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Abstract—The paper proposes a physics-oriented, mathemat-
ically tractable statistical wave model, named as the space-time
stochastic Green’s function, for analyzing the wave physics of
high frequency reverberation within complex confined electro-
magnetic environments. The model characterizes both spatial
and temporal variations and correlations of wave fields without
the need for a detailed knowledge of the complex environment.
Experimental results are supplied to validate the proposed work.

Index Terms—Chaos, electromagnetic coupling, Green func-
tion, intentional electromagnetic interference, statistical analysis.

I. INTRODUCTION

The study of electronics in strongly confined electromag-
netic (EM) environments has been a longstanding topic in
applied electromagnetics and electronic engineering [1]-[6].
One well-known example is the mode-stirred reverberation
chamber, which has been used as a standard laboratory facility
for EM compatibility testing [7]. Another important applica-
tion is the EM interference (EMI) to electronics hosted inside
protective metallic enclosures (e.g. computer chassis, aircraft
carbit). The EMI may take the form of intentional coupling
from external radio-frequency (RF) sources or unwanted inter-
action among electronic components within an enclosure. Due
to increasingly complex electronic systems and continually
evolving RF sources, it is expensive and impractical to perform
experimental tests for all possible EMI effects. Therefore,
it identifies a timely and critical need for physics-oriented
computational models, which characterize the fundamental
wave physics of confined EM environments.

It is known that wave propagation inside electrically large
enclosures may undergo multiple reflection/scattering from
boundaries and internal structures, thus leads to randomized
phase, polarization, and direction of wave fields. In the short
wave length limit, the wave scattering process may exhibit
chaotic ray dynamics, albeit the underline wave equation is
linear [8], [9]. From the eigenmode perspective, the complex
boundary of the enclosure can lead to high modal density and
high modal overlap. Under the high frequency reverberation,
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the wave fields inside enclosures are very sensitive to the
exact geometry of interior structures. Minor differences in the
system configuration can result in significantly different EM
field distributions inside the enclosure.

Given the complexity of such environment, it is crucial
to develop stochastic models to account for the probabilistic
nature of wave fields. Recently, a stochastic Green’s func-
tion (SGF) approach [10] is introduced to model EM wave
physics inside target enclosure with some approximately know
information of cavity interior. At its heart, the SGF is based
on a statistical description of the eigenmodes of an enclosed
EM environment based on random matrix theory (RMT) [11].
Compared to related works [3]-[5], [12]-[14], it rigorously
separates the coherent and incoherent influences currents in
one element have on fields of another element. Moreover, the
statistics of the SGF are determined by generic, macroscopic
properties of the cavity environment, including the operating
frequency, cavity volume, loading and wall losses.

Remark that the SGF approach in the previous work was
derived in the frequency domain with time-harmonic RF
signals. It becomes less efficient for analyzing broadband,
short-pulse EMI sources. Moreover, electronics are routinely
equipped with nonlinear components, e.g. diodes, transistor
amplifiers, multipliers, mixers. The temporal and space-time
statistical model becomes an appealing approach to interface
with circuit simulators in order to analyze the nonlinear effects.

The proposed work advances the theory of SGF from the
spatial domain (narrowband) to the spatio-temporal domain.
The resulting space-time SGF characterizes both spatial and
temporal variations and correlations of EM fields in the high
frequency reverberation within confined EM environments.
The key results and their applications are presented in Sec.
II. The theoretical study is validated by representative experi-
ments in Sec. III

II. METHODOLOGY

Consider the scalar wave equation in a cavity with reflecting
boundary conditions, the time-dependent Green’s function,
G (r,t;1’,t'), for an impulse at location r’ and time ¢ satisfies:
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After taking Fourier transform of (1), the corresponding time-
harmonic Green’s function can be obtained by the eigenfunc-
tion expansion:
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where w; and ; are the eigenfrequency and eigenfunction of
the cavity. 74 = Q(w)/w is the decay factor related to the
cavity quality factor () and angular frequency w.

The time-dependent Green’s function is then be obtained by
inverse Fourier transform of (2). Note that the Green’s function
in (2) has poles at w = w; + j1/274. The Fourier integral
is replaced with a contour integral closed in the lower half
frequency plane. By applying the complex residue theorem
and Cauchy’s integral formula, we have for ¢ > t':
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To construct the space-time stochastic Green’s function (ST-
SGF), G (r,t,r’,t'), we substitute a statistical description of
eigenfunctions and eigenfrequencies into (3). In this work,
the eigenfunction statistics are derived using a time-domain
version of Berry’s random wave model [15] and Karhunen-
Loeve expansion. The eigenspectrum statistics are generated
with Wigner’s RMT [11] and Weyl expansion [9].

Built upon this theoretical framework, we have analyzed
key statistical properties of ST-SGF, as elaborated below.

(1) The ensemble average of ST-SGF results in a retarded
Green’s function in homogeneous media, briefly derived as:
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where c is the wave velocity and V' is the enclosure volume.
In the above derivation, we first utilize the spatial correlation
property of eigenfunction, then invoke Weyl’s law for the mean
density of eigenfrequencies, Aw = 27%¢3 /(w?V).

Equation 4 shows an encouraging result as it implies the
spatio-temporal causality of ST-SGF in analyzing transient
wave dynamics. Based on the ST-SGF, we obtain a time-
domain stochastic integral equation formulation. It can be
placed at arbitrary-shaped surfaces on electronic/antenna com-
ponents inside the enclosure, with applications to time-domain
EMI/EMC testing in overmoded reverberation chambers.

(2) At a small temporal scale, we have derived the spatial-
temporal cross-correlation function of a chaotic wave field
using the ST-SGF. For the purpose of elucidation, we con-
sider the case of a sinc pulse excitation with bandwidth
Br centered at frequency f.. Choosing the reference time
t" = 0 for convenience, the temporal autocorrelation of

~
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ST-SGF Cg(71) =< G(r,t;r’,()),é(r,t + 7;1/,0) > in the
diffusive regime (|r — r’| > \) is calculated by:

CTq
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The normalized form of 6 agrees with the autocorrelation of
impulse response described in [16]. Now consider a time snap-
shot ¢, the spatial autocorrelation of nearby spatial samples,

Ca(d) =< G(r, to;r’,0), G(r + d, to; ', 0) >, is derived as:
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We remark that a through understanding of spatial-temporal
cross-correlation plays a vital role in the time-reversal imaging
and fidelity decay study in chaotic scattering environments.

(3) On a large temporal scale, one can easily derive the time-
dependent average power profile from the ST-SGF. The semi-
analytical results are expressed in the forms of power delay
profile (PDP) and root mean square delay spread. The input
only requires macroscopic features of the enclosure, including
decay factor 74, cavity volume V, excitation bandwidth Brp,
rather than the explicit geometry and internal configuration.
The outcomes expect to provide physical insights to statistical
analysis of time-domain EMI effects on advanced electronics
under broadband signals.

III. EXPERIMENTAL VALIDATION

The experimental validation is performed with a 3D metallic
cavity with two X-band waveguide antennas mounted on
opposite sides of cavity walls as transmitter and receiver.
A Fourier transform of the frequency domain measurement
data, 8.2-12.4 GHz with 0.042 MHz interval, is used to
obtain the time-domain channel impulse response. The 3D
cavity is equipped with paddle-wheel stirring structures, thus
a configuration ensemble of measured data was collected by
rotating the mode stirrer 200 positions over 360 degrees.

In the predictive framework, the ST-SGF is constructed
with the cavity volume 0.42m3, estimated decay factor 2.62e-
7, frequency bandwidth, and the RMT for eigenfrequency
statistics. We then integrate the ST-SGF, as a statistical model
for the cavity environment, with the antenna component-
specific response. The comparison between measurement and
simulation results is given in Fig. 1. We observed very good
agreement in the statistical impulse responses.

The next study is the dynamic range of fluctuation in the
channel impulse response, h(t). We have chosen three different
time periods, [2 —2.1]us, [4 —4.1]us, [6 —6.1]us, and plot the
probability density functions (PDFs) of the measured data and
ST-SGF predicted results. A very good agreement is seen in
Fig. 2. Then, we proceed to evaluate the time-domain autocor-
relation of measured impulse response at small temporal scale.
The calculated result is compared to the theoretical prediction
using the ST-SGF. As shown in Fig. 3, the results of these two
match very well.
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IV. CONCLUSION

The objective of this work is to investigate physics-oriented
mathematical and statistical models, which characterize the
fundamental wave physics of confined EM environments. The
results can then be used as an EMC/EMI virtual testbed for
electronic components of interest. The unique contribution is
a novel space-time stochastic Green’s function method, which
enables a systematic study of temporal, spectral, and spatial
statistics of wave fields. To our best knowledge, this is the first
time available in the literature. The key statistical properties
are examined and validated experimentally.
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Fig. 3: Temporal autocorrelation of impulse response
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