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HIGHLIGHTS

e CO, benefits of demand response strategies in the water sector were analyzed.

e CAISO’s hourly CO; intensity was used to inform load shifting in the water sector.

o Daily reductions in emissions depended on power demand and renewables availability.
o Emissions benefits from load shifting were largest in summer and winter months.

o Opportunities and challenges for load management in the water sector are discussed.
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Growing interest in greenhouse gas mitigation strategies to address global climate change has resulted in the
rapid expansion of renewable electricity sources. However, increasing power generation from variable renewable
electricity sources, such as solar photovoltaics and wind turbines, has made balancing electricity supply and
demand across the power grid more challenging. In some regions, high penetrations of variable renewables have
also created electricity supply systems where electricity is significantly cleaner in hours when renewable energy
is abundant, in comparison with peak demand hours when fossil fuel-based generation is often dominant. In the
absence of cost-effective, utility-scale batteries, demand response strategies that leverage flexibility in electricity
consumption have gained interest as readily available resources to address the temporal mismatch between
renewable energy availability and high energy demand periods. The water industry (i.e., water supply and
wastewater systems) includes industrial customers that are particularly attractive in terms of demand response
potential as they can offer flexibility through large interruptible pumping loads, large water storage capacities,
and energy generation potential. This study explores flexibility strategies in the water sector motivated primarily
by the goal of reducing emissions, rather than cost. We present an illustrative case study demonstrating that
strategically shifting 5% of the total daily average electricity load of a cluster of 97 water-supply electricity
consumers in California across the year can reduce annual carbon dioxide emissions by 2-5%. In the end,
important future research directions are discussed to support the implementation of flexibility measures in the
water industry.

1. Introduction and wind resources are diminished. These large swings in net load (i.e.,

the difference between load and available electricity production from

Decarbonization policies and falling costs have resulted in large in-
creases in variable renewable energy generation in many regional power
grids. Large penetrations of solar photovoltaic (PV) and wind generators
have created grid conditions in which generator fleets are composed
largely of renewable energy sources in some hours and of non-renewable
generators (mostly fossil fuel-based) in other hours of the day when solar
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solar and wind generation resources) cause operational challenges for
the grid. For example, in California a phenomenon called the “Duck
Curve” occurs when high fractions of solar energy create large dispar-
ities between mid-day net load and evening net load, when solar gen-
erators go offline. These conditions create two major challenges: (1) the
risk for oversupply during high solar penetration hours and (2) the large
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ramping requirements of dispatchable generators that must come online
in the early evening period when diminishing solar generation coincides
with peaking electricity demand.

These challenges can be mitigated through supply-side solutions,
such as long-distance transmission, battery storage, and flexible power
generators, which can be deployed to ramp up when variable electricity
sources go offline [1]. However, they can also be mitigated through
demand-side resources that offer flexibility by modifying electricity
consumption patterns to better match grid conditions. For example, non-
essential electric loads can be shifted from hours when renewable energy
generation is low (typically when wholesale electricity market prices are
high) to hours when there is a surplus of renewable generation (and low
wholesale electricity market prices) [2]. In this respect, water and
wastewater utilities are particularly attractive options for providing
demand-side management services because of their significant energy
needs, large water storage capacities, and advancements in water con-
trol systems and digitalization that can help coordinate electric and
water utility operation [3-5]. Thus, water utilities can serve as impor-
tant allies to electricity utilities because, while electrons must be
balanced in real-time, water can be treated asynchronously and stored
for later use.

Municipal drinking water supply and wastewater management sys-
tems (collectively referred to as the “water industry” in this paper)
represent a considerable share of total energy use and greenhouse gas
emissions, particularly in cities, making them a prime target for demand
response load-shedding and load-shifting programs [6]. Nationally, the
water industry represents about 2% of annual US electricity consump-
tion [7]; from a CO2 emissions perspective, in 2005, about 85 million
metric tons of CO, were emitted from activities related to the public
water supply, wastewater treatment and supplying irrigation water,
respectively [8,9]. Energy is consumed in the water industry for sourc-
ing, conveying, treating and distributing water to consumers, as well as
for managing wastewater and water recycling [10,11]. Consequently,
energy costs are typically significant operational costs to water utilities,
often only behind labor cost [12]. Peak electricity usage in water sys-
tems typically occurs in the morning and evening hours with higher
peaks in summer months reflecting water consumption behavior [13];
these periods often coincide with peak electricity consumption periods
in the evening across the electric grid. Thus, energy management solu-
tions, such as improving energy efficiency, recovering energy, and self-
generating energy from distributed renewable sources, are of high in-
terest in this industry.

Some of the major load flexibility opportunities in the water sector
that we identified in our recent literature review on the topic [6] are
summarized below.

e Leveraging water pumping and water storage capacity: Water stor-
age tanks embedded in water systems can operate as energy storage
capacity, since the ability to store water in storage tanks enables
flexibility in the operation of pumps. Pumping water to fill a reser-
voir at times when renewable energy is abundant can support the
curtailment of pumping load during hours when the electric grid is
less clean (i.e., has a high emissions intensity), which generally
coincide with times when electricity prices are more expensive.
Sufficient storage capacities can support longer interruptions of
pumping with less adverse effects on the system [14]. Advanced
process monitoring and control systems in water facilities can be
programmed to satisfy operational constraints and facilitate faster
response to grid needs. For example, variable-speed-drive pumps can
adjust their motor speed and water flow rates continuously, and
therefore, they support flexible operation when water storage ca-
pacities and grid conditions are aligned to support baseload and peak
load management, as well as water system requirements [15].

Controlling operational load: Water treatment facilities are typically
equipped with central control systems to manage treatment pro-
cesses and water quality. These control systems can help maintain
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treatment and pumping processes to operate closer to the facility’s
full operational capacity during hours when electricity is cleaner.
Control systems can also schedule delays in treatment or switch to
low operational modes at times when electricity is dirtier [16]. This
type of load management may utilize flow equalizers and storage
tank capacity, in addition to the individual components of a treat-
ment process. Aeration units are often the largest energy consumers
in wastewater treatment facilities with secondary treatment, ac-
counting for 45-75% of total energy costs [17,18]. They can be
operated intermittently to control the load. However, advanced en-
ergy and water quality management systems are necessary for the
water industry to determine an optimal daily plan for operating
water systems, while ensuring that load management will not
compromise water utilities’ services [19]. Some components of a
wastewater treatment plant can be turned off for a few minutes up to
a few hours [20]. Pumping systems can typically be interrupted for
longer periods than treatment systems depending on the system
characteristics and water delivery constraints [21]. Some water
utilities already manage their electricity use to limit consumption
during expensive time-of-use rates (that typically reflect higher
wholesale electricity generation costs). For instance, Irvine Ranch
Water District reduced significant amounts of its electrical load
during peak-pricing periods on summer weekdays, primarily (but not
solely) through limiting the operation of its groundwater and
drinking water pumps [22].

Utilizing on-site generation and storage resources: The primary goal
of running on-site generation resources is to reduce electricity pur-
chases. Engaging on-site generation resources in load shifting stra-
tegies at a water facility might not minimize its overall electricity
purchases from the grid, but strategies that reduce overall load on the
electric grid when electricity is generated from dirtier resources can
result in environmental and grid management benefits. Aside from
large hydropower generation plants located within some large water
transfer projects (whose generated electricity is often sold to the
electric utility, and is thus, generally decoupled from urban water
systems), there are several other energy generation opportunities.
Some technologies can help recover small amounts of energy from
pressurized water systems such as in-pipe hydro turbine and pump-
as-turbine technologies [23,24]. These energy generation resources
are attractive for improving flexibility capabilities when they are
coupled with energy storage technologies. Anaerobic digestion units
can recover larger amounts of energy generated from organic ma-
terials in the form of biogas from wastewater. Biogas can be burned
as a fuel in power generation units, such as internal combustion
engines, micro-turbines, gas combustion turbines, and fuel cells
[25,26]. Typically wastewater treatment facilities with influent flow
rates of 5 million gallons per day or greater are more cost-effective to
produce biogas in quantities adequate for power generation [26].
This large source of energy generation potential has enabled some
wastewater treatment facilities to operate as net-zero energy and
even energy positive facilities [27,28]. Case studies analyzed in [29]
showed that six out of 20 conventional wastewater treatment plants
in China could export excess energy while others could achieve a
partial or full net-zero energy consumption, reducing the cost and
energy consumption associated with sludge treatment and disposal.
Moreover, an installed biogas storage tank in a wastewater treatment
plant can be leveraged for providing additional source of flexibility
[30]. Battery storage technologies have applications for flexibility by
decoupling the temporal relationship between energy generation
and energy consumption. For example, Irvine Ranch Water District
worked with its electric utility, Southern California Edison, to deploy
a 6.25 MW/ 35.7MWh network of battery arrays at its water facil-
ities, which include six water treatment, water recycling, and
pumping facilities. This battery system allows the water utility to buy
and store energy during cheap electricity rate periods and consume
stored energy to power its operations during periods when electricity
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rates are high. In addition, battery storage systems provide a source
of stored power for Southern California Edison to depend on when
the electric grid constrained or during demand response events [31].

While demand-side management strategies can benefit both water
and electricity utilities to better manage their energy supply and cost
priorities, coordinating water and electricity utility operation could be
leveraged to derive better environmental outcomes. Demand-side flex-
ibility can be an environmental tool to support mitigating greenhouse
gas emissions as the timing of electricity demand affects the emissions
footprint of each unit of energy consumed. Since the fleet of generators
producing electricity for the grid changes throughout the day as a
function of dynamic demand, renewable resource availability, and
market dynamics, the grid’s real-time emissions intensity (defined here
as kg of CO, emitted per unit of electricity consumed) fluctuates
considerably throughout the day. In California, the grid generally has
low emissions intensities in the middle of day and higher intensities in
the high-demand evening hours, as solar resources go offline. Thus,
reducing electricity consumption at water and wastewater utilities via
demand-side energy management strategies during hours with high
fossil fuel generation can result in emissions benefits. While these
diurnal trends are not unique to the case of California, they are more
pronounced in electric grids with high penetrations of renewable
energy.

Many studies have used energy management solutions in the water
industry to reduce electricity consumption costs based on electricity rate
tariffs without incorporating the electric grid’s real-time supply dy-
namics [32-34]. Studies that do consider the electric grid’s dynamics
generally use wholesale energy market prices and electricity supply
costs to prescribe the needs for flexible resources or provide signals for
demand response [30,35-37]. For a wastewater treatment plant in Santa
Rosa, California, Musabandesu and Loge performed a cost-benefit
analysis based on 2018 real-time locational marginal prices within
California Independent System Operator (CAISO) and time-of-use (TOU)
pricing. They estimated that the facility could potentially save $8,015 up
to $68,344 annually (i.e., up to 4.8% of the total annual electricity cost
of the facility), depending on the duration of the facility’s participation
in demand response and type of assets utilized for load shifting [34].
These cost savings were reached through revenues from demand
response participation and projected savings based on TOU pricing [34].
Kernan et al. used genetic algorithms to minimize the cost of two
different water supply systems and found that using the marginal price
of the electricity supply effectively aligns the electricity consumption
patterns of water pumping operations with intermittent renewable
generation profiles [38]. In another study in Germany, load shifting in
wastewater treatment plants was managed by on-site combined heat and
power generation units to minimize electricity purchase costs based on
forecasted electricity wholesale price signals in year 2030 [30]. The
results of this analysis showed that load shifting in the studied waste-
water treatment plants could avoid the curtailment of about 120 MW of
surplus renewable generation across the electric grid [30]. Another
study formulated a mixed-integer optimization model for a pump
scheduling problem, based on the demand response mechanisms avail-
able in the United Kingdom [39]. This study confirmed that, in addition
to financial benefits for the water utilities from demand response
participation, these programs were also effective in achieving grid-
related greenhouse gas emissions reductions, in many cases, greater
than competing reserve energy technologies (e.g., internal combustion
diesel, gas turbines, and hydro pump storage) [39].

No study to the authors’ knowledge has explored the potential for
load shifting strategies designed primarily to mitigate greenhouse gas
emissions in the water sector. Here we execute a case study based on a
cluster of 97 water industry-related consumers in California to investi-
gate a novel approach that uses the hourly emissions intensity of CAI-
SO’s electric grid as the main load shifting trigger. Thus, in this analysis,
we provide a new perspective for demand response by altering the
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motivation for load shifting from solely economic towards reducing
greenhouse gases. Although these two viewpoints overlap to a great
extent as more zero-production-cost and zero-emissions technologies of
solar and wind are being integrated to the grid, we specifically analyze
how shifting electricity consumption as a function of hourly variations in
carbon intensity of the grid can derive emissions benefits, and poten-
tially reduce renewable energy curtailment using a case study of water
industry end users. We then comment on existing technical and regu-
latory challenges that provide barriers to the water sector taking a more
active role in supporting the evolving electric grid through demand-side
management.

2. Data and methods

Here we simulate a series of load shifting scenarios to investigate the
emissions benefits of shifting electricity load consumption from the
hours with the most polluting fleet of electricity generators to the hours
with the highest penetrations of renewable energy generators, using
load profiles from a cluster of water utilities operating in California. The
analysis utilized load data released as a supplement to California’s De-
mand Response Potential Study [5], which details the hourly aggregated
load of 97 water supply-related accounts with loads greater than 200 kW
within Pacific Gas and Electric (PG&E) utility balancing authority in the
year 2014 (the data is accessible at [40]). The dataset also catalogs
hourly electricity uses across the cluster into three categories: pumping,
treatment and other, which represented 50%, 25% and 25% of overall
load, respectively. This cluster of water facilities collectively consumed
about 85,000 MWh of electricity in 2014 [40]. (Note that this load only
represents a small fraction of PG&E’s total annual load of approximately
123,000 GWh in that year [41]).

3. Simulating electricity load shifting scenario

First, we created twelve representative load profiles for each month
in 2014. Each monthly profile consisted of 24-hourly load averages,
representing the averaged load for each respective hour of day, across all
days in each month. (For example, hour 1 of the January profile rep-
resented the average load between 12:00 and 1:00 am for all days in
January 2014.) These twelve profiles were used as the monthly baseline
scenarios for each month (shown with solid black lines in load panels of
Fig. 3).

We assumed that each monthly electric load shifting scenario
allowed 5% of total daily average electricity load to be shiftable over six
hours (Eq. (1)), meaning that hourly electricity increased in 6 hours of
24-hour period (Eq. (2)), when compared to the baseline. In order to
prevent creating a higher peak load (in magnitude) after load shifting,
the amount of load increase in each hour was capped at a value equal to
the highest hourly peak demand within each baseline profile prior to
shifting (Eq. (3)—(4)); thus, in some months the total amount of shiftable
load was less than 5% of total averaged daily electricity consumption. In
other words, the magnitude of shiftable load within each month was
determined by two factors: the magnitude of the total average-day
electricity load and peak hourly electricity usage within the baseline
diurnal profile. The additional amount of load shifted to the 6 cleanest
hours was distributed evenly across the six dirtiest hours so that daily
electricity consumption in the baseline and load shift scenarios
remained equal. Thus, the total amount of load reduced in any of the 6
dirtiest hours was kept equal (Eq. (5)). The hourly electricity loads
outside of the 12 load shifting hours remained equal to the baseline load
(Eq. (6)). Months that had total daily load shifting below 5% of total
daily load are illustrated in Fig. 1 by orange bars that fall below each red
dot.

In Eq. (1), LS; is the targeted amount hourly electricity consumption
to be shifted in month j, where BL;; is the baseline electricity load for
houri=1, 2, ..., 24 in an average day of month j.
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Fig. 1. Shiftable electricity consumption in each month after applying the daily
load shift scenario. Red dots represent the maximum monthly load shift which
was capped at 5% of daily electricity consumption for each averaged day in the

month. (Monthly totals were calculated by multiplying average daily load shifts
in each month by the number of days in each month.)

24
Ls, = 005 % %:i:]BL,- i

, j = January, February, -+, December (€8]
In Eq. (2), ML, ; is the targeted hourly electricity load for each of the

six cleanest hours, k, for k =1, 2, ..., 6, in each load shifting scenario,
before the peak load constraint was applied:

ML, = BLi;+LS;, for any of k=1,2,-,6 (@)

In Egs. (3) and (4), MLy; is the modified hourly electricity load in
each of the six cleanest hours, k, in each load shift scenario, after the
peak load constraint is applied.Max(BL;;) is the hourly peak electricity
consumption in each baseline profile in month j.

When ML;(J <= Max(BLy;), for any of k =1,2,--,6:

MLy; = BLy; +LS; )
When ML;cJ- > Max(BLij), for any of k =1,2,-.-.6:
MLy; = Max(BL;;) (@)

In Eq. (5), ML,; represents the modified hourly electricity load in
each of six dirtiest hours, r, for each load shift scenario. BL;j, LS;, ML}( i
MLy, ML,; are all in kilowatt hours (kWh).

>t (ML — BLy,))

ML,; = BL,; — . :

for r=1,2,-,6 %)

ML;; = BL;j, for all inotinkorr (6)

3.1. Identifying the Cleanest and Dirtiest Hours of the Electric Grid

We assume that the amount of shiftable load in each load shifting
scenario would be shifted from the six “dirtiest hours” (i.e., hours with
the highest CO2 emissions intensity due to high shares of fossil fuels) to
the six “cleanest hours” (i.e., hours with the lowest CO5 emissions in-
tensity due to high shares of clean electricity generation sources) within
the same 24-hour average day of each monthly baseline profile. In some
months, the “dirtiest” and “cleanest” hours were not consecutive (e.g., in
May, load is shifted from the dirtiest hours between 6:00-7:00 and
20:00-23:00, to the cleanest hours between 12:00-17:00). The six
dirtiest and six cleanest hours were determined based on the emissions
intensity values of hours 1 through 24, respectively.

Twenty-four hourly emissions intensities were estimated to represent
an average day for each month using the linear regression model
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described in Eq. (7). In this equation, the independent variable is hourly
electricity consumption in CAISO region (D;; in MWh), the dependent
variable is total hourly CO, emissions (E;; in kg), and the coefficient
factor is average CO; emissions intensity (AEF;; in kg COo/MWh) at hour
i within each month (i.e., what we seek to estimate for this analysis).
Hourly electricity demand data, D;;, and hourly CO, emissions data, E;;,
are available on the CAISO Today’s Outlook website [42]. The regres-
sion model was evaluated with data for each hour, i, within each month,
Jj, to derive 24 hourly emissions factors representing an average day for
each monthly scenario, thus assuming all days of each month are similar.

E;; = AEF;; X D;; (@]

The results of the regressed CO, emissions intensities are displayed in
Fig. 2 and show a wide range of values between 100 and 362 kgCOy/
MWh, where cleaner hours tend to be in the sunniest hours of the day,
particularly in spring months when more hydropower, in addition to
solar generation, is available, and dirtier hours tend to be in the early
evening after the sun goes down and demand is high.

Once average hourly emissions intensities were calculated for each
month, the hourly CO3 emissions associated with each hour of electricity
consumed by the aggregated cluster of water industry accounts were
estimated for the following three scenarios:

(1) Baseline Scenario: Uses the average 24-hour daily load profile of
the cluster for each month (using historical data as described
above) and emissions intensity assumptions estimated by the
regression model.

Load Shift Scenario 1, No Renewable Oversupply: Reflects load
shifting assumptions for each month described above and emis-
sions intensity assumptions estimated by the regression model.
Load Shift Scenario 2, Renewable Oversupply: This scenario is
equivalent to Load Shift Scenario 1 except that we apply a second
emissions assumption applied to electricity load after it is shifted
to the cleanest hours, assuming that a curtailment of renewables
occurs and that accommodating all shifted load during the clean
hours in the middle of day incurs zero additional emissions in
order to simulate days when there is excess emissions-free solar
energy available. (Note that in CAISO, the average daily renew-
able curtailments due to oversupply were over 670 and 370 MWh
in May and November 2019 [43], respectively, which were much
greater in magnitude than the amount of shiftable load explored
in this case study).

(2

—

3

—

The daily avoided CO; emissions due to load shifting across the
average day in each month were calculated as the sum of hourly dif-
ferences between the emissions associated with the aggregated elec-
tricity load of the cluster of water utility accounts before (E;;p in kg
CO>) and after load shifting (E;; 4+ in kg CO-) at each respective hour i.
Additionally, an avoided emissions metric (4; in kg CO, per MWh daily
shifted load) was defined in Eq. (8) where the daily avoided CO, emis-
sions in one day was divided by the total daily shifted load for each
month to inform the effectiveness of load shifting scenarios in reducing
greenhouse gas emissions.

22 By = Eijan) ®
T XL (ML - BLy)

4. Results and discussion

This analysis evaluates the CO5 emissions reductions that follow a
load shifting strategy that shifts up to 5% of the total daily load across a
cluster of 97 water industry end users from 6 hours when the grid is
relatively carbon-intensive to another 6 hours when the grid is relatively
carbon-lean. Hence, while most demand response strategies are moti-
vated by economic factors, this analysis evaluates a case study driven
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1 2 3 4 5 6 7 8 9 10 11

Jan 318 317 317 316 314 314 316 314 274 242 228

Feb 294 293 294 293 291 290 297 280 228 202 187

262 258 255 253 252 255 267 259 203 158 137

Apr 225 220 218 216 217 230 249 218 155 123 109

May 215 214 213 214 213 222 225 186 148 132 122

Jun 241 235 233 233 236 242 233 188 153 142 139

Jul 279 274 269 266 264 266 262 225 189 177 173

Aug 317 310 305 302 300 300 305 271 221 201 195

Sep | 337 333 331 328 324 321 329 310 250 218 211

Oct | 346 343 341 340 337 331 335 330 266 214 200

Nov ' 346 343 341 340 337 331 335 330 266 214 200

Dec | 340 340 339 336 332 327 329 326 296 273 265

12

220

186

128

103

114

138

173

195

211

195

195

260
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13 14 15 16 17 18 19 20 21 22 23 24

221 222 231 255 298 320 325 325 327 330 328 323

186 188 194 211 250 293 310 309 308 308 302 298

124 126 127 136 159 201 258 287 288 281 274 268

100 101 101 108 123 149 212 265 276 263 249 235

108 108 109 112 119 137 183 235 251 245 232 221

136 139 142 154 163 180 215 259 275 272 260 248

174 180 185 194 204 219 251 293 306 306 299 292

199 207 216 227 238 257 298 333 339 338 335 326

213 220 227 238 253 284 332 351 354 356 355 343
194 197 198 203 247 311 354 362 360 358 356 350
194 197 198 203 247 311 354 362 360 358 356 350
259 263 272 291 315 332 335 335 336 339 341 340

Fig. 2. Hourly CO, emissions intensity profiles for each month representing electricity consumed in the CAISO region (kgCO2/MWh) based on a linear regression
analysis of 2019 hourly CO, emissions and electricity demand data from CAISO [42].

primarily by the priority to reduce greenhouse gas emissions.
4.1. Load shifting potential

The load profiles of the aggregated water-industry cluster before and
after load shifting are summarized for all twelve months in Fig. 3. A few
trends are worth highlighting in the baseline electricity use profiles (i.e.,
before load shifting). The electricity use patterns of water facilities are
generally very different from month to month, due to differences in
water demand and time-varying electricity pricing (See Fig. 3). For
example, from a seasonal perspective, more energy was consumed for
water services during hot summer months (i.e., June, July and August),
across which there tended to be significant hourly variation, as
compared to electricity use profiles in winter months (i.e., January and
February), which had a flatter load curve.

In summer months, the aggregated loads associated with the studied
cluster of water end users show a diurnal trend that reflects TOU elec-
tricity rates. The industrial TOU rates in PG&E in year 2014 (the year
that the electricity use data were collected) included two-period pricing
from November to April (partial-peak period from 8:30 am to 9:30 pm
on weekdays, and off-peak period from 9:30 pm to 8:30 am on weekdays
and all-day weekends and holidays), and a three-period pricing from
May to October (peak period from noon to 6:00 pm on weekdays,
partial-peak period from 8:30 am to noon and from 6:00 pm to 9:30 pm
on weekdays, and off-peak period from 9:30 pm to 8:30 am on weekdays
and all-day weekends and holidays) [44]. It is important to note the
conflict between the peak period defined in the PG&E’s industrial TOU
rates and CAISO’s true system-wide peak electricity demand period. In
2019, CAISO’s system-wide electricity demand generally peaked be-
tween 4:00 pm to 9:00 pm in summer months [45], while the TOU tariffs
charged the most for electricity between noon to 6:00 pm. Reducing
electricity consumption during peak demand periods, especially in the
evening, is important from an emissions perspective, because dirtier
generators come online to meet the electricity demand, as solar di-
minishes in the evening, so this conflict is problematic from both cost
and emissions reduction standpoints. As of March 2021, PG&E still de-
fines its industrial peak pricing period between noon to 6:00 pm from
May to October [44]. In addition, PG&E’s 2014 demand charges (i.e.,
fees applied to electric bills based on the highest amount of electric
power usage that occurred during the billing period) were higher in
summer and peak periods compared to winter and off-peak periods [44].

In response to these electricity price signals (peak and partial-peak
periods being about twice and 20-40% more expensive than off-peak

periods), water facilities in the studied cluster consumed more elec-
tricity during evening hours and less during morning hours (see load
profiles in Fig. 3) . With more aggressive time-varying electricity rates
(e.g., real-time pricing), the electricity rate structures will become more
reflective of the renewable electricity supply availability, and therefore,
better align with reducing the CO; emissions intensity of the electricity
consumption as variable renewable penetrations increase.

More load was shifted during months that had higher electricity
consumption and larger gaps between the peak and midday electricity
use (i.e., May through October), creating a daytime peaking period of
electricity use. In these months, the electricity load profiles after load
shifting created a new daytime peak period (albeit equal to or lower than
the original highest peaking hour because of our analysis’s constraint)
and a new valley in the evening. In other months (i.e., from January to
April and from November to December), the electricity load profiles
after load shifting became flatter with an extended period of electricity
load reaching the daily peak load level. From the electric grid’s opera-
tional perspective, reshaping electricity consumption patterns such that
there is higher daytime usage helps accommodate more midday
renewable energy utilization, reduce the need for dirtier generators to
supply the evening electricity load, and alleviate the need for expensive
ramping resources.

4.2. CO2 emissions reduction potential due to load shifting

The CO, emissions associated with electricity use depend on the
magnitude of load and the electric grid’s emissions intensity in each
hour. Thus, the load shifting strategy explored here helps avoid high
emissions during evening hours when the electric grid is dirtier, typi-
cally with only a small daytime penalty of increased emissions during
the daytime, as illustrated in Fig. 3. The diurnal CO; emissions profiles
typically follow the same pattern as the electricity use profiles with the
exception of in daytime hours when it diverges into a deeper valley
because of the grid’s lower emissions intensity. From seasonal
perspective, emissions were higher in months of June to October when
both the magnitude of the electricity load and the electric grid’s
evening-time emissions intensity were higher than other months (i.e.,
from January to April, and from November to December). Thus, the
outcome was that more emissions were avoided in summer and winter
months compared to spring months (see Fig. 4), when hydropower and
wind power are more abundant across much of the day and demand is
relatively low due to mild weather [46]. Although the electricity load of
the aggregated water utilities was nearly the same in March and
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Fig. 3. Top within each month: Diurnal profiles for the aggregated electricity use of the 97 electricity accounts associated with the water industry, before and after
load shifting. Bottom within each month: Diurnal profiles for the CO, emissions from the aggregated cluster, before and after Load Shifting Scenarios 1 (No
Renewable Oversupply) and 2 (With Renewable Oversupply).
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Fig. 4. Range of daily avoided CO, emissions in each month due to load
shifting in the studied cluster of water-industry accounts. The upper and lower
values of the bars illustrate results in load shifting scenario 2 (with renewable
oversupply) versus load shifting scenario 1 (no renewable oversupply),
respectively.

December, greater amounts of emissions could be avoided in December
because the emissions intensity of electricity was generally higher across
all hours in December as compared to March. Similarly, more evening
electricity consumption could be avoided in May as compared to
November, and as a result, load shifting in May lead to more avoided
emissions.

About 1-7% of CO, emissions could be avoided in each month with
the load shifting scenarios compared to baseline monthly emissions. The
height of the top and bottom bars in Fig. 4 show the emissions avoided of
Load Shifting Scenario 2 (overgeneration) versus Load Shifting Scenario
1 (no overgeneration), respectively, with Scenario 2 incurring the most
emissions reduction benefits when shifted load was moved to hours
when emissions-free renewable energy would have otherwise been
curtailed due to solar oversupply, which tends to be exacerbated in the
spring months of March to June in CAISO [47]. (CAISO’s renewable
oversupply rose from 10 GWh to 223 GWh from May of 2014 to May of
2019 [48], so in the absence of substantial investments of utility-scale
storage, the importance of load flexibility strategies to leverage this
resource is growing.) Annually, the emissions benefits of the investi-
gated load shifting scenarios were equivalent to emissions benefits of
reducing 2-5% of the baseline electricity load from this cluster of water
end users, despite the fact that total electricity usage was held constant
across all scenarios. This amount of avoided annual emissions is
equivalent to reducing about 2,400-6,000 MWh of electricity in Cali-
fornia assuming an average emissions intensity of 420.4 1bCO2/MWh
(190.8 kgCO2/MWh) based on CAISO’s average eGRID emissions rates
for the year 2018 [49].

In terms of avoided emissions per unit of shifted load (Fig. 5), we
observed values ranging between 75 and 350 kgCO2/MWh, with greater
benefits of reducing electricity incurred in September, October and
November. Overall, the variation in avoided emissions per unit of shifted
electricity suggests that the value of load shifting in terms of avoiding
emissions varies significantly depending on the range of daytime and
evening-time CO, emissions intensities of the electric grid, and the po-
tential of load shifting. In this analysis, the duration of load shifting was
kept constant (spanning an aggregated timespan of 6-hours per day), but
it should be mentioned that shorter load shifting durations will generally
lead to greater emissions benefits per unit of shifted load because the
emissions reduction potential of shifting load is the highest when the
load is shifted from the dirtiest hour, in terms of the grid’s generation
mix, to the cleanest hour of the day, since there is more of a difference
between the hourly emissions intensities.

Since emissions benefits were quantified based on the electric grid’s
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Fig. 5. Range of avoided CO, emissions per unit of shifted load in each month
due to load shifting in the studied cluster of water-industry accounts. The upper
and lower values of the bars illustrate results in load shifting scenario 2 (with
renewable oversupply) versus load shifting scenario 1 (no renewable over-
supply), respectively.

average hourly emissions intensities, these benefits represent rather
conservative estimates. Average hourly emissions factors represent
emissions averaged across all generators producing electricity across the
hour while changes in electricity demand (in this case, load shifting)
affects only a fraction of the generators operating at margin that respond
and adjust their output to accommodate changes in demand. Thus, when
electricity load is reduced during evening hours (when fossil-fuel fired
power plants operate at the margin), the emissions associated with
decreasing load will be much higher than when considering the average
suite of electricity generators at any given hour (when the electricity
being supplied is from a combination of fossil fuel, nuclear, hydro and
renewable generators). In the future, we plan to quantify the marginal
emissions factors of CAISO and reassess the emissions benefits of the
load shifting.

4.3. Technical and regulatory factors

Some of the underlying assumptions regarding ground facts were
simplified in this analysis as there is still information lacking about the
scale of potential disruptable load, especially given that not every fa-
cility is equipped with technologies that can help manage load shifting
and policies and market structures are not effective enough to incen-
tivize load shifting. Other technological limitations could impact overall
load shifting potential in water systems, particularly access to control
and communication technologies. For example, upgrading water pumps
that are still controlled manually with control technologies or adopting
variable frequency drive pumps could pose an important economic
barrier for achieving reliable electricity load shifting [5,50]. We
acknowledge that the operation scheduling limitations vary depending
on factors such as system design (both at the facility-scale and policy-
scale) and water quality regulations, and therefore, we designed our
analysis based on a conservative assumption that only 5% of total daily
average electricity load can be shifted across the aggregate cluster
(which serves as a good proxy for the water industry at large).

While we were not able to model the technical operations of indi-
vidual water facilities to simulate load flexibility, there are several
reasons why we believe shifting 5% of total daily average load across the
water industry, over a duration of six hours, is a very conservative es-
timate compared to actual technical potential. First, pumping activities
represented approximately 50% of the total electricity consumption in
the analyzed cluster, with the remaining load split pretty evenly across
water treatment (25%) and other activities (25%) [40]. Pumping loads
are inherently flexible so long as there is enough usable storage along
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the water supply chain, and these loads alone are much large than the
5% total daily average electricity load shifted. Second, since the analysis
is done on an aggregated water industry-related load, the effective 5%
load shifting does not require or assume that a single facility has to
curtail its electric load for the total duration of 6 hours. In practice,
water utilities should schedule and prioritize their flexible resources, so
that load shifting operations will have no adverse consequences, and it
should be expected that while some of the 97 accounts in the aggregated
cluster will likely have large load shifting potential, others may not.
Third, previous studies suggest that significant load reductions have
already been achieved by various water utilities in practice. For
example, Irvine Ranch Water District in California successfully and
continuously reduced its electricity load during expensive time-of-use
rate periods in summer of 2015 to avoid costly electricity charges dur-
ing noon to 6 pm [22]. It was able to consistently reduce peak-period
electricity use on a typical summer day to levels 40% less than eve-
ning and morning periods. This low level of electricity use during the
day was achieved by curtailing electricity from groundwater pumping,
drinking water pumping and other facilities during that six-hour period
[22]. Additionally, Liu and Mauter (2020) also found that most US
drinking water treatment plants were theoretically capable of shifting up
to 100% their business-as-usual loads, but the magnitude of load shifting
varied significantly depending on the duration of load curtailments and
the ratio of the maximum treatment capacity to peak-day water demand
[51]. In their analysis, daily load curtailment durations of 2-8 hours
were modeled for water treatment plants with a daily water production
constraint that kept water production levels after load shifting to levels
equivalent to baseline operations. Thus, these plants still produced
enough treated water after load shifting to meet daily demand without
need for multiple day water storage capacity [51].

While these factors suggest that the true technical potential of the
water industry is likely much higher than our analysis assumes, factors
such as electricity rates and utility programs are key drivers of flexibility
decisions in practice. In some markets, optimizing flexible operations to
reduce emissions, as our analysis seeks to do, might not align with op-
erations that also minimize utility costs. However, in CAISO, wholesale
electricity prices are lowest during hours of high renewable penetration
and highest during the peak hours of the evening when electricity is
relatively carbon-intensive [52]. Thus, our analysis, which seeks to
minimize emissions through load shifting across the water industry,
would also have a co-benefit of reducing total electricity costs, under-
scoring the economic feasibility of case study assumptions. Moreover,
with higher penetrations of wind and solar, due to no marginal gener-
ation cost, are likely to further decrease the hourly wholesale electricity
generation costs [53], further improving the alignment of economic and
emissions mitigation load shifting operations.

The results of our analysis suggest that there is a potential for
considerable emissions benefits from load shifting in water industry, but
it should be noted that over the long-term, the emissions benefits of load
shifting strategies are likely to decrease in electric grids that achieve
high fractions of carbon-free generation during peak periods. However,
demand-side management strategies will remain important resources to
support the electric grid, particularly in grids that have high disparities
in carbon emissions intensities across the day and grids that suffer from
oversupply issues. While the ramping and renewable oversupply issues
occurring in CAISO are not yet widespread, there are other markets,
such as in Texas (ERCOT) [54] and in Northwest China [55], where
deficits in adequate transmission capacity and storage have created
similar renewable oversupply issues. Thus, as variable renewable pen-
etrations increase, their successful integration will depend on the
availability of more flexible resources, including battery storage tech-
nologies and demand-side management resources, to cope with the
intermittency and variability of wind and solar photovoltaic generators
and manage oversupply risks. (While quick ramping natural gas com-
bustion turbines can also serve as backup, they can offset some of the
carbon emissions benefits of renewable integration [56].) Demand
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response technologies are relatively low-cost compared to battery stor-
age technologies or large transmission capacity investments, and offer
several value propositions in terms of supporting the grid’s capacity
needs, system reliability, market efficiency, congestion management,
and market opportunities for electricity consumers (particularly large,
industrial consumers) [57]. Moreover, demand response can enhance
the resiliency of the electric grid, especially in face of extreme weather
events such as wildfires, heat waves and winter storms [58,59,60].
These benefits will become increasingly valuable in highly decarbonized
electric grid of the future facing more frequent extreme weather events.

5. Conclusion

The growth of renewable energy deployment has increased the need
for flexible demand-side management resources that can help to balance
the electric grid by reducing peak demand, while increasing the pene-
tration of variable renewable energy generators to support climate
change mitigation goals, especially in the absence of large-scale battery
storage. This analysis illustrates that there are opportunities for coor-
dinating water and electricity systems to derive synergistic benefits that
support a diversity of economic, environmental, climate change miti-
gation and grid reliability priorities. Thus, it underscores the potential
multi-faceted benefits that could be cost-effectively leveraged by making
a paradigm shift towards more holistic energy management strategies
that also emphasize non-economic priorities. However, several factors
complicate active engagement of the water industry with the electric
grid. Future research efforts should focus on filling some of the gaps in
understanding that might delay the roll-out of such a synergistic strategy
between water and electric utilities. We suggest:

e Executing more pilot experiments to help to identify and address the
technical limitations of implementing flexible operation strategies to
ensure that the quality of water services is not compromised.
Building a better understanding of the holistic trade-offs and syn-
ergies across different energy management measures in the water
industry, in order to maximize overall demand-side management
benefits.

Designing reasonable rate structures and demand-side management
programs that better reflect the electric grid’s needs and can support
rational energy management decision making in water systems.
Developing comprehensive models that integrate water and energy
systems to inform the value of flexibility for the water industry, the
agriculture sector and the electric utilities and guide more effective
market mechanisms to incentivize the water industry to take part in
electric grid services.
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