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In this paper, we apply decomposition to orbifolds with quantum symmetries to resolve

anomalies. Briefly, it has been argued by, e.g. Wang–Wen–Witten, Tachikawa that an
anomalous orbifold can sometimes be resolved by enlarging the orbifold group so that

the pullback of the anomaly to the larger orbifold group is trivial. For this procedure to

resolve the anomaly, one must specify a set of phases in the larger orbifold, whose form
is implicit in the extension construction. There are multiple choices of consistent phases,

which give rise to physically distinct resolutions. We apply decomposition, and find that

theories with enlarged orbifold groups are equivalent to (disjoint unions of copies of)
orbifolds by nonanomalous subgroups of the original orbifold group. In effect, decom-

position implies that enlarging the orbifold group is equivalent to making it smaller.

We provide a general conjecture for such descriptions, which we check in a number of
examples.
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1. Introduction

This paper is devoted to a study of anomalous orbifolds and their resolutions, a

subject that has been of renewed interest, see e.g. Refs. 1–9. In particular, this paper

utilizes decomposition (which relates e.g. two-dimensional theories with one-form

symmetries to disjoint unions) and quantum symmetries to make certain families

of anomaly resolutions explicit, following up our previous work.8–10
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Briefly, it was argued in Refs. 3 and 4 that given an anomalous orbifold [X/G],

with anomaly α ∈ H3(G,U(1)), one way to resolve the anomaly is to find an

extension

1→ K
ι−→ Γ

π−→ G→ 1 , (1.1)

chosen so that the anomaly α ∈ H3(G,U(1)) is in the image of some B ∈
H1
(
G,H1(K,U(1))

)
, under the differential

d2 : H1(G,H1(K,U(1)))→ H3(G,U(1)) (1.2)

of the Lyndon–Hochschild–Serre spectral sequence. (For simplicity, throughout this

paper, we restrict to central extensions.) For such an extension, the pullback π∗α is

trivial in H3(Γ, U(1)), and the resulting orbifold [X/Γ] is expected to be anomaly-

free.

Construction of suitable extensions Γ has been discussed elsewhere, see e.g.

Refs. 1, 3, 6–8.

However, as also noted in e.g. Sec. 2 of Ref. 3, to physically define the Γ orbifold,

we need to specify more than just Γ itself, we must also specify the action of Γ. The

Γ action is partially specified by saying that K acts trivially on X; however, as we

shall see explicitly in examples, that does not uniquely specify the action, and in

any event, does not suffice to make [X/Γ] anomaly-free in general.

First, to uniquely specify the Γ orbifold, we interpret B ∈ H1
(
G,H1(K,U(1))

)
,

the same mathematical quantity that was chosen to be in the preimage of the

anomaly α, as a physical quantum symmetry in the sense of Ref. 10. (The physical

relevance of that mathematical quantity was also discussed, from a slightly different

perspective, in Sec. 2 of 3.)

Second, we apply decomposition to explain the crucial role the quantum sym-

metry B plays in resolving the anomaly. Briefly, in this context,8–10 decomposi-

tion relates orbifolds with quantum symmetries to disjoint unions of orbifolds by

smaller groups. We will see explicitly that for B such that d2B = α, if we interpret

B as defining a quantum symmetry, then the resulting orbifold [X/Γ]B is indeed

anomaly-free, and in fact by virtue of decomposition is equivalent to (a disjoint

union of) orbifolds by anomaly-free subgroups of G, subgroups such that the restric-

tion of α is trivial. (If Γ is a “minimal” choice of extension, then one gets a single

orbifold, but if Γ is larger than needed, in some sense, one gets a disjoint union of

several orbifolds.)

In effect, this means that resolving an anomalous G orbifold by an orbifold by

an extension Γ is physically equivalent to replacing the G orbifold with (copies of)

an orbifold by a nonanomalous subgroup of G. (Related observations concern-

ing module categories have been made in the mathematics literature, see e.g.

Example 9.7.2 of Ref. 11.) Put another way, in a certain sense, making the orbifold

group larger is equivalent to making it smaller, a duality somewhat reminiscent of

T-duality on a circle, with the anomalous orbifold playing a role analogous to the

self-dual radius.
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Furthermore, which resolution is obtained depends upon the choice of B. For a

fixed anomaly α, for a fixed extension Γ, there may be multiple choices of quantum

symmetry B such that d2B = α (not to mention choices of discrete torsion), each

of which can yield a physically distinct, nonanomalous, theory.

We also emphasize merely working with a resolution Γ does not suffice to resolve

the anomaly: if the G orbifold is anomalous, then we will see explicitly that taking

vanishing quantum symmetry in the Γ orbifold yields anomalous results, regardless

of Γ. To resolve the anomaly, one must not only take an extension Γ but in addition

one must pick a nonzero quantum symmetry B, such that d2B coincides with the

anomaly α.

We begin in Sec. 2 by reviewing quantum symmetries and decomposition. Speci-

fically, in this paper we crucially use a generalization of ordinary quantum symme-

tries discussed in Refs. 8 and 10 to make sense of the anomaly-resolution procedure.

We also review decomposition, which relates e.g. orbifolds with trivially-acting sub-

groups to disjoint unions of copies of orbifolds by effectively-acting groups.

In Sec. 3 we apply decomposition to simplify the anomaly resolution procedure

described earlier. Briefly, decomposition makes it clear that the effect of enlarging

the orbifold group and turning on a quantum symmetry is equivalent to work-

ing with (disjoint unions of) orbifolds by nonanomalous subgroups. We check that

prediction explicitly in Sec. 4 in a number of examples.

We close in App. A with a collection of some pertinent results on degree-three

group cohomology, as arises in describing anomalies.

We reiterate that throughout this paper, we assume that Γ is a central extension

of G by K.

Finally, a remark on nomenclature. Across our several papers on decomposition

and quantum symmetries, we have unfortunately mixed additive and multiplicative

notations. For example, a trivial quantum symmetry is sometimes written addi-

tively, as B = 0, and sometimes multiplicatively, as B(g) = 1 for all g ∈ G.

2. Review of Quantum Symmetries and Decomposition

Let us quickly review quantum symmetries in orbifolds and properties of the re-

sulting quantum field theories, as described in much greater detail in Ref. 10.

Quantum symmetries (as we use the term in Ref. 10) arise in orbifolds in which

a subgroup of the orbifold group acts trivially. Consider an orbifold [X/Γ] where Γ

is a central extension of G by K ⊂ Γ in which K acts trivially on X:

1→ K
ι−→ Γ

π−→ G→ 1 . (2.1)

Typically in this paper, [X/G] will be an anomalous orbifold, with anomaly α ∈
H3(G,U(1)), and the extension above will be chosena so as to resolve the anomaly,

in part.

aDetails of how the resolutions are chosen are described in e.g. Subsec. 2.7 of Ref. 3 and Subsec. 5.1
of Ref. 1, and more efficient versions given in Refs. 6–8. Our focus in this paper will be on
understanding the physics of the resolutions, not the resolutions per se.
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To resolve the orbifold, one must pick a quantum symmetry, which for K central

is a bihomomorphism

B : G×K → U(1) (2.2)

defining phases acquired by G-twist fields under the action of K (see also Sec. 2 of

Ref. 3). In terms of genus-one partition functions, this means

gz

h

= B(π(h), z)

(
g

h

)
, g

hz

= B(π(g), z)−1

(
g

h

)
, (2.3)

for z ∈ K and g, h ∈ Γ a commuting pair. The resulting possible values of the

quantum symmetry B are classified by elements of

H1
(
G,H1(K,U(1))

)
. (2.4)

Sometimes these quantum symmetries can be constructed from discrete torsion.

The relationship between quantum symmetries, discrete torsion, and anomalies is

encoded in the exact sequence(
Ker i∗ ⊂ H2(Γ, U(1))

) β−→ H1(G,H1(K,U(1)))
d2−→ H3(G,U(1)) , (2.5)

where ι : K → Γ is inclusion and in the sequence above,

ι∗ : H2(Γ, U(1))→ H2(K,U(1)) . (2.6)

(This is part of a seven-term exact sequence,12 which was discussed in greater detail

in our previous papers.8,9) Briefly, for discrete torsion ω ∈ Ker ι∗ ⊂ H2(Γ, U(1)),

its image as a quantum symmetry isb

1

β(ω)(ḡ)
=
ω(z, s(ḡ))

ω(s(ḡ), z)
, (2.7)

for z ∈ K, ḡ ∈ G, and s : G → Γ any section. (Independence from the choice of

section is ultimately due to the fact that ω ∈ Ker ι∗.) Similarly, the map d2, which

coincides with a differential in the Lyndon–Hochschild–Serre spectral sequence, is

(d2B)(ḡ1, ḡ2, ḡ3) = B
(
ḡ1, s2s3s

−1
23

)
, (2.8)

where si = s(ḡi) and s : G → Γ is any section. (Note that the quantity s2s3s
−1
23 is

the extension class of the extension Γ of G by K.)

In this language, we see that discrete torsion (whose restriction to K is trivial)

defines a quantum symmetry, but the quantum symmetries we need, with nontrivial

images under d2, are not produced by discrete torsion. The extension Γ is chosen so

that there exists a B for which d2B is the anomaly α ∈ H3(G,U(1)). Furthermore,

the reader should note that the anomaly does not uniquely determine B — for

example, it can be shifted by (the image of) discrete torsion. The physics of the

resulting resolution will depend upon the choice of B, as we shall see, not just the

choice of α = d2B.

bThe fact that 1/β appears rather than β itself is a consequence of definitions.
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Now, orbifolds in which subgroups of the orbifold group act trivially are equiva-

lent to disjoint unions of orbifolds by smaller groups, known as “universes.” This is

known as decomposition (see e.g. Refs. 9, 13–15), and has analogs in more general

gauge theories with higher-form symmetries and various generalizations, as has been

discussed in e.g. Refs. 16–22.

In the current circumstances, for an orbifold [X/Γ] with a quantum symmetry

B and discrete torsion ω ∈ H2(Γ, U(1)), the pertinent version of decomposition was

described in Ref. 10. We will not do detailed decomposition computations in this

paper, instead citing results described elsewhere, but for completeness, we outline

the pertinent results here, which are for the case ι∗ω = 0.

(1) Suppose that ι∗ω = 0 and β(ω) is nontrivial, then

QFT
(
[X/Γ]B,ω

)
= QFT

([
X × ̂Coker(B/β(ω))

Ker(B/β(ω))

]
ω̂0

)
. (2.9)

(2) Suppose that ι∗ω = 0 and ω = π∗ω̄ for ω̄ ∈ H2(G,U(1)). Then,

QFT([X/Γ]B,ω) = QFT

([
X × ĈokerB

KerB

]
ω̄+ω̂0

)
. (2.10)

In each case, ω̂0 denotes discrete torsion on components, and is discussed in Ref. 10.

We will use decomposition to simplify Γ orbifolds with quantum symmetries,

and will see in examples that if B resolves the anomaly (meaning that d2B = α),

then the result of decomposition will be manifestly anomaly-free orbifolds, involving

anomaly-free subgroups of G.

3. Application of Decomposition to Anomalies

So far we have discussed Γ orbifolds, central extensions of G orbifolds, with quantum

symmetries defined by B ∈ H1
(
G,H1(K,U(1))

)
, and described a general conjec-

ture relating those orbifolds to simpler orbifolds by subgroups of G, generalizing

decomposition.9,13,14,16

In this section we describe the application to curing anomalies.

One way to cure an anomaly α ∈ H3(G,U(1)) in a G orbifold is to extend G to

a larger (finite) group Γ with B ∈ H1(G,H1(K,U(1))) such that d2(B) = α. The

B appearing in the mathematics defines, physically, a quantum symmetry, as we

have discussed.

Then, a good intuition for the general claim of the previous subsection, which

we will confirm in examples, is that B reduces G to a subgroup that does not

participate in the anomaly, and if K is larger than needed to resolve the anomaly,

then one gets multiple copies, in the spirit of decomposition.9,13,14,16 In particular,

from (2.8), we have immediately that the restriction of α to Ker B is trivial,

α|KerB = 0 ∈ H3(KerB,U(1)) , (3.1)
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since α = d2(B) and the restriction of [B] to Ker B vanishes. This guarantees that

the orbifold by Ker B ⊂ G is nonanomalous.

Now, if the Γ orbifold is given discrete torsion ω, and if ι∗ω = 0 and β(ω) 6= 0,

then as discussed in the previous subsection and also in Ref. 9, β(ω) is an element

of H1(G,H1(K,U(1))), and so contributes to the quantum symmetry. However,

β(ω) cannot change the anomaly cancellation, as d2 ◦ β = 0. We can see that using

the seven-term exact sequence (App. I.6 of Ref. 23),12 that can be derived from the

Lyndon–Hochschild–Serre spectral sequence

0→ H1(G,U(1))
π∗

−→ H1(Γ, U(1))
ι∗−→ H1(K,U(1))

d2−→ H2(G,U(1))

π∗

−→ Ker(ι∗)
β−→ H1(G,H1(K,U(1)))

d2−→ H3(G,U(1)) . (3.2)

If a given element of H1
(
G,H1(K,U(1))

)
is in the image of β, the image of discrete

torsion (whose restriction to K is trivial), then its image in H3(G,U(1)) under d2

must vanish. Thus, the B’s that arise when trivializing anomalies are in some sense

orthogonal to those arising from discrete torsion in the considerations of Ref. 9.

The idea of resolving an anomalous orbifold by instead orbifolding by a subgroup

(and possibly turning on discrete torsion) has also appeared in e.g. Subsec. 5.3 of

Ref. 2. Here we have arrived at the same result, by gauging an extension of the

anomalous group. In some sense, we see that those two approaches to anomalous

orbifolds are equivalent to one another. (See also Example 9.7.2 of Ref. 11 for a

related discussion of module categories in the mathematics literature.)

4. Examples

4.1. Anomalous cyclic groups extended to larger cyclic groups

It was argued in Ref. 6 and Sec. 3 of Ref. 8 that an anomalous ZN orbifold with

anomaly α ∈ H3(ZN , U(1)) = ZN of order k (meaning αk = 1) can be trivialized

by an extension to ZkN , so that π∗α is trivial for π : ZkN → ZN . Now, to actually

implement that anomaly-free resolution, one must pick quantum symmetries, and

we shall do exactly that in this section, enumerating quantum symmetries and

explaining their effects, explicitly demonstrating that any quantum symmetry B

such that d2B = α resolves the anomaly in an extension to ZkN .

4.1.1. Anomalous Z2 extended to Z2k

In this subsection, we will add anomalies to examples studied in Subsec. 4.1 of

Ref. 10. Consider an anomalous orbifold [X/Z2], with anomaly α ∈ H3(Z2, U(1)) =

Z2. We resolve the anomaly by extending the orbifold group by K = Zk to Γ = Z2k:

1→ Zk → Z2k → Z2 → 1 , (4.1)

and by turning on a quantum symmetry B such that d2B = α. To be nontrivial,

we assume that k is even. The case k = 2 corresponds to a minimal resolution.

2150220-6
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Let us also briefly comment on how this extension trivializes the pullback of

anomaly in the case k is even. Let π : Z2k → Z2 denote the projection, and note

that since α is of order two, π∗α must be either 1 or gk, where g generates Z2k. One

can compute a coboundary-invariant phase, as in Eq. (3.2) of Ref. 8, to show that

2k−1∏
i=1

π∗α(−1, i, 1) =

2k−1∏
i=1

(−)i = (−)k , (4.2)

hence if k is odd, then π∗α cannot be trivial. It remains to show that in the case

k is even, π∗α = 1. To do so, note that π acts as reduction mod 2, and factors

through Z4 when k is even:

π(n) = a(b(n)), (4.3)

where b : Z2k → Z4 is reduction mod 4 and a : Z4 → Z2 is reduction mod 2. Hence,

for k even, it suffices to show that a∗α is trivial, and a trivialization was given in

Eq. (3.10) of Ref. 8.

Now, to physically construct the orbifold resolving the anomaly, we are

instructed to turn on any quantum symmetry B ∈ H1
(
G,H1(K,U(1))

)
in

the preimage of α in the orbifold [X/Γ]. For this Γ, H2(Γ, U(1)) = 0, so

H1
(
G,H1(K,U(1))

)
injects into H3(G,U(1)). Furthermore,

H1
(
G,H1(K,U(1))

)
= Hom

(
Z2, H

1(Zk, U(1))
)

= Hom(Z2,Zk) (4.4)

=

{
Z2 k even ,

0 k odd .
(4.5)

Thus, so long as k is even, there exists precisely one B that trivializes the anomaly

α. However, if k is odd, the anomaly cannot be trivialized by extending Z2 by Zk.

Let us assume that k is even, so that the anomaly can be trivialized.

We argued in Subsec. 4.1 of Ref. 10 that for the possible values of B,

QFT
(
[X/Z2k]B

)
=


QFT

(∐
k

[X/Z2]

)
B = 0 ,

QFT

(∐
k/2

X

)
B 6= 0 .

(4.6)

In this case, since α is nontrivial, the B that trivializes α is also the nontrivial

element. If instead we pick the trivial B = 0, then the resulting QFT is anomalous,

as it is merely copies of the anomalous orbifold [X/Z2]. (Furthermore, since all

twisted sectors appear, there is no chance of cancelling the anomaly merely by

removing certain offending modular orbits from the partition function.)

On the other hand, for the B that trivializes the anomaly, we see that the

quantum field theory is well defined: a sum over copies of X, not an anomalous

orbifold of X.

2150220-7
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Thus, we see explicitly that the combination of working with a larger orbifold

group and turning on a quantum symmetry resolves the anomaly. In the case of the

minimal resolution (for which k = 2), this resolution is equivalent to replacing the

original anomalous orbifold ([X/Z2]) by an orbifold by a nonanomalous subgroup.

Since there are no nontrivial subgroups, that means replacing [X/Z2] by X itself.

For nonminimal resolutions (for which k > 2), one simply gets copies.

4.1.2. Anomalous Z3 extended to Z9

In this subsection we start with an anomalous G = Z3 orbifold, and remove the

anomaly α ∈ H3(G,U(1)) by extending G by K = Z3 to Γ = Z9:

1→ Z3 → Z9 → Z3 → 1 , (4.7)

and of course turning on a suitable quantum symmetry B.

In this case,

B ∈ Hom
(
G,H1(K,U(1)

)
= Z3 . (4.8)

In Subsec. 4.1.3 of Ref. 10, we computed that

QFT([X/Γ]B) =


QFT

(∐
3

[X/Z3]

)
B = 0 ,

QFT(X) B nontrivial .

(4.9)

The anomaly is trivialized by any B ∈ H1
(
G,H1(K,U(1))

)
such that d2B = α.

In this case, H2(Γ, U(1)) = 0, so H1
(
G,H1(K,U(1))

)
injects into H3(G,U(1)). In

this case, since α is nontrivial, B is also nontrivial (but since decomposition gives

the same answer for both nontrivial values of B, we do not need to track which

nontrivial element B corresponds to).

For B = 0, the anomaly should not be trivialized, and indeed the QFT is just

copies of the original anomalous orbifold. For B nontrivial, the QFT is well defined,

simply X itself.

4.2. Anomalous Z2 × Z2 extended to Z2 × Z4

In this subsection, we start with an anomalous G = Z2 × Z2 orbifold, and remove

the anomaly α ∈ H3(G,U(1)) by extending by K = Z2 to Γ = Z2 × Z4:

1→ Z2 → Z2 × Z4 → Z2 × Z2 → 1 , (4.10)

and by turning on a suitable quantum symmetry B. In this case, one can also turn

on ordinary discrete torsion ω ∈ H2(Γ, U(1)), so we have several choices we can

make to resolve the orbifold.

Write the elements of Z2 × Z2 = 〈ā, b̄〉. Using the fact that

H1
(
G,H1(K,U(1))

)
= Z2 × Z2 , (4.11)

2150220-8
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Table 1. Summary of decomposition results for [X/Z2 × Z4]B,ω

for various values of B, ω, from Subsec. 4.2 of Ref. 10. For non-

trivial B, adding discrete torsion has no effect in these cases.

B(ā) B(b̄) Without d.t. With d.t.

+1 +1
∐

2[X/Z2 × Z2]
∐

2[X/Z2 × Z2]dt

−1 +1 [X/Z2 = 〈b̄〉] [X/Z2 = 〈b̄〉]

+1 −1 [X/Z2 = 〈ā〉] [X/Z2 = 〈ā〉]

−1 −1 [X/Z2 = 〈āb̄〉] [X/Z2 = 〈āb̄〉]

the possible values of B are characterized by their values on ā, b̄. Furthermore, since

H2(Z2 × Z4, U(1)) = Z2 (see e.g. App. D.2 of Ref. 9), we can also turn in discrete

torsion in this theory.

This example was computed in Subsec. 4.2 of Ref. 10, where it was shown that

the quantum field theory of [X/Z2 × Z4]B,ω takes the values listed in Table 1.

To understand how quantum symmetries can resolve anomalies in this case, we

next compute d2B. We will do so manually. In principle,

(d2B)(ḡ1, ḡ2, ḡ3) = B(ḡ1, e(ḡ2, ḡ3)) , (4.12)

for ḡi ∈ G, and where e denotes the extension class of Γ. Recall that for a section

s : G→ Γ, the extension class e is given explicitly as a cocyclec

e(ḡ1, ḡ2) = s1s2s
−1
12 , (4.13)

where si = s(ḡi). For this case, Γ = Z2×Z4, where Γ = 〈a, b〉, a2 = 1 = b4. In these

conventions, K = Z2 = 〈b2〉. The projection π maps a 7→ ā, b 7→ b̄, and we pick the

section s given by

s(1) = 1 , s(ā) = a , s(b̄) = b , s(āb̄) = ab . (4.14)

Then, we compute explicitly that the values of e(ḡ1, ḡ2) are given as in the following

table:

e 1 ā b̄ ā b̄

1 1 1 1 1

ā 1 1 1 1

b̄ 1 1 b2 b2

ā b̄ 1 1 b2 b2

cThis cochain is coclosed so long as K is central, which we assume throughout this paper.

2150220-9
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Next, we compute d2B for various choices of B.

(1) In the trivial case B(ā) = +1 = B(b̄), we find that d2B(ḡ1, ḡ2, ḡ3) = 1, and so

the cohomology class of d2B is trivial.

(2) Consider the case B(ā) = −1, B(b̄) = +1. In this case it is straightforward to

compute

(d2B)(ā, b̄, b̄) = −1 = (d2B)(ā, b̄, āb̄) = (d2B)(ā, āb̄, b̄)

= (d2B)(ā, āb̄, āb̄) , (4.15)

(d2B)(āb̄, b̄, b̄) = −1 = (d2B)(āb̄, b̄, āb̄) = (d2B)(āb̄, āb̄, b̄)

= (d2B)(āb̄, āb̄, āb̄) , (4.16)

with all other entries +1. From the invariants (A.2)–(A.7), we find that the

cohomology class of d2B ∈ H3(Z2 × Z2, U(1)) is characterized by εāb̄ = −1,

εā = +1 = εb̄. Thus, for this B, d2B is nontrivial in cohomology, and can be

used to resolve an anomalous 〈āb̄〉 ⊂ Z2 × Z2.

(3) Next, consider the case B(ā) = +1, B(b̄) = −1. In this case it is straightforward

to compute

(d2B)(b̄, b̄, b̄) = −1 = (d2B)(b̄, b̄, āb̄) = (d2B)(b̄, āb̄, b̄)

= (d2B)(b̄, āb̄, āb̄) , (4.17)

(d2B)(āb̄, b̄, b̄) = −1 = (d2B)(āb̄, b̄, āb̄) = (d2B)(āb̄, āb̄, b̄)

= (d2B)(āb̄, āb̄, āb̄) , (4.18)

with all other entries +1. From the invariants (A.2)–(A.7), we find that the

cohomology class of d2B ∈ H3(Z2×Z2, U(1)) is characterized by εb̄ = −1 = εāb̄,

εā = +1. Thus, for this B, d2B is nontrivial in cohomology, and can be used to

resolve an anomalous 〈b̄〉, 〈āb̄〉 ⊂ Z2 × Z2.

(4) Next, consider the case B(ā) = −1 = B(b̄). In this case it is straightforward to

compute

(d2B)(ā, b̄, b̄) = −1 = (d2B)(ā, b̄, āb̄) = (d2B)(ā, āb̄, b̄)

= (d2B)(ā, āb̄, āb̄) , (4.19)

(d2B)(b̄, b̄, b̄) = −1 = (d2B)(b̄, b̄, āb̄) = (d2B)(b̄, āb̄, b̄)

= (d2B)(b̄, āb̄, āb̄) , (4.20)

with all other entries +1. From the invariants (A.2)–(A.7), we find that the

cohomology class of d2B ∈ H3(Z2 × Z2, U(1)) is characterized by εb̄ = −1,

εā = +1 = εāb̄. Thus, for this B, d2B is nontrivial in cohomology, and can be

used to resolve an anomalous 〈b̄〉 ⊂ Z2 × Z2.
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Now, let us compare to the results of decomposition listed in Table 1.

(1) For the first choice of B, for which B(ā) = +1 = B(b̄), the cohomology class of

d2B is trivial, and so no anomaly resolution is guaranteed by the method we

outlined. Comparing to the results of decomposition, we see that copies of the

anomalous orbifold [X/Z2 × Z2] appear, consistent with the fact that in this

case, no anomalies are expected to be resolved.

(2) In the next case, for which B(ā) = −1 and B(b̄) = +1, an anomaly in the

subgroup 〈āb̄〉 can be resolved, but the other subgroups 〈ā〉 and 〈b̄〉 are assumed

nonanomalous. In this case, the physical theory for this quantum symmetry is

the orbifold [X/〈b̄〉], which is anomaly-free.

(3) In the next case, for which B(ā) = +1 and B(b̄) = −1, an anomaly in the

subgroups 〈b̄〉, 〈āb̄〉 can be resolved, but the other subgroup 〈ā〉 is assumed

nonanomalous. In this case, the physical theory for this quantum symmetry is

the orbifold [X/〈ā〉], which is anomaly-free.

(4) In the last case, for which B(ā) = −1 = B(b̄), an anomaly in the subgroup 〈b̄〉
can be resolved, but the other subgroups 〈ā〉, 〈āb̄〉 are assumed nonanomalous.

In this case, the physical theory for the quantum symmetry is the orbifold

[X/〈āb̄〉], which is anomaly-free.

In each case, the effect of turning on a quantum symmetry is to reduce the orbifold

group to a nonanomalous subgroup (correlated to the choice of B), precisely as

advertised.

4.3. Anomalous Z2 × Z2 extended to D4

In this section, we start with an anomalous G = Z2 × Z2 orbifold, and remove the

anomaly α ∈ H3(G,U(1)) by extending by K = Z2 to Γ = D4:

1→ Z2 → D4 → Z2 × Z2 → 1 , (4.21)

and by turning on a suitable quantum symmetry B. In this case, one can also turn

on ordinary discrete torsion ω ∈ H2(Γ, U(1)), so we have several choices we can

make to resolve the orbifold.

Write the elements of Z2 × Z2 = 〈ā, b̄〉. Using the fact that

H1(G,H1(K,U(1))) = Z2 × Z2 , (4.22)

the possible values of B are characterized by their values on ā, b̄.

This example was computed in Subsec. 4.3 of Ref. 10, where from both de-

composition and explicit computation it was demonstrated that the quantum field

theory of [X/Γ]B,ω took the values listed in Table 2.

To understand how quantum symmetries can resolve anomalies in this case,

we next compute d2B. We will do so manually, as we did in the last example. In

principle,

(d2B)(ḡ1, ḡ2, ḡ3) = B(ḡ1, e(ḡ2, ḡ3)) , (4.23)
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Table 2. Summary of decomposition results for [X/D4]B,ω for various values of B, ω,

from Subsec. 4.3 of Ref. 10.

B(ā) B(b̄) Without d.t. With d.t.

+1 +1 [X/Z2 × Z2]
∐

[X/Z2 × Z2]dt [X/Z2 = 〈b̄〉]
−1 +1 [X/Z2 = 〈b̄〉] [X/Z2 × Z2]

∐
[X/Z2 × Z2]dt

+1 −1 [X/Z2 = 〈ā〉] [X/Z2 = 〈āb̄〉]
−1 −1 [X/Z2 = 〈āb̄〉] [X/Z2 = 〈ā〉]

for ḡi ∈ G, and where e denotes the extension class of Γ,

e(ḡ1, ḡ2) = s1s2s
−1
12 , (4.24)

where si = s(ḡi) for s a section. For this case, Γ = D4 and G = Z2 × Z2, write

D4 = {1, a, b, z, az, bz, ab, ba = abz} , (4.25)

where z2 = 1 = a2 and b2 = z, z generates the center, π(a) = ā, and π(b) = b̄.

Then, take the section to be given by

s(ā) = a , s(b̄) = b , s(āb̄) = ab . (4.26)

Then, we compute explicitly that the values of e(ḡ1, ḡ2) are given as in the

following table:

e 1 ā b̄ āb̄

1 1 1 1 1

ā 1 1 1 1

b̄ 1 z z 1

āb̄ 1 z z 1

Next, we compute d2B for various choices of B.

(1) In the trivial case B(ā) = +1 = B(b̄), we find that d2B(ḡ1, ḡ2, ḡ3) = 1, and so

the cohomology class of d2B is trivial.

(2) Consider the case B(ā) = −1, B(b̄) = +1. In this case it is straightforward to

compute

(d2B)(ā, b̄, ā) = −1 = (d2B)(ā, b̄, b̄) = (d2B)(ā, āb̄, ā)

= (d2B)(ā, āb̄, b̄) , (4.27)

(d2B)(āb̄, b̄, ā) = −1 = (d2B)(āb̄, b̄, b̄) = (d2B)(āb̄, āb̄, ā)

= (d2B)(āb̄, āb̄, b̄) , (4.28)
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with all other entries +1. From the invariants (A.2)–(A.7), we find that the

cohomology class of d2B ∈ H3(Z2 × Z2, U(1)) is characterized by εā = +1 =

εb̄ = εāb̄, and so for this B, d2B is trivial in cohomology. (In fact, since this

choice of B is equivalent to turning on discrete torsion, it should not be a

surprise that it is in the kernel of d2.)

(3) Next, consider the case B(ā) = +1, B(b̄) = −1. In this case it is straightforward

to compute

(d2B)(b̄, b̄, ā) = −1 = (d2B)(b̄, b̄, b̄) = (d2B)(b̄, āb̄, ā)

= (d2B)(b̄, āb̄, b̄) , (4.29)

(d2B)(āb̄, b̄, ā) = −1 = (d2B)(āb̄, b̄, b̄) = (d2B)(āb̄, āb̄, ā)

= (d2B)(āb̄, āb̄, b̄) , (4.30)

with all other entries +1. From the invariants (A.2)–(A.7), we find that the

cohomology class of d2B ∈ H3(Z2 × Z2, U(1)) is characterized by εb̄ = −1,

εā = εāb̄ = +1, and so for this B, d2B is nontrivial in cohomology, and can be

used to resolve anomalies in the 〈b̄〉 ⊂ Z2 × Z2 subgroup.

(4) Finally, consider the case B(ā) = −1, B((̄b)) = −1. In this case it is straight-

forward to compute

(d2B)(ā, b̄, ā) = −1 = (d2B)(ā, b̄, b̄) = (d2B)(ā, āb̄, ā)

= (d2B)(ā, āb̄, b̄) , (4.31)

(d2B)(b̄, b̄, ā) = −1 = (d2B)(b̄, b̄, b̄) = (d2B)(b̄, āb̄, ā)

= (d2B)(b̄, āb̄, b̄) , (4.32)

with all other entries +1. From the invariants (A.2)–(A.7), we find that the

cohomology class of d2B ∈ H3(Z2 × Z2, U(1)) is characterized by εb̄ = −1,

εā = εāb̄ = +1, the same as for the previous choice of B, and so for this B, d2B

is nontrivial in cohomology, and again can be used to resolve anomalies in the

〈b̄〉 ⊂ Z2 × Z2 subgroup.

Now, let us compare to the results of decomposition listed in Table 2. For the first

two choices of B, for which B(ā) = +1, the cohomology class of d2B is trivial, and

so no anomaly resolution is guaranteed by the method we outlined. Comparing to

the results of decomposition, for these two choices of B, we see that for some choices

of discrete torsion, copies of the anomalous orbifold [X/Z2×Z2] appear, consistent

with the fact that the method described is not anticipated to resolve any anomalies.

(Curiously, for other values of discrete torsion, only the orbifold [X/Z2 = 〈b̄〉]
appears, which would resolve an anomaly that is in the 〈ā〉 or 〈āb̄〉 ⊂ Z2 × Z2.)

For the last two choices of B, for which B(b̄) = −1, the cohomology class of d2B

is nontrivial, characterized by εb̄ = −1, and so we expect that these choices of B

can resolve an anomaly in 〈b̄〉 ⊂ Z2 × Z2, so long as 〈ā〉 and 〈āb̄〉 are anomaly-free.

This is indeed consistent with the results of decomposition in Table 2: for both
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pertinent choices of B, for all choices of discrete torsion, the QFTs are consistent,

in that they only involve orbifolds by anomaly-free subgroups of Z2 × Z2.

Thus, to summarize, we see explicitly that our prescription works in this exam-

ple: for choices of B such that d2B matches the anomaly, the orbifold [X/Γ]B,ω is

indeed anomaly-free, and its precise physics is determined by choices of B (with

fixed image under d2) and discrete torsion ω. The reader should further note that

this particular extension (D4) can only be used to resolve anomalies in the subgroup

〈b̄〉 ⊂ Z2 × Z2; for other anomalous subgroups, different resolutions are required.

This example was also studied, from a different perspective, in Subsec. 5.2.1

of Ref. 8.

4.4. Anomalous Z2 × Z2 extended to H

Next, we consider an example that is closely related to the previous one. Here, we

again start with an anomalous G = Z2 × Z2 orbifold, and this time remove the

anomaly α ∈ H3(G,U(1)) by extending by K = Z2 to Γ = H, the eight-element

finite group of quaternions,

1→ Z2 → H π−→ Z2 × Z2 → 1 , (4.33)

and by turning on a suitable quantum symmetry B. This extension is different

from that discussed in the previous section, and so we will see a different pattern

of anomaly resolution.

As before, write the elements of Z2 × Z2 = 〈ā, b̄〉, so that using

H1
(
G,H1(K,U(1))

)
= Z2 × Z2 , (4.34)

the possible values of B are characterized by their values on ā, b̄. In our conventions,

π(±i) = ā , π(±j) = b̄ , π(±k) = āb̄ . (4.35)

Unlike the case of D4, the group H does not admit discrete torsion:

H2(H, U(1)) = 0. Applying decomposition,9 it is straightforward to show that

QFT([X/H]B) for the various choices of B are as given in Table 3.

Table 3. Summary of decomposition results for
[X/H]B for various values of B. The trivial case,

B(ā) = +1 = B(b̄), is discussed in Subsec. 5.3 of
Ref. 13.

B(ā) B(b̄) Theory

+1 +1 [X/Z2 × Z2]
∐

[X/Z2 × Z2]dt

−1 +1 [X/Z2 = 〈b̄〉]
+1 −1 [X/Z2 = 〈ā〉]
−1 −1 [X/Z2 = 〈āb̄〉]
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To understand how quantum symmetries can resolve anomalies in this case, we

next compute d2B. As before, in principle,

(d2B)(ḡ1, ḡ2, ḡ3) = B(ḡ1, e(ḡ2, ḡ3)) , (4.36)

for ḡi ∈ G, and where e denotes the extension class of Γ. What distinguishes this

example from the previous one is that the extension class e is different.

Let us compute the extension class e explicitly. For a section s : G→ Γ, it can

be written

e(ḡ1, ḡ2) = s1s2s
−1
12 , (4.37)

where si = s(ḡi). We pick the section given by

s(1) = 1 , s(ā) = i , s(b̄) = j , s(k̄) = k . (4.38)

Then, we compute explicitly that the values of e(ḡ1, ḡ2) are given as in the following

table:

e 1 ā b̄ āb̄

1 1 1 1 1

ā 1 −1 1 −1

b̄ 1 −1 −1 1

āb̄ 1 1 −1 −1

One sees immediately that this extension class differs from that appearing in the

D4 extension we considered in the previous section.

Next, we compute d2B for various choices of B.

(1) In the trivial case B(ā) = +1 = B(b̄), we find that d2B(ḡ1, ḡ2, ḡ3) = 1, and so

the cohomology class of d2B is trivial.

(2) Consider the case B(ā) = −1, B(b̄) = +1. In this case it is straightforward to

compute

(d2B)(ā, ā, ā) = −1 = (d2B)(ā, ā, āb̄) = (d2B)(ā, b̄, ā) = (d2B)(ā, b̄, b̄)

= (d2B)(ā, āb̄, b̄) = (d2B)(ā, āb̄, āb̄) , (4.39)

(d2B)(āb̄, ā, ā) = −1 = (d2B)(āb̄, ā, āb̄) = (d2B)(āb̄, b̄, ā) = (d2B)(āb̄, b̄, b̄)

= (d2B)(āb̄, āb̄, b̄) = (d2B)(āb̄, āb̄, āb̄) , (4.40)

with all other entries +1. From the invariants (A.2)–(A.7), we find that the

cohomology class of d2B ∈ H3(Z2×Z2, U(1)) is characterized by εā = −1 = εāb̄,

εb̄ = +1, hence for this choice of B, d2B is nontrivial in cohomology, and can

be used to resolve anomalies in the subgroups 〈ā〉, 〈āb̄〉 ⊂ Z2 × Z2.
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(3) Next, consider the case B(ā) = +1, B(b̄) = −1. In this case it is straightforward

to compute

(d2B)(b̄, ā, ā) = −1 = (d2B)(b̄, ā, āb̄) = (d2B)(b̄, b̄, ā) = (d2B)(b̄, b̄, b̄)

= (d2B)(b̄, āb̄, b̄) = (d2B)(b̄, āb̄, āb̄) , (4.41)

(d2B)(āb̄, ā, ā) = −1 = (d2B)(āb̄, ā, āb̄) = (d2B)(āb̄, b̄, ā) = (d2B)(āb̄, b̄, b̄)

= (d2B)(āb̄, āb̄, b̄) = (d2B)(āb̄, āb̄, āb̄) , (4.42)

with all other entries +1. From the invariants (A.2)–(A.7), we find that the

cohomology class of d2B ∈ H3(Z2×Z2, U(1)) is characterized by εb̄ = −1 = εāb̄,

εā = +1, hence for this choice of B, d2B is nontrivial in cohomology, and can

be used to resolve anomalies in the subgroups 〈b̄〉, 〈āb̄〉 ⊂ Z2 × Z2.

(4) Finally, consider the case B(ā) = −1 = B(b̄). In this case it is straightforward

to compute

(d2B)(ā, ā, ā) = −1 = (d2B)(ā, ā, āb̄) = (d2B)(ā, b̄, ā) = (d2B)(ā, b̄, b̄)

= (d2B)(ā, āb̄, b̄) = (d2B)(ā, āb̄, āb̄) , (4.43)

(d2B)(b̄, ā, ā) = −1 = (d2B)(b̄, ā, āb̄) = (d2B)(b̄, b̄, ā) = (d2B)(b̄, b̄, b̄)

= (d2B)(b̄, āb̄, b̄) = (d2B)(b̄, āb̄, āb̄) , (4.44)

with all other entries +1. From the invariants (A.2)–(A.7), we find that the

cohomology class of d2B ∈ H3(Z2×Z2, U(1)) is characterized by εā = −1 = εb̄,

εāb̄ = +1, hence for this choice of B, d2B is nontrivial in cohomology, and can

be used to resolve anomalies in the subgroups 〈ā〉, 〈b̄〉 ⊂ Z2 × Z2.

Now, let us compare to the results of decomposition listed in Table 3.

(1) For the first choice of B, for which B(ā) = +1 = B(b̄), the cohomology class of

d2B is trivial, and so no anomaly resolution is guaranteed by the method we

outlined. Comparing to the results of decomposition, we see that copies of the

anomalous orbifold [X/Z2 × Z2] appear, consistent with the fact that in this

case, no anomalies are expected to be resolved.

(2) In the next case, for which B(ā) = −1 and B(b̄) = +1, the subgroups 〈ā〉, 〈āb̄〉
are (potentially) anomalous, but 〈b̄〉 is nonanomalous, and indeed the physical

theory for this quantum symmetry involves only an orbifold by the nonanoma-

lous subgroup 〈b̄〉.
(3) In the next case, for which B(ā) = +1 and B(b̄) = −1, the subgroups 〈b̄〉,
〈āb̄〉 are (potentially) anomalous, but 〈ā〉 is nonanomalous, and indeed the

physical theory for this quantum symmetry involves only an orbifold by the

nonanomalous subgroup 〈ā〉.
(4) In the last case, for which B(ā) = −1 = B(b̄), the subgroups 〈ā〉, 〈b̄〉 are

(potentially) anomalous, but 〈āb̄〉 is nonanomalous, and indeed the physical

theory for this quantum symmetry involves only an orbifold by the nonanoma-

lous subgroup 〈āb̄〉.
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In each case, the effect of turning on a quantum symmetry is to reduce the orbifold

group to a nonanomalous subgroup (correlated to the choice of B), precisely as

advertised.

This example was also studied, from a different perspective, in App. A of Ref. 8.

4.5. Anomalous Z2 extended to Z2 × Z2

This example will be of a different form than previous examples we have considered:

in this case, the extension itself will not trivialize the anomaly. Nevertheless, we

will see that the anomaly can be removed via a choice of discrete torsion.

Consider an anomalous orbifold [X/Z2], with anomaly α ∈ H3(Z2, U(1)) = Z2,

and extend the orbifold group to K × G = Z2 × Z2, with K = Z2 acting trivially

on X:

1→ Z2 → Z2 × Z2
π−→ Z2 → 1 . (4.45)

Since the extension splits, d2B is trivial for any choice of quantum symmetry B,

and so there is no choice of B such that α = d2B for any nontrivial α.

Nevertheless, let us apply decomposition to various choice of quantum symmetry

B and discrete torsion ω. The possible quantum symmetries are

H1
(
G,H1(K,U(1))

)
= Z2 , (4.46)

which we will enumerate via their action on the generator of G, which we will

denote a. If we let ω denote the nontrivial choice of discrete torsion in H2(Z2 ×
Z2, U(1)) then from e.g. Subsec. 5.1 of Ref. 9, we know that ι∗ω = 0 and β(ω) 6= 0.

Applying the decomposition conjecture of Ref. 10, we find the quantum field theory

of [X/Γ]B,ω, as listed in Table 4.

First, Table 4 confirms that if there is no quantum symmetry and no discrete

torsion, then the anomaly is not resolved, one gets instead two copies of the anoma-

lous Z2 orbifold. However, if either there is a quantum symmetry or there is discrete

torsion, the anomaly is resolved, despite the fact that in no case in this example

does d2B = α. (Intuitively, discrete torsion or nonzero B in the Γ orbifold has the

effect of canceling out some of the sectors appearing in the G orbifold.) We there-

fore emphasize that the anomaly resolution method we have primarily focused on

elsewhere in this paper is not the only way to resolve anomalies.

Table 4. Results for QFT([X/Γ]B,ω) for
various choices of B, ω. As β(ω) 6= 0,
the result of turning on discrete torsion

is essentially to exchange the results for
the two values of B.

B(a) Without d.t. With d.t.

+1
∐

2[X/Z2] X

−1 X
∐

2[X/Z2]
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This example was also considered, from a different perspective, in Subsec. 5.1.2

of Ref. 8.

5. Conclusions

In this paper, we have applied decomposition to simplify the anomaly-resolution

program described in e.g. Refs. 1–3, by showing that enlarging the orbifold group

and turning on a quantum symmetry phase is equivalent to (copies of) orbifolding

by a nonanomalous subgroup of the original orbifold group.
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Appendix A. Notes on Degree-Three Group Cohomology

In this Appendix, to make this paper self-contained, we collect pertinent results on

H3(Z2 × Z2, U(1)) = (Z2)3.

Explicit cocycles representing this group cohomology were given in Eq. (5.26)

of Ref. 8, which we repeat below. Writing Z2 × Z2 = {1, a, b, c}, we can represent

α ∈ H3(Z2 × Z2, U(1)) as

α(a, a, a) = εa , α(a, a, b) = 1 , α(a, a, c) = εa ,

α(a, b, a) = 1 , α(a, b, b) = 1 ,

α(a, b, c) = 1 , α(a, c, a) = εa ,

α(a, c, b) = 1 , α(a, c, c) = εa ,

α(b, a, a) = 1 , α(b, a, b) = 1 , α(b, a, c) = 1 ,

α(b, b, a) = εaεbεc , α(b, b, b) = εb ,

α(b, b, c) = εaεc , α(b, c, a) = εaεbεc ,

α(b, c, b) = εb , α(b, c, c) = εaεc ,

α(c, a, a) = εa , α(c, a, b) = 1 , α(c, a, c) = εa ,

α(c, b, a) = εaεbεc , α(c, b, b) = εb ,

α(c, b, c) = εaεc , α(c, c, a) = εbεc ,

α(c, c, b) = εb , α(c, c, c) = εc ,

(A.1)

where εa,b,c represent the cohomology class, each ε2 = 1, and where if any index

is 1, α = 1.

Now, of course, a given cocycle need not have the precise form above to represent

a given cohomology class, so below we list some invariants that can be computed
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from a cocycle to determine the cohomology class (we assume that α is normalized,

so that α(1, g, h) = α(g, 1, h) = α(g, h, 1) = 1 for all g, h ∈ Z2 × Z2):

α(a, a, a) = εa , (A.2)

α(b, b, b) = εb , (A.3)

α(c, c, c) = εc , (A.4)

α(a, b, a)α(a, ab, a) = εa , (A.5)

α(b, c, b)α(b, bc, b) = εb , (A.6)

α(c, a, c)α(c, ac, c) = εc . (A.7)

(These were extracted from Eq. (3.2) of Ref. 8 and Eqs. (5.36)–(5.41) of Ref. 8.)

It is straightforward to check that the products of cocycles on the left side of each

equation are invariant under coboundaries.
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