NEWTON’S METHOD IN MIXED-PRECISION

C. T. KELLEY*

Abstract. We investigate the use of reduced precision arithmetic to solve the linear equation for the Newton step. If one
neglects the backward error in the linear solve, then well-known convergence theory implies that using single precision in the
linear solve has very little negative effect on the nonlinear convergence rate.

However, if one considers the effects of backward error, then the usual textbook estimates are very pessimistic and even the
state-of-the-art estimates using probabilistic rounding analysis do not fully conform to experiments. We report on experiments
with a specific example. We store and factor Jacobians in double, single, and half precision. In the single precision case we
observe that the convergence rates for the nonlinear iteration do not degrade as the dimension increases and that the nonlinear
iteration statistics are essentially identical to the double precision computation. In half precision we see that the nonlinear
convergence rates, while poor, do not degrade as the dimension increases.

Audience. This paper is intended for students who have completed or are taking an entry-level graduate course in
numerical analysis and for faculty who teach numerical analysis. The important ideas in the paper are O notation, floating
point precision, backward error in linear solvers, and Newton’s method.
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1. Introduction. The entry level numerical analysis curriculum at the graduate level typically includes
e a description of IEEE floating point arithmetic,
e direct methods for linear equations, especially Gaussian elimination and the LU factorization,
— estimates of backward error in terms of the size of the problem, and
e Newton’s method for nonlinear equations.

However these courses do not usually connect these topics. The purpose of this paper is to do that and to
apply recent results on probabilistic rounding analysis [12-14,17] to the convergence analysis of the nonlinear
Newton iteration. In particular, we will show how the precision used for the linear solve for the Newton step
can be less than that for computing the nonlinear residual with no loss in the speed of convergence or the
quality of the solution of the nonlinear iteration.

In § 2 we review how the classic [19] convergence estimate for Newton’s method is affected by the error
in the Jacobian. In § 2.2 we connect that estimate with the backward error in the linear solver. We then
review the standard estimates [7,10] for this error and explain how the new results in [13,14, 17] affect the
nonlinear convergence analysis.

Finally in § 3 we illustrate the results with a numerical example using double, single, and half precision
[16, 30] for the linear solve. These results and the theory in § 2 indicate that one can safely do the linear
solve in single precision if the Jacobian itself is computed to single precision accuracy. This example is large
enough to see the effects of increasing the dimension of the problem, at least in half precision, but small
enough that the reader can do the computation on a desktop machine.

The theory breaks down if the Jacobian is singular at the solution and we also present an example of
that case to illustrate the effects of singularities.

1.1. Notation. In this paper we denote vectors by boldfaced lower case letters and matrices by bold-
faced upper case letters, for example x and A. We denote the ith component of x by x; to distinguish it
from the ith member of a sequence of vectors x;. We denote the ijth entry of A by A,;.

2. Local Error Estimates for Newton’s Method. Most of the material is this section is standard
and one can find more details in [8,19-21,29]. The novelty will come in § 2.2, where we explore the connection
between the nonlinear convergence estimate, the backward error in the nonlinear solver, and new probabilistic
rounding results from [13, 14].
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We consider nonlinear systems of equations
(2.1) F(x) = 0.
In (2.1) F: D — RY where D is an open convex subset of RY. We will let F’ denote the Jacobian matrix
F'(x)i; = 0fi(x)/0x;
where

F = (fi,fo,- -, fn)T.

We will impose a norm || - || on RY and let || - || also denote the induced matrix norm.
The Newton iteration for solving (2.1) takes a current approximation x. of a solution to a new approxi-
mation x4 via

(2.2) Xy =x. — F/(x.)7'F(x,).

The Newton iteration is defined if F is differentiable at x. and F’(x.) is nonsingular. In this paper we assume
that we compute the Newton step
s=—F/(x.) 'F(x.)

by solving the linear equation
(2.3) F,(Xc)s = —F(x.)
with Gaussian elimination with column pivoting [7, 11].

We make the standard assumptions [8,19,29] for local convergence:

ASSUMPTION 2.1. There is x* € D such that
e F(x*) =0,
o F/(x*) is nonsingular, and
e F/(x) is Lipschitz continuous with Lipschitz constant v, i. e.

(2.4) IF'(x) = F'(y)ll <~lx—yll,

for allx,y € D.

Assumption 2.1 implies that the Newton iteration (2.2) is defined for all x,. sufficiently near x*.
The convergence estimates in this section neglect any error in the linear solver and assume that the
solution of (2.3) is exact. We will use the standard notation for errors

e=x—-x"forxeD.

For example, if x. is the current point in the iteration, then e. = x. — x* is the current error.
We will begin by quoting the classic local convergence theorem. We will also give the proof because it
is illuminating and uses a familiar result from an entry level numerical linear algebra course.

LEMMA 2.1. Suppose A is nonsingular and

1
(2.5) A =Bl < o=
2|t
then B is nonsingular, |B™Y|| < 2|A~Y, and
(2.6) |A~" =BT <2 A7Y*|A - BJ|.

THEOREM 2.2. Assume that Assumption 2.1 holds, then

1
lecll < ST
2[[F7 (x*) = Hly
2

2.7)
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(2.8) {x!llell <llecl} c D.
Then
(2.9) [F/(x*)7H1/2 < [F(xe) M| < 201 F(x) 71

Moreover, if ey is the Newton iterate from x. (2.2), then
(2.10) lexll < YIF"(x*) " llecl? < llecl /2.
Proof. We can use Lipschitz continuity (2.4) and (2.7) to invoke Lemma 2.1 because

1

F(x.) - F "] <vlle € =s=——.
IF(x0) = F'( )] < el < g

Hence F'(x.) is nonsingular and
(2.11) 1" () = < 2] F(x") 7|

Since x* + te. € D for all 0 < t < 1 by assumption (2.8), the fundamental theorem of calculus implies
that

1
(2.12) F(x.) = / F'(x* + te.)e. dt.
0
Subtract x* from both sides of (2.2) and use (2.12) to obtain

1
e, =e.—F(x.) 'F(x.) =e.— F’(xc)_l/ F/(x* + te.)e. dt
0

=F'(x.) ! </1(F’(xc) - F(x* +te.)) dtec>.
0
Hence, using (2.11) and Lipschitz continuity again
el < IF"(xe) Ml fy (1 —t) dt e
= | F'(xc) " Hlv/2llec]” < vIIF (x*) "l [lec?,

which completes the proof using (2.7). 0

In many courses (2.10) is expressed with O-notation
le<]l = OCllec|).

This is appropriate when the asymptotic convergence rate is more important in the discussion than the
prefactor ||F'(x*)~!||. That will be the case in this paper and we will use O-notation throughout. Moreover,
the precise condition (2.7) can be replaced by “xq is sufficiently close to x*” for the discussion in this paper.
Having said that, the presence of ||F’(x*)~!| is a clear and correct indicator that Theorem 2.2 does not hold
if F/(x*) is singular. We will warn the reader a few more times about the presence of |F/(x*)~!|| in the
O-terms.

All one needs to describe the entire Newton iteration is an estimate like (2.10) that describes the evolution
of the error from one iteration the next. Repeated applications of Theorem 2.2 imply Corollary 2.3.

COROLLARY 2.3. Assume that Assumption 2.1 holds. Then if xqg is sufficiently near x*, the Newton
iteration exists ( i. e. F/(x,) is nonsingular for all n ) and converges to x*. Moreover the convergence is
g-quadratic

lentill = O(llenl|)
3
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In § 3 we plot on a semi-log scale the histories of relative residuals ||F(xy,)||/||F(x0)|| as a function of
n. In the g-quadratic case the curve is concave, as we see in the figures. The relative residual is a good
surrogate for the relative error if F/(x*) is well-conditioned. In fact, if Assumption 2.1 and (2.7) hold, then
(see [19] page 72)

e PGl As(F (<) lea]
WE el = TFGl =~ Jeol

(2.13)

In (2.13)
* * *\—1
R(F(x7)) = B (x")|[]|F'(x") |
is the condition number of F’(x*).
2.1. Errors in the Function and Jacobian. Theorem 2.2 gives an idealized description of what one
can expect in computations. Even so, the predictions are very accurate for all but the final step or two of
a nonlinear iteration. Theorem 2.4 makes this precise. The objective of this paper is to explore the effects

of errors in the Jacobian and in the linear solver on the idealized analysis in Theorem 2.2. To that end, we
consider an iteration

(2.14) Xy =%, — J(x.) M (F(x.) + E(x,)).

In (2.14) J(x.) is an approximation of F/(x.). One example is a finite-difference approximation of the
Jacobian. The term E(x.) is the error in F(x.).
We will assume that the errors in the function and Jacobian are uniformly bounded

1

(2.15) |E(x)|| < er and ||J(x) — F/(X)” <er< W

for all x sufficiently near x*. The reader may think of er as double precision floating point error, even
though that is generally optimistic. The Jacobian error bound e; depends, as we will see, on the method for
approximating F'(x.).

We we will give a result from [19,21, 31] about the progress of the iteration in the presence of these
errors. The case of interest in this paper is simple and we will give the proof.

THEOREM 2.4. Let Assumption 2.1 hold. Let (2.7) and (2.15) hold. Then J. = J(x.) is nonsingular
and x4, as defined by (2.14), satisfies

(2.16) les]l = 0(|ec||2 Tesledl +ep).

Proof. We express e as the sum of the error from Newton’s method
ef =€c— FI(XC)_IF(XC) = O(Hec||2)

and the correction
(Jh = F'(x) HF(x) — I B(xc).

Equation (2.15) and (2.9) imply that

1
J.—F <
H c (XC)” — 2HF,(XC)_1”7
and hence we may apply Lemma 2.1 with A = F/(x.) and B = J.. We may then conclude that
I3ZH] < 2]/ F (xe) 7| < 4[[F(x*) 71|

and
1ot = F(xe) | < 2[F (xe) " Pes < 8IF'(x*)H%es = Oley).
4

138 manuscript is fc view purposes only.
This manuscript is for review purposes only



149
150
151

160

161

162
163
164

165

166
167

168

169
170

179

180

181

Note that the prefactor in this O-term contains ||F’(x*)~!||?, which, while not so important in this paper,

tells us something about the effects of ill-conditioning on one’s freedom to approximate the Jacobian.
We now apply (2.12), (2.7), and Lipschitz continuity to obtain

IF(x)l| < IF(x el + [y B+ tec) — F(x*)]| dile |

< (IFE)] +vlleclllecll = Ollec]l + llecl?)-
Combining the terms and using (watch the ||F(x*)~!| in the prefactor)
BB < 92 ler < A[F ()" ler = Oler)

completes the proof. 0

The corollary describing the entire iteration is not a convergence result because the error does not
converge to zero, rather the iteration stagnates when |le,|| = O(er). Results of this type are called local
improvement results in [9].

COROLLARY 2.5. Let the assumptions of Corollary 2.3 hold. Assume that (2.15) holds and that €y is
sufficiently small. Then, for all n,

(2.17) len+1ll = Ollenll” + esllenll + €r),

where the prefactor in the O-term is independent of n.

If, for example, e = 0 (exact arithmetic) and €y is sufficiently small, then the convergence of the

iteration will be g¢-linear with ¢-factor < e;. This means that either ||e,| = 0 for some n < oo or
lim sup len 1l <ey.
n—oo len|

In a semilog plot of the relative residual history, a linear curve is a sign of g-linear convergence.
One case of interest in this paper is when e; = O(,/€r). In that case

esllenll = O(Verllenl)

and hence
lentill = O(llenll® + €r).

Thefore the error in the Jacobian approximation can be neglected in the sense that the estimate for ||e, 1|
in (2.17) is O(||e,||* + €r) with the Jacobian error playing no important role at all. We will clearly see this
in the computations in § 3.

In this paper we consider a forward-difference approximation to F’ as the alternative to an analytic
expression. It’s useful to look at the scalar case. Let the computed f(z) be

f(z) = f(x) + e(x) where |e(z)| < eF.

Then

fath=f(e) _ J@HM=1@) | O(cp/h)

= ['(x) + O(h +er/h).

If, as is usually the case, the prefactors in the O-terms are benign, then the error is minimized when

h = O(\/er),

in which case

(2.18) REER I~ p@) + o(vep).
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We warn the reader that the prefactor in the O(h) term for the finite difference approximation is not
guaranteed to be harmless [26]. We also warn the reader of a few assumptions hidden in the derivation of
(2.18). We assume in the derivation that |z| is O(1), i. e. not too large nor too small, and that |f’(z)| is not
too small. If |z| is not O(1) then h will need to be scaled to conform to z [19], a detail we can ignore in this
paper because the scaling of the solution in our example problem is O(1). If |f/(z)| is small, then the error
term in (2.18) could be as large as the main term. That is trouble, as we will see in § 3.

The forward difference approximation to the Jacobian approximates F’'(x) by J(«) where the kth column
of J is

F(x + hity) — F(x)

(2.19) Jj, = .

where F(z) = F(z) + E(z) and 1y, is the unit vector in the kth coordinate direction. If h = O(,/ex) then
the error in the Jacobian is
€7 = O(\Ver).

Hence, Theorem 2.4 predicts that there will be no significant difference in the convergence of the nonlinear
iteration between a double precision analytic Jacobian with the linear solve done in double and a forward
difference approximate Jacobian with the linear solve done in single precision. We will see this in the
examples in § 3.2.

As an example, consider solving the linear equation for the Newton step with Gaussian elimination.
Think of computing the Jacobian (either analytically or with finite differences) in double precision and then
storing and factoring it in either single or double precision. The discussion above indicates that there will
be no loss in the nonlinear convergence rate if one uses single precision instead of double. There are two
benefits. There is a clear reduction by half in storage if you use single precision. As for cost, there are two
extreme cases of interest.

e If the cost of evaluating F and F’ (either analytically or via finite differences) is o(IN?), then the
matrix factorization will be the dominant cost of the computation. Solving the equation for the
Newton step in single precision instead of double will then cut the cost of the nonlinear solve almost
in half. The example in § 3 is like this.

e Suppose the evaluation of F is O(N?) work and a finite difference Jacobian computation is the
only option. Then the cost of evaluating F’ is O(N?) because each column of the finite difference
Jacobian uses a call to F. In this case the benefit of a single precision linear solve is less significant.
If the evaluation of F’ is more than O(N?), then there is little value in a reduced precision linear
solve in terms of cost.

2.2. Backward Error Estimates for LU Factorization. The local improvement estimate (2.17)
does not take the backward error in the linear solver into account. In fact, most of the literature in nonlinear
equations (for example [6,8,19,20,27,29]) makes the implicit assumption that the backward error in the
solver can be neglected and focuses instead on either the forward error in the Jacobian itself ||J. — F/(x.)||
or a formulation in terms of the inexact Newton condition,

[F'(xc)s + F(xe) | < nl|F(xc)ll,

which is a small residual condition on the linear equation for the Newton step (2.3).

While either of these expressions of error could include the backward error as part of the estimate, that
is not done explicitly and is not part of the discussion or the examples in those papers. One purpose of this
paper is to question the assumption that the backward error can be neglected.

The missing component in (2.17) is the backward error in the solver. We let L and U be the computed
LU factors of J and J = LU. The backward error in the solver is

§I=J-J.

The reader should think of J as an analytic Jacobian or a forward-difference approximation. We will assume,
as is the case in the example in § 3, that ||J|| is uniformly bounded in the dimension N of the problem.
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We can incorporate the backward error into (2.17) and obtain,
len+1ll = OCllenll” + (€5 + 163 lenll + €r).
Since €; = O(y/€r) in this paper, we can neglect €¢; and have
(2.20) len+1ll = Ollenll + 63 lllenll + €r),

clearly exposing the role, if any, of the backward error. The estimate (2.20) suggests that one could attempt
to detect a large backward error via examination of the convergence of the nonlinear iteration, which we do
in § 3.

Now let ¢, be the precision of the linear solver. This means that we store the Jacobian and do the
factorization and triangular solves with precision €,. The classic estimate [7,11] uses the L' norm and
contains the dimension N in a nontrivial manner. The first step is an estimate for the component-wise
backward error

(2.21) 163 it < v (ILI[T )i,
where, for a matrix A, |A| is the matrix with entries |A;;|, and

Ne,

2.22 = :
(2.22) WS TN

The starting point for this estimate of the component-wise backward error is estimation of products of

the form
N

[ +06:)

i=1
where |0;] <€, and p; = £1. The standard estimate is ( [11], page 63)

N

[ +06:)

i=1

(2.23) <1+9n.

The final step in the proof of (2.21) is to count the floating point operations in the factorization and use
(2.23).

The classic worst case bound for ||6J]| uses the L' matrix norm, i. e. the maximum column sum. We will
use the L' norm in this part of the paper for that reason. However, the rest of the paper is norm-independent
and uses the L' estimates as guidance, a reasonable idea since only the magnitude of the bound is important
in most applications [11]. With (2.22), the norm estimate is

1631y < AwIL]1][O]s-

The magnitudes of the entries of L are bounded by 1. The worst case would be if [L;| = 1 for all i.
Then .
L[ = N.

Following [7], we define the growth factor

max|ﬂij|
g= max ————
1<i <N |4

Hence, again using the worst case estimate for the L' norm of U
U1 < gN 131

So, at this point we have
611 < ’YNNQQEP = O(epgN3).
7
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While the growth factor ¢ can be as large as 2V~!, that is a worst-case bound first seen in a famous

example and only rarely seen in practice ( [11], page 177-178). However, one can justify neglecting ¢ in most
applications, so we will do that.
Since ||J|l1 = O(1), we obtain, neglecting g,

(2.24) [16J]1 < ’yNNQGP = O(N3ep).

This is, as the textbooks clearly say, ridiculous. For example, if €; ~ 107!¢, then the backward error is
O(1) for any N > 250,000 and > .001 for N > 21,000. This would tell us that we should expect Gaussian
elimination with column pivoting to return only three figures of accuracy for some fairly small problems and
says that ||0J]| could cause some real trouble with slow convergence of Newton’s method. This pessimism is
not confirmed by practice.

We can obtain a more realistic bound than (2.24) if we replace the worst case bound for ||L||; and ||U||;
with the best-case, |L||; = O(1) and ||U||; = O(||J||y) = O(1). Then we have

(2.25) 163]ly < Yvep = O(epN).

This is much better. Remember we want [|0J||; = O(y/€r). If ep is double precision unit roundoff (1.1 x
1071%), e; = O(y/eF) (think of a forward difference approximation), and €, = ep (i.e. we do the solve in
double precision), then (2.25) tells us that [|0J]| = O(y/er) as long as N < 10%. Problems with dimension
N > 108 are far too large for dense matrix Gaussian elimination on a typical desktop computer, so we can
expect the backward error to have little effect on the nonlinear iteration.

We will consider doing the linear solver in a lower precision after making our estimate of ||§J|| even
more optimistic. New results in probabilistic roundoff analysis [13,14] attempt to make theory better reflect
practice.

The new formulation of (2.23) in [13] is a probabilistic statement. The advantage is that one can replace
YN with

N 2
An(A) = exp ()\\/Nep + % ) —1=MNe, + O(eg),

1—¢,
where A can be tuned as we will see below. The analog to (2.23) (Theorem 2.4, page A2819 in [13]) is

THEOREM 2.6. Let {5j}§vzl be independent random variables with mean zero and bounded in absolute
value by €,. Then, for any XA > 0 the bound

N

H(l + 6i)pi

i=1

PO = 1 2eap (2200

(2.26) <1+

holds with probability at least

2

Since A is a free parameter and P(\) — 1 very rapidly as A — oo, one can increase A to make P(\) near
one and still obtain a bound of O(v/Ne¢,) with high probability for the left side of (2.26). We will give a
concrete example when we state the result from [13] for the backward error in the LU factorization.

The application to the backward error for LU is not as straightforward as in the deterministic case.
While counting operations is still the way to obtain the bound, the probability term is more complicated.
Define

QA N)=1-N(1-P(N).

Theorem 2.7 (Theorem 3.6, page A2824 in [13]) is the component-wise backward error estimate.

THEOREM 2.7. Assume that all errors in every binary operation in Gaussian elimination are independent
random variables of mean zero. Let A > 0 be given. Then the computed LU factors from Gaussian elimination
on J € RNXN satisfy

LU=J=J+4J,
8

138 manuscript is fc view purposes only.
This manuscript is for review purposes only



313

314

315
316

w
—
-~

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

342
343

344

345
346
347
348

where
(2.27) 63| < An(VIL][U] = (AN, + O(e2)) L] U]

holds with probability at least Q(\, N3/3 + N?/2 + N/6).

Now one is free to adjust A\. Using A = (/log(N) for the largest N of interest is one approach. An
example from [13,14] illustrates the result. If we set A = 13, then the probability that (2.27) fails to hold is

(N3/3+ N?/24+7N/6)P(13) ~ 1.3+ 10~ for N < 10'° .
In this case (2.25) can be improved to
(2.28) 6J] < (13VNe, + O(e))|L|| U],

for N < 10'°, and hence for all desktop-sized problems.
Returning to general norms and the case |F’|| = O(1), the idea for this paper is that (2.28) implies that,
with high probability, we can use (neglecting the € terms)

(2.29) 163 < 13V Ne,

for the values of N of interest under our best-case assumptions that |[U|| and ||L|| are O(1). We will explore
some consequences of that below and report on numerical observations in § 3.

Now consider the case where €, = €, = 6.0 x 107% = O(,/eF) is single precision unit roundoff. In that
case (2.28) tells us that we cannot completely neglect the backward error unless N is very small, say < 10
However, (2.20) implies that the ||§J|| term on the right side of (2.20) will only become important when
llen|l = ||0J]|| and this will only happen at the end of the iteration. For example, if N = 10000 and we neglect
the norms of the LU factors, then, with high probability, ||6J|| < 7.8 x 10~°. In that case (2.25) and (2.20)
indicate that the convergence will be g-linear, but still fast enough to be useful. The estimate also shows
that that ||0J||||e,|| will be the dominant term in (2.20) only if |le,|| < 8 x 107>, i. e. for the last one or two
iterations before stagnation. Figure 3.4 illustrates this, but the effect is visible only very near stagnation.

Many computing environments support half precision computations. Unlike double and single precision,
which conform to the IEEE standard [16,30], there are many half precision formats. This paper will focus
on IEEE half precision (see Table 3.5, page 23 in [16]). If we do the linear solves in half precision, then
€p = €, = 4.9 x 107, We can invoke (2.28) and (2.20) to predict that the nonlinear iteration will see the
effects of large N much earlier than a single precision computation, so we can expect to see the reduction
in convergence rate more readily. If, for example, N = 10000, we should expect to converge slowly, if at all,
because the estimate is that |0J| < .64 The largest half precision computation we could do for this paper
had size N = 16,384, for which the estimate for [§J| = .8. So as the dimension increases, the deterioration
in the convergence rate should be clearly visible. This is something we can test on a desktop computer. The
results in § 3 show that this estimate is still pessimistic.

We will explore these estimates in § 3 by solving a nonlinear problem and increasing the dimension to
see if one can observe changes in the nonlinear convergence rates. (2.29) suggests that we will see very little
differences between single precision and double precision and a significant difference between half precision
and either single or double precision.

3. Example: Chandresekhar H-Equation. As an example we consider the mid-point rule dis-
cretization of the Chandrasekhar H-equation [3],

-1

(3.1) F(H) (1) = H(p) — (1 - g/o ’ii(’;) du) =0.

The nonlinear operator F is defined on C[0, 1], the space of continuous functions on [0, 1].

This equation has a well-understood dependence on the parameter ¢ [4,28]. The equation has unique
solutions at ¢ = 0 and ¢ = 1 and two solutions for 0 < ¢ < 1. There is a simple fold singularity [18] at
¢ = 1. Only one [2,3] of the two solutions for 0 < ¢ < 1 is of physical interest and that is the one easiest to

9
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find numerically. One must perform a continuation computation to find the other one. The structure of the
singularity is preserved if one discretizes the integral with any quadrature rule with positive weights that
integrates constants exactly.

For the purposes of this paper the composite midpoint rule will suffice. The N-point composite midpoint

rule is
1 1 N
/0 fw)dv = i Zf(yj)
j=1

where v; = (j —1/2)/N for 1 < j < N. This rule is second-order accurate for sufficiently smooth functions
f. The solution of (3.1) is, however, not smooth enough. H’(u) has a logarithmic singularity at u = 0. We
will use the L? norm to compute ||F(x)| in the tables and figures.

Increasing N has no effect on the conditioning of the Jacobian nor, if the backward error in the linear
solve can truly be neglected, on the iteration statistics [1,25]. Hence we can clearly, but indirectly, observe
the effects of N on the Jacobian backward error through the performance of the nonlinear solver.

The discrete problem is

—1
N
c Tjpi

- = = 0.
2N = Hi + 1

(3.2) F(x)i=x; —

One can simplify the approximate integral operator in (3.2) and expose some useful structure. Since

ii T :cufm)i z
2Nj:1,uj+ui 2N j:1i+j_1’

the approximate integral operator is the product of a diagonal matrix and a Hankel matrix and one can use
a fast Fourier transform to evaluate the operator-vector product with O(N log(N)) work [10,21].
We can express the approximation of the integral operator in matrix form

. N
c(i—1/2) x;
\/I S s T
()i 2N J-Zzl i+j—1

and compute the Jacobian analytically as

F'(x) = I — diag(G(x))M(x),

where
-1

N
c TjHi
Gx)=[1-=—= J
2N o i+ g

Hence the data for the Jacobian is already available after one computes F(x) = x — G(x) and the Jacobian
can be computed with O(N?) work. We do that in this example and therefore the only part of the solve
that requires O(N?3) work is the matrix factorization.

One could also approximate the Jacobian with forward differences using (2.19) at a cost of N function
evaluations. As we saw in § 2, if one computes F in double precision with unit roundoff e, then h = O(,/€F)
is a reasonable choice [19]. In that case the error in the Jacobian is O(y/€r) = O(e,) where €, is unit roundoff
in single precision. The cost of a finite difference Jacobian in this example is O(N?log(N)) work.

The analysis in § 2 suggests that there is no significant difference in the nonlinear iteration from either
the choice of analytic or finite difference Jacobians or the choice of single or double precision for the linear
solver. The results in § 3.2 support that suggestion.

One should be more cautious with half precision because the error in the solver is larger than single
precision roundoff, so we would expect linear convergence prior to stagnation at best. In § 3.3 we see linear
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convergence and show that the convergence rate of the nonlinear solver does degrade with dimension for
small problems sizes, but eventually stabilizes.

In all cases the initial iterate xo had all components equal to one. We consider three cases. If ¢ = .5 or
¢ = .99 the Jacobian is nonsingular and the theory in § 2 is applicable. The case ¢ = 1.0 is different because
the Jacobian is singular at the solution.

3.1. Computations. The computations reported in this section were done in Julia v 1.5.3 on a 2019
Apple iMac with eight cores and 64GB of memory. Julia supports half precision in software and so com-
putations in half precision are very slow. We report on computations for dimensions N = 219...2', The
results for half precision required two weeks of computer time and increasing the dimension beyond 2'# was
not practical. In all the figures we plot the relative residual ||F(x,)||/]|F(x0)|| as a function of the iteration
counter n. This is a reasonable surrogate for the errors in the nonsingular cases ¢ = .5 and ¢ = .99 in view
of (2.13). In the singular case ¢ = 1, |[|F(x,)||/[|F(x0)| = O(|le.||?) [4]. However, even in that case we can
observe the effects, if any, of backward error in the Jacobian using the relative residual.

In the computations we computed the analytic Jacobian in double precision and then stored and factored
the Jacobian in double, single, or half precision (the solver precision). We computed the columns of the
forward difference Jacobian in double precision using (2.19) and then stored them in the solver precision to
build the forward difference Jacobian. The factorization and triangular solves were carried out in the solver
precision. We converted the residual to the solver precision before computing the step. This conversion keeps
the solver from promoting the intermediate steps in the solve in Julia and is important for performance. By
the way, Matlab does this conversion automatically. In half precision one must also scale the residual before
the conversion to avoid underflow errors [15]. After the solve the step was automatically promoted to double
precision upon addition to the current nonlinear iteration.

The computations used the author’s STAMFANLEquation.jl Julia package [22-24]. The files (codes,
data, and an IJulia notebook) for these results are available at

https://github.com/ctkelley /MPResults.

The solvers with the STAMFANLEquation.jl package are available at

https://github.com/ctkelley /STAMFANLEquations.jl.

3.2. Can You Tell the Difference Between Single and Double? We consider two cases ¢ = .5
and ¢ = .99 with nonsingular Jacobian. Theorem 2.4 is applicable. We see a difference in the convergence
because the Jacobian for ¢ = .99 is nearer to singularity that than for ¢ = .5. In these cases Figures 3.2 and
3.1 show very little dependence of the iteration histories on either the precision of the factorization or the
use of a finite difference or analytic Jacobian. The only meaningful difference is the third iteration for ¢ = .5,
The iteration is very near stagnation in that case and the analytic Jacobian combined with a factorization in
double precision reaches stagnation before the other three methods, all of which have a Jacobian with error
O(y/€r). In all cases, if one were to terminate the iteration when the relative residual fell below 1078, then
all the iterations in Figures 3.1 and 3.2 would stop at the same iteration (3 for ¢ = .5 and 5 for ¢ = .99).

The singular case ¢ = 1 is very different [4]. The assumptions of Theorem 2.4 do not hold and we do not
see the behavior that the theorem predicts. To begin with, the convergence is not quadratic, but g-linear
with g-factor 1/2. Moreover, the initial iterate must not only be near the solution, but the initial error must
be mostly in the direction of the null space of the Jacobian at the solution. We see g-linear convergence in
Figure 3.3. One way to understand the convergence rate is to solve 22 = 0 with Newton’s method. The
iteration is

_ Tn _
Tnyl = Tp — m —xn/2
giving a g-factor of 1/2. The structure of the singularity of the H-equation is very similar to this in the
component of the error in the direction of the null space of the Jacobian at the solution.

One can also see that convergence history is very different for the forward difference approximation to
the Jacobian. In the scalar case, for example, if f/(z) = 0, then the relative error in the finite difference
approximation can be large and the estimate (2.18) is true, but not very useful. This is especially the case if
€r is an absolute error, which is often the case. As an example, let f(z) = cos(z), z =1075 and h = 107".
The f'(x) = —sin(z) ~ —z. The finite difference approximation is ~ —1.05 x 10~% and has only two figures
of accuracy.
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Fic. 3.1. Residual Histories: Single and Double Precision, ¢ = .5
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As in the scalar case, if F/(x) is singular or nearly so then the finite-difference approximation may be
poor in directions in the null space of F’(x). Moreover, the estimate (2.17) for the nonlinear iteration depends
on nonsingularity of the Jacobian. We should not be surprised when things go wrong and see an example of
this in Figure 3.3.
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Fic. 3.2. Residual Histories: Single and Double Precision, ¢ = .99
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Fic. 3.3. Residual Histories: Single and Double Precision, ¢ = 1.0
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3.3. Half Precision: How low can you go? We begin with the case of nonsingular Jacobian: ¢ = .5
and ¢ = .99. As you can see from the figures, the convergence is not quadratic, but g-linear. This is because
of the large Jacobian error. Also the results with a finite difference Jacobian were essentially the same, with
no visible difference in the plots. The convergence rates agreed to three figures and we only present the rate
estimates for the analytic Jacobian in the tables.

In the half precision computations we can see the difference in convergence speed between the ¢ = .5
case and the case nearer to singularity ¢ = .99. There was little difference between the analytic Jacobian and
the forward difference approximation for these two cases. However, the nonlinear iteration statistics were
very different and the change in convergence rate as a function of dimension for ¢ = .99 is easy to see.

In Figures 3.4 and 3.5 we show the dependence of the nonlinear convergence rate on dimension when the
matrix factorization is done in half precision. The remarkable thing about the plots is that the convergence
rates do not seem to depend on dimension in the easy (¢ = .5) case and stop becoming slower as the dimension
increases beyond N = 4096 for the nearly singular case (¢ = .99). Tables 3.1 and 3.2 show numerically that
the convergence rates ||F(x,+1)||/||F(x,)|| are essentially independent of dimension for the ¢ = .5 case and
stabilize after N = 4096 for the ¢ = .99 case. This explains the overlap in the plots after N = 4096. Both
the plots and the tables indicate that the solver error is not increasing with dimension.

Fic. 3.4. Residual Histories: Half Precision, ¢ = .5

Half precision,analytic Jacobian Half precision,finite difference Jacobian
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The singular case, ¢ = 1, is particularly interesting in half precision for two reasons. The first is that the
convergence rate seems, both from Figure 3.6 and Table 3.3 to be worse than g-linear. This is, in fact, what
happens with singular problems of this type when the Jacobian approximation is poor [5]. The equation
f(x) = 2% =0 is a good example. If g = 1 and we approximate f'(x) by f’(zg) = 2, then it is easy to show
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TABLE 3.1

Half Precision Computed Convergence Rates: ||F(xn+1)||/||F(xn)]||, c=.5

n 1024 2048 4096 8192 16384

1 1.56706e-01  1.56708e-01  1.56708e-01 1.56705e-01  1.56706e-01
2 1.53569e-01  1.53573e-01  1.53579e-01  1.53578e-01  1.53576e-01
3 1.52949e-01  1.52944e-01  1.52946e-01  1.52948e-01  1.52949e-01
4 1.52853e-01 1.52848e-01 1.52844e-01 1.52847e-01 1.52843e-01
) 1.52831e-01  1.52829e-01 1.52832e-01  1.52830e-01  1.52830e-01
6 1.52828e-01  1.52825e-01  1.52826e-01  1.52830e-01  1.52827e-01
7 1.52830e-01 1.52824e-01 1.52827e-01 1.52826e-01 1.52825e-01
8 1.52832e-01  1.52832e-01  1.52824e-01  1.52825e-01  1.52828e-01
9 1.52838e-01  1.52830e-01 1.52831e-01 1.52830e-01  1.52826e-01
10 1.52828e-01 1.52828e-01 1.52827e-01 1.52829e-01  1.52827e-01

Fic. 3.5. Residual Histories: Half Precision, ¢ = .99
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This is very poor sublinear convergence.

Secondly, after 30 iterations the error is still too large for the effects of the forward difference approximate
Jacobian to be seen. So both sides of Figure 3.6 are identical and the convergence statistics cease to depend
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on N after N = 4096.
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TABLE 3.2

5 10

15

20 25

Nonlinear Iterations

Half Precision Computed Convergence Rates: ||F(Xn+1)||/|F(xn)|l, ¢ = .99

[=]

1024

2048

4096

8192

16384

= O 00 J O UL W N+

o

2.63294e-01
1.39099e-01
1.44278e-01
1.01754e-01
9.42216e-02
1.03855e-01
8.71357e-02
9.85171e-02
9.81771e-02
7.82248e-02

4.88603e-01
4.50348e-01
4.13186e-01
3.60960e-01
3.76718e-01
3.36916e-01
4.10487e-01
3.63814e-01
3.73218e-01
3.60341e-01

5.06480e-01
5.83959e-01
6.38900e-01
6.64343e-01
6.78547e-01
7.12325e-01
6.98753e-01
7.53512e-01
7.13812¢-01
7.51307e-01

5.06480e-01
5.83962e-01
6.38900e-01
6.77977e-01
7.06190e-01
7.26959e-01
7.42506e-01
7.54294e-01
7.63337e-01
7.70318e-01

5.06480e-01
5.83961e-01
6.38898e-01
6.77976e-01
7.06192e-01
7.26957e-01
7.42507e-01
7.54296e-01
7.63337e-01
7.70319e-01
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TABLE 3.3

Half Precision Computed Convergence Rates: |F(xn+1)||/||F(xn)||, c=1

n 1024 2048 4096 8192 16384

1 2.89271e-01 4.97487e-01 5.18347e-01 5.18347e-01  5.18347e-01
2 2.02306e-01 4.37133e-01  6.02756e-01  6.02754e-01  6.02755e-01
3 3.04726e-01 4.60824e-01 6.62228e-01  6.64944e-01  6.64946e-01
4 3.28286e-01 4.37880e-01  6.87719e-01  7.11345e-01  7.11344e-01
5 4.09534e-01 5.29573e-01  7.12647e-01  7.46800e-01  7.46800e-01
6  4.67802e-01 5.59574e-01 7.46514e-01 7.74644e-01 7.74642e-01
26 9.37645e-01  9.02116e-01  8.63996e-01  9.30262e-01  9.30264e-01
27  8.64444e-01  8.84138e-01  9.57200e-01  9.32602¢-01  9.32599¢-01
28  9.50195e-01 9.80767e-01 9.72447e-01  9.34786e-01  9.34786e-01
29  8.76453e-01 8.51197e-01 8.62460e-01  9.36834e-01  9.36837e-01
30 9.42673e-01  9.90469e-01  9.56378e-01  9.38760e-01  9.38762e-01

4. Conclusions. We showed how to indirectly observe the backward error in an LU factorization

through the iteration statistics in Newton’s method. For single precision, we confirm both the recent theory
and folklore that storing and factoring the Jacobian in single precision has minimal effect on the performance
of the nonlinear iteration. The backward error in the linear solver for the half precision case is large enough
to degrade the nonlinear convergence to g-linear. Even so, we see that the results for the linear solver depend
less on dimension than the theory predicts. Storing and factoring the Jacobian in half precision only seems
useful for very well-conditioned problems.
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