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Emitting less without curbing usage? Exploring greenhouse gas mitigation 
strategies in the water industry through load shifting 

Angineh Zohrabian , Kelly T. Sanders * 

Dept. Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, United States   

H I G H L I G H T S  

• CO2 benefits of demand response strategies in the water sector were analyzed. 
• CAISO’s hourly CO2 intensity was used to inform load shifting in the water sector. 
• Daily reductions in emissions depended on power demand and renewables availability. 
• Emissions benefits from load shifting were largest in summer and winter months. 
• Opportunities and challenges for load management in the water sector are discussed.  
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A B S T R A C T   

Growing interest in greenhouse gas mitigation strategies to address global climate change has resulted in the 
rapid expansion of renewable electricity sources. However, increasing power generation from variable renewable 
electricity sources, such as solar photovoltaics and wind turbines, has made balancing electricity supply and 
demand across the power grid more challenging. In some regions, high penetrations of variable renewables have 
also created electricity supply systems where electricity is significantly cleaner in hours when renewable energy 
is abundant, in comparison with peak demand hours when fossil fuel-based generation is often dominant. In the 
absence of cost-effective, utility-scale batteries, demand response strategies that leverage flexibility in electricity 
consumption have gained interest as readily available resources to address the temporal mismatch between 
renewable energy availability and high energy demand periods. The water industry (i.e., water supply and 
wastewater systems) includes industrial customers that are particularly attractive in terms of demand response 
potential as they can offer flexibility through large interruptible pumping loads, large water storage capacities, 
and energy generation potential. This study explores flexibility strategies in the water sector motivated primarily 
by the goal of reducing emissions, rather than cost. We present an illustrative case study demonstrating that 
strategically shifting 5% of the total daily average electricity load of a cluster of 97 water-supply electricity 
consumers in California across the year can reduce annual carbon dioxide emissions by 2–5%. In the end, 
important future research directions are discussed to support the implementation of flexibility measures in the 
water industry.   

1. Introduction 

Decarbonization policies and falling costs have resulted in large in
creases in variable renewable energy generation in many regional power 
grids. Large penetrations of solar photovoltaic (PV) and wind generators 
have created grid conditions in which generator fleets are composed 
largely of renewable energy sources in some hours and of non-renewable 
generators (mostly fossil fuel-based) in other hours of the day when solar 

and wind resources are diminished. These large swings in net load (i.e., 
the difference between load and available electricity production from 
solar and wind generation resources) cause operational challenges for 
the grid. For example, in California a phenomenon called the “Duck 
Curve” occurs when high fractions of solar energy create large dispar
ities between mid-day net load and evening net load, when solar gen
erators go offline. These conditions create two major challenges: (1) the 
risk for oversupply during high solar penetration hours and (2) the large 
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ramping requirements of dispatchable generators that must come online 
in the early evening period when diminishing solar generation coincides 
with peaking electricity demand. 

These challenges can be mitigated through supply-side solutions, 
such as long-distance transmission, battery storage, and flexible power 
generators, which can be deployed to ramp up when variable electricity 
sources go offline [1]. However, they can also be mitigated through 
demand-side resources that offer flexibility by modifying electricity 
consumption patterns to better match grid conditions. For example, non- 
essential electric loads can be shifted from hours when renewable energy 
generation is low (typically when wholesale electricity market prices are 
high) to hours when there is a surplus of renewable generation (and low 
wholesale electricity market prices) [2]. In this respect, water and 
wastewater utilities are particularly attractive options for providing 
demand-side management services because of their significant energy 
needs, large water storage capacities, and advancements in water con
trol systems and digitalization that can help coordinate electric and 
water utility operation [3–5]. Thus, water utilities can serve as impor
tant allies to electricity utilities because, while electrons must be 
balanced in real-time, water can be treated asynchronously and stored 
for later use. 

Municipal drinking water supply and wastewater management sys
tems (collectively referred to as the “water industry” in this paper) 
represent a considerable share of total energy use and greenhouse gas 
emissions, particularly in cities, making them a prime target for demand 
response load-shedding and load-shifting programs [6]. Nationally, the 
water industry represents about 2% of annual US electricity consump
tion [7]; from a CO2 emissions perspective, in 2005, about 85 million 
metric tons of CO2 were emitted from activities related to the public 
water supply, wastewater treatment and supplying irrigation water, 
respectively [8,9]. Energy is consumed in the water industry for sourc
ing, conveying, treating and distributing water to consumers, as well as 
for managing wastewater and water recycling [10,11]. Consequently, 
energy costs are typically significant operational costs to water utilities, 
often only behind labor cost [12]. Peak electricity usage in water sys
tems typically occurs in the morning and evening hours with higher 
peaks in summer months reflecting water consumption behavior [13]; 
these periods often coincide with peak electricity consumption periods 
in the evening across the electric grid. Thus, energy management solu
tions, such as improving energy efficiency, recovering energy, and self- 
generating energy from distributed renewable sources, are of high in
terest in this industry. 

Some of the major load flexibility opportunities in the water sector 
that we identified in our recent literature review on the topic [6] are 
summarized below. 

• Leveraging water pumping and water storage capacity: Water stor
age tanks embedded in water systems can operate as energy storage 
capacity, since the ability to store water in storage tanks enables 
flexibility in the operation of pumps. Pumping water to fill a reser
voir at times when renewable energy is abundant can support the 
curtailment of pumping load during hours when the electric grid is 
less clean (i.e., has a high emissions intensity), which generally 
coincide with times when electricity prices are more expensive. 
Sufficient storage capacities can support longer interruptions of 
pumping with less adverse effects on the system [14]. Advanced 
process monitoring and control systems in water facilities can be 
programmed to satisfy operational constraints and facilitate faster 
response to grid needs. For example, variable-speed-drive pumps can 
adjust their motor speed and water flow rates continuously, and 
therefore, they support flexible operation when water storage ca
pacities and grid conditions are aligned to support baseload and peak 
load management, as well as water system requirements [15].  

• Controlling operational load: Water treatment facilities are typically 
equipped with central control systems to manage treatment pro
cesses and water quality. These control systems can help maintain 

treatment and pumping processes to operate closer to the facility’s 
full operational capacity during hours when electricity is cleaner. 
Control systems can also schedule delays in treatment or switch to 
low operational modes at times when electricity is dirtier [16]. This 
type of load management may utilize flow equalizers and storage 
tank capacity, in addition to the individual components of a treat
ment process. Aeration units are often the largest energy consumers 
in wastewater treatment facilities with secondary treatment, ac
counting for 45–75% of total energy costs [17,18]. They can be 
operated intermittently to control the load. However, advanced en
ergy and water quality management systems are necessary for the 
water industry to determine an optimal daily plan for operating 
water systems, while ensuring that load management will not 
compromise water utilities’ services [19]. Some components of a 
wastewater treatment plant can be turned off for a few minutes up to 
a few hours [20]. Pumping systems can typically be interrupted for 
longer periods than treatment systems depending on the system 
characteristics and water delivery constraints [21]. Some water 
utilities already manage their electricity use to limit consumption 
during expensive time-of-use rates (that typically reflect higher 
wholesale electricity generation costs). For instance, Irvine Ranch 
Water District reduced significant amounts of its electrical load 
during peak-pricing periods on summer weekdays, primarily (but not 
solely) through limiting the operation of its groundwater and 
drinking water pumps [22].  

• Utilizing on-site generation and storage resources: The primary goal 
of running on-site generation resources is to reduce electricity pur
chases. Engaging on-site generation resources in load shifting stra
tegies at a water facility might not minimize its overall electricity 
purchases from the grid, but strategies that reduce overall load on the 
electric grid when electricity is generated from dirtier resources can 
result in environmental and grid management benefits. Aside from 
large hydropower generation plants located within some large water 
transfer projects (whose generated electricity is often sold to the 
electric utility, and is thus, generally decoupled from urban water 
systems), there are several other energy generation opportunities. 
Some technologies can help recover small amounts of energy from 
pressurized water systems such as in-pipe hydro turbine and pump- 
as-turbine technologies [23,24]. These energy generation resources 
are attractive for improving flexibility capabilities when they are 
coupled with energy storage technologies. Anaerobic digestion units 
can recover larger amounts of energy generated from organic ma
terials in the form of biogas from wastewater. Biogas can be burned 
as a fuel in power generation units, such as internal combustion 
engines, micro-turbines, gas combustion turbines, and fuel cells 
[25,26]. Typically wastewater treatment facilities with influent flow 
rates of 5 million gallons per day or greater are more cost-effective to 
produce biogas in quantities adequate for power generation [26]. 
This large source of energy generation potential has enabled some 
wastewater treatment facilities to operate as net-zero energy and 
even energy positive facilities [27,28]. Case studies analyzed in [29] 
showed that six out of 20 conventional wastewater treatment plants 
in China could export excess energy while others could achieve a 
partial or full net-zero energy consumption, reducing the cost and 
energy consumption associated with sludge treatment and disposal. 
Moreover, an installed biogas storage tank in a wastewater treatment 
plant can be leveraged for providing additional source of flexibility 
[30]. Battery storage technologies have applications for flexibility by 
decoupling the temporal relationship between energy generation 
and energy consumption. For example, Irvine Ranch Water District 
worked with its electric utility, Southern California Edison, to deploy 
a 6.25 MW/ 35.7MWh network of battery arrays at its water facil
ities, which include six water treatment, water recycling, and 
pumping facilities. This battery system allows the water utility to buy 
and store energy during cheap electricity rate periods and consume 
stored energy to power its operations during periods when electricity 

A. Zohrabian and K.T. Sanders                                                                                                                                                                                                              



Applied Energy 298 (2021) 117194

3

rates are high. In addition, battery storage systems provide a source 
of stored power for Southern California Edison to depend on when 
the electric grid constrained or during demand response events [31]. 

While demand-side management strategies can benefit both water 
and electricity utilities to better manage their energy supply and cost 
priorities, coordinating water and electricity utility operation could be 
leveraged to derive better environmental outcomes. Demand-side flex
ibility can be an environmental tool to support mitigating greenhouse 
gas emissions as the timing of electricity demand affects the emissions 
footprint of each unit of energy consumed. Since the fleet of generators 
producing electricity for the grid changes throughout the day as a 
function of dynamic demand, renewable resource availability, and 
market dynamics, the grid’s real-time emissions intensity (defined here 
as kg of CO2 emitted per unit of electricity consumed) fluctuates 
considerably throughout the day. In California, the grid generally has 
low emissions intensities in the middle of day and higher intensities in 
the high-demand evening hours, as solar resources go offline. Thus, 
reducing electricity consumption at water and wastewater utilities via 
demand-side energy management strategies during hours with high 
fossil fuel generation can result in emissions benefits. While these 
diurnal trends are not unique to the case of California, they are more 
pronounced in electric grids with high penetrations of renewable 
energy. 

Many studies have used energy management solutions in the water 
industry to reduce electricity consumption costs based on electricity rate 
tariffs without incorporating the electric grid’s real-time supply dy
namics [32–34]. Studies that do consider the electric grid’s dynamics 
generally use wholesale energy market prices and electricity supply 
costs to prescribe the needs for flexible resources or provide signals for 
demand response [30,35–37]. For a wastewater treatment plant in Santa 
Rosa, California, Musabandesu and Loge performed a cost-benefit 
analysis based on 2018 real-time locational marginal prices within 
California Independent System Operator (CAISO) and time-of-use (TOU) 
pricing. They estimated that the facility could potentially save $8,015 up 
to $68,344 annually (i.e., up to 4.8% of the total annual electricity cost 
of the facility), depending on the duration of the facility’s participation 
in demand response and type of assets utilized for load shifting [34]. 
These cost savings were reached through revenues from demand 
response participation and projected savings based on TOU pricing [34]. 
Kernan et al. used genetic algorithms to minimize the cost of two 
different water supply systems and found that using the marginal price 
of the electricity supply effectively aligns the electricity consumption 
patterns of water pumping operations with intermittent renewable 
generation profiles [38]. In another study in Germany, load shifting in 
wastewater treatment plants was managed by on-site combined heat and 
power generation units to minimize electricity purchase costs based on 
forecasted electricity wholesale price signals in year 2030 [30]. The 
results of this analysis showed that load shifting in the studied waste
water treatment plants could avoid the curtailment of about 120 MW of 
surplus renewable generation across the electric grid [30]. Another 
study formulated a mixed-integer optimization model for a pump 
scheduling problem, based on the demand response mechanisms avail
able in the United Kingdom [39]. This study confirmed that, in addition 
to financial benefits for the water utilities from demand response 
participation, these programs were also effective in achieving grid- 
related greenhouse gas emissions reductions, in many cases, greater 
than competing reserve energy technologies (e.g., internal combustion 
diesel, gas turbines, and hydro pump storage) [39]. 

No study to the authors’ knowledge has explored the potential for 
load shifting strategies designed primarily to mitigate greenhouse gas 
emissions in the water sector. Here we execute a case study based on a 
cluster of 97 water industry-related consumers in California to investi
gate a novel approach that uses the hourly emissions intensity of CAI
SO’s electric grid as the main load shifting trigger. Thus, in this analysis, 
we provide a new perspective for demand response by altering the 

motivation for load shifting from solely economic towards reducing 
greenhouse gases. Although these two viewpoints overlap to a great 
extent as more zero-production-cost and zero-emissions technologies of 
solar and wind are being integrated to the grid, we specifically analyze 
how shifting electricity consumption as a function of hourly variations in 
carbon intensity of the grid can derive emissions benefits, and poten
tially reduce renewable energy curtailment using a case study of water 
industry end users. We then comment on existing technical and regu
latory challenges that provide barriers to the water sector taking a more 
active role in supporting the evolving electric grid through demand-side 
management. 

2. Data and methods 

Here we simulate a series of load shifting scenarios to investigate the 
emissions benefits of shifting electricity load consumption from the 
hours with the most polluting fleet of electricity generators to the hours 
with the highest penetrations of renewable energy generators, using 
load profiles from a cluster of water utilities operating in California. The 
analysis utilized load data released as a supplement to California’s De
mand Response Potential Study [5], which details the hourly aggregated 
load of 97 water supply-related accounts with loads greater than 200 kW 
within Pacific Gas and Electric (PG&E) utility balancing authority in the 
year 2014 (the data is accessible at [40]). The dataset also catalogs 
hourly electricity uses across the cluster into three categories: pumping, 
treatment and other, which represented 50%, 25% and 25% of overall 
load, respectively. This cluster of water facilities collectively consumed 
about 85,000 MWh of electricity in 2014 [40]. (Note that this load only 
represents a small fraction of PG&E’s total annual load of approximately 
123,000 GWh in that year [41]). 

3. Simulating electricity load shifting scenario 

First, we created twelve representative load profiles for each month 
in 2014. Each monthly profile consisted of 24-hourly load averages, 
representing the averaged load for each respective hour of day, across all 
days in each month. (For example, hour 1 of the January profile rep
resented the average load between 12:00 and 1:00 am for all days in 
January 2014.) These twelve profiles were used as the monthly baseline 
scenarios for each month (shown with solid black lines in load panels of 
Fig. 3). 

We assumed that each monthly electric load shifting scenario 
allowed 5% of total daily average electricity load to be shiftable over six 
hours (Eq. (1)), meaning that hourly electricity increased in 6 hours of 
24-hour period (Eq. (2)), when compared to the baseline. In order to 
prevent creating a higher peak load (in magnitude) after load shifting, 
the amount of load increase in each hour was capped at a value equal to 
the highest hourly peak demand within each baseline profile prior to 
shifting (Eq. (3)–(4)); thus, in some months the total amount of shiftable 
load was less than 5% of total averaged daily electricity consumption. In 
other words, the magnitude of shiftable load within each month was 
determined by two factors: the magnitude of the total average-day 
electricity load and peak hourly electricity usage within the baseline 
diurnal profile. The additional amount of load shifted to the 6 cleanest 
hours was distributed evenly across the six dirtiest hours so that daily 
electricity consumption in the baseline and load shift scenarios 
remained equal. Thus, the total amount of load reduced in any of the 6 
dirtiest hours was kept equal (Eq. (5)). The hourly electricity loads 
outside of the 12 load shifting hours remained equal to the baseline load 
(Eq. (6)). Months that had total daily load shifting below 5% of total 
daily load are illustrated in Fig. 1 by orange bars that fall below each red 
dot. 

In Eq. (1), LSj is the targeted amount hourly electricity consumption 
to be shifted in month j, where BLi,j is the baseline electricity load for 
hour i = 1, 2, ..., 24 in an average day of month j.
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LSj =
0.05 ×

∑24
i=1BLi,j

6
, j = January,February,⋯,December (1) 

In Eq. (2), ML’
k,j is the targeted hourly electricity load for each of the 

six cleanest hours, k, for k = 1, 2, …, 6, in each load shifting scenario, 
before the peak load constraint was applied: 

ML’
k,j = BLk,j + LSj, for any of k = 1, 2,⋯, 6 (2) 

In Eqs. (3) and (4), MLk,j is the modified hourly electricity load in 
each of the six cleanest hours, k, in each load shift scenario, after the 
peak load constraint is applied.Max

(
BLi,j

)
is the hourly peak electricity 

consumption in each baseline profile in month j. 
When ML’

k,j <= Max
(
BLi,j

)
, for any of k = 1,2,⋯,6: 

MLk,j = BLk,j + LSj (3) 

When ML’
k,j > Max

(
BLi,j

)
, for any of k = 1,2,⋯,6: 

MLk,j = Max
(
BLi,j

)
(4) 

In Eq. (5), MLr,j represents the modified hourly electricity load in 
each of six dirtiest hours, r, for each load shift scenario. BLi,j, LSj, ML’

k,j, 
MLk,j, MLr,j are all in kilowatt hours (kWh). 

MLr,j = BLr,j −

∑6
k=1

(
MLk,j − BLk,j

)

6
, for r = 1, 2,⋯, 6 (5)  

MLi,j = BLi,j, for all i not in k or r (6)  

3.1. Identifying the Cleanest and Dirtiest Hours of the Electric Grid 

We assume that the amount of shiftable load in each load shifting 
scenario would be shifted from the six “dirtiest hours” (i.e., hours with 
the highest CO2 emissions intensity due to high shares of fossil fuels) to 
the six “cleanest hours” (i.e., hours with the lowest CO2 emissions in
tensity due to high shares of clean electricity generation sources) within 
the same 24-hour average day of each monthly baseline profile. In some 
months, the “dirtiest” and “cleanest” hours were not consecutive (e.g., in 
May, load is shifted from the dirtiest hours between 6:00–7:00 and 
20:00–23:00, to the cleanest hours between 12:00–17:00). The six 
dirtiest and six cleanest hours were determined based on the emissions 
intensity values of hours 1 through 24, respectively. 

Twenty-four hourly emissions intensities were estimated to represent 
an average day for each month using the linear regression model 

described in Eq. (7). In this equation, the independent variable is hourly 
electricity consumption in CAISO region (Di,j in MWh), the dependent 
variable is total hourly CO2 emissions (Ei,j in kg), and the coefficient 
factor is average CO2 emissions intensity (AEFi,j in kg CO2/MWh) at hour 
i within each month (i.e., what we seek to estimate for this analysis). 
Hourly electricity demand data, Di,j, and hourly CO2 emissions data, Ei,j,

are available on the CAISO Today’s Outlook website [42]. The regres
sion model was evaluated with data for each hour, i, within each month, 
j, to derive 24 hourly emissions factors representing an average day for 
each monthly scenario, thus assuming all days of each month are similar. 

Ei,j = AEFi,j × Di,j (7) 

The results of the regressed CO2 emissions intensities are displayed in 
Fig. 2 and show a wide range of values between 100 and 362 kgCO2/ 
MWh, where cleaner hours tend to be in the sunniest hours of the day, 
particularly in spring months when more hydropower, in addition to 
solar generation, is available, and dirtier hours tend to be in the early 
evening after the sun goes down and demand is high. 

Once average hourly emissions intensities were calculated for each 
month, the hourly CO2 emissions associated with each hour of electricity 
consumed by the aggregated cluster of water industry accounts were 
estimated for the following three scenarios:  

(1) Baseline Scenario: Uses the average 24-hour daily load profile of 
the cluster for each month (using historical data as described 
above) and emissions intensity assumptions estimated by the 
regression model.  

(2) Load Shift Scenario 1, No Renewable Oversupply: Reflects load 
shifting assumptions for each month described above and emis
sions intensity assumptions estimated by the regression model.  

(3) Load Shift Scenario 2, Renewable Oversupply: This scenario is 
equivalent to Load Shift Scenario 1 except that we apply a second 
emissions assumption applied to electricity load after it is shifted 
to the cleanest hours, assuming that a curtailment of renewables 
occurs and that accommodating all shifted load during the clean 
hours in the middle of day incurs zero additional emissions in 
order to simulate days when there is excess emissions-free solar 
energy available. (Note that in CAISO, the average daily renew
able curtailments due to oversupply were over 670 and 370 MWh 
in May and November 2019 [43], respectively, which were much 
greater in magnitude than the amount of shiftable load explored 
in this case study). 

The daily avoided CO2 emissions due to load shifting across the 
average day in each month were calculated as the sum of hourly dif
ferences between the emissions associated with the aggregated elec
tricity load of the cluster of water utility accounts before (Ei,j,bef in kg 
CO2) and after load shifting (Ei,j,aft in kg CO2) at each respective hour i. 
Additionally, an avoided emissions metric (Aj in kg CO2 per MWh daily 
shifted load) was defined in Eq. (8) where the daily avoided CO2 emis
sions in one day was divided by the total daily shifted load for each 
month to inform the effectiveness of load shifting scenarios in reducing 
greenhouse gas emissions. 

Aj =

∑24
i=1(Ei,j,bef − Ei,j,aft)

∑6
k=1

(
MLk,j − BLk,j

) (8)  

4. Results and discussion 

This analysis evaluates the CO2 emissions reductions that follow a 
load shifting strategy that shifts up to 5% of the total daily load across a 
cluster of 97 water industry end users from 6 hours when the grid is 
relatively carbon-intensive to another 6 hours when the grid is relatively 
carbon-lean. Hence, while most demand response strategies are moti
vated by economic factors, this analysis evaluates a case study driven 

Fig. 1. Shiftable electricity consumption in each month after applying the daily 
load shift scenario. Red dots represent the maximum monthly load shift which 
was capped at 5% of daily electricity consumption for each averaged day in the 
month. (Monthly totals were calculated by multiplying average daily load shifts 
in each month by the number of days in each month.) 
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primarily by the priority to reduce greenhouse gas emissions. 

4.1. Load shifting potential 

The load profiles of the aggregated water-industry cluster before and 
after load shifting are summarized for all twelve months in Fig. 3. A few 
trends are worth highlighting in the baseline electricity use profiles (i.e., 
before load shifting). The electricity use patterns of water facilities are 
generally very different from month to month, due to differences in 
water demand and time-varying electricity pricing (See Fig. 3). For 
example, from a seasonal perspective, more energy was consumed for 
water services during hot summer months (i.e., June, July and August), 
across which there tended to be significant hourly variation, as 
compared to electricity use profiles in winter months (i.e., January and 
February), which had a flatter load curve. 

In summer months, the aggregated loads associated with the studied 
cluster of water end users show a diurnal trend that reflects TOU elec
tricity rates. The industrial TOU rates in PG&E in year 2014 (the year 
that the electricity use data were collected) included two-period pricing 
from November to April (partial-peak period from 8:30 am to 9:30 pm 
on weekdays, and off-peak period from 9:30 pm to 8:30 am on weekdays 
and all-day weekends and holidays), and a three-period pricing from 
May to October (peak period from noon to 6:00 pm on weekdays, 
partial-peak period from 8:30 am to noon and from 6:00 pm to 9:30 pm 
on weekdays, and off-peak period from 9:30 pm to 8:30 am on weekdays 
and all-day weekends and holidays) [44]. It is important to note the 
conflict between the peak period defined in the PG&E’s industrial TOU 
rates and CAISO’s true system-wide peak electricity demand period. In 
2019, CAISO’s system-wide electricity demand generally peaked be
tween 4:00 pm to 9:00 pm in summer months [45], while the TOU tariffs 
charged the most for electricity between noon to 6:00 pm. Reducing 
electricity consumption during peak demand periods, especially in the 
evening, is important from an emissions perspective, because dirtier 
generators come online to meet the electricity demand, as solar di
minishes in the evening, so this conflict is problematic from both cost 
and emissions reduction standpoints. As of March 2021, PG&E still de
fines its industrial peak pricing period between noon to 6:00 pm from 
May to October [44]. In addition, PG&E’s 2014 demand charges (i.e., 
fees applied to electric bills based on the highest amount of electric 
power usage that occurred during the billing period) were higher in 
summer and peak periods compared to winter and off-peak periods [44]. 

In response to these electricity price signals (peak and partial-peak 
periods being about twice and 20–40% more expensive than off-peak 

periods), water facilities in the studied cluster consumed more elec
tricity during evening hours and less during morning hours (see load 
profiles in Fig. 3) . With more aggressive time-varying electricity rates 
(e.g., real-time pricing), the electricity rate structures will become more 
reflective of the renewable electricity supply availability, and therefore, 
better align with reducing the CO2 emissions intensity of the electricity 
consumption as variable renewable penetrations increase. 

More load was shifted during months that had higher electricity 
consumption and larger gaps between the peak and midday electricity 
use (i.e., May through October), creating a daytime peaking period of 
electricity use. In these months, the electricity load profiles after load 
shifting created a new daytime peak period (albeit equal to or lower than 
the original highest peaking hour because of our analysis’s constraint) 
and a new valley in the evening. In other months (i.e., from January to 
April and from November to December), the electricity load profiles 
after load shifting became flatter with an extended period of electricity 
load reaching the daily peak load level. From the electric grid’s opera
tional perspective, reshaping electricity consumption patterns such that 
there is higher daytime usage helps accommodate more midday 
renewable energy utilization, reduce the need for dirtier generators to 
supply the evening electricity load, and alleviate the need for expensive 
ramping resources. 

4.2. CO2 emissions reduction potential due to load shifting 

The CO2 emissions associated with electricity use depend on the 
magnitude of load and the electric grid’s emissions intensity in each 
hour. Thus, the load shifting strategy explored here helps avoid high 
emissions during evening hours when the electric grid is dirtier, typi
cally with only a small daytime penalty of increased emissions during 
the daytime, as illustrated in Fig. 3. The diurnal CO2 emissions profiles 
typically follow the same pattern as the electricity use profiles with the 
exception of in daytime hours when it diverges into a deeper valley 
because of the grid’s lower emissions intensity. From seasonal 
perspective, emissions were higher in months of June to October when 
both the magnitude of the electricity load and the electric grid’s 
evening-time emissions intensity were higher than other months (i.e., 
from January to April, and from November to December). Thus, the 
outcome was that more emissions were avoided in summer and winter 
months compared to spring months (see Fig. 4), when hydropower and 
wind power are more abundant across much of the day and demand is 
relatively low due to mild weather [46]. Although the electricity load of 
the aggregated water utilities was nearly the same in March and 

Fig. 2. Hourly CO2 emissions intensity profiles for each month representing electricity consumed in the CAISO region (kgCO2/MWh) based on a linear regression 
analysis of 2019 hourly CO2 emissions and electricity demand data from CAISO [42]. 
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Fig. 3. Top within each month: Diurnal profiles for the aggregated electricity use of the 97 electricity accounts associated with the water industry, before and after 
load shifting. Bottom within each month: Diurnal profiles for the CO2 emissions from the aggregated cluster, before and after Load Shifting Scenarios 1 (No 
Renewable Oversupply) and 2 (With Renewable Oversupply). 
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December, greater amounts of emissions could be avoided in December 
because the emissions intensity of electricity was generally higher across 
all hours in December as compared to March. Similarly, more evening 
electricity consumption could be avoided in May as compared to 
November, and as a result, load shifting in May lead to more avoided 
emissions. 

About 1–7% of CO2 emissions could be avoided in each month with 
the load shifting scenarios compared to baseline monthly emissions. The 
height of the top and bottom bars in Fig. 4 show the emissions avoided of 
Load Shifting Scenario 2 (overgeneration) versus Load Shifting Scenario 
1 (no overgeneration), respectively, with Scenario 2 incurring the most 
emissions reduction benefits when shifted load was moved to hours 
when emissions-free renewable energy would have otherwise been 
curtailed due to solar oversupply, which tends to be exacerbated in the 
spring months of March to June in CAISO [47]. (CAISO’s renewable 
oversupply rose from 10 GWh to 223 GWh from May of 2014 to May of 
2019 [48], so in the absence of substantial investments of utility-scale 
storage, the importance of load flexibility strategies to leverage this 
resource is growing.) Annually, the emissions benefits of the investi
gated load shifting scenarios were equivalent to emissions benefits of 
reducing 2–5% of the baseline electricity load from this cluster of water 
end users, despite the fact that total electricity usage was held constant 
across all scenarios. This amount of avoided annual emissions is 
equivalent to reducing about 2,400–6,000 MWh of electricity in Cali
fornia assuming an average emissions intensity of 420.4 lbCO2/MWh 
(190.8 kgCO2/MWh) based on CAISO’s average eGRID emissions rates 
for the year 2018 [49]. 

In terms of avoided emissions per unit of shifted load (Fig. 5), we 
observed values ranging between 75 and 350 kgCO2/MWh, with greater 
benefits of reducing electricity incurred in September, October and 
November. Overall, the variation in avoided emissions per unit of shifted 
electricity suggests that the value of load shifting in terms of avoiding 
emissions varies significantly depending on the range of daytime and 
evening-time CO2 emissions intensities of the electric grid, and the po
tential of load shifting. In this analysis, the duration of load shifting was 
kept constant (spanning an aggregated timespan of 6-hours per day), but 
it should be mentioned that shorter load shifting durations will generally 
lead to greater emissions benefits per unit of shifted load because the 
emissions reduction potential of shifting load is the highest when the 
load is shifted from the dirtiest hour, in terms of the grid’s generation 
mix, to the cleanest hour of the day, since there is more of a difference 
between the hourly emissions intensities. 

Since emissions benefits were quantified based on the electric grid’s 

average hourly emissions intensities, these benefits represent rather 
conservative estimates. Average hourly emissions factors represent 
emissions averaged across all generators producing electricity across the 
hour while changes in electricity demand (in this case, load shifting) 
affects only a fraction of the generators operating at margin that respond 
and adjust their output to accommodate changes in demand. Thus, when 
electricity load is reduced during evening hours (when fossil-fuel fired 
power plants operate at the margin), the emissions associated with 
decreasing load will be much higher than when considering the average 
suite of electricity generators at any given hour (when the electricity 
being supplied is from a combination of fossil fuel, nuclear, hydro and 
renewable generators). In the future, we plan to quantify the marginal 
emissions factors of CAISO and reassess the emissions benefits of the 
load shifting. 

4.3. Technical and regulatory factors 

Some of the underlying assumptions regarding ground facts were 
simplified in this analysis as there is still information lacking about the 
scale of potential disruptable load, especially given that not every fa
cility is equipped with technologies that can help manage load shifting 
and policies and market structures are not effective enough to incen
tivize load shifting. Other technological limitations could impact overall 
load shifting potential in water systems, particularly access to control 
and communication technologies. For example, upgrading water pumps 
that are still controlled manually with control technologies or adopting 
variable frequency drive pumps could pose an important economic 
barrier for achieving reliable electricity load shifting [5,50]. We 
acknowledge that the operation scheduling limitations vary depending 
on factors such as system design (both at the facility-scale and policy- 
scale) and water quality regulations, and therefore, we designed our 
analysis based on a conservative assumption that only 5% of total daily 
average electricity load can be shifted across the aggregate cluster 
(which serves as a good proxy for the water industry at large). 

While we were not able to model the technical operations of indi
vidual water facilities to simulate load flexibility, there are several 
reasons why we believe shifting 5% of total daily average load across the 
water industry, over a duration of six hours, is a very conservative es
timate compared to actual technical potential. First, pumping activities 
represented approximately 50% of the total electricity consumption in 
the analyzed cluster, with the remaining load split pretty evenly across 
water treatment (25%) and other activities (25%) [40]. Pumping loads 
are inherently flexible so long as there is enough usable storage along 

Fig. 4. Range of daily avoided CO2 emissions in each month due to load 
shifting in the studied cluster of water-industry accounts. The upper and lower 
values of the bars illustrate results in load shifting scenario 2 (with renewable 
oversupply) versus load shifting scenario 1 (no renewable oversupply), 
respectively. 

Fig. 5. Range of avoided CO2 emissions per unit of shifted load in each month 
due to load shifting in the studied cluster of water-industry accounts. The upper 
and lower values of the bars illustrate results in load shifting scenario 2 (with 
renewable oversupply) versus load shifting scenario 1 (no renewable over
supply), respectively. 
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the water supply chain, and these loads alone are much large than the 
5% total daily average electricity load shifted. Second, since the analysis 
is done on an aggregated water industry-related load, the effective 5% 
load shifting does not require or assume that a single facility has to 
curtail its electric load for the total duration of 6 hours. In practice, 
water utilities should schedule and prioritize their flexible resources, so 
that load shifting operations will have no adverse consequences, and it 
should be expected that while some of the 97 accounts in the aggregated 
cluster will likely have large load shifting potential, others may not. 
Third, previous studies suggest that significant load reductions have 
already been achieved by various water utilities in practice. For 
example, Irvine Ranch Water District in California successfully and 
continuously reduced its electricity load during expensive time-of-use 
rate periods in summer of 2015 to avoid costly electricity charges dur
ing noon to 6 pm [22]. It was able to consistently reduce peak-period 
electricity use on a typical summer day to levels 40% less than eve
ning and morning periods. This low level of electricity use during the 
day was achieved by curtailing electricity from groundwater pumping, 
drinking water pumping and other facilities during that six-hour period 
[22]. Additionally, Liu and Mauter (2020) also found that most US 
drinking water treatment plants were theoretically capable of shifting up 
to 100% their business-as-usual loads, but the magnitude of load shifting 
varied significantly depending on the duration of load curtailments and 
the ratio of the maximum treatment capacity to peak-day water demand 
[51]. In their analysis, daily load curtailment durations of 2–8 hours 
were modeled for water treatment plants with a daily water production 
constraint that kept water production levels after load shifting to levels 
equivalent to baseline operations. Thus, these plants still produced 
enough treated water after load shifting to meet daily demand without 
need for multiple day water storage capacity [51]. 

While these factors suggest that the true technical potential of the 
water industry is likely much higher than our analysis assumes, factors 
such as electricity rates and utility programs are key drivers of flexibility 
decisions in practice. In some markets, optimizing flexible operations to 
reduce emissions, as our analysis seeks to do, might not align with op
erations that also minimize utility costs. However, in CAISO, wholesale 
electricity prices are lowest during hours of high renewable penetration 
and highest during the peak hours of the evening when electricity is 
relatively carbon-intensive [52]. Thus, our analysis, which seeks to 
minimize emissions through load shifting across the water industry, 
would also have a co-benefit of reducing total electricity costs, under
scoring the economic feasibility of case study assumptions. Moreover, 
with higher penetrations of wind and solar, due to no marginal gener
ation cost, are likely to further decrease the hourly wholesale electricity 
generation costs [53], further improving the alignment of economic and 
emissions mitigation load shifting operations. 

The results of our analysis suggest that there is a potential for 
considerable emissions benefits from load shifting in water industry, but 
it should be noted that over the long-term, the emissions benefits of load 
shifting strategies are likely to decrease in electric grids that achieve 
high fractions of carbon-free generation during peak periods. However, 
demand-side management strategies will remain important resources to 
support the electric grid, particularly in grids that have high disparities 
in carbon emissions intensities across the day and grids that suffer from 
oversupply issues. While the ramping and renewable oversupply issues 
occurring in CAISO are not yet widespread, there are other markets, 
such as in Texas (ERCOT) [54] and in Northwest China [55], where 
deficits in adequate transmission capacity and storage have created 
similar renewable oversupply issues. Thus, as variable renewable pen
etrations increase, their successful integration will depend on the 
availability of more flexible resources, including battery storage tech
nologies and demand-side management resources, to cope with the 
intermittency and variability of wind and solar photovoltaic generators 
and manage oversupply risks. (While quick ramping natural gas com
bustion turbines can also serve as backup, they can offset some of the 
carbon emissions benefits of renewable integration [56].) Demand 

response technologies are relatively low-cost compared to battery stor
age technologies or large transmission capacity investments, and offer 
several value propositions in terms of supporting the grid’s capacity 
needs, system reliability, market efficiency, congestion management, 
and market opportunities for electricity consumers (particularly large, 
industrial consumers) [57]. Moreover, demand response can enhance 
the resiliency of the electric grid, especially in face of extreme weather 
events such as wildfires, heat waves and winter storms [58,59,60]. 
These benefits will become increasingly valuable in highly decarbonized 
electric grid of the future facing more frequent extreme weather events. 

5. Conclusion 

The growth of renewable energy deployment has increased the need 
for flexible demand-side management resources that can help to balance 
the electric grid by reducing peak demand, while increasing the pene
tration of variable renewable energy generators to support climate 
change mitigation goals, especially in the absence of large-scale battery 
storage. This analysis illustrates that there are opportunities for coor
dinating water and electricity systems to derive synergistic benefits that 
support a diversity of economic, environmental, climate change miti
gation and grid reliability priorities. Thus, it underscores the potential 
multi-faceted benefits that could be cost-effectively leveraged by making 
a paradigm shift towards more holistic energy management strategies 
that also emphasize non-economic priorities. However, several factors 
complicate active engagement of the water industry with the electric 
grid. Future research efforts should focus on filling some of the gaps in 
understanding that might delay the roll-out of such a synergistic strategy 
between water and electric utilities. We suggest:  

• Executing more pilot experiments to help to identify and address the 
technical limitations of implementing flexible operation strategies to 
ensure that the quality of water services is not compromised. 

• Building a better understanding of the holistic trade-offs and syn
ergies across different energy management measures in the water 
industry, in order to maximize overall demand-side management 
benefits.  

• Designing reasonable rate structures and demand-side management 
programs that better reflect the electric grid’s needs and can support 
rational energy management decision making in water systems.  

• Developing comprehensive models that integrate water and energy 
systems to inform the value of flexibility for the water industry, the 
agriculture sector and the electric utilities and guide more effective 
market mechanisms to incentivize the water industry to take part in 
electric grid services. 

CRediT authorship contribution statement 

Angineh Zohrabian: Conceptualization, Formal analysis, Method
ology, Writing - original draft, Writing - review & editing. Kelly T. 
Sanders: Conceptualization, Methodology, Funding acquisition, Su
pervision, Writing - review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgment 

This research study was financially supported by the Electric Power 
Research Institute (Award ID: 00-10007871), the National Science 
Foundation (NSF CAREER Award: Coordinating climate change miti
gation and adaptation strategies across the energy-water nexus: An in
tegrated research and education framework; CBET 1845931). 

A. Zohrabian and K.T. Sanders                                                                                                                                                                                                              



Applied Energy 298 (2021) 117194

9

References 

[1] Sepulveda NA, Jenkins JD, de Sisternes FJ, Lester RK. The role of firm low-carbon 
electricity resources in deep decarbonization of power generation. Joule 2018;2 
(11):2403–20. 

[2] Lund PD, Lindgren J, Mikkola J, Salpakari J. Review of energy system flexibility 
measures to enable high levels of variable renewable electricity. Renew Sustain 
Energy Rev 2015;45:785–807. 

[3] Gils HC. Economic potential for future demand response in Germany – Modeling 
approach and case study. Appl Energy 2016;162:401–15. 

[4] Kirchem D, Lynch M, Bertsch V, Casey E. Modelling demand response with process 
models and energy systems models: Potential applications for wastewater 
treatment within the energy-water nexus. Appl Energy 2020;260:114321. 

[5] Alstone P et al. 2025 california demand response potential study - charting 
California’s demand response future: final report on phase 2 results; 2017. 

[6] Zohrabian A, Plata SL, Kim DM, Childress AE, Sanders KT. Leveraging the water- 
energy nexus to derive benefits for the electric grid through demand-side 
management in the water supply and wastewater sectors. WIREs Water 2021: 
e1510. 

[7] EPRI. Electricity use and management in the municipal water supply and 
wastewater industries. Palo Alto; 2013. 

[8] Griffiths-Sattenspiel B, Wilson W. The carbon footprint of water. Portland, OR; 
2009. 

[9] Rothausen SGSA, Conway D. Greenhouse-gas emissions from energy use in the 
water sector. Nature Clim Change 2011;1(4):210–9. 

[10] Sanders KT, Webber ME. Evaluating the energy consumed for water use in the 
United States. Environ Res Lett 2012;7(3):034034. 

[11] Molinos-Senante M, Sala-Garrido R. Energy intensity of treating drinking water: 
Understanding the influence of factors. Appl Energy 2017;202:275–81. 

[12] Copeland C, Carter NT. Energy-water nexus: The water sector’s energy use; 2017. 
[13] Deoreo WB et al. California single family home water use efficiency study; 2011. 
[14] Shoreh MH, Siano P, Shafie-khah M, Loia V, Catalão JPS. A survey of industrial 

applications of Demand Response. Electr Power Syst Res 2016;141:31–49. 
[15] Menke R, Abraham E, Parpas P, Stoianov I. Extending the envelope of demand 

response provision through variable speed pumps. Procedia Eng 2017;186:584–91. 
[16] Kirchem D, Lynch M, Bertsch V, Casey E. Market effects of industrial demand 

response and flexibility potential from wastewater treatment facilities. In: 15th 
international conference on the European Energy Market; 2018. p. 1–6. 

[17] Rosso D, Larson LE, Stenstrom MK. Aeration of large-scale municipal wastewater 
treatment plants: State of the art. Water Sci Technol 2008;57(7):973–8. 

[18] Giberti M, Dereli RK, Flynn D, Casey E. Predicting wastewater treatment plant 
performance during aeration demand shifting with a dual-layer reaction settling 
model. Water Sci Technol 2020;81(7):1365–74. 

[19] Cherchi C, Badruzzaman M, Oppenheimer J, Bros CM, Jacangelo JG. Energy and 
water quality management systems for water utility’s operations: A review. 
J Environ Manage 2015;153:108–20. 
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