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Abstract. We investigate the use of reduced precision arithmetic to solve the linear equation for the Newton step. If one3
neglects the backward error in the linear solve, then well-known convergence theory implies that using single precision in the4
linear solve has very little negative effect on the nonlinear convergence rate.5

However, if one considers the effects of backward error, then the usual textbook estimates are very pessimistic and even the6
state-of-the-art estimates using probabilistic rounding analysis do not fully conform to experiments. We report on experiments7
with a specific example. We store and factor Jacobians in double, single, and half precision. In the single precision case we8
observe that the convergence rates for the nonlinear iteration do not degrade as the dimension increases and that the nonlinear9
iteration statistics are essentially identical to the double precision computation. In half precision we see that the nonlinear10
convergence rates, while poor, do not degrade as the dimension increases.11

Audience. This paper is intended for students who have completed or are taking an entry-level graduate course in12
numerical analysis and for faculty who teach numerical analysis. The important ideas in the paper are O notation, floating13
point precision, backward error in linear solvers, and Newton’s method.14
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1. Introduction. The entry level numerical analysis curriculum at the graduate level typically includes17

• a description of IEEE floating point arithmetic,18

• direct methods for linear equations, especially Gaussian elimination and the LU factorization,19

– estimates of backward error in terms of the size of the problem, and20

• Newton’s method for nonlinear equations.21

However these courses do not usually connect these topics. The purpose of this paper is to do that and to22

apply recent results on probabilistic rounding analysis [12–14,17] to the convergence analysis of the nonlinear23

Newton iteration. In particular, we will show how the precision used for the linear solve for the Newton step24

can be less than that for computing the nonlinear residual with no loss in the speed of convergence or the25

quality of the solution of the nonlinear iteration.26

In § 2 we review how the classic [19] convergence estimate for Newton’s method is affected by the error27

in the Jacobian. In § 2.2 we connect that estimate with the backward error in the linear solver. We then28

review the standard estimates [7, 10] for this error and explain how the new results in [13, 14, 17] affect the29

nonlinear convergence analysis.30

Finally in § 3 we illustrate the results with a numerical example using double, single, and half precision31

[16, 30] for the linear solve. These results and the theory in § 2 indicate that one can safely do the linear32

solve in single precision if the Jacobian itself is computed to single precision accuracy. This example is large33

enough to see the effects of increasing the dimension of the problem, at least in half precision, but small34

enough that the reader can do the computation on a desktop machine.35

The theory breaks down if the Jacobian is singular at the solution and we also present an example of36

that case to illustrate the effects of singularities.37

1.1. Notation. In this paper we denote vectors by boldfaced lower case letters and matrices by bold-38

faced upper case letters, for example x and A. We denote the ith component of x by xi to distinguish it39

from the ith member of a sequence of vectors xi. We denote the ijth entry of A by Aij .40

2. Local Error Estimates for Newton’s Method. Most of the material is this section is standard41

and one can find more details in [8,19–21,29]. The novelty will come in § 2.2, where we explore the connection42

between the nonlinear convergence estimate, the backward error in the nonlinear solver, and new probabilistic43

rounding results from [13,14].44
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We consider nonlinear systems of equations45

(2.1) F(x) = 0.46

In (2.1) F : D → RN where D is an open convex subset of RN . We will let F′ denote the Jacobian matrix47

F′(x)ij = ∂fi(x)/∂xj48

where49

F = (f1, f2, . . . , fN )T .50

We will impose a norm ‖ · ‖ on RN and let ‖ · ‖ also denote the induced matrix norm.51

The Newton iteration for solving (2.1) takes a current approximation xc of a solution to a new approxi-52

mation x+ via53

(2.2) x+ = xc − F′(xc)
−1F(xc).54

The Newton iteration is defined if F is differentiable at xc and F′(xc) is nonsingular. In this paper we assume55

that we compute the Newton step56

s = −F′(xc)
−1F(xc)57

by solving the linear equation58

(2.3) F′(xc)s = −F(xc)59

with Gaussian elimination with column pivoting [7, 11].60

We make the standard assumptions [8, 19,29] for local convergence:61

Assumption 2.1. There is x∗ ∈ D such that62

• F(x∗) = 0,63

• F′(x∗) is nonsingular, and64

• F′(x) is Lipschitz continuous with Lipschitz constant γ, i. e.65

(2.4) ‖F′(x)− F′(y)‖ ≤ γ‖x− y‖,66

for all x,y ∈ D.67

Assumption 2.1 implies that the Newton iteration (2.2) is defined for all xc sufficiently near x∗.68

The convergence estimates in this section neglect any error in the linear solver and assume that the69

solution of (2.3) is exact. We will use the standard notation for errors70

e = x− x∗ for x ∈ D.71

For example, if xc is the current point in the iteration, then ec = xc − x∗ is the current error.72

We will begin by quoting the classic local convergence theorem. We will also give the proof because it73

is illuminating and uses a familiar result from an entry level numerical linear algebra course.74

Lemma 2.1. Suppose A is nonsingular and75

(2.5) ‖A−B‖ ≤ 1

2‖A−1‖
76

then B is nonsingular, ‖B−1‖ < 2‖A−1‖, and77

(2.6) ‖A−1 −B−1‖ ≤ 2‖A−1‖2‖A−B‖.78

Theorem 2.2. Assume that Assumption 2.1 holds, then79

(2.7) ‖ec‖ ≤
1

2‖F′(x∗)−1‖γ
,80
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and that the ball81

(2.8) {x | ‖e‖ ≤ ‖ec‖} ⊂ D.82

Then83

(2.9) ‖F′(x∗)−1‖/2 ≤ ‖F′(xc)−1‖ ≤ 2‖F′(x∗)−1‖.84

Moreover, if e+ is the Newton iterate from xc (2.2), then85

(2.10) ‖e+‖ ≤ γ‖F′(x∗)−1‖‖ec‖2 ≤ ‖ec‖/2.86

Proof. We can use Lipschitz continuity (2.4) and (2.7) to invoke Lemma 2.1 because87

‖F′(xc)− F′(x∗)‖ ≤ γ‖ec‖ ≤
1

2‖F′(x∗)−1‖
.88

Hence F′(xc) is nonsingular and89

(2.11) ‖F′(xc)−1‖ ≤ 2‖F′(x∗)−1‖.90

Since x∗ + tec ∈ D for all 0 ≤ t ≤ 1 by assumption (2.8), the fundamental theorem of calculus implies91

that92

(2.12) F(xc) =

∫ 1

0

F′(x∗ + tec)ec dt.93

Subtract x∗ from both sides of (2.2) and use (2.12) to obtain94

e+ = ec − F′(xc)
−1F(xc) = ec − F′(xc)

−1
∫ 1

0

F′(x∗ + tec)ec dt

= F′(xc)
−1
(∫ 1

0

(F′(xc)− F′(x∗ + tec)) dtec

)
.

95

Hence, using (2.11) and Lipschitz continuity again96

‖e+‖ ≤ ‖F′(xc)−1‖γ
∫ 1

0
(1− t) dt‖ec‖2

= ‖F′(xc)−1‖γ/2‖ec‖2 ≤ γ‖F′(x∗)−1‖‖ec‖2,
97

which completes the proof using (2.7).98

In many courses (2.10) is expressed with O-notation99

‖e+‖ = O(‖ec‖2).100

This is appropriate when the asymptotic convergence rate is more important in the discussion than the101

prefactor γ‖F′(x∗)−1‖. That will be the case in this paper and we will use O-notation throughout. Moreover,102

the precise condition (2.7) can be replaced by “x0 is sufficiently close to x∗” for the discussion in this paper.103

Having said that, the presence of ‖F′(x∗)−1‖ is a clear and correct indicator that Theorem 2.2 does not hold104

if F′(x∗) is singular. We will warn the reader a few more times about the presence of ‖F′(x∗)−1‖ in the105

O-terms.106

All one needs to describe the entire Newton iteration is an estimate like (2.10) that describes the evolution107

of the error from one iteration the next. Repeated applications of Theorem 2.2 imply Corollary 2.3.108

Corollary 2.3. Assume that Assumption 2.1 holds. Then if x0 is sufficiently near x∗, the Newton109

iteration exists ( i. e. F′(xn) is nonsingular for all n ) and converges to x∗. Moreover the convergence is110

q-quadratic111

‖en+1‖ = O(‖en‖2)112
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In § 3 we plot on a semi-log scale the histories of relative residuals ‖F(xn)‖/‖F(x0)‖ as a function of113

n. In the q-quadratic case the curve is concave, as we see in the figures. The relative residual is a good114

surrogate for the relative error if F′(x∗) is well-conditioned. In fact, if Assumption 2.1 and (2.7) hold, then115

(see [19] page 72)116

(2.13)
‖en‖

4κ(F′(x∗))‖e0‖
≤ ‖F(xn)‖
‖F(x0)‖

≤ 4κ(F′(x∗))‖en‖
‖e0‖

.117

In (2.13)118

κ(F′(x∗)) = ‖F′(x∗)‖‖F′(x∗)−1‖119

is the condition number of F′(x∗).120

2.1. Errors in the Function and Jacobian. Theorem 2.2 gives an idealized description of what one121

can expect in computations. Even so, the predictions are very accurate for all but the final step or two of122

a nonlinear iteration. Theorem 2.4 makes this precise. The objective of this paper is to explore the effects123

of errors in the Jacobian and in the linear solver on the idealized analysis in Theorem 2.2. To that end, we124

consider an iteration125

(2.14) x+ = xc − J(xc)
−1(F(xc) + E(xc)).126

In (2.14) J(xc) is an approximation of F′(xc). One example is a finite-difference approximation of the127

Jacobian. The term E(xc) is the error in F(xc).128

We will assume that the errors in the function and Jacobian are uniformly bounded129

(2.15) ‖E(x)‖ ≤ εF and ‖J(x)− F′(x)‖ ≤ εJ ≤
1

4‖F′(x∗)−1‖
130

for all x sufficiently near x∗. The reader may think of εF as double precision floating point error, even131

though that is generally optimistic. The Jacobian error bound εJ depends, as we will see, on the method for132

approximating F′(xc).133

We we will give a result from [19, 21, 31] about the progress of the iteration in the presence of these134

errors. The case of interest in this paper is simple and we will give the proof.135

Theorem 2.4. Let Assumption 2.1 hold. Let (2.7) and (2.15) hold. Then Jc = J(xc) is nonsingular136

and x+, as defined by (2.14), satisfies137

(2.16) ‖e+‖ = O

(
‖ec‖2 + εJ‖ec‖+ εF

)
.138

Proof. We express e+ as the sum of the error from Newton’s method139

eN+ = ec − F′(xc)
−1F(xc) = O(‖ec‖2)140

and the correction141

(J−1c − F′(xc)
−1)F(xc)− J−1c E(xc).142

Equation (2.15) and (2.9) imply that143

‖Jc − F′(xc)‖ ≤
1

2‖F′(xc)−1‖
,144

and hence we may apply Lemma 2.1 with A = F′(xc) and B = Jc. We may then conclude that145

‖J−1c ‖ ≤ 2‖F′(xc)−1‖ ≤ 4‖F′(x∗)−1‖146

and147

‖J−1c − F(xc)
−1‖ ≤ 2‖F′(xc)−1‖2εJ ≤ 8‖F′(x∗)−1‖2εJ = O(εJ).148
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Note that the prefactor in this O-term contains ‖F′(x∗)−1‖2, which, while not so important in this paper,149

tells us something about the effects of ill-conditioning on one’s freedom to approximate the Jacobian.150

We now apply (2.12), (2.7), and Lipschitz continuity to obtain151

‖F(xc)‖ ≤ ‖F(x∗)ec‖ +
∫ 1

0
‖F(x∗ + tec)− F(x∗)‖ dt‖ec‖

≤ (‖F(x∗)‖+ γ‖ec‖)‖ec‖ = O(‖ec‖+ ‖ec‖2).

152

Combining the terms and using (watch the ‖F(x∗)−1‖ in the prefactor)153

‖J−1c E(xc)‖ ≤ ‖J−1c ‖εF ≤ 4‖F(x∗)−1‖εF = O(εF )154

completes the proof.155

The corollary describing the entire iteration is not a convergence result because the error does not156

converge to zero, rather the iteration stagnates when ‖en‖ = O(εF ). Results of this type are called local157

improvement results in [9].158

Corollary 2.5. Let the assumptions of Corollary 2.3 hold. Assume that (2.15) holds and that εJ is159

sufficiently small. Then, for all n,160

(2.17) ‖en+1‖ = O(‖en‖2 + εJ‖en‖+ εF ),161

where the prefactor in the O-term is independent of n.162

If, for example, εF = 0 (exact arithmetic) and εJ is sufficiently small, then the convergence of the163

iteration will be q-linear with q-factor ≤ εJ . This means that either ‖en‖ = 0 for some n <∞ or164

lim sup
n→∞

‖en+1‖
‖en‖

≤ εJ .165

In a semilog plot of the relative residual history, a linear curve is a sign of q-linear convergence.166

One case of interest in this paper is when εJ = O(
√
εF ). In that case167

εJ‖en‖ = O(
√
εF ‖en‖)168

and hence169

‖en+1‖ = O(‖en‖2 + εF ).170

Thefore the error in the Jacobian approximation can be neglected in the sense that the estimate for ‖en+1‖171

in (2.17) is O(‖en‖2 + εF ) with the Jacobian error playing no important role at all. We will clearly see this172

in the computations in § 3.173

In this paper we consider a forward-difference approximation to F′ as the alternative to an analytic174

expression. It’s useful to look at the scalar case. Let the computed f(x) be175

f̂(x) = f(x) + e(x) where |e(x)| ≤ εF .176

Then177
f̂(x+h)−f̂(x)

h = f(x+h)−f(x)
h +O(εF /h)

= f ′(x) +O(h+ εF /h).

178

If, as is usually the case, the prefactors in the O-terms are benign, then the error is minimized when179

h = O(
√
εF ),180

in which case181

(2.18)
f̂(x+ h)− f̂(x)

h
= f ′(x) +O(

√
εF ).182
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We warn the reader that the prefactor in the O(h) term for the finite difference approximation is not183

guaranteed to be harmless [26]. We also warn the reader of a few assumptions hidden in the derivation of184

(2.18). We assume in the derivation that |x| is O(1), i. e. not too large nor too small, and that |f ′(x)| is not185

too small. If |x| is not O(1) then h will need to be scaled to conform to x [19], a detail we can ignore in this186

paper because the scaling of the solution in our example problem is O(1). If |f ′(x)| is small, then the error187

term in (2.18) could be as large as the main term. That is trouble, as we will see in § 3.188

The forward difference approximation to the Jacobian approximates F′(x) by J(x) where the kth column189

of J is190

(2.19) Jk =
F̂(x + hũk)− F̂(x)

h
191

where F̂(x) = F(x) + E(x) and ũk is the unit vector in the kth coordinate direction. If h = O(
√
εF ) then192

the error in the Jacobian is193

εJ = O(
√
εF ).194

Hence, Theorem 2.4 predicts that there will be no significant difference in the convergence of the nonlinear195

iteration between a double precision analytic Jacobian with the linear solve done in double and a forward196

difference approximate Jacobian with the linear solve done in single precision. We will see this in the197

examples in § 3.2.198

As an example, consider solving the linear equation for the Newton step with Gaussian elimination.199

Think of computing the Jacobian (either analytically or with finite differences) in double precision and then200

storing and factoring it in either single or double precision. The discussion above indicates that there will201

be no loss in the nonlinear convergence rate if one uses single precision instead of double. There are two202

benefits. There is a clear reduction by half in storage if you use single precision. As for cost, there are two203

extreme cases of interest.204

• If the cost of evaluating F and F′ (either analytically or via finite differences) is o(N3), then the205

matrix factorization will be the dominant cost of the computation. Solving the equation for the206

Newton step in single precision instead of double will then cut the cost of the nonlinear solve almost207

in half. The example in § 3 is like this.208

• Suppose the evaluation of F is O(N2) work and a finite difference Jacobian computation is the209

only option. Then the cost of evaluating F′ is O(N3) because each column of the finite difference210

Jacobian uses a call to F. In this case the benefit of a single precision linear solve is less significant.211

If the evaluation of F′ is more than O(N3), then there is little value in a reduced precision linear212

solve in terms of cost.213

2.2. Backward Error Estimates for LU Factorization. The local improvement estimate (2.17)214

does not take the backward error in the linear solver into account. In fact, most of the literature in nonlinear215

equations (for example [6, 8, 19, 20, 27, 29]) makes the implicit assumption that the backward error in the216

solver can be neglected and focuses instead on either the forward error in the Jacobian itself ‖Jc − F′(xc)‖217

or a formulation in terms of the inexact Newton condition,218

‖F′(xc)s + F(xc)‖ ≤ η‖F(xc)‖,219

which is a small residual condition on the linear equation for the Newton step (2.3).220

While either of these expressions of error could include the backward error as part of the estimate, that221

is not done explicitly and is not part of the discussion or the examples in those papers. One purpose of this222

paper is to question the assumption that the backward error can be neglected.223

The missing component in (2.17) is the backward error in the solver. We let L̂ and Û be the computed224

LU factors of J and Ĵ = L̂Û. The backward error in the solver is225

δJ = Ĵ− J.226

The reader should think of J as an analytic Jacobian or a forward-difference approximation. We will assume,227

as is the case in the example in § 3, that ‖J‖ is uniformly bounded in the dimension N of the problem.228
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We can incorporate the backward error into (2.17) and obtain,229

‖en+1‖ = O(‖en‖2 + (εJ + ‖δJ‖)‖en‖+ εF ).230

Since εJ = O(
√
εF ) in this paper, we can neglect εJ and have231

(2.20) ‖en+1‖ = O(‖en‖2 + ‖δJ‖‖en‖+ εF ),232

clearly exposing the role, if any, of the backward error. The estimate (2.20) suggests that one could attempt233

to detect a large backward error via examination of the convergence of the nonlinear iteration, which we do234

in § 3.235

Now let εp be the precision of the linear solver. This means that we store the Jacobian and do the236

factorization and triangular solves with precision εp. The classic estimate [7, 11] uses the L1 norm and237

contains the dimension N in a nontrivial manner. The first step is an estimate for the component-wise238

backward error239

(2.21) |δJ|ik ≤ γN (|L̂||Û|)ik,240

where, for a matrix A, |A| is the matrix with entries |Aij |, and241

(2.22) γN =
Nεp

1−Nεp
.242

The starting point for this estimate of the component-wise backward error is estimation of products of243

the form244
N∏
i=1

(1 + δi)
ρi245

where |δi| ≤ εp and ρi = ±1. The standard estimate is ( [11], page 63)246

(2.23)

∣∣∣∣ N∏
i=1

(1 + δi)
ρi

∣∣∣∣ ≤ 1 + γN .247

The final step in the proof of (2.21) is to count the floating point operations in the factorization and use248

(2.23).249

The classic worst case bound for ‖δJ‖ uses the L1 matrix norm, i. e. the maximum column sum. We will250

use the L1 norm in this part of the paper for that reason. However, the rest of the paper is norm-independent251

and uses the L1 estimates as guidance, a reasonable idea since only the magnitude of the bound is important252

in most applications [11]. With (2.22), the norm estimate is253

‖δJ‖1 ≤ γN‖L̂‖1‖Û‖1.254

The magnitudes of the entries of L̂ are bounded by 1. The worst case would be if |L̂i1| = 1 for all i.255

Then256

‖L̂‖1 = N.257

Following [7], we define the growth factor258

g = max
1≤i,j≤N

max |Ûij |
|Jij |

.259

Hence, again using the worst case estimate for the L1 norm of U260

‖Û‖1 ≤ gN‖J‖1.261

So, at this point we have262

‖δJ‖1 ≤ γNN2gεp = O(εpgN
3).263
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While the growth factor g can be as large as 2N−1, that is a worst-case bound first seen in a famous264

example and only rarely seen in practice ( [11], page 177–178). However, one can justify neglecting g in most265

applications, so we will do that.266

Since ‖J‖1 = O(1), we obtain, neglecting g,267

(2.24) ‖δJ‖1 ≤ γNN2εp = O(N3εp).268

This is, as the textbooks clearly say, ridiculous. For example, if εJ ≈ 10−16, then the backward error is269

O(1) for any N > 250, 000 and > .001 for N > 21, 000. This would tell us that we should expect Gaussian270

elimination with column pivoting to return only three figures of accuracy for some fairly small problems and271

says that ‖δJ‖ could cause some real trouble with slow convergence of Newton’s method. This pessimism is272

not confirmed by practice.273

We can obtain a more realistic bound than (2.24) if we replace the worst case bound for ‖L̂‖1 and ‖Û‖1274

with the best-case, ‖L̂‖1 = O(1) and ‖Û‖1 = O(‖J‖1) = O(1). Then we have275

(2.25) ‖δJ‖1 ≤ γN εp = O(εpN).276

This is much better. Remember we want ‖δJ‖1 = O(
√
εF ). If εF is double precision unit roundoff (1.1 ×277

10−16), εJ = O(
√
εF ) (think of a forward difference approximation), and εp = εF (i.e. we do the solve in278

double precision), then (2.25) tells us that ‖δJ‖ = O(
√
εF ) as long as N < 108. Problems with dimension279

N > 108 are far too large for dense matrix Gaussian elimination on a typical desktop computer, so we can280

expect the backward error to have little effect on the nonlinear iteration.281

We will consider doing the linear solver in a lower precision after making our estimate of ‖δJ‖ even282

more optimistic. New results in probabilistic roundoff analysis [13,14] attempt to make theory better reflect283

practice.284

The new formulation of (2.23) in [13] is a probabilistic statement. The advantage is that one can replace285

γN with286

γ̃N (λ) = exp

(
λ
√
Nεp +

Nε2p
1− εp

)
− 1 = λ

√
Nεp +O(ε2p),287

where λ can be tuned as we will see below. The analog to (2.23) (Theorem 2.4, page A2819 in [13]) is288

Theorem 2.6. Let {δj}Nj=1 be independent random variables with mean zero and bounded in absolute289

value by εp. Then, for any λ > 0 the bound290

(2.26)

∣∣∣∣ N∏
i=1

(1 + δi)
ρi

∣∣∣∣ ≤ 1 + γ̃N (λ)291

holds with probability at least292

P (λ) = 1− 2exp

(
−λ2(1− εp)2

2

)
.293

Since λ is a free parameter and P (λ)→ 1 very rapidly as λ→∞, one can increase λ to make P (λ) near294

one and still obtain a bound of O(
√
Nεp) with high probability for the left side of (2.26). We will give a295

concrete example when we state the result from [13] for the backward error in the LU factorization.296

The application to the backward error for LU is not as straightforward as in the deterministic case.297

While counting operations is still the way to obtain the bound, the probability term is more complicated.298

Define299

Q(λ,N) = 1−N(1− P (λ).300

Theorem 2.7 (Theorem 3.6, page A2824 in [13]) is the component-wise backward error estimate.301

Theorem 2.7. Assume that all errors in every binary operation in Gaussian elimination are independent302

random variables of mean zero. Let λ > 0 be given. Then the computed LU factors from Gaussian elimination303

on J ∈ RN×N satisfy304

L̂Û = Ĵ = J + δJ,305
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where306

(2.27) |δJ| ≤ γ̃N (λ)|L̂||Û| = (λ
√
Nεp +O(ε2p))|L̂||Û|307

holds with probability at least Q(λ,N3/3 +N2/2 +N/6).308

Now one is free to adjust λ. Using λ =
√

log(N) for the largest N of interest is one approach. An309

example from [13,14] illustrates the result. If we set λ = 13, then the probability that (2.27) fails to hold is310

(N3/3 +N2/2 + 7N/6)P (13) ≈ 1.3 ∗ 10−7 for N ≤ 1010 .311

In this case (2.25) can be improved to312

(2.28) |δJ| ≤ (13
√
Nεp +O(ε2p))|L̂||Û|,313

for N ≤ 1010, and hence for all desktop-sized problems.314

Returning to general norms and the case ‖F′‖ = O(1), the idea for this paper is that (2.28) implies that,315

with high probability, we can use (neglecting the ε2p terms)316

(2.29) ‖δJ‖ ≤ 13
√
Nεp317

for the values of N of interest under our best-case assumptions that ‖Û‖ and ‖L̂‖ are O(1). We will explore318

some consequences of that below and report on numerical observations in § 3.319

Now consider the case where εp = εs = 6.0 × 10−8 = O(
√
εF ) is single precision unit roundoff. In that320

case (2.28) tells us that we cannot completely neglect the backward error unless N is very small, say < 10321

However, (2.20) implies that the ‖δJ‖ term on the right side of (2.20) will only become important when322

‖en‖ ≈ ‖δJ‖ and this will only happen at the end of the iteration. For example, if N = 10000 and we neglect323

the norms of the LU factors, then, with high probability, ‖δJ‖ ≤ 7.8× 10−5. In that case (2.25) and (2.20)324

indicate that the convergence will be q-linear, but still fast enough to be useful. The estimate also shows325

that that ‖δJ‖‖en‖ will be the dominant term in (2.20) only if ‖en‖ ≤ 8× 10−5, i. e. for the last one or two326

iterations before stagnation. Figure 3.4 illustrates this, but the effect is visible only very near stagnation.327

Many computing environments support half precision computations. Unlike double and single precision,328

which conform to the IEEE standard [16, 30], there are many half precision formats. This paper will focus329

on IEEE half precision (see Table 3.5, page 23 in [16]). If we do the linear solves in half precision, then330

εp = εh = 4.9 × 10−4. We can invoke (2.28) and (2.20) to predict that the nonlinear iteration will see the331

effects of large N much earlier than a single precision computation, so we can expect to see the reduction332

in convergence rate more readily. If, for example, N = 10000, we should expect to converge slowly, if at all,333

because the estimate is that |δJ| ≤ .64 The largest half precision computation we could do for this paper334

had size N = 16, 384, for which the estimate for |δJ| ≈ .8. So as the dimension increases, the deterioration335

in the convergence rate should be clearly visible. This is something we can test on a desktop computer. The336

results in § 3 show that this estimate is still pessimistic.337

We will explore these estimates in § 3 by solving a nonlinear problem and increasing the dimension to338

see if one can observe changes in the nonlinear convergence rates. (2.29) suggests that we will see very little339

differences between single precision and double precision and a significant difference between half precision340

and either single or double precision.341

3. Example: Chandresekhar H-Equation. As an example we consider the mid-point rule dis-342

cretization of the Chandrasekhar H-equation [3],343

(3.1) F(H)(µ) = H(µ)−
(

1− c

2

∫ 1

0

µH(µ)

µ+ ν
dν

)−1
= 0.344

The nonlinear operator F is defined on C[0, 1], the space of continuous functions on [0, 1].345

This equation has a well-understood dependence on the parameter c [4, 28]. The equation has unique346

solutions at c = 0 and c = 1 and two solutions for 0 < c < 1. There is a simple fold singularity [18] at347

c = 1. Only one [2, 3] of the two solutions for 0 < c < 1 is of physical interest and that is the one easiest to348
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find numerically. One must perform a continuation computation to find the other one. The structure of the349

singularity is preserved if one discretizes the integral with any quadrature rule with positive weights that350

integrates constants exactly.351

For the purposes of this paper the composite midpoint rule will suffice. The N -point composite midpoint352

rule is353 ∫ 1

0

f(ν) dν ≈ 1

N

N∑
j=1

f(νj)354

where νj = (j − 1/2)/N for 1 ≤ j ≤ N . This rule is second-order accurate for sufficiently smooth functions355

f . The solution of (3.1) is, however, not smooth enough. H ′(µ) has a logarithmic singularity at µ = 0. We356

will use the L2 norm to compute ‖F(x)‖ in the tables and figures.357

Increasing N has no effect on the conditioning of the Jacobian nor, if the backward error in the linear358

solve can truly be neglected, on the iteration statistics [1, 25]. Hence we can clearly, but indirectly, observe359

the effects of N on the Jacobian backward error through the performance of the nonlinear solver.360

The discrete problem is361

(3.2) F(x)i ≡ xi −

1− c

2N

N∑
j=1

xjµi
µj + µi

−1 = 0.362

One can simplify the approximate integral operator in (3.2) and expose some useful structure. Since363

c

2N

N∑
j=1

xjµi
µj + µi

=
c(i− 1/2)

2N

N∑
j=1

xj
i+ j − 1

,364

the approximate integral operator is the product of a diagonal matrix and a Hankel matrix and one can use365

a fast Fourier transform to evaluate the operator-vector product with O(N log(N)) work [10,21].366

We can express the approximation of the integral operator in matrix form367

M(x)ij =
c(i− 1/2)

2N

N∑
j=1

xj
i+ j − 1

368

and compute the Jacobian analytically as369

F′(x) = I− diag(G(x))2M(x),370

where371

G(x)i =

1− c

2N

N∑
j=1

xjµi
µj + µi

−1 .372

Hence the data for the Jacobian is already available after one computes F(x) = x−G(x) and the Jacobian373

can be computed with O(N2) work. We do that in this example and therefore the only part of the solve374

that requires O(N3) work is the matrix factorization.375

One could also approximate the Jacobian with forward differences using (2.19) at a cost of N function376

evaluations. As we saw in § 2, if one computes F in double precision with unit roundoff εF , then h = O(
√
εF )377

is a reasonable choice [19]. In that case the error in the Jacobian is O(
√
εF ) = O(εs) where εs is unit roundoff378

in single precision. The cost of a finite difference Jacobian in this example is O(N2 log(N)) work.379

The analysis in § 2 suggests that there is no significant difference in the nonlinear iteration from either380

the choice of analytic or finite difference Jacobians or the choice of single or double precision for the linear381

solver. The results in § 3.2 support that suggestion.382

One should be more cautious with half precision because the error in the solver is larger than single383

precision roundoff, so we would expect linear convergence prior to stagnation at best. In § 3.3 we see linear384
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convergence and show that the convergence rate of the nonlinear solver does degrade with dimension for385

small problems sizes, but eventually stabilizes.386

In all cases the initial iterate x0 had all components equal to one. We consider three cases. If c = .5 or387

c = .99 the Jacobian is nonsingular and the theory in § 2 is applicable. The case c = 1.0 is different because388

the Jacobian is singular at the solution.389

3.1. Computations. The computations reported in this section were done in Julia v 1.5.3 on a 2019390

Apple iMac with eight cores and 64GB of memory. Julia supports half precision in software and so com-391

putations in half precision are very slow. We report on computations for dimensions N = 210 . . . 214. The392

results for half precision required two weeks of computer time and increasing the dimension beyond 214 was393

not practical. In all the figures we plot the relative residual ‖F(xn)‖/‖F(x0)‖ as a function of the iteration394

counter n. This is a reasonable surrogate for the errors in the nonsingular cases c = .5 and c = .99 in view395

of (2.13). In the singular case c = 1, ‖F(xn)‖/‖F(x0)‖ = O(‖en‖2) [4]. However, even in that case we can396

observe the effects, if any, of backward error in the Jacobian using the relative residual.397

In the computations we computed the analytic Jacobian in double precision and then stored and factored398

the Jacobian in double, single, or half precision (the solver precision). We computed the columns of the399

forward difference Jacobian in double precision using (2.19) and then stored them in the solver precision to400

build the forward difference Jacobian. The factorization and triangular solves were carried out in the solver401

precision. We converted the residual to the solver precision before computing the step. This conversion keeps402

the solver from promoting the intermediate steps in the solve in Julia and is important for performance. By403

the way, Matlab does this conversion automatically. In half precision one must also scale the residual before404

the conversion to avoid underflow errors [15]. After the solve the step was automatically promoted to double405

precision upon addition to the current nonlinear iteration.406

The computations used the author’s SIAMFANLEquation.jl Julia package [22–24]. The files (codes,407

data, and an IJulia notebook) for these results are available at408

https://github.com/ctkelley/MPResults.409

The solvers with the SIAMFANLEquation.jl package are available at410

https://github.com/ctkelley/SIAMFANLEquations.jl.411

3.2. Can You Tell the Difference Between Single and Double? We consider two cases c = .5412

and c = .99 with nonsingular Jacobian. Theorem 2.4 is applicable. We see a difference in the convergence413

because the Jacobian for c = .99 is nearer to singularity that than for c = .5. In these cases Figures 3.2 and414

3.1 show very little dependence of the iteration histories on either the precision of the factorization or the415

use of a finite difference or analytic Jacobian. The only meaningful difference is the third iteration for c = .5,416

The iteration is very near stagnation in that case and the analytic Jacobian combined with a factorization in417

double precision reaches stagnation before the other three methods, all of which have a Jacobian with error418

O(
√
εF ). In all cases, if one were to terminate the iteration when the relative residual fell below 10−8, then419

all the iterations in Figures 3.1 and 3.2 would stop at the same iteration (3 for c = .5 and 5 for c = .99).420

The singular case c = 1 is very different [4]. The assumptions of Theorem 2.4 do not hold and we do not421

see the behavior that the theorem predicts. To begin with, the convergence is not quadratic, but q-linear422

with q-factor 1/2. Moreover, the initial iterate must not only be near the solution, but the initial error must423

be mostly in the direction of the null space of the Jacobian at the solution. We see q-linear convergence in424

Figure 3.3. One way to understand the convergence rate is to solve x2 = 0 with Newton’s method. The425

iteration is426

xn+1 = xn −
x2n
2xn

= xn/2427

giving a q-factor of 1/2. The structure of the singularity of the H-equation is very similar to this in the428

component of the error in the direction of the null space of the Jacobian at the solution.429

One can also see that convergence history is very different for the forward difference approximation to430

the Jacobian. In the scalar case, for example, if f ′(x) = 0, then the relative error in the finite difference431

approximation can be large and the estimate (2.18) is true, but not very useful. This is especially the case if432

εF is an absolute error, which is often the case. As an example, let f(x) = cos(x), x = 10−6, and h = 10−7.433

The f ′(x) = − sin(x) ≈ −x. The finite difference approximation is ≈ −1.05× 10−6 and has only two figures434

of accuracy.435
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Fig. 3.1. Residual Histories: Single and Double Precision, c = .5
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As in the scalar case, if F′(x) is singular or nearly so then the finite-difference approximation may be436

poor in directions in the null space of F′(x). Moreover, the estimate (2.17) for the nonlinear iteration depends437

on nonsingularity of the Jacobian. We should not be surprised when things go wrong and see an example of438

this in Figure 3.3.439
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Fig. 3.2. Residual Histories: Single and Double Precision, c = .99
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Fig. 3.3. Residual Histories: Single and Double Precision, c = 1.0
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3.3. Half Precision: How low can you go? We begin with the case of nonsingular Jacobian: c = .5440

and c = .99. As you can see from the figures, the convergence is not quadratic, but q-linear. This is because441

of the large Jacobian error. Also the results with a finite difference Jacobian were essentially the same, with442

no visible difference in the plots. The convergence rates agreed to three figures and we only present the rate443

estimates for the analytic Jacobian in the tables.444

In the half precision computations we can see the difference in convergence speed between the c = .5445

case and the case nearer to singularity c = .99. There was little difference between the analytic Jacobian and446

the forward difference approximation for these two cases. However, the nonlinear iteration statistics were447

very different and the change in convergence rate as a function of dimension for c = .99 is easy to see.448

In Figures 3.4 and 3.5 we show the dependence of the nonlinear convergence rate on dimension when the449

matrix factorization is done in half precision. The remarkable thing about the plots is that the convergence450

rates do not seem to depend on dimension in the easy (c = .5) case and stop becoming slower as the dimension451

increases beyond N = 4096 for the nearly singular case (c = .99). Tables 3.1 and 3.2 show numerically that452

the convergence rates ‖F(xn+1)‖/‖F(xn)‖ are essentially independent of dimension for the c = .5 case and453

stabilize after N = 4096 for the c = .99 case. This explains the overlap in the plots after N = 4096. Both454

the plots and the tables indicate that the solver error is not increasing with dimension.455

Fig. 3.4. Residual Histories: Half Precision, c = .5
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The singular case, c = 1, is particularly interesting in half precision for two reasons. The first is that the456

convergence rate seems, both from Figure 3.6 and Table 3.3 to be worse than q-linear. This is, in fact, what457

happens with singular problems of this type when the Jacobian approximation is poor [5]. The equation458

f(x) = x2 = 0 is a good example. If x0 = 1 and we approximate f ′(x) by f ′(x0) = 2, then it is easy to show459
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Table 3.1
Half Precision Computed Convergence Rates: ‖F(xn+1)‖/‖F(xn)‖, c = .5

n 1024 2048 4096 8192 16384
1 1.56706e-01 1.56708e-01 1.56708e-01 1.56705e-01 1.56706e-01
2 1.53569e-01 1.53573e-01 1.53579e-01 1.53578e-01 1.53576e-01
3 1.52949e-01 1.52944e-01 1.52946e-01 1.52948e-01 1.52949e-01
4 1.52853e-01 1.52848e-01 1.52844e-01 1.52847e-01 1.52843e-01
5 1.52831e-01 1.52829e-01 1.52832e-01 1.52830e-01 1.52830e-01
6 1.52828e-01 1.52825e-01 1.52826e-01 1.52830e-01 1.52827e-01
7 1.52830e-01 1.52824e-01 1.52827e-01 1.52826e-01 1.52825e-01
8 1.52832e-01 1.52832e-01 1.52824e-01 1.52825e-01 1.52828e-01
9 1.52838e-01 1.52830e-01 1.52831e-01 1.52830e-01 1.52826e-01
10 1.52828e-01 1.52828e-01 1.52827e-01 1.52829e-01 1.52827e-01

Fig. 3.5. Residual Histories: Half Precision, c = .99
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that460

lim
n→∞

xn
2/n

= 1.461

This is very poor sublinear convergence.462

Secondly, after 30 iterations the error is still too large for the effects of the forward difference approximate463

Jacobian to be seen. So both sides of Figure 3.6 are identical and the convergence statistics cease to depend464
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on N after N = 4096.465

Fig. 3.6. Residual Histories: Half Precision, c = 1
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Table 3.2
Half Precision Computed Convergence Rates: ‖F(xn+1)‖/‖F(xn)‖, c = .99

n 1024 2048 4096 8192 16384
1 2.63294e-01 4.88603e-01 5.06480e-01 5.06480e-01 5.06480e-01
2 1.39099e-01 4.50348e-01 5.83959e-01 5.83962e-01 5.83961e-01
3 1.44278e-01 4.13186e-01 6.38900e-01 6.38900e-01 6.38898e-01
4 1.01754e-01 3.60960e-01 6.64343e-01 6.77977e-01 6.77976e-01
5 9.42216e-02 3.76718e-01 6.78547e-01 7.06190e-01 7.06192e-01
6 1.03855e-01 3.36916e-01 7.12325e-01 7.26959e-01 7.26957e-01
7 8.71357e-02 4.10487e-01 6.98753e-01 7.42506e-01 7.42507e-01
8 9.85171e-02 3.63814e-01 7.53512e-01 7.54294e-01 7.54296e-01
9 9.81771e-02 3.73218e-01 7.13812e-01 7.63337e-01 7.63337e-01
10 7.82248e-02 3.60341e-01 7.51307e-01 7.70318e-01 7.70319e-01
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Table 3.3
Half Precision Computed Convergence Rates: ‖F(xn+1)‖/‖F(xn)‖, c = 1

n 1024 2048 4096 8192 16384
1 2.89271e-01 4.97487e-01 5.18347e-01 5.18347e-01 5.18347e-01
2 2.02306e-01 4.37133e-01 6.02756e-01 6.02754e-01 6.02755e-01
3 3.04726e-01 4.60824e-01 6.62228e-01 6.64944e-01 6.64946e-01
4 3.28286e-01 4.37880e-01 6.87719e-01 7.11345e-01 7.11344e-01
5 4.09534e-01 5.29573e-01 7.12647e-01 7.46800e-01 7.46800e-01
6 4.67802e-01 5.59574e-01 7.46514e-01 7.74644e-01 7.74642e-01
...

...
...

...
...

...
26 9.37645e-01 9.02116e-01 8.63996e-01 9.30262e-01 9.30264e-01
27 8.64444e-01 8.84138e-01 9.57200e-01 9.32602e-01 9.32599e-01
28 9.50195e-01 9.80767e-01 9.72447e-01 9.34786e-01 9.34786e-01
29 8.76453e-01 8.51197e-01 8.62460e-01 9.36834e-01 9.36837e-01
30 9.42673e-01 9.90469e-01 9.56378e-01 9.38760e-01 9.38762e-01

4. Conclusions. We showed how to indirectly observe the backward error in an LU factorization466

through the iteration statistics in Newton’s method. For single precision, we confirm both the recent theory467

and folklore that storing and factoring the Jacobian in single precision has minimal effect on the performance468

of the nonlinear iteration. The backward error in the linear solver for the half precision case is large enough469

to degrade the nonlinear convergence to q-linear. Even so, we see that the results for the linear solver depend470

less on dimension than the theory predicts. Storing and factoring the Jacobian in half precision only seems471

useful for very well-conditioned problems.472
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