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Abstract— One means by which the security of Internet-of-
Things (IoT)-enabled devices may be augmented is through
radio-frequency fingerprinting-based authentication methods.
As variability in CMOS processes increases with technology
scaling, the hardware imperfections that form RF fingerprints
can be controlled with small reconfigurable elements, enabling
the feasibility of RF fingerprinting as a low overhead security
measure for device authentication. To achieve rapid RF iden-
tification, we present an inherently secure RF power amplifier
and a convolutional neural network-based machine learning clas-
sifier through an exploration of combinatorial randomness and
self-aware detection mechanisms. By selecting different subsets of
thinly sliced power amplifier elements, combinations of random
process variations are exploited and updated to form a large
search space of distinct RF fingerprints and improve fingerprint
prominence. The rich features enabled by augmented device
primitives are updated in a time-varying manner to strengthen
built-in hardware security. Measurement results demonstrate the
effectiveness of this approach at generating distinguishable RF
fingerprints across a significant number of configurations.

Index Terms— Hardware security, radio-frequency fingerprint-
ing, integrated circuits, power amplifiers, combinatorial random-
ness, random intra-die variations, deep learning.

I. INTRODUCTION

HE increasing popularity of the Internet of Things (IoT)

paradigm has yielded an explosive increase in the data
production and diversity of the wireless ecosystem [1]. While
this growth has the potential to increase the quality of life
and enable business models to deliver higher levels of ser-
vice and customer satisfaction, the advantages of the Inter-
net of Things come coupled with major security concerns
stemming from a mix of lack of security measures for
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cost-effective electronics and a strong incentive for attack-
ers for whom successful attacks may yield disproportionate
dividends [2].

Threats to IoT systems include malign data injection and
node cloning at the physical layer, collision attacks and chan-
nel congestion attacks at the network layer, and malware at the
application layer. Addressing these threats is complicated by
the natural resource constraints of IoT nodes, which severely
limit the usage of generic encryption algorithms for main-
taining the confidentiality and force the usage of lightweight
authentication processes [1].

Physical layer (PHY) security has been investigated [3]-[5]
as one of the means of augmenting the security of IoT systems
and can serve as an additional barrier against node cloning
attacks. Supposing an attacker succeeds in collecting valid
authentication credentials from a weak node in a network,
they will also need to subvert PHY security to authenticate
to the network. PHY security approaches can be grouped
into three general subsets: channel state information-based
authentication, signal watermarking-based authentication, and
device-specific RF fingerprint authentication [3]. The first
type relies on such channel-dependent information as received
signal strength, angle-of-arrival, and channel state information
to authenticate a device, and is highly unreliable in a dynamic
environment. The second involves the embedding of a low-
power authentication signal into the original transmission.
Lastly, device-specific RF fingerprint authentication relies on
the extraction of features imprinted on wireless signals by
device-dependent nonidealities such as gain and phase imbal-
ances between the in-phase (I) and quadrature (Q) paths of
transmitters and power amplifier nonlinearity [4].

Device-specific RF fingerprinting has been shown to be an
efficient way of distinguishing between signals from different
transmitters, but often requires the usage of resource-intensive
modules to extract the features produced by the aforemen-
tioned device-dependent nonidealities [3]. Past works have
implemented this through the use of the fast Fourier trans-
form (FFT) to compute the power spectra of signal turn-on
transients [5], the generation of density-mapped images from
signals’ signal space representations [4], or the usage of the
FFT with I/Q samples of entire packets [6].
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However, the effectiveness of any RF fingerprinting scheme
is ultimately contingent on the distinctiveness of individual
devices’ features. Although it is axiomatic that even distinct
wireless devices with the same design will exhibit different
RF fingerprints as a result of random variation in the man-
ufacturing process, the actual extent to which two devices’
RF fingerprints may be distinguished from one another is
dependent on the device design and the specifics of the
manufacturing process.

To enhance the effective user capacity of RF fingerprinting-
based systems, there is a need to integrate configurability on
the transmit-side of RF fingerprinting systems. Configurability
adds dimensionality to the random variation that results in
the RF fingerprint of a device, increasing the range across
which RF fingerprints may occur and thus improving the
user capacity of the system. Past works have implemented
it by modifying the response of the wireless channel with a
configurable reflector positioned in proximity to the transmit
antenna [7], or by adding a functional block at the transmitter
to modify I/Q samples prior to transmission [8].

There exist limited options for imprinting configurable RF
fingerprints on a given signal with hardware. Deliberately
introducing differential nonlinearity (DNL)/integral nonlinear-
ity (INL) into the transmitter-side DACs in order to modulate
the transmitter nonlinearity is difficult to implement without
severely compromising system performance. The same is true
of introducing mismatches between transmitter in-phase and
quadrature signal paths and modulating mixer nonlinearity.
Configurable RF filters for applying RF fingerprints through
subtly shaping the power spectrum of the transmitted signal
are possible but require significant design effort to avoid overly
distorting the signal across configurations.

In this work, we propose an RF fingerprinting system
with transmitter-side configurability based on a reconfigurable
power amplifier (PA). By selecting subsets of thinly sliced
PA elements, the PA’s transfer functions are altered, yielding
distinctive fingerprints that may be classified with conventional
machine-learning (ML)-based techniques. Random process
variations ensure inter-subset distinctiveness, while the cumu-
lative parasitics of the PA slices maintain normal operation
across all configurations. Testing is conducted with modulated
input signals at 2.4 GHz and recordings made at baseband are
passed through a machine-learning classifier for extracting and
classifying the fingerprints.

The proposed approach for introducing RF fingerprint vari-
ability in order to enhance the effective user capacity of an
RF-fingerprinting system is both integrable on-chip, unlike the
meta-surface reflector proposed in [7], and does not overly
impact the performance of the configurable block. Further-
more, a wide range of variability is achievable in exchange
for moderate additional area consumption.

The remainder of this paper is organized as follows.
Section II describes the system architecture and the impact of
Vi, and S variation on a number of attributes of the PA output
signal and goes over the structure of the machine learning
model used to classify said signal. Section III describes the
measurement results and performance attained with the RF
fingerprinting system in a wireless communication system.
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Fig. 1.  The overview of the presented system. Only the devices with
correct time-varying RF fingerprints (RFFs) will be authenticated by the
machine-learning classifier in the receiver.

Section IV describes an FPGA implementation of the receiver-
side machine learning classifier, and Section V concludes the

paper.

II. SYSTEM ARCHITECTURE
A. System Overview

The overview of the presented system is shown in Fig. 1.
Transmitters will be authenticated when they manifest the cor-
rect time-varying RF fingerprints (RFFs). The main transistor
of the transmitter PA is divided into thin selectable slices,
a subset of which is enabled to configure the PA fingerprint.
The combinatorial random variations present in sub-micron
CMOS processes introduce significant threshold voltage (Vi)
and transconductance parameter (f) mismatch between the
selectable slices [9], injecting distinct features into the PA
output. The overall fingerprint embedded into the transmitted
signal is a result of the composite impact of the variations
presented within the enabled slices on the transfer function of
the PA.

In order to filter out malicious attackers from the signals
transmitted from local transmitters through time-varying RF
signatures, a convolutional neural network (CNN) classifier
is applied on the receive-side to extract signal features and
reconstruct the original element-selection bitstream map to
determine the differences between the time-stamped RFFs,
as shown in Fig. 2.

In a system with N reconfigurable transmitters, the receive-
side ML classifier would need to be trained across all M
possible configurations of each transmitter for a total of MN
configurations. M, the number of configurations to be used for
each transmitter, would be chosen to balance the number of
possible RFF sequences each transmitter could support and
the training overhead of the classifier. Information on the
specific RFF sequence to expect from a transmitter would
be exchanged during the handshake process in the form of
a sequence of pointers to a look-up table of RFFs.

Although it is feasible for an attacker to apply blind PA
modeling and predistortion to mimic the RFF of a transmitter
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Fig. 2. The transmitter utilizes combinatorial security primitives to augment
RF signatures for secure data transmission, while the convolutional neural
network (CNN) module is exploited to perform device authentication in the
receiver. The time-varying RFFs are synchronized with reconfigurable maps
between the transmitters and receivers.

in a typical RF fingerprinting system using an approach similar
to that of [10], the time-varying nature of the proposed sys-
tem’s RFFs would require an attacker to apply PA modeling to
each observed RFF and perform predistortion using the correct
sequence of fitted PA models, a task that requires significantly
more resources on the part of the attacker. Furthermore, the
configurability of the transmit-side RFFs permits changes to
the transmitter RFF sequences that can force an attacker to
re-train their PA models.

Because of the extreme popularity of the unlicensed
2.4 GHz ISM-band, especially for such IoT communica-
tions protocols as IEEE 802.15.4 and Bluetooth Low Energy
(BLE) [11], the system design was targeted at this frequency
band. A nonlinear high-efficiency Class E power amplifier
topology was chosen for the transmit-side PA in recognition
of the power constraints [oT systems are subject to.

B. Reconfigurable PA Structure

To validate our approach for generating configurable RFFs,
a single-ended 2.4 GHz Class E PA was designed in a 65 nm
CMOS process. Configurability was implemented by slicing
the main switching transistors into 12 selectable elements.
PA elements are selected by enabling individual PA tran-
sistor gate drivers with a rudimentary scan chain. Choosing
9 elements out of the 12 to be enabled yields a large search
space of 220 configurable subsets while avoiding a significant
reduction in output power. With 9 transistor elements selected
and a Vpp of 1.2 V, the PA outputs 17.4 — 20.7 dBm of
power across process corners in post-layout simulation after
parasitic lumped and coupling capacitances are extracted,
roughly 1.5 dB down from the output power resulting from
enabling all 12 elements. The full schematic and range of
output power across process corners are displayed in Fig. 3.

Configurability aside, cascoding with a bias voltage of Vpp
is applied to lower the voltage stress across the switching
transistor drains so as to account for the high drain voltages
characteristic of Class E operation. The switching transistors
are placed across an off-tuned series LC tank that brings the
drain voltage back down to zero at switching instants, and
fundamental power is extracted through a series fundamental
frequency resonator connected to the drain. Output power is set

Fig. 3. The Class-E power amplifier is designed with 12 selectable sections
that consist of the driver and the power-amplifier switch shared with the
RF choke and the output matching network. Enabling 9 elements from the
12 selectable ones results in a search space of 220 configurable subsets to
generate useful security primitives.

by matching the load to the corresponding resistance. On the
input-side, inverter pre-drivers are sized and collocated with
the selectable PA transistors to provide sharp switching to
achieve better drain efficiency.

C. PA Fingerprint Analysis

As stated in Pelgrom’s seminal paper [9], the standard
deviations of the Vryg and f mismatch between two MOSFETSs
of the same size is approximately proportional to the square
root of the MOSFET gate area. Given that the variances of
independent random variables sum, it is then possible to derive
a “self-mismatch” for Vty and f:

oy = LA (1)
I AVWEL
1 Ayro

oyr = (2)

V2 VWL

Variations in these device parameters within both the main
PA transistors and the inverter gate drivers ultimately super-
impose themselves on top of the transmitted signal, yielding
the overall PA fingerprint. Intuitively, S variations within
the PA transistors most impact the final height of the drain
current waveform in the PA transistor on-state by setting
the PA transistor on-resistance, while Vry variations in the
PA transistors and f variations in the inverter gate driver
transistors primarily affect the timing of the PA switching
action. To simplify this analysis, it is assumed that the inverter
gate drivers see a trapezoidal input signal with negligible
rise times, so that Vry variations in the inverter gate drivers
can be mostly ignored outside of their impact on the gate
driver transistor on-resistances. Because the reactive Class
E soft-switching LC tank restores the drain voltage to zero
at switching instances, it can also be assumed that the PA
transistors directly cross between cut-off and triode.

1) Fourier Analysis of PA Drain Current: Modeling the
inverter gate driver of an individual element as a pair of
switched resistances connected to the PA transistor gate
capacitance produces the gate voltage waveform depicted in
Fig. 4. The associated drain current waveform is approximately
exponential as a result of the series LR circuit formed by
the PA transistor on-resistance Ron and Lsw, the inductor of
the soft-switching block of the drain network. The effect of the
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Fig. 4. The Vgg waveform produced by the inverter gate driver at the PA

transistor input, and the resultant exponential drain current waveform. The
turn-on and turn-off times of the drain current are set by the rise and fall
times produced by the inverter gate driver, which are impacted by variations
in gate driver transistor . Inax, the peak transistor current the drain current
approaches in the on-state, is set by and impacted by variations in the PA
transistor /.

drain capacitance can be ignored because of it being shunted
by the comparatively greater conductance of the PA transistor.
T denotes the period of the 2.4 GHz carrier frequency (f;).

The rise and fall times (t;, tf) of the Vgg waveform produced
by the inverter gate driver are proportional to the time constant
of the overall RC system, and can be written as:

troty =17 x1n (9) 3)
7 = RpnNCGaTE, RupPCGATE 4
1
Rpn, Rup = Vov =VDD — Vry 5)

VovB’

The asymptote approached by the exponential drain current
waveform, Inax, is simply set by the on-resistance of the PA
transistor:

VDD
Ron

Ivax = (6)

Of the variables mentioned here, note that Rpn, Ryp, and
Imax are random variables with distributions dependent on
those of the Vty, f parameters associated with the inverter
gate driver and PA transistors. Writing the exponential equa-
tion for the PA transistor on-state drain current and integrating
over one period of the 2.4 GHz carrier frequency enables the
derivation of the frequency content of the PA drain current
over the duration of the on-state:

Ip,on(t) = Iyax (1 - 67%) , T= 11}502/ @)
Ip,on @) = Iuax (.i (A-B)+— (- D))
Jw Jo+7t
(8)
A e(—jw(0.5T+1rVV#)) B e(—jw(T—’fngg )
9
C = e(_(jw+r_l)(T—t'</VDTDH )),
b e(f(jw+r*1)(o.sr+”vvgg’ ) (10)

The periodic occurrence of the on-state at 2.4 GHz permits
the derivation of Fourier coefficients Cp ip for the full drain
current waveform of the PA element, where n denotes the

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

Rise/Fall Time Sensitivity of Drain Current Fundamental o

Phase Deviation from Mean (%)

Magnitude Deviation from Mean (%)

—©— Magnitude Deviation - ¢, N

-~ -~ Magnitude Deviation - ¢; Sk

s Phase Deviation - t, *|6

—+— Phase Deviation - ¢/

4 . . L . L L . . . 8

0.04 0.06 0.08 01 012 014 0.16 0.18 0.2
Rise/Fall Time as Proportion of T

@

Vry Sensitivity of Drain Current

25 T

%)

"
EEVEESS
5L, JUEVIEVE S o A

.
o
on from Mean (

Phase Deviz

Magnitude Deviation from Mean (%)

* —&— Magnitude Deviation - Fundamental

---%--- Magnitude Deviation - 2nd Harmonic

——*— Phase Deviation - Fundamental

¥ —£— Phase Deviation - 2nd Harmonic

220 I I 1 1 1 I 15
0.35 0.4 0.45 0.5

Veu (V)

(b

Fig. 5. Empirical calculation is used to conduct a sensitivity analysis of
drain current frequency components to changes in (a) rise and fall time of
Vgs and (b) PA transistor Vry.

harmonic number:

Cu,iD =fcID,0N(n x 27 fe) (11)

The overall drain current of the PA can then be determined
by summing the coefficients C, p over the total number of
selected elements.

2) PA Drain Current Sensitivity Analysis: The values of a
single PA element’s drain current waveform’s Fourier coef-
ficients corresponding to the fundamental and 2"¢ harmonic
were evaluated across variations in Vgs rise and fall time,
and PA transistor Vty so as to assess the sensitivity of drain
current properties to variations in Vtyg and f within the
inverter gate driver and the PA transistor. For this calculation,
IMAX was set to one, while VDD and t were set to typical
values for a PA design in the 65 nm process. Afterwards, the
percent deviations of said Fourier coefficients’ magnitudes and
angles from their mean values in the sweep were calculated
and plotted in Fig. 5.

It can be seen from Fig. 5a that the drain current frequency
content is comparatively more sensitive to variations in VGS
fall time as opposed to rise time. This is consistent with the
behavior associated with Class E operation — PA transistor
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Fig. 6. Each selectable PA element sees the above equivalent drain
impedances at the harmonics of the operating frequency. Beyond the 3rd
harmonic, the drain capacitance Cgw dominates the impedance seen by the
switching elements and provides an approximate harmonic short.

drain voltage is brought down to zero at the transition to
the on-state, lowering the sensitivity of the PA transistor
current to marginal changes in the timing of the turn-on
instant. Furthermore, all of the PA drain current is abruptly
shunted through the drain capacitance at the turn-off instance,
increasing the potential for changes in the timing of the turn-
off instance to strongly impact the PA operation.

Fig. 5b indicates that the 2"¢ harmonic component of the
drain current is significantly more sensitive to variations in PA
transistor Vry than the fundamental. Because the magnitudes
of the harmonics are an indicator of the overall power amplifier
nonlinearity, this implies that random variations in the PA tran-
sistor VTy significantly impact the PA’s overall nonlinearity,
which has been shown to introduce distinguishable RFFs into
the transmitted signal [6].

Overall, the frequency domain sensitivity analysis indicates
that variations in Vg and f within an individual selectable PA
element can produce significant RFFs that superimpose upon
the transmitted signal when the element is selected by the PA
reconfiguration process.

3) Drain Network-Induced Effects: The summed drain cur-
rent drawn by the selected PA elements is converted to
the overall Vpg seen across all elements by the harmonic
terminations supplied by the common PA drain network. The
approximate equivalent impedances seen at the common drain
node are shown in Fig. 6 and are primarily composed of
the equivalent capacitance of the parallel LC tank Lgw||Csw
responsible for restoring the drain voltage towards zero at
switching transitions and the impedance of the fundamental
frequency resonator that couples the common drain node with
the PA load. Qs is simply the quality factor of this coupling
resonator at the fundamental that results from the equivalent
load resistance Ryarch, while the parameter ¢ is a property
of the drain voltage restoration tank that is defined as:

@ fund
€ — fun

(12)
Wres, LC

This parameter is typically set to some value greater than

or equal to unity in consideration of the PA topology’s

power capacity curve, which approaches an asymptote of

0.102 as ¢ approaches infinity and is fairly constant for &

Ips ot
Vs,

Ins2(Vov, Vis)

Vasn Insn(Vov, Ves)

Vbs

Drain Network
Transfer Function
H(w)

}
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Fig. 7. The full PA system can be expressed as a feedback system with
summed currents from selected PA elements, feedback from Vpg to Ipg
through the equivalent impedance seen at the common PA drain Zp(w), and
the final transformation from Vpg to the PA output Vour.

greater than 1.5 [12]. For values of ¢ near unity, the effective
impedance of the LC tank peaks near the fundamental and
causes the equivalent impedance seen at the common drain
node to be that of the coupling resonator.

The full PA system can be roughly modeled as a set of
summed memory-less nonlinear current source blocks cor-
responding to the Ipg curves of each selected PA element,
whose summation feeds the PA drain network transfer function
after being converted to Vpg by the equivalent drain network
impedance [13] as shown in Fig. 7. Feedback from Vpg to
each of the current source blocks is present as a result of the
coupled relationship between Ips, Vps, and Zp, the equivalent
drain network impedance:

(13)
—Vbps Vrp.

IDS = GmVOU (1 — e Vinee ) = GmVOU (1 — ernee)

Vps = —IpsZp

(14)

Voo = Vs — Vru (15)

Intuitively, the reactive nature of the drain network
impedance causes the Zp block to exhibit a memory span
of some time Mp over which the output signal Vrg depends
on the input Ips ior. Because the memory span of the overall
PA system must be at least as long as that of the feedback
Zp block, we can take Mp as a lower bound for the overall
system memory. Plugging in typical values for 2.4 GHz PA
drain network components and empirically determining the
impulse response of the Zp block shows in Fig. 8 that Mp can
span well over several periods of the fundamental frequency
for a typical design as a result of the relatively lightly damped
resonant tanks present in the drain network.

Although the drain network is common to all PA ele-
ments and thus does not directly contribute to the variations
that result in the PA’s configurable RFF, the memory effect
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Fig. 9. Parasitic capacitive coupling between the input and transistor drain

nodes results in mixing action of the input signal by the switching of the
PA transistors. Finite rise and fall times at the PA transistor gates cause the
waveform resulting at the internal cascode nodes and common drain node
from the mixing of the capacitive feedthrough signal to appear as a series of
small asymmetrical spikes.

produced by its lightly damped elements effectively smears the
features generated by the variations in PA Vry, £, t:, and t¢
over several periods of the carrier, changing the “appearance”
of the fingerprints over time.

4) Input Signal Feedthrough Mixing: In addition to
the RFFs directly produced by the modulation of the PA
nonlinearity through variations in transistor £, Vryg, and PA
transistor gate driver rise/fall times, the feedthrough of the
PA input signal through such parasitic capacitances as the
inherent transistor gate-drain capacitors and electromagnetic
coupling between gate and drain metal lines in the layout is
mixed by the switching action of the PA transistor to yield
an additional feature.

Intuitively, the cascoded transistor of a given PA element
whose gate is driven with the finite rise and fall times t;
and ty will turn on when the gate voltage increases beyond
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Fig. 10. Histograms were generated for the Monte Carlo simulations for

the 12-slice Class E amplifier with 9 elements enabled. Each signal sample is
normalized to its peak amplitude and the mean (x), skewness (y ), and kurtosis
(x) of the sample’s instantaneous phase and frequency were calculated. The
results show the full range of RF fingerprints supported by the configuration
as induced by random mismatch.

the transistor Vty at slope Vpp/t; and shut off when the
gate voltage decreases below Vrpy at slope Vpp/ty. When the
transistor is on, it pulls both the common PA drain node and
the internal cascode transistor nodes towards the ground. When
it is off, however, the voltages at the common drain node and
internal cascode nodes are free to move about in accordance
with the energy stored in the common drain load network and
any signals coupled in via parasitic capacitances. The result is
that the periodically switching transistor acts upon the latter
in the same manner of a basic current commutating mixer’s
current steering differential pair on an RF signal fed in through
the tail transistor.

Fig. 9 shows the shape of the ensuing time-domain wave-
forms produced at the internal cascode and common drain
nodes as a result of parasitic capacitive coupling to the input
signal. The sharp “spikes” of the mixed waveform indicate that
it is rich in spectral content that is ultimately superimposed
upon the output waveform. Because the slopes of the spike
edges are inversely proportional to the rise and fall times of
the PA element’s Vgg waveform while the heights are directly
proportional to the PA element’s Vg, the nature of this
spectral content is strongly dependent on random variations
in input gate driver transistor £ and PA transistor Vry.

5) Monte Carlo Simulation for RFF Distribution: To further
verify the dependence of the PA RFF on f and Vg variations
that can be selected by enabling a subset of PA elements,
Monte Carlo mismatch simulation was conducted using the
65 nm PDK following post-layout extraction, with 9 PA slices
enabled out of 12. Each run used transient simulation to
calculate the output waveform using a single-tone 2.4 GHz
input signal. As an archetypal RFF, the Hilbert transform
was used to calculate RF-distinct native attributes (RF-DNA)
fingerprints from the simulation data [14]. Each signal sample
for which an RFF was calculated was normalized to its
peak amplitude and the mean, skewness, and kurtosis of the
sample’s instantaneous phase and frequency were calculated.
The resultant histograms are displayed in Fig. 10 and show
significant variation.

Similar reasoning to that which was used in the drain
current Fourier analysis can be applied to intuitively reason
that there also exists a dependence between the instantaneous
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Fig. 11. Monte Carlo simulations were conducted for enabling 9 of 12 Class

E PA elements with a 1 MHz bandwidth chirped input signal. The transient
simulation results from the Monte Carlo runs were used to calculated (a) FFT
and (b) ACPR metrics.

frequency/phase of the PA output signal and the Vs of the
selected PA transistor elements. We note that current only
flows through the PA transistor block when the PA transistor
input voltage exceeds the minimum Vth of the selected PA
transistor elements. Thus, the location of the positive and
negative edges of the PA transistor current waveform in
time effectively depends on the lowest Vy, value among the
selected PA transistor elements. The timing of these edges
translates to small changes in the instantaneous phase of the
PA output, permitting variations in PA transistor element Vi,
values produced by PA reconfiguration to translate to these RF
features.

6) Monte Carlo Simulation With Chirped Signal: To verify
the presence of a wide distribution of RFFs with a modulated
signal as input, a similar Monte Carlo simulation was con-
ducted, but with a 1 MHz bandwidth chirp signal to emulate
a bandlimited passband signal. A 4096-point FFT was taken
across runs and is shown in Fig. 11a. There appears to be a
wide variation of the FFT floor beyond the chirp bandwidth
across FFT runs, indicating that a wide distribution of RFFs
may be injected into the transmitted signal by the PA. This
is further confirmed by calculating the ratio between the
power of the chirped output signal and the average power
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& & & 1000
5 500 8 8
$ % 4 500
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11, Inst. Freq. v, Inst. Freq. K, Inst. Freq.
2000 2000 2000
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Fig. 12.  Monte Carlo simulations for the 12-slice Class E amplifier with
9 elements enabled were performed at the tt corner across temperature corners
to demonstrate the impact of temperature on RFF variability. Each signal
sample is normalized to its peak amplitude and the mean (u), skewness (y),
and kurtosis (x) of the sample’s instantaneous phase and frequency were
calculated in the same manner as in Fig. 10.

of a 20 MHz-wide band 100 MHz below the 2.4 GHz center
frequency, yielding an ACPR figure whose histogram is shown
in Fig. 11b. The wide variation is reflective of the results
of our sensitivity analysis of the PA drain current frequency
content, which appeared to indicate that variations in the PA
transistor Vg would yield distinguishable variations in the
PA nonlinearity characteristic.

7) Impact of Temperature and Aging on RFF Distribution:
Because of the dependence of transistor parameters such as
VT and S on both temperature and aging and the relationship
between said transistor parameters and the RFFs produced
by the proposed PA’s configurations, it can be deduced that
temperature and aging both exhibit a significant impact on the
set of RFFs associated with the possible PA configurations.
Running a schematic-level Monte Carlo mismatch simulation
with 9 slices enabled out of 12 at the # corner across a wide
temperature range and calculating RF-DNA fingerprints in the
same manner as in Section II.C.5 demonstrates this, as the
shapes of the resulting distributions of calculated RF-DNA
fingerprints visibly change between temperature corners. This
is illustrated in the histograms shown in Fig. 12.

Transistor aging can be expected to have a more pronounced
effect on the set of RFFs associated with the individual PA
configurations, as a result of its unevenly applied nature. Hot
carrier injection (HCI), one of the primary mechanisms of
device degradation, occurs through the injection of charge into
gate dielectric as a result of energetic carriers present in the
channel [15], and so ages the individual PA elements that are
enabled during operation. Because of the time-varying nature
of the transmitter RFFs, and thus the PA configurations in
the proposed system, HCI slowly skews the most commonly
occurring RFFs in the sequence of fingerprints away from their
positions in the RX-side training data distribution, degrading
classification accuracy over time.

Because both transistor aging and temperature changes
directly skew the transistor parameters connected to the RFFs
of the PA’s configurations, the RX-side classifier in the pro-
posed system would need to be re-trained for significant
temperature changes or after a sufficient period of time for
aging to become noticeable.
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Fig. 13. A convolutional neural network (CNN) model is used for signal classification. The output of the CNN aims to reconstruct the PA element vector.

TABLE I
CNN ARCHITECTURE
Layer diggrtlz?(:ns
Input 2xN
8 Ch 1x5 Conv, Stride =2 8xN/2
16 Ch 1x5 Conv, Stride =2 16xN/4
Max Pool 1x5, Stride = 2 16xN/8
FC 256
FC 12

D. Convolutional Neural Network

With excellent performance in computer vision and voice
recognition, deep learning techniques have also been inves-
tigated for learning features from RF signals. In [16],
O’Shea et al. suggested exploiting shift-invariant properties
of convolutional networks to extract features directly from
frames of time series data, without extensive pre-processing.
References [8] and [16] demonstrated that deep learning tech-
niques could classify various modulation types or transmitter
features of raw RF signals with high accuracy. In this work,
we designed a lightweight CNN targeted to be deployed in
FPGA for RFF classification.

Table. I shows the overall layout of the CNN architecture
that was chosen after examining several candidates for their
accuracy and robustness over data with different RF receiver
parameters. The model structure is visualized in Fig. 13.
This model accepts an input with size (B, N, 2) representing
(Batch-Size, number of input samples, I/Q channels of the
signal). The 1D convolution with I/Q channels can capture
the local temporal features between 1/Q symbols. Our CNN
model utilizes two 1D convolutional layers, with 8 filters of
kernel size 7 and 16 filters of kernel size 5, respectively.
After the last convolutional layer, the max-pooling layer with
a kernel size of 2 and stride of 2 down samples and propagates
the features with a minimal tradeoff in the classification
performance, effectively reducing the number of operations
and thus lowering the computing effort required. Because our
CNN structure is shallow, introducing any skip connections or
residual layers does not improve the accuracy of the model.
The convolutional layers are followed by two fully-connected
(FC) dense layers with a size of 256 in FCI and 12 in FC2
(output layer) to generate a 12-element output vector. Instead
of using one-hot encoding with an output size of 220 to
classify the 220 possible combinatorial RFFs generated by

the PA, we expected that 9 of the 12-element output vectors
will be activated to reconstruct the positions of the selected
elements in the PA in a multi-hot encoding style to classify up
to 220 RFF classes. As shown in Fig. 13, an exact matching
between the indices of the 9 largest elements in the output
vector and the indices of the enabled PA element vectors
indicates a successful classification. This enables the CNN to
account for the possibility that many combinations of the PA
elements emit non-prominent RFFs, by providing the ability
to drop some combinations and reduce the number of RFF
classes. Using this multi-hot encoding makes sure that the
CNN’s output size always stays constant at 12, and the model
can readily adapt to most RFFs configured with different
combinations of 12 elements. Also, using the output size of
12 instead of 220 largely reduces the computation cost and
the memory requirement of the CNN output layer.

The output of the model is connected to the Sigmoid
function as we use binary cross-entropy (BCE) loss function
for training the model and we need to make sure the output
is numerically stable to be compared with the original binary
PA element map. Any other layers’ output in the model are
connected with the Rectified Linear Unit (ReLU) activation
function. The Adam optimizer with the learning rate of
0.001 is used for training the model with batch size of 256.
The train-validation-test dataset split is 6:2:2. For the dataset
size of 160,600 with receiver ADC oversampling of 4 (input
vector size = 2 x 160), each epoch takes 1.2 seconds in average
for the model to be trained. After training for 4000 epochs,
the model with the lowest validation loss was selected to test
the performance on the testing dataset.

III. MEASUREMENT RESULTS

In order to demonstrate proof of concept, the 12-slice
Class E PA was taped out and measured in a simulated
wireless communications system using Bluetooth Low Energy
advertising packets. The chip micrograph is shown in Fig. 14,

with the PA occupying a core area of 0.27 mm?.

A. Data Collection Methodology

An AD9082-FCMA-EBZ evaluation board was used as both
transmitter and receiver with the Class E PA. An image of the
measurement setup is shown in Fig. 15. The onboard RF DAC
was set to repeatedly transmit BLE advertising packets at the
2.4 GHz carrier frequency, while the ADC sampled the PA
output at RF for down-conversion to baseband using a numeri-
cally controlled oscillator. Measurements were conducted both
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Fig. 14. A chip photo was taken of the power amplifier incorporating
fingerprint augmentation with combinatorial randomness in 65nm.

Fig. 15.
over the air with the configurable PA is shown here. In the foreground is the
AD9082-FCMA-EBZ evaluation board (mounted on Xilinx ZCU102) and PA
test PCB.

The measurement setup used to transmit and receive BLE packets

over the air (OTA) and with a cable. 730 preamble data are
recorded from each of the 220 PA combinatorial configurations
in order to have sufficient data points for training and testing
the convolutional neural network model. Upon collection, the
BLE packet preambles were isolated, making a total dataset
size of 160,600, and fed into the convolutional neural network
with the structure described in II. D for training, validation,
and classification tasks. A split of 6:2:2 was used to partition
the collected data between training, validation, and testing
datasets, apportioning 146 data points per PA configuration for
testing and validation to ensure accurate evaluation of model
performance.

B. Dataset Overview

Spectrum analyzer measurements of the PA output signals
are displayed across the 220 PA configurations in Fig. 16.
Mean power across the 1 MHz bandwidth of the signal varies
between £2 dB across all 220 configurations.

The resultant dataset was inspected with a dimension-
ality reduction technique known as t-Distributed Stochastic
Neighbor Embedding (t-SNE) [17] to determine the presence
of clusters in the dataset corresponding to the different PA

Measured Power Spectrum across PA Configurations

Power (dBm)

90 . . .

2.398 24 2.402 2.404 2.406

Frequency (GHz)

Fig. 16.  Spectrum analyzer measurements were taken of the PA output
signal while transmitting PHY 1M BLE advertising packets at the 2.402 GHz
channel.

configurations. t-SNE in particular is a variant of Stochastic
Neighbor Embedding that aims to capture the local structure
of high-dimensionality data while revealing global structures
using an approach that seeks to alleviate what is known as
the “crowding problem” and a number of performance issues
associated with other methods [18].

To avoid needing to process the entirety of the dataset
in this way, the CNN model was first used to process the
data and generate a confusion matrix, from which the most
distinguishable PA configurations could be determined. Then,
60 BLE preambles corresponding to each chosen PA config-
uration were randomly taken from the dataset for inspection.
t-SNE was used to cluster these preambles across the 64 most
distinguishable PA configurations as determined from the
confusion matrix produced by the CNN model.

Naively concatenating the real and imaginary components
of each preamble’s IQ samples and performing t-SNE with a
perplexity of 50 to prioritize the visualization of the dataset’s
global structure resulted in the plot shown in Fig. 17(a).
Although visible clusters corresponding to different PA config-
urations are present, several groups of points are located close
to one another in large “global” clusters, indicating that data
collected from several PA configurations are difficult to distin-
guish from one another while using 1Q samples to represent
the data. Using the magnitude of the FFT of each data vector
as input to the t-SNE routine and using Chebyshev distance as
a metric yielded significantly better clustering results as shown
in Fig. 17(b), with points in the low-dimensional representa-
tion further clumping together into dense groups. Although
this result implies that IQ samples as taken in by the CNN
model are not an optimal representation of the data, computing
alternative data representations such as instantaneous fre-
quency and short-time Fourier transforms [19] introduces addi-
tional overhead in the RX-side of the RF fingerprinting system.

C. Signal Classification

For the purpose of examining the robustness of the CNN to
different signal processing environments, the model is trained
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Fig. 17. t-SNE was used to visualize a subset of the dataset that was

collected by transmitting through a cable in order to verify the presence of
distinguishable RFFs associated with different PA configurations. In (a), the
real and imaginary components of the IQ samples were directly fed into the
t-SNE process, while in (b), the magnitude of the FFT of each BLE preamble
was fed into the t-SNE. Each color corresponds to a PA configuration.

and tested across signals with different sample-per-symbol
(SPS) rates and bit resolutions to understand the receiver
ADC'’s speed (over-sampling) and quantization requirements.
The collected dataset is quantized with 4, 6, 8, 10, 12, 14, and
16 bits and decimated to sampling rates of 1, 2, 4, 10, and
20 samples per symbol for a total of 35 different configurations
to be trained and tested by the CNN model. A low-pass
filter is applied prior to decimation to remove high-frequency
components that could be aliased.

The classification accuracy results are shown in Fig. 18.
Training with the cable transmission data was used to sim-
ulate a low noise condition, while OTA data was used
to simulate environments with additional noise. Looking at
the cable transmission results, the impact of bit-resolution
becomes less apparent for bit-resolutions higher than 10 bits,
beyond which the bit-resolution negligibly affected classi-
fication performance for the CNN model. Accuracy is not
significantly impacted by sample rate down to twice the
symbol rate for bit resolutions above 10-bits as well, below
which sample rate exhibits an increasing impact on classifier
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Fig. 18. Bit resolution and sampling rate were varied for both cable (a) and
over the air (OTA) (b) data to determine their impact on CNN accuracy.

accuracy. In Fig. 18(b), the classifier’s performance degrades
for SPS = 20. We observed that this is because the lightweight
CNN model overfits the training dataset when the sampling
rate is high and the input sequence is too long, which could
be addressed by using larger filters in the convolution layers
that are more suitable for longer input sequences. Overall, the
CNN could learn features more easily from the signals with
more sampling points, but it comes with the trade-off of a
linear increase in computational cost in both classification and
signal processing. We chose the model with an oversampling
rate of 4 samples per symbol (complex signal length = 160)
relative to the BLE symbol rate and 10-bit resolution as
a reference, which achieves >94% accuracy on 220-class
classification with both OTA and cable transmission to carry
out further analysis. This sample rate is typical of recent
RF fingerprinting works reported in CAS conferences, which
range from 8 samples per symbol in the case of a work
using BPSK modulation to 16 samples per symbol in a work
covering Zigbee devices [20]-[22].

It is expected that among the 220 possible RFFs generated
from the PA configurations, some RFFs are more prominent
than others, therefore, showing better classification results.
Following the previous test, the most prominent RFFs were
identified using a validation dataset of both OTA and cable
transmission data. We generated a confusion matrix, and by
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Fig. 19. CNN accuracy was determined for different numbers of

selected PA configurations. The CNN performance after the transfer learning
process (retraining) is included.

TABLE 1I

TRANSFER LEARNING SPECIFICATION

Number of Batch Size Epoch
Fingerprints

8 64 500

16 64 500

32 64 500

64 128 800

96 128 800

128 128 800
192 256 1000

selecting the configurations with the highest sensitivity (true
positive rate), sets of the N = 8, 16, 32, 64, 96, 128, and
192 most distinguishable PA configurations were composed
for each transmission model, and the configurations with high
false-positive rates are excluded in the dataset for this new
experiment. The CNN was then tested on the dataset only with
the best N configurations to show the classification accuracy
on the most prominent RFFs. Furthermore, we performed a
transfer learning procedure (re-training) for each configuration
set to boost the model’s classification accuracy on the selected
group of RFFs. This retraining process still only utilizes the
original training dataset that was being used to train the model.
The difference is that the signals generated from the least-
distinguishable combinations are excluded from the training
dataset at this time. The results shown in Fig. 19 depict
the promising performance of this method with and without
the re-training process. After re-training, the CNN model
successfully classifies 192 RFFs on the OTA signal with
>98% accuracy and 128 RFFs on the OTA signal with >99%
accuracy. The specification for the re-training process is shown
in Table II. The batch size and number of epochs used for
the retraining process are adjusted according to the desired
number of fingerprints, which takes the size of the available
dataset with different numbers of selected PA configurations
(730 x N) into account.

A 2™ chip sample was used to investigate the impact
of noise on system performance. The transmit power was
adjusted using a set of attenuators to set the signal-to-noise
ratio of the over-the-air measurement environment from 15 dB

Fig. 20. CNN accuracy was determined for different numbers of selected
PA configurations using a second chip sample across different signal-to-noise
ratios.

to 35 dB. The lower end of this SNR range was chosen in
consideration of the minimum SNR specification for achieving
the 0.1% bit error rate (BER) standard for BLE reported in
the literature pertaining to BLE demodulators, which ranges
from 14.4 to 15 dB for practical demodulators [23]-[24]
and is 12 dB for an optimal demodulator [25]. As shown
in Fig. 20, the accuracy for 220 classes falls from 98% at
35 dB SNR to 87% at 15 dB SNR and remains above 91%
for the 192 most prominent RFF configurations. Although the
classification accuracy is intuitively sensitive to noise level,
it is sufficiently high at lower SNR to indicate the resilience of
this approach for introducing RFF variability to channel noise.

1V. FPGA IMPLEMENTATION

FPGAs have shown growing interests in deploying the
deep learning inference engine [26], and more modern
Al-optimized FPGAs are being manufactured to specifically
support machine learning applications [27]. FPGAs have
many advantages over general-purpose computing units like
CPUs and GPUs for their task-specific parallel processing and
energy efficiency. Compared to ASIC designs, FPGAs provide
low engineering cost and hardware reconfigurability, which
promise a long shelf life. In this work, to support and accel-
erate the device identification on the edge, we implemented
an FPGA inference module for CNN with the architecture
proposed in section IL.D, which is visualized in Fig. 13. The
CNN inference module is designed with Vivado High-Level-
Synthesis (HLS) as an IP Block and deployed on Xilinx
ZCU102.

There are four types of layers presented in the CNN during
the inference: 1-D Conv layer, a fully-connected dense layer,
max-pooling layer, and ReLU layer. In this work, these layers
are implemented with an optimized memory access pattern
and are pipelined to achieve high throughput.

Fig. 21 shows the data dimensions in the 1D Conv layer and
how the operations are paralleled to accelerate the convolution.
The input to the Conv layer has a length of L;, with Cj,
input channels. Each kernel set has a size of K along with
Ci, channels to convolve over input data’s channels. The total
number of kernel sets is equal to the number of output channels
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Fig. 21.  Visualization of the 1D convolution operation and its dimen-
sionalities. The Parallel Convolution Window has a size of Input Channel
(Cin) x Kernel Size (K) to execute (Cj, x K) MAC operations in parallel to
produce a single output. The total trip count for convolving the whole input
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perations.

in this layer, which is C,,. If the input is applied with the
same-padding and the stride is S, the output length L,,; is
equal to the input length L;, divided by stride S, and § =2
is how we implemented our convolutional layers. The total
number of multiply-accumulate (MAC) operations in this layer
is LinxCinXKxCout Ty accelerate the convolutional operations,
we use a Parallel Convolution Window to compute some of the
MAC operations in parallel to reduce the latency of producing
the output. The Parallel Convolution Window has a size of
Cin x K, which is the size of a single kernel set. With this
window, C,,; kernel sets roll over the input data L,,, = L—S’”
times to produce all output, which brings down the total trip
count to % Combining this convolution acceleration
method with the CNN model introduced in section III, each
convolution layer has a trip count of 640 in this design.

Fully-connected (FC) layer is essentially a matrix multi-
plication between a 1-dimensional array and a 2-dimensional
array. The number of MAC operations in this layer is equal to
the input size L;, X output size L,,;, which is also the size of
the weights in the layer. The throughput of the FC layer can
be improved by running multiple MAC operations in parallel.
Fig. 22 shows two examples of matrix multiplication in the
FC layer with different parallel factors. At each clock cycle,
one input is loaded to be multiplied with the weights and
accumulated into the output buffer. The operation on top of
Fig.22 has a parallel factor of 4, and the operation on the
bottom has a parallel factor of 2. They differ in the number of
processing units (PE) for the MAC operation and the memory
access pattern. With processing units running in parallel, the
final trip count in the FC layer would become %.
The parallel factors for FC1 layer and FC2 layer are 128 and
6 respectively so that their trips counts do not exceed the trip
count of the Conv layers to achieve efficient pipelining of the
layers.
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Fig. 23. The implementation of the max pooling layer and RelLU layer is
shown. The max pooling layer has kernel size of 2 with stride of 2 to down
sample the input, and ReLU simply clears negative input to zero.

Fig. 23 shows the operations for the max-pooling layer and
the ReLU layer. The max-pooling layer in this model has a
kernel size of 2 and stride of 2 to downsample the input size
by a factor of 2. The ReLU layer’s output array is initialized
with zeros and any input larger than O will be passed into the
output array.

The final complete CNN module has the same structure as
shown in Fig. 13 with each layer developed in the methods
discussed in this section pipelined. It achieves a throughput of
151,975 classifications per second, latency of 0.043ms with a
dynamic power consumption of 0.46W running at 100MHz,
and a max clock frequency of 143MHz. The FPGA imple-
mentation’s performance and hardware resource utilization are
collected with Vivado implementation report and summarized
in Table III. We also compared the FPGA design with other
works targeting RF transmitter classification tasks that are
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TABLE III

FPGA IMPLEMENTATION PERFORMANCE AND COMPARISON
WITH OTHER WORKS

Resource Type This work OJCAS21 [28] MIL[CZJ(;]M19
220-class 6-class 6-class
Task RFF RFF Modulation
classification classification classification
. Convolutional Bayesian Fully
Classifier Neural Network | Neural Network Connected
Neural Network
Platform X(‘;‘g‘z%%g é())z Xilinx ZCU102 | ég‘;’% G
LUT 26,013 (9%) 9,094 (3%) 158,435 (58%)
BRAM Block 72.5 (8%) 49 (5%) Unknown
FF 25,347 (5%) 7,176 (1%) 16,222 (3%)
DSP 215 (9%) 89 (4%) 210 (8%)
16-bit fixed- 16-bit fixed- 16-bit fixed-
Data Type . . .
point point point
Dynamic 0.46 W 0.19 W 0.50 W
Power
Throughput
(classifications/ 151,975 347,222 41,666
second)

mostly related to our work. For multi-class classification tasks,
more classes to be classified would require stronger and
more complicated classifiers, therefore the hardware usage and
power consumption would also scale up. The CNN FPGA
module in this work provides a high throughput that may
be far beyond the throughput requirement in the real-RFF
identification environment, and it is also possible to have
trade-offs between the clocking rate and power consumption
to enable deploying the system on lower-power devices.

V. CONCLUSION

In this work, an RF fingerprinting system with a config-
urable PA on the transmit-side is proposed for the purpose of
enhancing user capacity. A Class-E PA with 220 configurations
total is designed and used to imprint configurable RFFs on
transmitted signals. We presented the measurement results
with an over-the-air test to demonstrate that the RF-fingerprints
generated by the combinatorial PA can be effectively classified
by CNN with accuracy >93% for 220-RFF classification
task and >98% for 128-RFF classification task. The CNN is
developed on FPGA to achieve an inference throughput of
more than 150,000 classifications per second.
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