answer
very different practical questions from a resource alloca-
tion perspective. For instance, if genotyping costs are most
limiting, it may be more critical to know the minimum total
population size needed to obtain the asymptotic maximum,
or a minimum desired, predictive ability for a given trait; this
would correspond to analyses which vary absolute popula-
tion size. This can be contrasted with a scenario in which
phenotyping costs are most restrictive for a specific trait, and
it is therefore more relevant to consider the minimum useful
TP size, since the aim would be to predict the performance
of a maximum number of non-phenotyped individuals; this
in turn would correspond to analyses which vary relative
TP size. Finally, if the total pool of germplasm available is
predefined, as in the case of a genetic resources collection,
it may be most important to consider the minimum propor-
tion to phenotype without sacrificing predictive ability; this,
logically, corresponds to scenarios which vary the relative
size of the VP.

It is also relevant to note the general pattern observed
for the cross-validations of the predictive ability of GEBVs
reported here: i.e., the exponential relationship between pre-
dictive ability and the variable under consideration. Impor-
tantly, asymptotic maximum predictive ability was reached
at low values of SNP density, population relatedness and
population size, relative to the total marker density, level of
population structure, and diversity panel size in the carrot
collection presented in this study. From a practical perspec-
tive, it therefore appears very tenable to attain non-limiting
levels of nearly all the determinative factors influencing pre-
dictive ability.

Practical comparisons between GWAS and GEBVs

While GWAS offers a preliminary method to gene discovery,
and the development of marker-assisted selection breeding
strategies, genomic selection offers the potential for the more
immediate use of marker information by predicting additive
genotypic effects based on relatedness (Minamikawa et al.
2018; Srivastava et al. 2020; Tsai et al. 2020). In addition,
however, GWAS is poorly suited to the detection of numer-
ous minor effect QTL that underlie quantitative traits (Rob-
inson et al. 2014; Caballero et al. 2015). Even when QTL
for highly polygenic traits have been previously detected

through interval mapping approaches, marker-assisted selec-
tion based on multiple linear regression using QTL-linked
markers has been observed to have lower prediction accu-
racy than genome-wide prediction models (Hadasch et al.
2016). In this context, a clear conclusion from the results
presented here is that the traits which underlie market class
in carrot are certainly highly polygenic: the robust, high pre-
dictive abilities described above are an undeniable function
of the large additive genetic components controlling these
root phenotypes, while the limited number of small-effect
QTL detected via GWAS reflect the numerous small effect
loci which therefore underlie this additive variance.

Finally, it is relevant to note the practical implications for
the mode of genomic selection that would be enabled on the
basis of the predictions made in this study. As indicated in
the name “genomic-estimated breeding values”, what has
been estimated in this study are explicitly the additive com-
ponents of genotypic value, and as such, the portion of a
given individual accession’s value that is transmissible to
the next generation. The immediate practical utility of such
predictions most likely falls within population improvement
efforts. In particular, the most frequent use of diversity pan-
els such as the one utilized in this study is the identification
of novel traits that currently are not present in elite germ-
plasm. Through the introgression of such traits into breeding
lines, market class attributes would likely be impacted; the
GEBVs reported here could therefore significantly accelerate
the pace at which a particular desired market class is recov-
ered, following such wide crosses. Despite their promise,
the actual gains from selection one can expect to attain will
vary from trait to trait. While some phenotypes presented
here, such as root fill, length, and maximum width, can be
predicted with notably high accuracy, others, such as total
root size and tip fill, are markedly more difficult to predict.
This is unsurprising, since root size is clearly a composite
trait, much like yield. Variations in more subtle shape traits,
e.g., tip fill, will for their part, likely always be subject to
greater environmental variation, and thus be challenging to
select for, particularly when genotypes are harvested follow-
ing a fixed number of days following planting. Neverthe-
less, despite the lower prediction accuracies for these traits,
GEBVs still offer a method for utilizing genomic-scale data
to aide in improving the efficiency of selection. Given the
high-throughput nature of the phenotyping platform which
could be used to collect data on a training population, and
the relatively limited amount of sequencing required to cal-
culate GEBVs, this study provides compelling evidence
supporting the inclusion of genomic selection in breeding
programs for carrot market class. We hope the extensive
cross-validation analyses presented here are able to provide
concrete direction for research groups attempting to imple-
ment genomic selection protocols within their own breeding
programs.

@ Springer
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