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A B S T R A C T   

The ability to detect and map invasive plants to the species level, both at high resolution and over large extents, is 
essential for their targeted management. Yet development of such remote sensing methodology is challenged by 
the spectral and structural similarities among many invasive and native plant species. We developed a multi- 
temporal classification approach that uses unoccupied aerial vehicles (UAV) imagery to map two invasive 
annual grasses to the species level, and to distinguish these from key functional types of native vegetation, based 
upon differences in plant phenology. For a case study area in the western Great Basin, USA, we intentionally 
over-sampled with frequent (n = 8) UAV flights over the growing season. Using this information we compared 
the importance of spectral variation at a given point in time (i.e., with and without near-infrared wavelengths), 
with spectral variation across multiple time periods. We found that differences in species phenology allowed for 
accurate classification of nine cover types, including the two annual grass species of interest, using just three 
dates of imagery that captured species-specific differences in the timing of active growth, seed head production, 
and senescence. Availability of near-infrared imagery proved less important than true-color RGB imagery 
collected at appropriate time periods. Thus, multi-temporal information provides a substitute for more extensive 
spectral information obtained from a single point in time. The substitution of temporal for spectral information is 
particularly well suited to UAV remote sensing, where the timing of image collection can be flexible. The datasets 
arising from our multi-temporal classification approach provide high-resolution information for modeling pat
terns of invasive plant spread, for quantifying plant invasion risk, and for early detection of novel plant invasions 
when patch sizes are still small. Widespread application and up-scaling of our approach requires advances in our 
ability to model the variability in phenology that occurs across years and over fine spatial scales, even within a 
single species.   

1. Introduction 

Invasive plant species rank as one of the greatest threats to biodi
versity worldwide (Pimentel et al., 2001; Wilcove et al., 1998), and their 
control is critical for maintaining both economic and ecological values 
in socio-ecosystems already threatened by global environmental change. 
Control of invasive plants requires the application of management 
treatments that are carefully calibrated towards species-specific 
phenology and life history traits. For example, the application of post- 
emergent herbicides to reduce the establishment of invasive annual 

grasses is most effective when targeted to the period of emergence for a 
given species (Marushia et al., 2010). Also, treatments that reduce the 
population size of one invasive plant species may lead to population 
increases in a different, competing invasive plant species (e.g. Ogden 
and Rejmánek, 2005), requiring careful monitoring of treatment out
comes. Thus, the targeted control of invasive plants depends upon 
development of efficient and scalable methodologies for mapping them 
to the species level. 

Successful approaches to classification of invasive plants have 
commonly capitalized on species-specific differences in phenology 
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(Bradley and Mustard, 2006; Peterson, 2005), given that many plant 
species are spectrally and structurally quite similar but may exhibit 
important differences in the timing of key events in their life cycle, such 
as green-up, maximum growth, flowering, fruit and seed production, 
and vegetative senescence. Indeed, it is often possible to distinguish 
invasive species from co-occurring vegetation using a single image 
acquisition that is carefully timed to a particular phenological event 
such as flowering stage (e.g. Lepidium latifolium in California, USA, 
Andrew and Ustin, 2009; Jacobaea vulgaris in Schleswig-Holstein, Ger
many, Tay et al., 2018). However, high resolution, phenological map
ping of invasive weeds focusing on flowering cycles poses practical 
implementation challenges. While high-resolution (< 1 m pixel size), 
hyperspectral imagery is becoming more available and affordable, pri
marily using UAVs, large-scale hyperspectral sensors with high spatial 
resolution do not currently exist, so the ability to scale these approaches 
is limited. Furthermore, due to the logistical constraints of flight and 
image acquisition planning, leveraging flowering phenology pre- 
supposes the analyst knows when the flowering events will occur 
ahead of time (Müllerová et al., 2017); however, the flowering timing 
likely changes from year-to-year and across a landscape. Thus, 
leveraging phenology in a practical sense would benefit from a fixed set 
of start and stop times during a growing season, with multiple acquisi
tions within this time window that, in theory, cover the variability in 
both vegetative and reproductive phenology for each species without 
needing to time collections to a specific phenological event. Such an 
approach requires a multi-temporal classification method that in
corporates spectral information from throughout the growing season, 
and possibly the dormant season as well. For example, Martin et al. 
(2018) had success mapping invasive Asian knotweed species (Fallopia 
japonica; Fallopia x bohemica) using UAV imagery and a multi-temporal 
classification approach incorporating spectral indices from multiple 
image collection dates. 

Multi-temporal classification approaches have been applied to 
mapping of invasive annual grass species in the western United States, 
emphasizing the prevalent invader cheatgrass (Bromus tectorum) and 
most commonly relying on inter- or intra-annual spectral differences 
between the active growing season and the senescent period (Boyte 
et al., 2016; Bradley and Mustard, 2006; Clinton et al., 2010; Peterson, 
2005; Singh and Glenn, 2009). These approaches have been largely 
successful at capturing broad-scale spatial patterns, but comparison with 
fine-scale field data often shows large errors at the local scale. This is 
further complicated by the fact that since the earliest remote sensing 
efforts to map cheatgrass invasion, additional species invasions have 
continued, and a larger suite of invasive species now dominate many 
plant communities of the Intermountain West region. For example, both 
medusahead (Taeniatherum caput-medusae) and wiregrass (Ventenata 
dubia) are Eurasian annual grasses that have dramatically expanded 
their ranges (Davies et al., 2013; Davies and Johnson, 2008; Tortorelli 
et al., 2020). Other invasive forbs, such as tansy mustard (Descurainia 
pinnata ssp. intermedia) and Russian thistle (Kali tragus) frequently co- 
occur and may have phenological patterns that are similar to or offset 
the phenological patterns of invasive grasses such as cheatgrass. Thus, 
commonly applied approaches that use satellite imagery to distinguish 
invasive annual grasses from native perennial vegetation according to 
their phenological differences tend to lump together multiple species 
sharing broadly similar phenological characteristics (e.g. “winter 
annual”), and do not achieve a species-specific classification of invasive 
plants. 

Unoccupied aerial vehicles extend to larger areas the ability of field 
sampling to characterize the patchy distribution of plant communities, 
or even populations of a single species, at fine (<0.1 m) spatial resolu
tion (Rominger and Meyer, 2019; Tay et al., 2018). A further advantage 
of UAVs is the ability to collect data repeatedly at user-determined in
tervals. By facilitating repeated sampling within a growing season, UAVs 
allow for a more highly resolved quantification of phenological vari
ability in plant populations than could be accomplished with most 

satellite platforms. 
Capitalizing on the ability of UAVs to carry out high-resolution, 

multi-temporal classification for mapping invasive plants to the spe
cies level, we develop a methodology for distinguishing two annual 
grass species that co-occur in the Intermountain West, cheatgrass and 
medusahead, from each other and from native vegetation. These two 
species are spectrally and structurally quite similar during their period 
of active growth but exhibit subtle yet significant differences in seasonal 
phenology (Fig. 1). Cheatgrass has a phenology typical of winter annual 
plant species, establishing from seed during the winter season, reaching 
its peak greenness early in the growing season, flowering and setting 
seed early (during which time it appears reddish), and then becoming 
senescent by late spring when most native perennial species of the 
Intermountain West are still green (Peterson, 2005). Medusahead stays 
green later in the season than cheatgrass and most other annual grasses 
and forbs (Dronova et al., 2017). Thus, our study area where the two 
invasive grass species co-occur provides an excellent test system for 
developing multi-temporal classification approaches to improve inva
sive plant mapping methodology. Both species are particularly prob
lematic invasive weeds of the American West that are associated with 
losses of wildlife habitat and biodiversity, reduced forage production, 
and increased risk of wildfire (Knapp, 1996; Young, 1992). Both 
continue to expand their range through spread along roads and invasion 
of overgrazed rangelands, with increased propagule pressure leading to 
dominance of these species in near-monocultures following severe 
wildfire events (Balch et al., 2013). In our study area in western Nevada, 
USA we acquired frequent (n = 8 time periods) UAV imagery over the 
course of the growing season, to address the following questions:  

1. Do phenological differences allow us to accurately distinguish the 
species, given the full time series of spectra available? How impor
tant is spectral variation over time, vs. spectral variation at a given 
point in time?  

2. Which phenological stages (or sampling times) are most useful for 
distinguishing the species?  

3. Which portions of the spectrum are most useful for distinguishing the 
species? Do we need near-infrared (NIR) spectral information, or 
does a phenologically informed analysis allow us to differentiate the 
species using only the visible bands? 

Fig. 1. Phenological curves showing Normalized Difference Red Edge Index 
(NDRE) for medusahead (solid black line) and cheatgrass (light gray line) along 
with the sampling dates (bubbles), for medusahead and cheatgrass plots MD-3 
and CG-1. The x-axis shows the dates ordered from May 15 (Julian Day 135) 
with sampling dates for the flights depicted below. The three optimal sampling 
dates determined by this study are shown with the red bubbles. Precipitation 
(mm) and mean daily temperature (◦C) are shown on the secondary y-axis. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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2. Materials and methods 

2.1. Study area 

The study area is located on the east flank of Peavine Mountain in 
Reno, Nevada at an elevation of 1646 m and a latitude 39.58◦ N (Fig. 2). 
The study site is located on a gentle slope (<5◦) to the southwest 
spanning approximately 2.78 ha, having less than 7 m of relief. The area 
experiences a cold desert climate (i.e. hot, dry summers with cold, dry 
winters) with an annual average precipitation of 27.7 cm and the ma
jority of precipitation falling as snow or rain during the winter months 
(Fig. 1). Average January minimum temperature is −5.8 ◦C, and average 
July maximum temperature is 31.5 ◦C (PRISM Group, 2015). Native 
vegetation consists of Wyoming big sagebrush (Artemisia tridentata ssp. 
wyomingensis), antelope bitterbrush (Purshia tridentata), broom snake
weed (Gutierrezia sarothrae), spineless horsebrush (Tetradymia can
escens), and wide variety of native forbs, such as Anderson’s clover 
(Trifolium andersonii), spreading groundsmoke (Gayophytum diffusum), 
fernleaf biscuitroot (Lomatium dissectum), jawleaf lupine (Lupinus mala
cophyllus), slender phlox (Microsteris gracilis), and spiny phlox (Phlox 
hoodii). There are also a wide variety of invasive species at this site 
included medusahead (Taeniatherum caput-medusae), cheatgrass (Bromus 
tectorum), Russian thistle (Kali tragus), redstem filaree (Erodium cicuta
rium), bur buttercup (Ceratocephala testiculata), prickly sow-thistle 
(Sonchus asper), and seeded crested wheatgrass (Agropyron cristatum). 
Site selection considerations were low relief, ease of access, and suffi
cient medusahead to obtain a representative sample, interspersed with 
common native species adjacent to sizable tracts (large patches >0.05 
ha) of cheatgrass. 

2.2. Data acquisition and processing 

UAV imagery was collected across the growing seasons of medusa
head and cheatgrass between the spring thaw and the summer dry down 

from May 15th to July 20th, 2017 (8 total flights – May 15, May 19, June 
1, June 7, June 15, June 23, June 30, July 20). The 5-band spectral data 
were collected with a Micasense RedEdge sensor (https://support.micas 
ense.com/hc/en-us/articles/360039671254) mounted on a Tarot 
quadcopter UAV platform flown at an altitude of approximately 30 m. 
Flight times were typically 45 min centered around solar noon and were 
based on pre-programmed flight plans using Universal Ground Control 
Software (UgCS) version 3.0.1302 software (SPH Engineering, Riga, 
Latvia) with a single battery swap and a single pass flight pattern. 
Photographs were captured ensuring 80% frontal overlap and 70% side 
overlap, as is needed to obtain an accurate digital surface model using 
photogrammetric software. The resulting data have 2-cm spatial reso
lution and spectral resolution of Blue (475 nm center, 20 nm band
width), Green (560 nm center, 20 nm bandwidth), Red (668 nm center, 
10 nm bandwidth), Red Edge (717 nm center, 10 nm bandwidth), and 
NIR (840 nm center, 40 nm bandwidth). A MicaSense calibrated 
reflectance panel was used to calculate reflectance values from the 
RedEdge imagery; new calibration images were captured after each 
flight. Eight ground control point tiles were deployed for the duration of 
the study and used to co-align data from different flight dates and geo- 
reference the image stack using a Trimble R10 GPS receiver with RTX 
solutions (Trimble Inc., Sunnyvale, California, USA) with horizontal 
accuracy up to 8 mm and vertical accuracy up to 15 cm. 

Composite rasters were processed in Pix4D v. 3.2 (Pix4D, Lausanne, 
Switzerland) using structure-from-motion (SfM) techniques that 
mosaicked images across all dates. Although Pix4D created a three- 
dimensional point cloud that is used to tie images together we did not 
use the height data in our classification of vegetation. All bands, across 
all time periods, were co-aligned in Pix4D resulting in an average hor
izontal positional precision of 1.26 cm. The eight ground-control points 
obtained from the Trimble were used to georeferenced the images into a 
NAD83 UTM Zone 11 projection. Calibration to reflectance was ach
ieved with an empirical line approach (Smith and Milton, 1999) that 
took advantage of four spectrally diverse field targets that were laid out 
prior to each flight. Reference reflectance data were collected in the field 
on July 20, 2017 during cloud-free conditions just prior to the UAV 
flight using a Spectral Evolution SR-3500 (Spectral Evolution Inc., 
Haverhill, Massachussetts, USA). The SR-3500 collects data at 3-nm in 
the visible range. These data were resampled to match the band widths 
of the Micasense RedEdge camera and a linear regression was used to 
convert camera digital numbers to reflectance for each band 
individually. 

Field vegetation data was collected using sixteen 1-m square quadrat 
frames on the day of each flight. Quadrat frames were located to ensure 
representative, homogeneous patches of the same vegetation types as 
used for classification. To ensure that quadrat frames were visible in 
each image we permanently placed four metal five-inch spikes at the 
corner of each frame, and we placed the frames on each of the metal 
spikes prior to each flight. Quadrat frame locations were initially 
collected with a Trimble GeoXT GPS unit (Trimble Inc., Sunnyvale, 
California, USA), and quadrats were re-photographed upon each sub
sequent visit. Initial vegetation measurements included estimating the 
aerial cover of each plant species as well as bare soil, rock, animal feces, 
medusahead litter, cheatgrass litter, and other plant litter. Each quadrat 
frame was classified (Fig. 2) into one of the following nine cover types 
based on its dominant vegetation type: annual forb, cheatgrass, crested 
wheatgrass, medusahead, litter, perennial forb, perennial grass, shrub, 
and bare soil. Slight differences in quadrat frame placement were 
accounted for such that pixels that had quadrat frames visible in them 
during any of the flights were removed. We randomly selected 9168 
points from the resulting polygons to use for model training extracting 
each spectral band for each flight date. To obtain a fully independent 
validation we digitized polygons of dominant vegetation types and 
extracted 258,554 random points to use as validation. We manually 
digitized polygons using all eight dates of imagery as a background 
image coupled with extensive field knowledge of the site. 

Fig. 2. UAV color-composite image taken on June 1, 2017 showing the location 
of the study area within Nevada relative to the location of the cities of Reno and 
Sparks and vegetation plots within the study area (yellow dots). MD2 and CG2 
are the two representative medusahead and cheatgrass plots shown in Fig. 3. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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2.3. Image classification 

We used the Random Forest algorithm to classify each pixel in the 
composite image into one of the nine dominant vegetation types. 
Random Forest is an ensemble decision tree classification in which trees 
are trained using bootstrapped sampling (Breiman, 2001). Random 
Forest has been extensively used for image classification because of its 
high performance, lack of reliance on an underlying data distribution, 
and its ability to handle both continuous and categorical predictors 
(Belgiu and Drăguţ, 2016; Pal, 2005). For this study we used the Ran
domForestSRC package in R (Ishwaran et al., 2008). Models were run in 
classification mode with default parameters using 1000 trees (ntree) and 
with the number of variables for splitting (mtry) set to the square root of 
the number of predictors. In order to compare the importance of 
different spectral wavelengths and different dates on the classification 
accuracy, we ran separate Random Forest models (i.e. virtual experi
ments) for All Bands (including NIR bands) vs. only RBG bands, across 
all possible combinations of one-date, two-date, and three-date image 
sets. Importance values for individual predictors (band*date combina
tions) were calculated using the mean decrease in impurity (Gini Index). 
Models were evaluated by creating a classification confusion matrix and 
assessing overall accuracy, Cohen’s kappa, and by comparing the overall 
accuracy to that of a null model in which the probability of all classes is 
equal. 

3. Results 

3.1. Do phenological differences help to distinguish species? 

The importance of species-specific phenology for distinguishing in
dividual plant taxa was evidenced by the ability of multi-temporal 
models to provide superior classifications. This was particularly the 
case for the overall classification of 9 cover types for which there was a 
10% decline in balanced classification accuracy, for the best single-date 
model compared to the best-fitting model that included all possible dates 
(54% vs. 64%). The best-fitting model had overall classification accu
racy of 64.3% (95% CI: 64.1% - 64.5%) and a Cohen’s Kappa of 0.55. We 
considered this to be a reasonably good classification accuracy given the 
relatively large number of plant cover types (9) that were classified and 
the expected level of spectral similarity among many of them (Table 1). 
Both cheatgrass and medusahead, the two target cover types of primary 
interest, were classified with high sensitivity (true positives; cheatgrass 
= 0.89, medusahead = 0.95) and high specificity (true negatives; 
cheatgrass = 0.90, medusahead = 0.90). Other plant cover types, 
however, were commonly misclassified. Annual forbs were classified 
with high specificity (0.99), but with a high proportion of false positives 

(0.85), likely due to the large number of spectrally distinct species 
included within this plant cover type. Other types with high specificity 
but a tendency towards false positives included crested wheatgrass 
(often misclassified when actually medusahead or litter) and shrubs 
(often misclassified when actually cheatgrass). Both cheatgrass and 
medusahead were commonly misclassified as perennial grass, which had 
a false positive proportion of 0.48 (Table 1). The perennial forb, litter, 
and soil types were classified with high accuracy, although litter and soil 
were often confounded with one another (Table 1). Visual inspection 
shows the skill of the classification in detecting and delineating patches 
of individual plant species (or even individual plants) at high resolution 
(~ 2 cm) (Fig. 3). 

For overall classification accuracy (i.e. balanced accuracy across all 
nine cover types; Table 1), as well as for individual accuracy statistics for 
cheatgrass and medusahead classifications, the best models included at 
least three sampling dates (Table 2). Best models for individual species 
(cheatgrass or medusahead) were derived from just three dates 
(Table 3), whereas the best overall classification of all species required 
the maximum information available, all bands and all dates (Table 2). 
Three-date models were always superior to two-date and single-date 
models. Importantly, the most predictive three-date models differed 
across species with respect to which dates were sampled, reflecting 
differing phenologies of multiple plant species present (Fig. 1). Medu
sahead plants were still small and indistinct during the onset of active 
growth for cheatgrass; medusahead was still in its period of active 
growth when cheatgrass seed heads had matured (“red phase”); and 
cheatgrass had senesced by the time medusahead seed heads were 
produced. 

3.2. What phenological stages, or sampling times, are most useful? 

The best models for overall classification, as combinations of cam
eras and sampling dates, were not the optimal models for either 
medusahead or cheatgrass classification (Table 2). Furthermore, the best 
model for medusahead was not the best model for cheatgrass, and vice 
versa. However, there were three-date models that performed quite well 
for both species, with only small accuracy differences from their 
respective optimal models. For example, the model that best optimized 
classification accuracy across all taxa using just the visible bands (RGB 
238) was the third best model overall (accuracy loss of 1.5%), the ninth 
best model for cheatgrass (accuracy loss of 1.9%), and the 55th best 
model for medusahead (accuracy loss of 4.2%). This model required 
three flights on May 19, June 1, and July 20, respectively. Images 
collected at these dates allowed differentiation of the two species ac
cording to their varying phenological development; note that cheatgrass 
transitioned from the green phase to an early senescent phase in the time 

Table 1 
Confusion matrix for the Random Forest classification model using all time periods and all spectral bands (i.e. full model) with field-mapped classes (reference data) in 
columns and model-predicted classes as rows. Values along the diagonal are correct predictions, values below the diagonal are false negatives, and values above the 
diagonal are false positives. The table includes accuracy statistics such as sensitivity (the proportion of true positives that are correctly identified), specificity (the 
proportion of true negatives who are correctly identified), and balanced accuracy ([sensitivity + specificity]/2).  

Class Reference data 

Annual forb Cheatgrass Crested wheatgrass Medusahead Litter Perennial forb Perennial grass Shrub Soil 

Annual Forb 9084 1068 25 117 4 578 124 86 18 
Cheatgrass 10,453 19,729 82 427 0 345 1499 15,699 0 
Crested Wheatgrass 26 54 2071 0 13 11 47 1372 1 
Medusahead 14,629 660 958 101,231 48 325 1308 2584 27 
Litter 19,327 0 1771 3256 8962 187 18 39 5615 
Perennial Forb 6221 611 2 105 40 8359 107 4425 67 
Perennial Grass 1957 81 166 1172 0 0 3635 328 0 
Shrub 220 379 0 0 0 9 205 4944 0 
Soil 243 2 23 0 4491 503 26 377 30,593 
Total 62,160 22,584 5098 106,308 13,558 10,317 6969 29,854 36,321 
Sensitivity 0.146 0.888 0.378 0.952 0.661 0.810 0.522 0.166 0.842 
Specificity 0.991 0.895 0.995 0.890 0.892 0.959 0.987 0.997 0.978 
Balanced Accuracy 0.569 0.892 0.686 0.921 0.776 0.885 0.754 0.581 0.910  
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period between May 19 and June 1 (Figs. 1, 3; Fig. S1). However, if the 
goal were to maximize prediction accuracy for medusahead while still 
providing accurate predictions for all taxa, an alternative model 
(ALL156) used data from all cameras including the NIR bands, was the 
fifth best model overall (accuracy loss of 2.5%), the 89th best model for 
cheatgrass (accuracy loss of 11.4%), and the third best model for 
medusahead (accuracy loss of 0.9%). For our field sites in 2017 this 
model required flights on May 15, June 15, and June 23. 

Different dates proved more important depending upon whether the 
main objective of the study is to identify (a) cheatgrass, (b) medusahead, 
or (c) all major cover types. For example, variables from May 19, June 1, 
and June 7th had the highest variable importance factor for cheatgrass 
whereas June 7, June 23, and July 20th were most important for pre
dicting medusahead (Fig. 4). In contrast, variable importance in pre
dicting all cover classes was much more evenly spread across the eight 
dates. 

3.3. What portions of the spectrum are most useful? 

Although the information contributed by the NIR portion of the 
spectrum led to improved classification accuracy for medusahead and 
for mapping of all plant cover types (but not for cheatgrass individually), 
differences were small relative to classifications that used only the 
visible spectrum (Tables 3, 4). The RGB-only classifications also resulted 
in similar-looking maps with similar spatial distribution of classification 
error. 

For classification of all plant cover types, the Red band consistently 
ranked high in variable importance score from the Random Forest 
analysis (Fig. 5a). The Blue band also ranked relatively high. The Green 
band generally ranked low except for the 3rd acquisition date, when 
cheatgrass was beginning to senesce and medusahead beginning to 
green up. The NIR (820–860 nm) and NIR Red Edge (712–722 nm) 
bands consistently ranked lower in importance. 

The visible bands were also the most important for classifying 
cheatgrass, with the top five variables in importance alternating be
tween Red and Green bands acquired on different dates (Fig. 5c). The 
two NIR bands (Red Edge and near-infrared) for May 19 and June 1, 
dates bounding the interval that separated the active growing stage of 
cheatgrass from its onset of senescence, also proved important. The 

Fig. 3. Maps showing the three best imagery dates and vegetation classification for a representative medusahead and cheatgrass plot (labeled MD2 and CG2 in 
Fig. 2). Panels show A) medusahead quadrat May 19, B) medusahead quadrat June 1, C) medusahead quadrat July 20, D) classified map surrounding medusahead 
quadrat, E) cheatgrass quadrat May 19, F) cheatgrass quadrat June 1, G) cheatgrass quadrat July 20, H) classified map surrounding cheatgrass quadrat. 

Table 2 
Ten best overall (“all cover types”) models ranked by classification accuracy and 
Cohen’s kappa.  

Experiment Overall Cheatgrass Medusahead 

Accuracy Kappa Accuracy Accuracy 

All Bands, All Dates 0.645 0.557 0.861 0.921 
RGB Only, All Dates 0.633 0.544 0.896 0.912 
RGB Only, Days 2, 3, 8 0.630 0.535 0.901 0.887 
RGB Only, Days 1, 3, 8 0.624 0.533 0.899 0.887 
All Bands, Days 1, 5, 6 0.620 0.527 0.807 0.920 
All Bands, Days 1, 5, 7 0.618 0.523 0.816 0.917 
All Bands, Days 2, 3, 8 0.614 0.521 0.844 0.883 
All Bands, Days 1, 3, 6 0.613 0.522 0.842 0.918 
All Bands, Days 2, 3, 6 0.610 0.513 0.836 0.905 
All Bands, Days 1, 6, 7 0.609 0.516 0.765 0.920  

Table 3 
Ten best models for medusahead and cheatgrass ranked by classification accu
racy and Cohen’s kappa.   

Experiment Cheatgrass 
accuracy 

Experiment Medusahead 
accuracy 

75 RGB Only, Days 
1, 2, 3 

0.920 All Bands, Days 
5, 6, 7 

0.929 

81 RGB Only, Days 
1, 3, 4 

0.910 All Bands, All 
Dates 

0.921 

96 RGB Only, Days 
2, 3, 4 

0.909 All Bands, Days 
1, 5, 6 

0.920 

99 RGB Only, Days 
2, 3, 7 

0.908 All Bands, Days 
1, 6, 7 

0.920 

58 All Bands, Days 
3, 4, 8 

0.906 All Bands, Days 
1, 3, 6 

0.918 

97 RGB Only, Days 
2, 3, 5 

0.904 All Bands, Days 
1, 5, 7 

0.917 

57 All Bands, Days 
3, 4, 7 

0.904 All Bands, Days 
3, 6, 7 

0.916 

13 RGB Only, Day 3 0.903 RGB Only, Days 
5, 6, 7 

0.915 

100 RGB Only, Days 
2, 3, 8 

0.901 All Bands, Days 
3, 5, 6 

0.914 

113 RGB Only, Days 
3, 4, 7 

0.901 All Bands, Days 
3, 6, 8 

0.913  
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variable importance pattern was somewhat different for medusahead 
classification, where the Blue band on June 7 proved most important, 
and Blue, Red, and NIR bands acquired on different dates all proved 

important (Fig. 5b). 
Average importance scores by band and by camera support the 

conclusion that the NIR camera and bands are less important than true- 

Fig. 4. Box and whisker plot showing the average variable importance by date pooling across spectral bands.  

Fig. 5. Variable importance from the Random Forest models for A) all vegetation types classification, B) medusahead classification, and C) cheatgrass classification.  

Fig. 6. Box and whisker plot showing the average variable importance values for spectral bands and cameras, pooling across flight dates. A) Average variable 
importance for all spectral bands for the “all vegetation” model, medusahead model, and cheatgrass model. B) Average variable importance for all spectral bands for 
the “all vegetation” model, medusahead model, and cheatgrass model. RGB bands include the Blue, Green, and Red wavelengths whereas the Micasense includes the 
additional Red Edge and NIR bands. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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color RGB cameras for detecting and classifying the plant cover types 
when multi-temporal imagery is available (Fig. 6). In particular, the Red 
band is vitally important for predicting annual grasses, such as cheat
grass and medusahead, and was consistently the most important vari
able (Fig. 5, Fig. 6a). Our results also suggest that the Blue band may 
outperform the Green band, particularly when it comes to predicting 
medusahead (Fig. 5, Fig. 6a). Finally, the utility of the Red Edge and NIR 
bands, while appearing to provide some unique information, may be 
largely diminished through the use of carefully timed flights that collect 
information at optimal phenological stages. When variable importance 
is averaged among the five variables of the Micasense camera, average 
variable importance is less than for the RGB cameras (Fig. 6b). 

4. Discussion 

Although our application remains limited in spatial extent, we have 
demonstrated multi-temporal classification as a viable tool to distin
guish plants to the species level using often subtle phenological differ
ences. More generalized remote sensing approaches, developed for 
mapping at regional scales, produce aggregated classification of multi
ple invasive species having roughly similar phenology. For example, 
invasive annual grasses of the western United States have been classified 
using differences in both intra-annual phenology (earlier green-up and 
senescence than native perennial vegetation) and inter-annual 
phenology (greater variability from year to year associated with 
annual precipitation). Peterson (2005) and Boyte et al. (2019) devel
oped satellite-based classifications of annual grass cover that are based 
upon differences between spring NDVI and summer NDVI. The resulting 
classifications have been widely used to describe the relative dominance 
of invasive cheatgrass (Bromus tectorum) throughout the Intermountain 
West (e.g. Boyte et al., 2015; Boyte et al., 2016; Peterson, 2005). 
However, they are often not species-specific to cheatgrass and likely 
include diverse mixtures of various other native and non-native species 
with early-season phenology including medusahead, early-season mus
tards such as Descurainia spp., and early-season bunchgrasses such as 
Sandberg bluegrass (Poa secunda) and bottlebrush squirreltail (Elymus 
elymoides). Taking a different approach, other researchers have used the 
difference in vegetation index (VI) values between high and low rainfall 
years to classify invasive annual grasses according to their interannual 
variability relative to native perennial vegetation (Bradley and Mustard, 
2005; Bradley and Mustard, 2006). Although the resulting classifications 
are sometimes interpreted to quantify abundance patterns of a single 
species (e.g. cheatgrass), other annual plant species can be confounded 
with the focal species of interest. Even when applied to an ecosystem 
where the focal species is the only dominant early-season annual grass 
species, the approach is insensitive to subsequent invasion by other 
invasive annual plants as is occurring throughout the Intermountain 
West region, where medusahead has been gradually replacing cheat
grass over the past half-century (Bateman et al., 2020; Hironaka, 1961; 
Hironaka, 1994; Torell et al., 1961), and where other invasive annual 
species such as wiregrass (Ventanata dubia) have steadily increased in 
dominance (Nicolli et al., 2020). 

Our study further demonstrates that temporal information provides a 
substitute for more extensive spectral information obtained from a sin
gle point in time, as previously observed by others who have used multi- 
temporal classification to monitor vegetation phenology and dynamics 
(e.g. Sousa et al., 2019; Sousa and Davis, 2020). Previous efforts have 
accurately classified medusahead distribution and abundance from 
single-date imagery using NIR spectral information from airborne sen
sors, collected from either a single late-season image (Bateman et al., 
2020), or from a single early-season image (Dronova et al., 2017). 
Similarly, the most accurate single-image classification from our study 
utilized information from NIR bands. However, a multi-temporal clas
sification using imagery from three dates over the growing season did 
not require NIR information to achieve an optimal classification (Ta
bles 3, 4). Indeed, the substitution of temporal for spectral information is 

well suited to UAV remote sensing, where the timing of image collection 
can be flexible. This substitution also can reduce the cost of invasive 
plant mapping in situations where more expensive multispectral or 
hyperspectral sensors are prohibitively expensive. However, UAV 
remote sensing can be inherently expensive due to the labor and com
puter hardware costs of the intensive image processing that is often 
required. 

A remaining challenge to be resolved is the spatial variability in 
phenology (i.e. complex “phenological landscapes” sensu Cole and 
Sheldon, 2017), both within and between single species, that is present 
at both local and landscape scales. Cole and Sheldon (2017) found 
intraspecific variability in budburst timing of European trees to be 
related to elevation, spring temperature, habitat type, and soil type, with 
different environmental influences proving important for different tree 
species. At a given point in time, even a single species can exhibit sub
stantial spatial variability in phenology associated with the physical 
environment (Andrew and Ustin, 2009; de Keyzer et al., 2017; Zhu et al., 
2018). Trait variations among sub-populations or individuals within a 
single species can give rise to spatial variability in phenology, both at 
range-wide scales along regional climate gradients (e.g. Fraxinus amer
icana throughout its North American range; Liang, 2019) and at finer 
spatial scales where genetic variability is high, or where clonal species 
occur in distinct patches (e.g. Populus tremuloides; Donaldson and Lin
droth, 2008). Differences in disturbance history (Paritsis et al., 2006), 
herbivory and grazing management (Zhou et al., 2017), and the influ
ence of historical land-use legacies also exert strong influences on spatial 
variability in plant phenology, although more research is needed. 
Particularly for herbaceous plants in arid and semi-arid landscapes, such 
spatial variability in phenology can occur over short distances (10s to 
100 s of meters), is associated with fine-scale spectral variability even 
within a single species, and can be problematic for any phenologically- 
based approach to species-level vegetation classification. 

Even where phenology is relatively uniform across a large area, 
phenological timing will vary from one growing season to the next due 
to interannual variability in temperature, precipitation, or other climate 
variables. This is particularly true for arid and semi-arid landscapes, 
where increasing aridity is generally associated with increasing inter
annual variability in precipitation, leading to pronounced resource 
pulses that strongly influence ecological dynamics (Chesson et al., 
2004). 

Because of such spatial and temporal variability in phenology both 
within and among plant species, the researcher will typically lack 
advance knowledge of the ideal timing for data acquisition for a given 
study landscape and year. Ultimately data acquisition in support of 
phenologically-based vegetation classification will be facilitated by 
improved methods for modeling phenological variation spatially across 
heterogeneous landscapes (Andrew and Ustin, 2009). Recent applica
tions using land-based phenocams can provide suitable high-resolution 
data for developing models of phenological variation over fine spatial 
scales (Richardson et al., 2009; Snyder et al., 2019). In particular, the 
North American PhenoCam network holds great promise for providing 
long-term phenological information across environmentally diverse lo
cations (Richardson et al., 2018). 

The combination of high spatial and temporal variability in 
phenology for rangeland ecosystems presents a challenging problem for 
matching the timing of image acquisition with phenology. In addition to 
improved methods for modeling phenology over space and time, 
research teams seeking to implement a phenology-based multi-temporal 
classification approach will benefit from flexibility and the ability to 
mobilize rapidly to conduct data collection, as well as from local 
knowledge of site conditions and phenological status of plant species of 
interest. 

We have demonstrated that it is possible, at the scale of an individ
ual, well-characterized field site, to reliably distinguish multiple species 
of invasive annual grasses from each other and from co-occurring native 
species, using differences in plant phenology. The datasets arising from 
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such methodologies provide high-resolution information for modeling 
spatial patterns of invasive plant spread, or for quantifying the ecolog
ical risk of plant invasion at fine spatial scales. Practical implications of 
high-resolution, single-species mapping include improved early detec
tion of novel plant invasions when patch sizes are still small and easy to 
control (i.e. “early detection rapid response” or EDRR). Control of 
invasive plants is most effective at the earliest stages of the invasion 
process (Pyšek and Richardson, 2010; Westbrooks, 2004), requiring 
mapping methods that can reliably detect invasives before they have 
already become dominant over extensive areas (Bradley, 2014; Hestir 
et al., 2008). High-resolution mapping at the species level can also 
support management of pathways and vectors for invasive plant estab
lishment (e.g. Davies and Sheley, 2007). Additionally, although invasive 
plants were the focus of our particular study, species-level vegetation 
mapping should also prove valuable for monitoring and management of 
native plants of conservation concern. 

Our UAV-based classification is limited in that only a relatively small 
area can realistically be mapped given current technological limitations. 
The feasibility of up-scaling our approach – while not clearly demon
strated in the current study – is suggested by other studies that have used 
high-resolution classifications of plant invasion as training data for 
broader-scale classifications of imagery from moderate-resolution sat
ellite platforms such as Sentinel and Landsat (e.g. Bateman et al., 2020; 
Granzig et al., 2021). Bateman et al. (2020) used field data and 1-m 
aerial orthoimagery to train a classification of medusahead from a sin
gle late-summer Landsat scene across an extent of >370 km2 (eastern 
Washington, USA), capitalizing on the unique spectral response of sen
esced medusahead relative to native plant species. For the >8000 km2 

Chiloé Island (south-central Chile), Granzig et al. (2021) used UAV 
orthoimages to train a Sentinel-2 time series for mapping an invasive 
shrub species (Ulex europaeus) with unique flowering phenology. Mul
tiple studies have harmonized Landsat 8 and Sentinel-2 imagery to 
characterize land surface phenology over regional or continental extents 
(e.g., Bolton et al., 2020), including for the purpose of monitoring the 
spread and distribution of invasive annual grasses (Pastick et al., 2020). 
Although the spatial and temporal variability in phenology can greatly 
confound its utility for classifying aerial or satellite imagery to the 
species level, the use of remote sensing tools to quantify this variability 
is critical for advancing the science of phenological research, and for 
informing global models that simulate the interaction between climate 
and vegetation phenology (Morisette et al., 2009). 
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