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In this paper, we apply decomposition to orbifolds with quantum symmetries to resolve
anomalies. Briefly, it has been argued by, e.g. Wang—Wen—Witten, Tachikawa that an
anomalous orbifold can sometimes be resolved by enlarging the orbifold group so that
the pullback of the anomaly to the larger orbifold group is trivial. For this procedure to
resolve the anomaly, one must specify a set of phases in the larger orbifold, whose form
is implicit in the extension construction. There are multiple choices of consistent phases,
which give rise to physically distinct resolutions. We apply decomposition, and find that
theories with enlarged orbifold groups are equivalent to (disjoint unions of copies of)
orbifolds by nonanomalous subgroups of the original orbifold group. In effect, decom-
position implies that enlarging the orbifold group is equivalent to making it smaller.
We provide a general conjecture for such descriptions, which we check in a number of
examples.
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1. Introduction

This paper is devoted to a study of anomalous orbifolds and their resolutions, a
subject that has been of renewed interest, see e.g. Refs. 1-9. In particular, this paper
utilizes decomposition (which relates e.g. two-dimensional theories with one-form
symmetries to disjoint unions) and quantum symmetries to make certain families
of anomaly resolutions explicit, following up our previous work.8 10
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Briefly, it was argued in Refs. 3 and 4 that given an anomalous orbifold [X/G],
with anomaly o € H3(G,U(1)), one way to resolve the anomaly is to find an
extension

l1-K-5T-5G—1, (1.1)

chosen so that the anomaly o € H?*(G,U(1)) is in the image of some B €
H'(G,H'(K,U(1))), under the differential

dy : HY(G,HY(K,U(1))) = H*(G,U(1)) (1.2)

of the Lyndon—Hochschild—Serre spectral sequence. (For simplicity, throughout this
paper, we restrict to central extensions.) For such an extension, the pullback 7*« is
trivial in H3(I',U(1)), and the resulting orbifold [X/T] is expected to be anomaly-
free.

Construction of suitable extensions I' has been discussed elsewhere, see e.g.
Refs. 1, 3, 6-8.

However, as also noted in e.g. Sec. 2 of Ref. 3, to physically define the I' orbifold,
we need to specify more than just I' itself, we must also specify the action of I'. The
T" action is partially specified by saying that K acts trivially on X; however, as we
shall see explicitly in examples, that does not uniquely specify the action, and in
any event, does not suffice to make [X/T'] anomaly-free in general.

First, to uniquely specify the I' orbifold, we interpret B € H* (G, HY(K, U(l))),
the same mathematical quantity that was chosen to be in the preimage of the
anomaly «, as a physical quantum symmetry in the sense of Ref. 10. (The physical
relevance of that mathematical quantity was also discussed, from a slightly different
perspective, in Sec. 2 of 3.)

Second, we apply decomposition to explain the crucial role the quantum sym-
metry B plays in resolving the anomaly. Briefly, in this context,® ' decomposi-
tion relates orbifolds with quantum symmetries to disjoint unions of orbifolds by
smaller groups. We will see explicitly that for B such that do B = «, if we interpret
B as defining a quantum symmetry, then the resulting orbifold [X/I'|p is indeed
anomaly-free, and in fact by virtue of decomposition is equivalent to (a disjoint
union of ) orbifolds by anomaly-free subgroups of G, subgroups such that the restric-
tion of a is trivial. (If I' is a “minimal” choice of extension, then one gets a single
orbifold, but if I" is larger than needed, in some sense, one gets a disjoint union of
several orbifolds.)

In effect, this means that resolving an anomalous G orbifold by an orbifold by
an extension I' is physically equivalent to replacing the G orbifold with (copies of)
an orbifold by a nonanomalous subgroup of G. (Related observations concern-
ing module categories have been made in the mathematics literature, see e.g.
Example 9.7.2 of Ref. 11.) Put another way, in a certain sense, making the orbifold
group larger is equivalent to making it smaller, a duality somewhat reminiscent of
T-duality on a circle, with the anomalous orbifold playing a role analogous to the
self-dual radius.
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Furthermore, which resolution is obtained depends upon the choice of B. For a
fixed anomaly «, for a fixed extension I', there may be multiple choices of quantum
symmetry B such that do B = « (not to mention choices of discrete torsion), each
of which can yield a physically distinct, nonanomalous, theory.

We also emphasize merely working with a resolution I' does not suffice to resolve
the anomaly: if the G orbifold is anomalous, then we will see explicitly that taking
vanishing quantum symmetry in the I" orbifold yields anomalous results, regardless
of I'. To resolve the anomaly, one must not only take an extension I' but in addition
one must pick a nonzero quantum symmetry B, such that dyB coincides with the
anomaly a.

We begin in Sec. 2 by reviewing quantum symmetries and decomposition. Speci-
fically, in this paper we crucially use a generalization of ordinary quantum symme-
tries discussed in Refs. 8 and 10 to make sense of the anomaly-resolution procedure.
We also review decomposition, which relates e.g. orbifolds with trivially-acting sub-
groups to disjoint unions of copies of orbifolds by effectively-acting groups.

In Sec. 3 we apply decomposition to simplify the anomaly resolution procedure
described earlier. Briefly, decomposition makes it clear that the effect of enlarging
the orbifold group and turning on a quantum symmetry is equivalent to work-
ing with (disjoint unions of) orbifolds by nonanomalous subgroups. We check that
prediction explicitly in Sec. 4 in a number of examples.

We close in App. A with a collection of some pertinent results on degree-three
group cohomology, as arises in describing anomalies.

We reiterate that throughout this paper, we assume that I' is a central extension
of G by K.

Finally, a remark on nomenclature. Across our several papers on decomposition
and quantum symmetries, we have unfortunately mixed additive and multiplicative
notations. For example, a trivial quantum symmetry is sometimes written addi-
tively, as B = 0, and sometimes multiplicatively, as B(g) = 1 for all g € G.

2. Review of Quantum Symmetries and Decomposition

Let us quickly review quantum symmetries in orbifolds and properties of the re-
sulting quantum field theories, as described in much greater detail in Ref. 10.

Quantum symmetries (as we use the term in Ref. 10) arise in orbifolds in which
a subgroup of the orbifold group acts trivially. Consider an orbifold [X/T"] where T
is a central extension of G by K C I' in which K acts trivially on X:

l1-K-5T-5G—1. (2.1)

Typically in this paper, [X/G] will be an anomalous orbifold, with anomaly « €
H?(G,U(1)), and the extension above will be chosen® so as to resolve the anomaly,
in part.

aDetails of how the resolutions are chosen are described in e.g. Subsec. 2.7 of Ref. 3 and Subsec. 5.1
of Ref. 1, and more efficient versions given in Refs. 6-8. Our focus in this paper will be on

understanding the physics of the resolutions, not the resolutions per se.
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To resolve the orbifold, one must pick a quantum symmetry, which for K central
is a bihomomorphism

B:Gx K —U(1) (2.2)

defining phases acquired by G-twist fields under the action of K (see also Sec. 2 of
Ref. 3). In terms of genus-one partition functions, this means

o[ = B(n(h), ») (D) o[ Blxl).2)” (D) ENCEY

h

for z € K and g, h € T' a commuting pair. The resulting possible values of the
quantum symmetry B are classified by elements of

7 (G, H'(K,U(1))) . (2.4)

Sometimes these quantum symmetries can be constructed from discrete torsion.
The relationship between quantum symmetries, discrete torsion, and anomalies is
encoded in the exact sequence

(Keri* ¢ H*(I,U(1))) - HY(G, H'(K,U(1))) -2 HY(G,U(1)), (2.5
where ¢+ : K — T is inclusion and in the sequence above,
S HAT,U1)) — H*(K,U(1)). (2.6)

(This is part of a seven-term exact sequence,'? which was discussed in greater detail
in our previous papers.®?) Briefly, for discrete torsion w € Kert* C H2(T',U(1)),

its image as a quantum symmetry isP

L () 27

Bw)(@)  w(s(g),2)
for z € K, g € G, and s : G — T any section. (Independence from the choice of
section is ultimately due to the fact that w € Ker¢*.) Similarly, the map ds, which
coincides with a differential in the Lyndon—Hochschild—Serre spectral sequence, is

(d2B)(91, 2, G3) = B(G1, 5253533 ) (2.8)

where s; = 5(g;) and s : G — T is any section. (Note that the quantity sys3sy; is
the extension class of the extension I" of G by K.)
In this language, we see that discrete torsion (whose restriction to K is trivial)

defines a quantum symmetry, but the quantum symmetries we need, with nontrivial
images under ds, are not produced by discrete torsion. The extension I is chosen so
that there exists a B for which dy B is the anomaly o € H?(G,U(1)). Furthermore,
the reader should note that the anomaly does not uniquely determine B — for
example, it can be shifted by (the image of) discrete torsion. The physics of the
resulting resolution will depend upon the choice of B, as we shall see, not just the
choice of @ = dyB.

PThe fact that 1/8 appears rather than § itself is a consequence of definitions.
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Now, orbifolds in which subgroups of the orbifold group act trivially are equiva-
lent to disjoint unions of orbifolds by smaller groups, known as “universes.” This is
known as decomposition (see e.g. Refs. 9, 13-15), and has analogs in more general
gauge theories with higher-form symmetries and various generalizations, as has been
discussed in e.g. Refs. 16-22.

In the current circumstances, for an orbifold [X/T"] with a quantum symmetry
B and discrete torsion w € H?(T',U(1)), the pertinent version of decomposition was
described in Ref. 10. We will not do detailed decomposition computations in this
paper, instead citing results described elsewhere, but for completeness, we outline
the pertinent results here, which are for the case t*w = 0.

(1) Suppose that (*w = 0 and S(w) is nontrivial, then

X x CokeIB\/ﬂ(w))}
Ker(B/B(w)) o)

(2) Suppose that t*w =0 and w = 7*@ for w € H*(G,U(1)). Then,

> . (2.10)
G4

In each case, Wy denotes discrete torsion on components, and is discussed in Ref. 10.
We will use decomposition to simplify I' orbifolds with quantum symmetries,

QFT([X/T]p.) = QFT ([ (2.9)

X x C&JB]

QFT(IX/T]5.0) = QFT([ ok

and will see in examples that if B resolves the anomaly (meaning that deB = «),
then the result of decomposition will be manifestly anomaly-free orbifolds, involving
anomaly-free subgroups of G.

3. Application of Decomposition to Anomalies

So far we have discussed I orbifolds, central extensions of G orbifolds, with quantum
symmetries defined by B € H'(G, H'(K,U(1))), and described a general conjec-
ture relating those orbifolds to simpler orbifolds by subgroups of G, generalizing
decomposition.?13:14,16

In this section we describe the application to curing anomalies.

One way to cure an anomaly o € H3(G,U(1)) in a G orbifold is to extend G to
a larger (finite) group I' with B € HY(G, H'(K,U(1))) such that ds(B) = a. The
B appearing in the mathematics defines, physically, a quantum symmetry, as we
have discussed.

Then, a good intuition for the general claim of the previous subsection, which
we will confirm in examples, is that B reduces G to a subgroup that does not
participate in the anomaly, and if K is larger than needed to resolve the anomaly,
then one gets multiple copies, in the spirit of decomposition.? 31416 In particular,
from (2.8), we have immediately that the restriction of « to Ker B is trivial,

aIKerB =0 €H3(KQI'B, U(l))7 (31)
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since @ = dy(B) and the restriction of [B] to Ker B vanishes. This guarantees that
the orbifold by Ker B C G is nonanomalous.

Now, if the T orbifold is given discrete torsion w, and if t*w = 0 and B(w) # 0,
then as discussed in the previous subsection and also in Ref. 9, f(w) is an element
of HY(G, H'(K,U(1))), and so contributes to the quantum symmetry. However,
B(w) cannot change the anomaly cancellation, as dy o 8 = 0. We can see that using
the seven-term exact sequence (App. 1.6 of Ref. 23),12 that can be derived from the
Lyndon—Hochschild—Serre spectral sequence

0— HY(G,U®1)) == HY(T,U(1)) = HY(K,U(1)) 2 H%(G,U(1))
T Ker(vY) 25 HY(G, HYN (K, U(1)) 22 H3(G,U(1)). (3.2)

If a given element of H* (G, H*(K,U(1))) is in the image of 3, the image of discrete
torsion (whose restriction to K is trivial), then its image in H3(G,U(1)) under ds
must vanish. Thus, the B’s that arise when trivializing anomalies are in some sense
orthogonal to those arising from discrete torsion in the considerations of Ref. 9.

The idea of resolving an anomalous orbifold by instead orbifolding by a subgroup
(and possibly turning on discrete torsion) has also appeared in e.g. Subsec. 5.3 of
Ref. 2. Here we have arrived at the same result, by gauging an extension of the
anomalous group. In some sense, we see that those two approaches to anomalous
orbifolds are equivalent to one another. (See also Example 9.7.2 of Ref. 11 for a
related discussion of module categories in the mathematics literature.)

4. Examples
4.1. Anomalous cyclic groups extended to larger cyclic groups

It was argued in Ref. 6 and Sec. 3 of Ref. 8 that an anomalous Zy orbifold with
anomaly o € H3(Zx,U(1)) = Zy of order k (meaning o* = 1) can be trivialized
by an extension to Zgy, so that n*« is trivial for 7 : Zgy — Zxn. Now, to actually
implement that anomaly-free resolution, one must pick quantum symmetries, and
we shall do exactly that in this section, enumerating quantum symmetries and
explaining their effects, explicitly demonstrating that any quantum symmetry B
such that do B = « resolves the anomaly in an extension to Zgy.

4.1.1. Anomalous Zy extended to Zoy

In this subsection, we will add anomalies to examples studied in Subsec. 4.1 of
Ref. 10. Consider an anomalous orbifold [X/Zs], with anomaly o € H3(Z,U(1)) =
Zs. We resolve the anomaly by extending the orbifold group by K = Zj to I' = Zoy:

1= Zy — Zop — 2o — 1, (4.1)

and by turning on a quantum symmetry B such that dsB = «a. To be nontrivial,
we assume that k is even. The case k = 2 corresponds to a minimal resolution.

2150220-6



Anomaly resolution via decomposition

Let us also briefly comment on how this extension trivializes the pullback of
anomaly in the case k is even. Let 7 : Zoy, — Zso denote the projection, and note
that since a is of order two, 7*a must be either 1 or g¥, where g generates Zs. One
can compute a coboundary-invariant phase, as in Eq. (3.2) of Ref. 8, to show that

2k—1 2k—1
H ™ a(-1,i,1) = H (=) = (=)F, (4.2)

hence if k is odd, then 7*« cannot be trivial. It remains to show that in the case
k is even, 7*a = 1. To do so, note that 7 acts as reduction mod 2, and factors
through Z, when k is even:

w(n) = a(b(n)), (4.3)

where b : Zor — 74 is reduction mod 4 and a : Z4 — Zs is reduction mod 2. Hence,
for k even, it suffices to show that a*« is trivial, and a trivialization was given in
Eq. (3.10) of Ref. 8.

Now, to physically construct the orbifold resolving the anomaly, we are
instructed to turn on any quantum symmetry B € H! (G, HY(K, U(l))) in
the preimage of a in the orbifold [X/I']. For this T, H*(T,U(1)) = 0, so
H'(G,H'(K,U(1))) injects into H*(G, U(1)). Furthermore,

H'(G,H"(K,U(1))) = Hom(Zs, H' (Zy,, U(1))) = Hom(Zs, Zy) (4.4)

B {ZQ k even,

0 kodd. (4.5)

Thus, so long as k is even, there exists precisely one B that trivializes the anomaly
«. However, if k is odd, the anomaly cannot be trivialized by extending Zo by Zj.
Let us assume that k is even, so that the anomaly can be trivialized.
We argued in Subsec. 4.1 of Ref. 10 that for the possible values of B,

QFT<H [X/Zz]> B=0,
QFT([X/Zak)5) = g
QFT(

HX) B#0.

k/2

(4.6)

In this case, since « is nontrivial, the B that trivializes a is also the nontrivial
element. If instead we pick the trivial B = 0, then the resulting QFT is anomalous,
as it is merely copies of the anomalous orbifold [X/Zs]. (Furthermore, since all
twisted sectors appear, there is no chance of cancelling the anomaly merely by
removing certain offending modular orbits from the partition function.)

On the other hand, for the B that trivializes the anomaly, we see that the
quantum field theory is well defined: a sum over copies of X, not an anomalous
orbifold of X.
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Thus, we see explicitly that the combination of working with a larger orbifold
group and turning on a quantum symmetry resolves the anomaly. In the case of the
minimal resolution (for which k = 2), this resolution is equivalent to replacing the
original anomalous orbifold ([X/Zs]) by an orbifold by a nonanomalous subgroup.
Since there are no nontrivial subgroups, that means replacing [X/Zs] by X itself.
For nonminimal resolutions (for which k > 2), one simply gets copies.

4.1.2. Anomalous Zs extended to Zg

In this subsection we start with an anomalous G = Zs3 orbifold, and remove the
anomaly « € H3(G,U(1)) by extending G by K = Z3 to I' = Zy:

1— 23— Zg—Z3s—1, (4.7)

and of course turning on a suitable quantum symmetry B.
In this case,

B € Hom(G,H'(K,U(1)) = Z3. (4.8)
In Subsec. 4.1.3 of Ref. 10, we computed that
QFT( [X/Zg]) B=0,
QFT([X/IB) = ]gl (4.9)
QFT(X) B nontrivial .

The anomaly is trivialized by any B € H! (G, HY(K, U(l))) such that do B = a.
In this case, H*(I',U(1)) =0, so H'(G, H'(K,U(1))) injects into H*(G,U(1)). In
this case, since « is nontrivial, B is also nontrivial (but since decomposition gives
the same answer for both nontrivial values of B, we do not need to track which
nontrivial element B corresponds to).

For B = 0, the anomaly should not be trivialized, and indeed the QFT is just
copies of the original anomalous orbifold. For B nontrivial, the QF T is well defined,
simply X itself.

4.2. Anomalous Zo X Zo extended to Zo X Zg4

In this subsection, we start with an anomalous G = Zy x Zs orbifold, and remove
the anomaly a € H3(G,U(1)) by extending by K = Zg to I' = Zy x Zy:

I%ZQ%ZQXZZL*)ZQXZQ%I, (410)

and by turning on a suitable quantum symmetry B. In this case, one can also turn
on ordinary discrete torsion w € H?(I',U(1)), so we have several choices we can
make to resolve the orbifold.

Write the elements of Zy x Zg = (@, b). Using the fact that

HY(G,H (K, U(1))) = Zs x Zs, (4.11)

2150220-8
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Table 1. Summary of decomposition results for [X/Za X Z4] B,
for various values of B, w, from Subsec. 4.2 of Ref. 10. For non-
trivial B, adding discrete torsion has no effect in these cases.

B(a) B(b) Without d.t. With d.t.

+1 +1 [5[X/Z2 x Zs] L [X/Z2 x Za]a
-1 +1 [X/Z2 = (b)] [X/Z2 = (b)]
+1 -1 [(X/Z2 = (@)] [(X/Z2 = (@))]
-1 -1 [X/Z2 = (ab)] [X/Z2 = (ab)]

the possible values of B are characterized by their values on @, b. Furthermore, since
H?(Zg x Z4,U(1)) = Zs (see e.g. App. D.2 of Ref. 9), we can also turn in discrete
torsion in this theory.

This example was computed in Subsec. 4.2 of Ref. 10, where it was shown that
the quantum field theory of [X/Za X Z4]p ., takes the values listed in Table 1.

To understand how quantum symmetries can resolve anomalies in this case, we
next compute do B. We will do so manually. In principle,

(d2B)(g1,92,93) = B(g1,€(72,3)) , (4.12)

for g; € G, and where e denotes the extension class of I'. Recall that for a section
s : G — T, the extension class e is given explicitly as a cocycle®

e(g1,92) = 5159575 (4.13)
where s; = s5(g;). For this case, I' = Zy x Z4, where I' = (a,b), a> = 1 = b*. In these
conventions, K = Zy = (b?). The projection 7 maps a + @, b — b, and we pick the
section s given by

s(1)=1, s(@) =a, sb)=>b, s(ab)=ab. (4.14)

Then, we compute explicitly that the values of e(gy, g2) are given as in the following
table:

e 1 a b ab
1 1 1 1 1
a 1 1 1 1
b 1 1 b2 b2
ab 1 1 b2 b2

©This cochain is coclosed so long as K is central, which we assume throughout this paper.
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(1)
(2)

Next, we compute do B for various choices of B.

In the trivial case B(a) = +1 = B(b), we find that doB(g1,J2,d3) = 1, and so
the cohomology class of do B is trivial.

Consider the case B(a) = —1, B(b) = +1. In this case it is straightforward to
compute

(d2B)(a,b,b) = —1 = (d2B)(a, b, ab) = (d2B)(a, ab, b)

= (dQB)(da 6_7 a_) ) (415)
(d2B)(@b,b,b) = —1 = (doB)(ab, b, ab) = (d2B)(ab, ab, b)

= (doB)(ab,ab, ab) (4.16)

with all other entries +1. From the invariants (A.2)—(A.7), we find that the
cohomology class of doB € H*(Zy x Z,U(1)) is characterized by e;; = —1,
€z = +1 = ¢;. Thus, for this B, d2B is nontrivial in cohomology, and can be
used to resolve an anomalous (ab) C Zy X Zy.

Next, consider the case B(a) = +1, B(b) = —1. In this case it is straightforward
to compute

(d2B)(b,5,b) = —1 = (d2B)(b, b, ab) = (do B)(b, ab, b)
= (dyB)(b,ab,ab), (4.17)
(doeB)(ab, b,b) = —1 = (dyB)(ab,b,ab) = (dyB)(ab, ab, b)
= (dyB)(ab,ab,ab), (4.18)

with all other entries +1. From the invariants (A.2)—(A.7), we find that the
cohomology class of do B € H?(Za x Zo,U (1)) is characterized by ¢; = —1 = €3,
€z = +1. Thus, for this B, dyB is nontrivial in cohomology, and can be used to
resolve an anomalous (b), (ab) C Zy X Zo.

Next, consider the case B(a) = —1 = B(b). In this case it is straightforward to
compute

(d2B)(@,b,b) = —1 = (d>B)(a, b, ab) = (d2B)(a, @b, b)

= (doB)(a, ab,ab), (4.19)
(d2B)(b,b,b) = —1 = (dsB)(b, b,ab) = (d2B)(b, ab, b)

= (d»B)(b,ab, ab), (4.20)

with all other entries +1. From the invariants (A.2)—(A.7), we find that the
cohomology class of doB € H3(Zy x Zy,U(1)) is characterized by ¢ = —1,
€z = +1 = €55 Thus, for this B, doB is nontrivial in cohomology, and can be

used to resolve an anomalous (b) C Zg X Zs.
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Now, let us compare to the results of decomposition listed in Table 1.

(1) For the first choice of B, for which B(a) = +1 = B(b), the cohomology class of
do B is trivial, and so no anomaly resolution is guaranteed by the method we
outlined. Comparing to the results of decomposition, we see that copies of the
anomalous orbifold [X/Zg X Zs] appear, consistent with the fact that in this
case, no anomalies are expected to be resolved.

(2) In the next case, for which B(a) = —1 and B(b) = +1, an anomaly in the
subgroup (a@b) can be resolved, but the other subgroups (@) and (b) are assumed
nonanomalous. In this case, the physical theory for this quantum symmetry is
the orbifold [X/(b)], which is anomaly-free.

(3) In the next case, for which B(a) = +1 and B(b) = —1, an anomaly in the
subgroups (b), (ab) can be resolved, but the other subgroup (a) is assumed
nonanomalous. In this case, the physical theory for this quantum symmetry is
the orbifold [X/(a)], which is anomaly-free.

(4) In the last case, for which B(a) = —1 = B(b), an anomaly in the subgroup (b)
can be resolved, but the other subgroups (@), (ab) are assumed nonanomalous.
In this case, the physical theory for the quantum symmetry is the orbifold
[X/(ab)], which is anomaly-free.

In each case, the effect of turning on a quantum symmetry is to reduce the orbifold
group to a nonanomalous subgroup (correlated to the choice of B), precisely as
advertised.

4.3. Anomalous Zo X Zo extended to Dy

In this section, we start with an anomalous G = Zs X Zy orbifold, and remove the
anomaly o € H3(G,U(1)) by extending by K = Zs to I' = Dy:

1*)224)D4*>Z2XZ2*>1, (421)

and by turning on a suitable quantum symmetry B. In this case, one can also turn
on ordinary discrete torsion w € H?(I',U(1)), so we have several choices we can
make to resolve the orbifold.

Write the elements of Zy x Zg = (@, b). Using the fact that

HY(G,H'(K,U(1))) = Zy x Zs, (4.22)

the possible values of B are characterized by their values on a, b.

This example was computed in Subsec. 4.3 of Ref. 10, where from both de-
composition and explicit computation it was demonstrated that the quantum field
theory of [X/Tp,, took the values listed in Table 2.

To understand how quantum symmetries can resolve anomalies in this case,
we next compute doB. We will do so manually, as we did in the last example. In
principle,

(dQB)(glag2vg3> = B(gla 6(927.@3)) ) (423)
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Table 2.  Summary of decomposition results for [X/D4]p ., for various values of B, w,
from Subsec. 4.3 of Ref. 10.

B(a) B(b) Without d.t. With d.t.

+1 +1 [(X/Z2 x Z2] 111X/ Z2 X Zalat [(X/Z2 = (b)]

-1 +1 (X/Z> = (b)] [X/Z2 x L] [T [X/Z2 X Z2]at
+1 -1 [X/Z2 = (a)] [X/Zs = (ab)]

-1 -1 [X/Z2 = (ab)] [(X/Z2 = (@)]

for g; € G, and where e denotes the extension class of T,
e(g1,92) = s182513 (4.24)
where s; = s(g;) for s a section. For this case, I' = Dy and G = Zg X Zs, write
Dy ={1,a,b,z,az,bz,ab,ba = abz}, (4.25)

where 22 = 1 = a? and b? = z, z generates the center, 7(a) = @, and 7(b) = b.
Then, take the section to be given by

s(@)=a, s(b)=>b, s(ab)=ab. (4.26)

Then, we compute explicitly that the values of e(g1,g2) are given as in the
following table:

e 1 a b ab
1 1 1 1 1
a 1 1 1 1
b 1 z z 1
ab 1 z z 1

Next, we compute do B for various choices of B.

(1) In the trivial case B(a) = +1 = B(b), we find that d2B(g1, o, g3) = 1, and so
the cohomology class of do B is trivial.

(2) Consider the case B(a) = —1, B(b) = +1. In this case it is straightforward to

compute
(d2B)(a,b,a) = —1 = (d2B)(a, b,b) = (d-B)(a, ab,a)
= (d2B)(a,ab,b), (4.27)
(deB)(ab,b,a) = —1 = (d2B)(ab,b,b) = (d2B)(ab,ab,a)
= (dQB)(&Ba ELB, 6) ) (428)
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with all other entries +1. From the invariants (A.2)—(A.7), we find that the
cohomology class of doB € H3(Zy x Zo,U(1)) is characterized by €5 = +1 =
€5 = €53, and so for this B, dyB is trivial in cohomology. (In fact, since this
choice of B is equivalent to turning on discrete torsion, it should not be a
surprise that it is in the kernel of dy.)

(3) Next, consider the case B(a) = +1, B(b) = —1. In this case it is straightforward
to compute

(doB)(b,b,a) = —1 = (doB)(b,b,b) = (doB)(b,ab, a)
= (d2B)(b,ab,b), (4.29)
(dyB)(ab,b,a) = —1 = (dy B)(ab, b,b) = (d»B)(ab, ab, a)
= (dyB)(ab,ab,b) (4.30)

with all other entries +1. From the invariants (A.2)—(A.7), we find that the
cohomology class of doB € H3(Zy x Zy,U(1)) is characterized by ¢ = —1,
€z = €55 = +1, and so for this B, d» B is nontrivial in cohomology, and can be

used to resolve anomalies in the (b) C Zy x Zg subgroup.

(4) Finally, consider the case B(a) = —1, B((b)) = —1. In this case it is straight-
forward to compute

(dyB)(a@,b,a) = —1 = (dyB)(a, b, b) = (doB)(a, ab, a)

= (d2B)(a,ab,b), (4.31)
(dsB)(b,b,@) = —1 = (d2B)(b, b, b) = (d2B)(b, ab, a)

= (dyB)(b,ab,b), (4.32)

with all other entries +1. From the invariants (A.2)—(A.7), we find that the

cohomology class of doB € H3(Zy x Zy,U(1)) is characterized by ¢ = —1,

€a = €;; = +1, the same as for the previous choice of B, and so for this B, doB

is nontrivial in cohomology, and again can be used to resolve anomalies in the
(b) C Zy x Zs subgroup.

Now, let us compare to the results of decomposition listed in Table 2. For the first
two choices of B, for which B(a) = +1, the cohomology class of d2 B is trivial, and
so no anomaly resolution is guaranteed by the method we outlined. Comparing to
the results of decomposition, for these two choices of B, we see that for some choices
of discrete torsion, copies of the anomalous orbifold [X/Zg X Zs] appear, consistent
with the fact that the method described is not anticipated to resolve any anomalies.
(Curiously, for other values of discrete torsion, only the orbifold [X/Zy = (b)]
appears, which would resolve an anomaly that is in the (@) or (ab) C Zy x Zy.)

For the last two choices of B, for which B(b) = —1, the cohomology class of do B
is nontrivial, characterized by e; = —1, and so we expect that these choices of B
can resolve an anomaly in (b) C Zg x Za, so long as (@) and (ab) are anomaly-free.
This is indeed consistent with the results of decomposition in Table 2: for both
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pertinent choices of B, for all choices of discrete torsion, the QFTs are consistent,
in that they only involve orbifolds by anomaly-free subgroups of Zs x Z.

Thus, to summarize, we see explicitly that our prescription works in this exam-
ple: for choices of B such that do B matches the anomaly, the orbifold [X/I'|g ., is
indeed anomaly-free, and its precise physics is determined by choices of B (with
fixed image under ds) and discrete torsion w. The reader should further note that
this particular extension (D,) can only be used to resolve anomalies in the subgroup
(b) C Zy x Zy; for other anomalous subgroups, different resolutions are required.

This example was also studied, from a different perspective, in Subsec. 5.2.1

of Ref. 8.

4.4. Anomalous Zo X Zo extended to H

Next, we consider an example that is closely related to the previous one. Here, we
again start with an anomalous G = Zy X Zs orbifold, and this time remove the
anomaly o € H3(G,U(1)) by extending by K = Zy to I' = H, the eight-element
finite group of quaternions,

1 5% -H "5 7y xZy — 1, (4.33)

and by turning on a suitable quantum symmetry B. This extension is different
from that discussed in the previous section, and so we will see a different pattern
of anomaly resolution.

As before, write the elements of Zy x Zy = (a, b), so that using

HY(G,H (K, U(1))) = Zs x Zs, (4.34)
the possible values of B are characterized by their values on @, b. In our conventions,
(i) =a, n(+j)=0b, w(xk)=ab. (4.35)

Unlike the case of Dj, the group H does not admit discrete torsion:
H?(H,U(1)) = 0. Applying decomposition,” it is straightforward to show that
QFT([X/H]p) for the various choices of B are as given in Table 3.

Table 3. Summary of decomposition results for
[X/H]p for various values of B. The trivial case,
B(a) = +1 = B(b), is discussed in Subsec. 5.3 of

Ref. 13.

B(a) B(b) Theory

+1 +1 [X/Za x Z2] |1 [X/Z2 X Z2]as
—1 +1 [X/Z2 = (b)]

1 X/Z2 = (@)

-1 -1 [X/Zz = (ab)]
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To understand how quantum symmetries can resolve anomalies in this case, we
next compute ds B. As before, in principle,

(d2B)(91, 92, 93) = B(g1, (92, 3)) » (4.36)

for g; € G, and where e denotes the extension class of I'. What distinguishes this
example from the previous one is that the extension class e is different.

Let us compute the extension class e explicitly. For a section s : G — I'; it can
be written

e(g1,2) = s182513 (4.37)
where s; = s(g;). We pick the section given by
s(1)=1, s(@a)=i, sb)=j, sk) =k. (4.38)

Then, we compute explicitly that the values of e(g1, g2) are given as in the following
table:

e 1 a b ab
1 1 1 1 1
a 1 -1 1 -1
b 1 -1 -1 1
ab 1 1 -1 -1

One sees immediately that this extension class differs from that appearing in the
D4 extension we considered in the previous section.
Next, we compute do B for various choices of B.

(1) In the trivial case B(a) = +1 = B(b), we find that d2B(g1, e, 93) = 1, and so
the cohomology class of do B is trivial.

(2) Consider the case B(a) = —1, B(b) = +1. In this case it is straightforward to

compute
(d2B)(a,a,a) = —1 = (d2B)(a,a,ab) = (d2B)(a,b,a) = (d2B)(a,b,b)
= (d9B)(a,ab,b) = (d2B)(a, ab, ab) (4.39)
(deB)(ab,a,a) = —1 = (d2B)(ab,a,ab) = (dyB)(ab,b,a) = (d2B)(ab, b, b)
= (doB)(ab,ab,b) = (doB)(ab,ab, ab) , (4.40)

with all other entries +1. From the invariants (A.2)—(A.7), we find that the
cohomology class of do B € H?(Zg xZy,U(1)) is characterized by €z = —1 = €3,
€5 = +1, hence for this choice of B, d2B is nontrivial in cohomology, and can
be used to resolve anomalies in the subgroups (@), (ab) C Zy X Zs.
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3)

(1)

Next, consider the case B(a) = +1, B(b) = —1. In this case it is straightforward
to compute

(deB)(b,a,a) = —1 = (d2B)(b,a,ab) = (d2B)(b,b,a) = (d2B)(b,b,b)
= (d2B)(b,ab,b) = (doB)(b, b, ab) , (4.41)
(deB)(ab,a,a) = —1 = (dyB)(ab,a,ab) = (d2B)(ab,b,a) = (dB)(ab, b, b)
= (doB)(ab,ab, b) = (d2B)(ab, ab,ab), (4.42)

with all other entries +1. From the invariants (A.2)—(A.7), we find that the
cohomology class of do B € H?(Za x Zo,U (1)) is characterized by ¢; = —1 = €3,
€z = +1, hence for this choice of B, d2B is nontrivial in cohomology, and can
be used to resolve anomalies in the subgroups (b), (ab) C Zy x Zs.

Finally, consider the case B(a) = —1 = B(b). In this case it is straightforward
to compute

(deB)(@,a,a) = —1 = (d2B)(a,a,ab) = (d2B)(a,b,a) = (d2B)(a, b, b)
= (doB)(a,ab,b) = (dyB)(a,ab, ab) , (4.43)

(d2B)(b,a,a) = —1 = (d2B)(b, a,ab) = (d2B)(b,b,a) = (d2B)(b, b, b)
= (dyB)(b,ab,b) = (d>B)(b, ab, ab) , (4.44)

with all other entries +1. From the invariants (A.2)—(A.7), we find that the
cohomology class of do B € H3(Zg X Zs,U (1)) is characterized by €5 = —1 = ¢,
€55 = +1, hence for this choice of B, dyB is nontrivial in cohomology, and can
be used to resolve anomalies in the subgroups (a), (b) C Zy x Zs.

Now, let us compare to the results of decomposition listed in Table 3.

For the first choice of B, for which B(a) = +1 = B(b), the cohomology class of
d9 B is trivial, and so no anomaly resolution is guaranteed by the method we
outlined. Comparing to the results of decomposition, we see that copies of the
anomalous orbifold [X/Zg X Zs] appear, consistent with the fact that in this
case, no anomalies are expected to be resolved.

In the next case, for which B(a) = —1 and B(b) = +1, the subgroups (a), (ab)
are (potentially) anomalous, but (b) is nonanomalous, and indeed the physical
theory for this quantum symmetry involves only an orbifold by the nonanoma-
lous subgroup (b).

In the next case, for which B(a) = +1 and B(b) = —1, the subgroups (b),
(ab) are (potentially) anomalous, but (@) is nonanomalous, and indeed the
physical theory for this quantum symmetry involves only an orbifold by the
nonanomalous subgroup (a).

In the last case, for which B(a) = —1 = B(b), the subgroups (@), (b) are
(potentially) anomalous, but (@b) is nonanomalous, and indeed the physical
theory for this quantum symmetry involves only an orbifold by the nonanoma-
lous subgroup (ab).
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In each case, the effect of turning on a quantum symmetry is to reduce the orbifold
group to a nonanomalous subgroup (correlated to the choice of B), precisely as
advertised.

This example was also studied, from a different perspective, in App. A of Ref. 8.

4.5. Anomalous Zo extended to Zo X 7o

This example will be of a different form than previous examples we have considered:
in this case, the extension itself will not trivialize the anomaly. Nevertheless, we
will see that the anomaly can be removed via a choice of discrete torsion.

Consider an anomalous orbifold [X/Z,], with anomaly o € H?(Zy,U(1)) = Zo,
and extend the orbifold group to K x G = Zy X Zg, with K = Zy acting trivially
on X:

1= Zy =T x Ty - Zy—1. (4.45)

Since the extension splits, doB is trivial for any choice of quantum symmetry B,
and so there is no choice of B such that @ = dy B for any nontrivial a.

Nevertheless, let us apply decomposition to various choice of quantum symmetry
B and discrete torsion w. The possible quantum symmetries are

H'(G,H'(K,U(1))) = Zs, (4.46)

which we will enumerate via their action on the generator of G, which we will
denote a. If we let w denote the nontrivial choice of discrete torsion in H?(Zy x
Z2,U(1)) then from e.g. Subsec. 5.1 of Ref. 9, we know that ¢*w = 0 and S(w) # 0.
Applying the decomposition conjecture of Ref. 10, we find the quantum field theory
of [X/Tp w, as listed in Table 4.

First, Table 4 confirms that if there is no quantum symmetry and no discrete
torsion, then the anomaly is not resolved, one gets instead two copies of the anoma-
lous Zs orbifold. However, if either there is a quantum symmetry or there is discrete
torsion, the anomaly is resolved, despite the fact that in no case in this example
does dy B = . (Intuitively, discrete torsion or nonzero B in the I' orbifold has the
effect of canceling out some of the sectors appearing in the G orbifold.) We there-
fore emphasize that the anomaly resolution method we have primarily focused on
elsewhere in this paper is not the only way to resolve anomalies.

Table 4. Results for QFT([X/T] g ) for
various choices of B, w. As f(w) # 0,
the result of turning on discrete torsion
is essentially to exchange the results for
the two values of B.

B(a) Without d.t. With d.t.
+1 [,[X/Z2] X
-1 X [1,[X/Z2]
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This example was also considered, from a different perspective, in Subsec. 5.1.2

of Ref. 8.

5. Conclusions

In this paper, we have applied decomposition to simplify the anomaly-resolution
program described in e.g. Refs. 1-3, by showing that enlarging the orbifold group
and turning on a quantum symmetry phase is equivalent to (copies of) orbifolding
by a nonanomalous subgroup of the original orbifold group.
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Appendix A. Notes on Degree-Three Group Cohomology

In this Appendix, to make this paper self-contained, we collect pertinent results on

H3(Zo X 7o, U(1)) = (Z2)3.

Explicit cocycles representing this group cohomology were given in Eq. (5.26)
of Ref. 8, which we repeat below. Writing Zs x Zs = {1, a,b,c}, we can represent

a € H3(Zy x Zy,U(1)) as

ala,a,a) =€,

a(b,a,a) =1,

a(c,a,a) = €q,

ala,a,b) =1, ala,a,c) =€,
ala,bya) =1, ala,b,b) =1,
ala,b,c) =1, ala,c,a) = €, ,
ala,c,b) =1, ala,c,c) =€,
a(b,ya,b) =1, a(b,a,c) =1,
a(b,b,a) = eqepe.,  a(b,b,b) =ep, (A1)
a(b,b,c) = €aec,  alb,c,a) = eaepec,
a(b,c,b) = €, a(b, ¢, c) = €q€c,
alc,a,b) =1, alc,a,¢) = €, ,
ac,bya) = €€,  ale,b,b) =€,

) )

)

where €, . represent the cohomology class, each €2 = 1, and where if any index

isl, a=1.

Now, of course, a given cocycle need not have the precise form above to represent
a given cohomology class, so below we list some invariants that can be computed
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from a cocycle to determine the cohomology class (we assume that « is normalized,
so that «a(1,g,h) = a(g,1,h) = a(g,h,1) =1 for all g, h € Zy X Zs):

ala,a,a) = €q, (A.2)

a(b,b,b) = ¢, (A.3)

a(e, ¢ c) = (A.4)
a(a,b,a)ala,ab,a) = €, , (A.5)
a(b, e, b)a(b, be,b) = €, (A.6)
alc,a,c)a(c,ac,c) = e.. (A7)

(These were extracted from Eq. (3.2) of Ref. 8 and Eqgs. (5.36)—(5.41) of Ref. 8.)
It is straightforward to check that the products of cocycles on the left side of each
equation are invariant under coboundaries.
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