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Abstract—This paper presents METRINOME, a tool for per-
forming automatic path complexity analysis of C functions. The
path complexity of a function is an expression that describes the
number of paths through the function up to a given execution
depth. METRINOME constructs the control flow graph (CFG)
of a C function using LLVM utilities, analyzes that CFG using
algebraic graph theory and analytic combinatorics, and produces
a closed-form expression for the path complexity as well as the
asymptotic path complexity of the function. Our experiments
show that path complexity predicts the growth rate of the number
of execution paths that KLEE, a popular symbolic execution tool,
is able to cover within a given exploration depth. Metrinome is
open-source, available as a Docker image for immediate use, and
all of our experiments and data are available in our repository
and included in our Docker image.

Index Terms—Path complexity, automated testing, symbolic
execution

I. INTRODUCTION

Confidence in modern automated software testing relies
on the ability of tools to achieve path coverage. Symbolic
execution is one of the most prominent automated verification
techniques, but suffers from the path explosion problem [9].
Path complexity is a code metric that formalizes and quantifies
the severity of path explosion for a given function [1]. Given an
execution depth bound n for a function f , the path complexity
(PC) of f is a function pc(n) that provides an upper bound
on the number of execution paths of f with length up to n.
These expressions can be large and cumbersome. Thus, we
compute the more succinct asymptotic path complexity (APC),
the dominating term of the path complexity function. We show
that APC correlates with the number of paths explored by
symbolic execution within a given exploration depth bound.

This paper describes our implementation of APC in our
METRINOME tool. Our experimental results indicate that APC
is indeed able to predict the behavior of the symbolic execution
tool KLEE [3] on several algorithms implemented in C. Our
source code, benchmarks, experiment scripts, and experimen-
tal data are available in our public repo1 as well as in a ready-
to-run image on Dockerhub2. To summarize, the contributions
of this work are:

Supported by NSF Awards #2008640 and #1950885
1https://github.com/hmc-alpaqa/metrinome
2https://hub.docker.com/orgs/harveymudd/metrinome

(1) A practical tool, METRINOME for computing (asymptotic)
path complexity, as well as Cyclomatic complexity and NPath
complexity. METRINOME computes code metrics for C, C++,
Java and Python, but we focus on C in this paper.
(2) Empirical demonstration that APC is a fast way to predict
the behavior of KLEE before running it.

II. BACKGROUND

Various metrics for the complexity of a given piece of
code have been proposed. The most well-known are McCabe’s
cyclomatic complexity (the number of linearly independent
paths) [11] and Nejmeh’s NPATH complexity (the number of
paths that take no edge more than once) [12]. These metrics
have been used to suggest code refactoring or to predict the
difficulty of testing or maintaining a segment of code [7], [8].
Code complexity metrics typically look only at the structure
of the code, and so their computation is based on a standard
representation of the structure, the control flow graph.

Path complexity was proposed in 2015 by Bang et al., and
implemented as a tool called PAC for Java functions [1]. This
previous work demonstrated that path complexity is a more
refined metric than popular existing metrics, cyclomatic and
NPATH complexity. Our metrics, PC and APC, are both based
on the CFG of a function. We define the path complexity of
a function f to be a function pc(n) such that for any depth
n > 0, pc(n) is the number of paths from the start node to
the exit node in the CFG of f with length (number of edges)
less than or equal to n. We then define the asymptotic path
complexity apc(n) as the dominating term of pc(n).

Note that path complexity is exactly equal to the number
of paths of a given path length in the CFG, but may be
an over-approximation of the number of paths through the
function f up to execution depth n, since PC does not take into
account the satisfiability of branch conditions and so counts
paths that may not be feasible. On the other hand, PC is a
sound upper bound on the number of paths of execution depth
n through f and is fast to compute because it looks only at
the graph structure and is computed by using efficient linear
algebra packages with the adjacency matrix of the CFG. APC
is obtained by taking the dominant term in the PC expres-
sion; that term dictates the overall path complexity of the
underlying program. This makes comparing the complexity of
two programs easier: many programs have path complexities
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that contain many polynomial and exponential terms and so
reporting just the highest order term is a succinct way to
summarize the path complexity.
Examples. We provide three examples of C code with their
corresponding CFGs, PCs, and APCs in Figure 1.

III. COMPUTING PATH COMPLEXITY

We give a synopsis of the theory of computing path com-
plexity [1] in order to present a self-contained paper. We use
techniques from graph theory and analytic combinatorics to
count the number of execution paths of a CFG [2], [13].
Given a CFG G with nodes N and a depth n we can compute
the generating function g(z) such that the nth Taylor series
coefficient of g(z), denoted [zn]g(z), is equal to pc(n):

g(z) =
det(I − zT : |N |, 1)

(−1)|N |+1 det(I − zT )
. (1)

where T is the augmented transfer-matrix (an adjacency
matrix with T|N |,|N | = 1), (M : i, j) denotes the matrix
obtained by removing row i and column j from M , and I
is the identity matrix. From g(z) = p(z)/q(z) we can derive
a closed-form function f(n) as a sum of products of simple
polynomial and exponential terms such that pc(n) = Θ(f(n)).
The form of f(n) is determined by

f(n) =
D∑
i=1

mi−1∑
j=0

ci,jn
j

(
1

|ri|

)n

, (2)

where q(z) had D distinct roots, ri is the ith root of q(z), mi

is the multiplicity of ri, and ci are coefficients determined by
|N | terms of the Taylor expansion of g(z). Since path(n) =
[zn]g(z), we can define a system of |N | equations and |N |
unknowns. This system can be solved for the coefficients ci,j
via linear algebra. This gives a closed form function for pc(n).
We define apc(n) as O(pc(n)) using standard asymptotic
analysis. This allows us to determine if the PC asymptotically
behaves as a constant, polynomial, or exponential.

IV. MEASURING SYMBOLIC PATH EXPLOSION

Bang et al. suggested that can be used as a predictor of path
explosion during symbolic execution, but did not empirically
verify this [1]. In this work, examine this claim. In order to
do so, we needed to quantify the path explosion problem.

KLEE is a popular open-source tool that uses symbolic
execution to discover bugs and automatically generate tests
for a given C program. This can be a computationally inten-
sive process due to the well-known path explosion problem
of symbolic execution. For a given test function, we use
METRINOME’s built-in KLEE utilities to generate a symbolic
execution driver that marks each function input parameter
as symbolic. We then use KLEE’s max-depth parameter
to collect statistics on how the number of generated paths
varies with exploration depth bounds. Finally, we find the
best-fit constant, polynomial, or exponential function for the
collected data. For example, in Figure 2 we can see the results
of this procedure for two example functions: Selection

Sort and Monotone Array Check (checks if an array is
monotonically increasing or decreasing). The number of paths
explored by KLEE on Selection Sort grew exponen-
tially with the exploration depth, while Monotone Array
Check exhibited a clearly quadratic trend.

We used METRINOME to compute APCs of O(1.27n) and
O(n2) respectively. Our experimental results show that APC
either matches or soundly upper bounds the asymptotic growth
complexity class in the number of paths generated by KLEE.

V. IMPLEMENTATION

In the paper introducing path complexity, a tool was made
for computing PC and APC of Java programs. Our tool
includes this functionality and extends it substantially. METRI-
NOME runs within a Docker image which can be built locally
or downloaded from Dockerhub, ensuring all dependencies
and examples are present within the environment. Overall,
METRINOME is implemented as a REPL (read-eval-print-
loop), which means that rather than executing individual
commands in the shell, it provides its own ‘path complexity
shell’ where a series of commands can be executed. In order
to implement this, we use Python’s built in Cmd module.

There are 4 main components to the architecture. The first
of these is the Command module. This handles the parsing
of user input and calling the necessary methods from other
modules. The second component is the set of converters, which
turn source code files into CFGs. Each converter follows
the same Converter interface, which means it is simple
to add converters for more languages in the future. The
third component is the ‘metrics component’, responsible for
computing a single metric from a CFG, and implementing the
Metric interface. Fourth is the KLEE handler, which converts
standard C files into files which can be used by KLEE, and
provides commands for running KLEE within the REPL.

Given that METRINOME is meant to process a large number
of files, performance is a strong priority. A key advantage
of the REPL is that it caches all objects in memory. This
facilitates experiment execution and reduces runtime. In order
to do symbolic computations in Python, we use sympy. This is
the main bottleneck for computing APC as we need to obtain
symbolic determinants. To work around this, we modified the
APC metric component to use a graph search instead of one
of the two determinants, speeding up metric computation.

VI. EXPERIMENTS

Our experiments address the following research questions:
• RQ1: Is APC an effective way to predict the rate at which

the number of paths explored by KLEE grows with respect
to the symbolic execution exploration depth bound?

• RQ2: If APC is an effective predictor, is it efficient com-
pared to running KLEE and counting the paths generated?

Experimental Benchmark. We computed APC with METRI-
NOME and KLEE path statistics for 29 C functions (Table I).
When computing path complexity for a function, METRINOME
is agnostic to the complexities of any external calls. For each
function under test we ran KLEE and collected the number of
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int parity(int num) {
if (num % 2 == 0)
return 0;

else
return 1;

}

START

1 2

EXIT

Path complexity: 2
APC: O(1)

int palindrome(int num) {
int rev_num = 0, rem, temp;
temp = num;
while (temp != 0) {

rem = temp % 10;
rev_num = rev_num * 10 + rem;
temp /= 10;

}
return reverse_num == num;

}

START

1

EXIT 2

Path complexity: 0.5n+ 0.5
APC: O(n)

int gcd(int a, int b) {
while (a != b) {

if (a > b) {
a = a - b;

} else {
b = b - a;

}
}
return a;

}
START

1

EXIT 2

3 4

5

Path complexity: 2.21× 1.19n + 6.05
APC: 1.19n

Fig. 1. Examples with resulting CFGs and APCs. Left: finds the parity of input integer, with APC of O(1). Center: checks if input is a palindrome, with
APC of O(n). Right: finds the GCD of two inputs, with APC of O(1.19n)

TABLE I
APC AND KLEE DATA ON C FILES SHOWING LINES OF CODE (LOC), CYCLOMATIC (CYCLO) AND NPATH COMPLEXITY, ASYMPTOTIC PATH

COMPLEXITY (APC), APC TIME, NUMBER OF EDGES AND NODES IN THE CFG (|E|, |N |), BEST FIT CURVE FOR KLEE’S PATH GROWTH WITH RESPECT
TO SEARCH DEPTH, KLEE TIME, AND INDICATION OF WHEN APC MATCHES THE ASYMPTOTIC COMPLEXITY CLASS OF KLEE’S FITTED PATH GROWTH

FUNCTION (CONSTANT, SAME POLYNOMIAL, OR EXPONENTIAL GROWTH) (!) OR IS A COMPLEXITY CLASS UPPER BOUND (U.B).

Function Under Test LoC Cyclo NPATH APC APC Time (s) —E— —N— Klee Best Fit Klee Time (s) Match?
Parity 7 2 2 O(1) 0.012 4 4 2 0.173 !

Sign 9 3 3 O(1) 0.17 7 6 3 0.161 !

Greatest of 3 9 5 7 O(1) 0.022 11 8 5 0.313 !

Lexicographic Array Compare 11 4 4 O(n) 0.033 13 11 n 1.833 !

Prime 8 3 3 O(n) 0.091 9 8 n 432.047 !

Check Array Sorted 9 3 3 O(n) 0.092 9 8 n 4.705 !

Check Arrays Equal 9 3 3 O(n) 0.091 9 8 n 2.243 !

Find in Array 9 3 3 O(n) 0.090 9 8 n 2.269 !

Check Heap Order 8 4 4 O(n) 0.313 11 9 n 2.98 !

Check Sorted or Reverse 18 6 18 O(n2) 0.809 19 15 0.33n2 196.375 !

Three Loops w/ variable bounds 14 4 8 O(n3) 1.464 15 13 0.17n3 301.162 !

Three Loops with variable break 23 7 27 O(n3) 1.952 24 19 0.07n3 301.117 !

Array Max 8 3 3 O(1.17n) 0.752 8 7 1.41n 301.112 !

Euclid GCD 11 3 3 O(1.19n) 0.304 8 7 1.41n 307.592 !

Binary Search 16 5 5 O(1.22n) 0.832 16 13 1.27n 119.797 !

Bubble Sort 13 4 4 O(1.27n) 0.884 13 11 1.55n 301.166 !

Selection Sort 13 4 4 O(1.27n) 0.347 13 11 1.63n 301.211 !

Edit Distance 25 8 9 O(1.29n) 2.797 29 23 1.42n 17.423 !

Insertion Sort 14 4 5 O(1.35n) 1.153 12 10 1.58n 301.218 !

Quick Sort 34 6 13 O(1.36n) 1.514 18 14 1.17n 539.516 !

Merge Sort 29 11 197 O(1.42n) 13.000 41 32 1.78n 47.263 !

Heap Sort 62 20 4971 O(1.41n) 47.318 72 54 1.72n 301.512 !
Palindrome 11 2 2 O(n) 0.108 4 4 11 2.474 U.B.
Variance 11 3 4 O(n2) 0.607 10 9 n 4.585 U.B.
Position, Velocity, Acceleration 15 4 8 O(n3) 1.697 15 13 n 97.929 U.B.
Newton’s Method 20 4 5 O(1.12n) 0.504 13 11 n 2.116 U.B.
Fibonacci 16 3 3 O(1.15n) 0.390 9 8 n 1.99 U.B.
Sieve of Eratosthenes 10 5 8 O(1.22n) 1.333 18 15 n 18.168 U.B.
Longest Common Inc. Subsequence 18 10 66 O(1.36n) 7.233 35 27 2n 4.241 U.B.

paths explored for increasing exploration depth bound. We ran
polynomial and exponential regressions to generate the the best
fitting curve of path count as a function of KLEE exploration

depth and compared it to APC. The benchmark source code
and KLEE drivers synthesized by METRINOME are available
in our repo and Docker image (see repo README).
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Fig. 2. Paths explored by KLEE by execution depth.

Experimental Results. We answered RQ1 and RQ2 in the
affirmative. Overall, our results show that APC is an effective
and fast predictor of path explosion by KLEE. APC always
gave a complexity class upper bound for KLEE best fit, in the
sense that constant < quadratic < cubic < . . . < exponential
complexity of any base. APC had the same complexity class
(up to differences in base for exponential classes) as the KLEE
best fit expression in 22 cases. APC had a higher complexity
class than that of the KLEE best fit expression in 7 cases.
We found no examples of APC having a smaller dominant
asymptotic class term than that of the KLEE best fit expression.
The slight difference in exponential bases is explained by the
fact that APC considers path lengths as the number of edges in
the reduced control flow path, whereas KLEE considers path
lengths as the number of branches. APC was significantly
faster to compute than KLEE in 28 out of 29 cases, the
exception being Longest Common Increasing Subsequence.
The average runtime of APC was 49 times faster than that
of KLEE. Overall, APC can be used to quickly predict the
degree of path explosion when running KLEE.

VII. RELATED WORK

Earlier work proposed APC and showed that it is a more
refined complexity metric than cyclomatic and NPATH [1],
and that path complexity is scalable, analyzing the path
complexities of the entire Java SDK and Apache Commons
libraries, approx. 177,000 methods total, for an average rate
of 14 methods per second. Future work was to demonstrate
that APC can be used to predict the degree of path exploration
during symbolic execution. We follow up on that work, and
presented the METRINOME tool, which contains significant
improvements. Trautsch et al. included our earlier replication
package for computing APC for Java in their study of re-
producibility of 34 software analysis tools [14]. They lament
the excessive difficulty of running cutting-edge research-based
software analysis tools due to the wide variation in system
dependencies and configurations. Indeed, PAC relied on out-
dated versions of Java and MATHEMATICA (which requires
a paid-license). We alleviate these issues in METRINOME by
performing all symbolic algebra using sympy and providing
a Docker image on Dockerhub. Fazli et al. propose a method
for generating prime paths of a control flow graph [4] (paths
that do not pass through a vertex more than once), which is
closely related to NPATH complexity, and so in that context,

NPATH is the correct metric to predict difficulty of prime path
generation. We feel that APC is the correct analogous metric
for symbolic execution path and test generation. In concur-
rent programming, metrics exist for measuring the difficulty
of achieving interleaving coverage [5], [6], [10], analyzing
process interleaving graphs rather than CFGs.

VIII. CONCLUSION

METRINOME enables computing asymptotic path complex-
ity for C functions. It provides a framework that can easily
be extended to new languages, and incorporates a REPL to
calculate the complexity metrics. The REPL also has features
for running KLEE, a popular symbolic execution tool, and
generating KLEE compatible files. Using METRINOME, we
compared the number of paths generated by KLEE to APC.
Our APC metric quickly and soundly predicts the growth rate
of KLEE paths generated as a function of exploration depth.
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