Decoupled Data-Based Approach for Learning to Control Nonlinear
Dynamical Systems

Ran Wang', Karthikeya S. Parunandi!, Dan Yu?, Dileep Kalathil?>, Suman Chakravorty®

Abstract— This paper addresses the problem of learning
the optimal control policy for a nonlinear stochastic dynam-
ical. This problem is subject to the ‘curse of dimension-
ality’ associated with the dynamic programming method.
This paper proposes a novel decoupled data-based con-
trol (D2C) algorithm that addresses this problem using a
decoupled, ‘open-loop - closed-loop’, approach. First, an
open-loop deterministic trajectory optimization problem is
solved using a black-box simulation model of the dynamical
system. Then, closed-loop control is developed around this
open-loop trajectory by linearization of the dynamics about
this nominal trajectory. By virtue of linearization, a linear
quadratic regulator based algorithm can be used for this
closed-loop control. We show that the performance of D2C
algorithm is approximately optimal. Moreover, simulation
performance suggests a significant reduction in training
time compared to other state of the art algorithms.

[. INTRODUCTION

The control of an unknown dynamical system adaptively has
a rich history in control literature [1] This classical literature
provides a rigorous analysis of the asymptotic performance
and stability of the linear closed-loop system. The optimal
control of a stochastic nonlinear system with continuous state
space and action space is a significantly more challenging
problem due to the ‘curse of dimensionality’, the exponential
computational complexity growth associated with dynamic
programming. Learning to control problems where the model
of the system is unknown also suffer from this computational
complexity issues, in addition to the usual identifiability prob-
lems in adaptive control.

The last several years have seen significant progress in
deep neural networks-based reinforcement learning approaches
for controlling unknown dynamical systems, with applications
in many areas like playing games [2], locomotion [3] and
robotic hand manipulation [4]. A number of new algorithms
that show promising performance are proposed [5] [6] and
various improvements and innovations have been continuously
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developed. However, despite excellent performance on a num-
ber of tasks, reinforcement learning (RL) is still considered
very data and time-intensive. The training time for such
algorithms is typically really large. Moreover, high variance
and reproducibility issues on the performance are reported [7].

Our Contributions:In this work, we propose a novel
decoupled data-based control (D2C) algorithm for learning
to control an unknown nonlinear dynamical system. Our
approach introduces a rigorous decoupling of the open-loop
(planning) problem from the closed-loop (feedback control)
problem. This decoupling allows us to come up with a highly
efficient approach to solve the problem in a completely data-
based fashion. Our approach proceeds in two steps: (i) first, we
optimize the nominal open-loop trajectory of the system using
a blackbox simulation model, (ii) then we identify the linear
system governing perturbations from the nominal trajectory
using random input-output perturbation data, and design an
LQR controller for this linearized system. We show that
the performance of D2C algorithm is approximately optimal,
in the sense that the decoupled design is near-optimal to
second order in a suitably defined noise parameter. Moreover,
simulation performance suggests a significant reduction in
training time compared to other state of the art algorithms.

Related work: The approaches to the problem of control-
ling an unknown dynamical system can be divided into two
broad classes, model-based methods and model-free methods.

In the model-based methods, many techniques [8] rely on a
discretization of the underlying state and action space, and
hence, run into the curse of dimensionality, the fact that
the computational complexity grows exponentially with the
dimension of the state space of the problem. The most com-
putationally efficient among these techniques are trajectory-
optimization methods such as differential dynamic program-
ming (DDP) [9] and the iterative linear quadratic Gaussian
(ILQG) algorithm [10], which is closely related to DDP, but
considers only the first-order expansion of the dynamics (in
DDP, a second-order expansion is considered), and is shown
to be computationally more efficient. In both approaches, the
control policy is executed to compute a new nominal trajectory,
and the procedure is repeated until convergence.

Model-free methods, more popularly known as approximate
dynamic programming [11] or reinforcement learning (RL)
methods [12], seek to improve the control policy by repeated
interactions with the environment, while observing the sys-
tem’s responses. Standard RL algorithms are broadly divided
into value-based methods, like Q-learning, and policy-based
methods, like policy gradient algorithms. Recently, function
approximation using deep neural networks has significantly



improved the performance of the reinforcement learning al-
gorithm, leading to a growing class of literature on ‘deep
reinforcement learning’. Despite the success, the amount of
samples and training time required still seem prohibitive. On
the other hand, works such as [13] demonstrated that simple
policies such as the ones with linear parameterization showed
a promising performance comparable to benchmark results
obtained by policies represented using deep neural networks.
We note that the preliminary ideas of this paper have previ-
ously appeared in the conference publication [14]: this paper
provides an analysis for the decoupling principle and also gives
an extensive empirical validation of the proposed algorithm
and comparison with a benchmark deep RL algorithm.

The rest of the paper is organized as follows. In Section
II, the basic problem formulation is outlined. In Section III, a
decoupling result which solves the MDP in a “decoupled open
loop-closed loop ” fashion is briefly summarized. In Section
IV, we propose a decoupled data-based control algorithm, with
discussions of implementation problems. In Section V, we
test the proposed approach using four typical benchmarking
examples with comparisons to a state of the art RL technique.

II. PROBLEM FORMULATION

Consider the following discrete time nonlinear stochastic
dynamical system: z;41 = h(z, us, wy),where z; € R™, uy €
RP are the state and control vector at time k, respectively.
The process noise w; is assumed as zero-mean, uncorrelated
Gaussian white noise, with covariance W.

The optimal stochastic control problem is to find the the
control policy 7° = {#§,n7,---,m%_;} such that the ex-
pected cumulative cost is minimized, i.e.,

m% =argmin J"(x¢), where,
T

T-1
J™(z0) = Ex Z (e, up) + er(@r)|zo | 1

t=0
us = m(x¢), and ¢(-,-) is the instantaneous cost function,

and cp(-) is the terminal cost function. In the following, we
assume that the initial state xo is fixed, and denote J™(x¢)
simply as J7”.

1. ANEAR OPTIMAL DECOUPLING PRINCIPLE

We first outline a near-optimal decoupling principle in
stochastic optimal control that paves the way for the D2C
algorithm described in Section IV.

We make the following assumption on the dynamics given
in Section II:

Tep1 = f(2e, ur) + ewy, )

where € < 1 is a small parameter, i.e., the noise dependence is
linear in the system dynamics, is Gaussian and white in time.

A. Linearization w.r.t. Nominal Trajectory

Consider a noiseless version of the system dynamics given
by (2), wy = 0 for all ¢. We denote the ‘“nominal” state
trajectory as Zz; and the “nominal” control as u;, with the

initial condition, ¥y = x, known exactly. The resulting
dynamics without noise is given by Zy+1 = f(Z¢, 4y). Let
7 = (m;).-4' be a given control policy, i.e., u; = m;(x;), and
thllS, Uy = ’ﬂ't(i't).

Assuming that f(-) and 7 () are sufficiently smooth, we can
linearize the dynamics about the nominal trajectory. Denoting
0xy = Ty — Ty, OUr = Uy — Uy, WE CAN EXPress,

6(Et+1 = At&vt + Bt§ut + St(6$t, (5Ut) + €Wy, (3)
5Ut = Kt(Sxt =+ St(éa:t), (4)

P 8 o
where Ay = a%b-t,at, B, = %bt,aw K; = Ft|z,, and

Sy(-,-), S¢(-) are second and higher-order terms in the respec-
tive expansions. Similarly, we can linearize the instantaneous
cost ¢(xt, us) about the nominal values (T, 4) as,

c(xe,ur) = (T, Ut) + CFoxy + Cfduy + Hi (0, dus), (5)

cr(er) = er(Zr) + Cpdwr + Hr(bxr), (6)

where Cf = %“'z‘tﬂ]t’ CZJ = %|it7ﬁt’ C’% = 8§$|it’ and

Hy(-,-) and Hp(-) are second and higher-order terms in the
respective expansions.

Using (3) and (4), we can write the closed loop dynamics
of the trajectory (d24)7_, as,

5931;_;,_1 = (At + Bth) 6It+
| —

Ay
{Btgt (5$t) + St(5a:t, Kt(Sxt + St(da:t)))} —|—6’LUt7 (7)

5:(5$t)

where A, represents the linear part of the closed loop systems
and the term S;(.) represents the second and higher-order
terms in the closed loop system. Similarly, the closed loop
incremental cost given in (5) can be expressed as

c(x,ur) = (@, up) + [CF + Cf K] 0y,
—_—— ———

Ct C’t
-+ Ht((;xta thl't + gt(§xt)) . (8)
Ht(éxt)

Therefore, the cumulative cost of any given closed loop
trajectory (x4, us)7_, can be expressed as,

T-1

JT = ; (g, up = m(xy)) + er(ar)

T T B T B
= Zét+zct5$t+ZHt(5It>, (9)
t=0 t=0 t=0

where ¢ = CT(:fT), CT = C%;, HT() = HT()
We first show the following result.
Lemma 1: The state perturbation equation

(5l’t+1 = Atﬁxt + S't((Sxt) —+ ewy
given in (7) can be equivalently characterized as
Sxy = ozl + S, 5mi+1 = A0zt 4 ew, (10)

where S; is an O(e2) function that depends on the entire
noise history {wg,ws,---w;} and dz! evolves according to
the linear closed loop system as above.



The proof is given in Appendix A.

Now, we show the following important result.

Proposition 1: The mean and variance of the closed loop
cost J™ obey the following relationships, where J© =
S and 6J7 = Y1 Cidxl (see (9)-(10)):

JT=E[J"] = J" 4+ O(e?),
Var(J™) = Var(6J7) +0(e*).
——
O(e?)

Proof: Using (10) in (9), we can obtain the cumulative
cost of any sample closed loop trajectory as,

JT :iét"’iét&xi"_igt(éxt)+C’t§t' (1
t=0
i 575
From (11), we get,
J* =E[J"| = E[J™ + 8JF + §.JF],
= J" +E[6JF] = T + O(e?), (12)

The first equality in the last line of the equations before

follows from the fact that E[0z}] = 0, since its the linear

part of the state perturbation driven by Gaussian white noise

and by definition 6z} = 0. The second equality follows from

the fact that 6.J3 is an O(e?) function since Hy(dx;) and S,

are both O(e®) functions. Let 0.J5 = E[6.J5]. Noting that
dJT = E[0JT] = 0, we obtain:

Var(J™) = [ 2

E[J™ + 6J7 4+ 6JF —

=E[0JT + 5J2

= Var(6JT) + Var(6.JF) + 2E[0JT (8JF — 6.JF)],

= Var(6J7) + Var(6J7) + 2E[6JT 6 JF],

J]
5J2}2
0J3?

13)

where the last equality follows from the fact that E[0J]] =
0 and the fact that §.JF is non-random. Since 0.JF is
O(€?), Var(6.J7) is an O(e*) function. It can be shown that
E[6JT0J%] is O(e*) as well (see Lemma 2 in Appendix B).
Finally Var(6J7) is an O(e?) function because dz! is an O(e)
function. Combining these, we get the desired result. ]

The following observations can now be made from Propo-
sition 1.

Remark 1 (Expected cost-to-go): Recall that uy = m¢(x4)
= U+ K0z +5, (6x¢). However, note that due to Proposition
1, the expected cost-to-go, J7™, is determined to within O(€?)
by the nominal control action sequence ;.

Remark 2 (Variance of cost-to-go): Given nominal control
action 1, variance of the cost-to-go, which is O(e?), is
determined to within O(e*) by the linear feedback term K.

B. Decoupled Approach for Feedback Control

Proposition 1 and the remarks above allow us to propose the
following decoupled approach to stochastic nonlinear feedback
control in the sense that the open-loop design is decoupled
from the closed-loop design.

Open-Loop Design. First, we design an optimal (open-loop)
control sequence u; for the noiseless system. More precisely,

T-1

(u7){=y = arg min c(Z¢, ut) + cr(Tr), (14)

(“t)t o t=0

Tpp1 = f(Z4,Ue), To = Xo.

Details of this open-loop design are discussed in Section IV.

Closed Loop Design. We find the optimal feedback gain K
such that the variance of the linear closed loop system around
the optimlal nominal path, (Z;, @} ), is minimized.

(K})io)! = arg min Var(§J7),
t t 0
T
8J7 = Cydaf,
=0

ozt = (Ay + By K)o} + ewy. (15)

We characterize the approximate closed loop policy below.
Proposition 2: Construct a closed loop policy

T (7) = uy + Ky, (16)

where 4y is the solution of the open-loop problem (14), and
K is the solution of the closed loop problem (15). Let 7

be the optimal closed loop policy. Then, |J™ — J™| =
O(€?).Furthermore, among all policies with nominal control
action #;, the variance of the cost-to-go under policy 7}, is
within O(e?) of the variance of the policy with the minimum
variance.

Proof: Let J™ denote the nominal cost of the optimal
policy 7°, where recall from before that the nominal cost is
the closed loop cost when all the n01se 1nputs are 1dent1cally
zero. Then, we have JTr —J =g =g = J
J™ —J% 4+ J" — J*° The inequality in the last line above
is due the fact that J™ < J 7 since the nominal control
corresponding to 7*, @j, is the minimizer for the nominal
optimal control (open-loop) problem. Now, using Proposition
1 for the policies 7* and 7, we have that |J™ —J™ | = O(e2),
and |J™° — J™°| = O(€?). Also, by definition, we have J™ <
Jr , i.e., the expected cost of 7 is lower than that of 7* since
7° minimizes the expected cost over all feedback policies.
Note that this is different from %} minimizing the nominal
(open-loop) cost of the system. Then, since J — J >0,

using the inequality above, we obtain: lj ™ —j < | I~
J T T < NI = T+ | =T = O(?).A
similar argument holds for the variance as well. [ ]

The closed loop cost function in (15) can be written as (after
noting du; = Kydxy):

T
- St
Var(639) = B1 3 o} w1 s
crrer CcETon
crex cper)’
and C} = 0. This problem is non-standard: a standard LQR
problem only has a single sum instead of the double sum over

time above. Albeit convex, there is no standard solution to the
problem above. Therefore, we solve a standard LQR problem

QtT:

s

A7)



as a surrogate and the effect is one of reducing the variance
of the cost-to-go.

Approximate Closed Loop Problem. We solve the following
LQR problem for suitably defined cost function weighting
factors @y, Ry:

T-1
( In;I% E[z 82,Qe0xy + dupRyduy + dxpQroxy],
dug i—o0 —0

5It+1 = Atél’t + Bt(5ut + ewy. (18)

The solution to the above problem furnishes us a feedback
gain K;‘ which we can use in the place of the true variance
minimizing gain K.

Remark 3: Proposition 1 states that the expected cost-to-
go of the problem is dominated by the nominal cost-to-go.
Therefore, even an open-loop policy consisting of simply the
nominal control action is within O(e?) of the optimal expected
cost-to-go. However, the plan with the optimal feedback gain
K is strictly better than the open-loop plan in that it has a
lower variance in terms of the cost to go. Furthermore, solving
the approximate closed-loop problem using the surrogate LQR
problem, we expect a lower variance of the cost-to-go function
due to feedback, which is borne out empirically (see Fig. 3).

IV. DECOUPLED DATA-BASED CONTROL (D2C)
ALGORITHM

In this section, we propose a novel decoupled data-based
control (D2C) algorithm The three-step framework to solve
the stochastic feedback control problem may be summarized
as follows: 1) solve the open-loop optimization problem using
gradient descent with a black box simulation model of the
dynamics, 2) identify the linearized time-varying system from
input-output experiment data, and 3) design an LQR controller
for the identified LTV system.

A. Open-Loop Trajectory Optimization

A first-order gradient descent-based algorithm is proposed
here for solving the open-loop optimization problem given
in (14), where the underlying dynamic model is used as
a blackbox, and the necessary gradient estimates are found
from a sequence of input perturbation experiment data using
standard least squares.

Denote the initial guess of the control sequence as U(®) =
{ﬂgo)}thl, and the corresponding states X'(*) = {iio)}thl.
The control policy is updated iteratively via

Ut =0 — 5,V J| xem po, (19)
where U™ = {@{™}Z_, denotes the control sequence in the
nth iteration, X™ = {z{"17_, denotes the corresponding
states, and v, is the time varying step size parameter. As
J | X)) is the expected cumulative cost under control
sequence U™ and corresponding states X'(™), the gradient
vector is defined as:

7 aJ aJ aJ
Vodlxo v = (22 2L 2L |y g, 20)

which is the gradient of the average cumulative cost w.r.t the
control sequence after n iterations. The following paragraph
elaborates on how to estimate the above gradient.

Let us define a rollout to be an episode in the simulation that
starts from the initial settings to the end of the horizon with
a control sequence. For each iteration, multiple rollouts are
conducted sequentially with both the expected cumulative cost
and the gradient vector updated iteratively after each rollout.
During one iteration for the control sequence, the expected
cumulative cost is calculated as

. 1 _. 1
1
J|:7X‘J’E7L)7U(n) = (1 - })JVX(M,U(M + E(J‘XJF(W),U.i,(n))a 2D

where j denotes the j** rollout within the current iteration
process of control sequence. .J |fwn)7U<n) is the expected cu-
mulative cost after j rollouts while .J| 29.(n) 7. () denotes the
cost of the jt" rollout under control sequence U7 ("™ and corre-
sponding states X7, Note that U™ = {@{™ 4 §ud" ("L |
where {0ul™}7_ is the zero-mean, i.i.d Gaussian noise
added as perturbation to the control sequence U™ . Then the
gradient vector is calculated in a similar sequential manner as

y 1 .
Jj+1 _ J
VUJ‘)((M,U(M =(1- ;)VUJ|X(”>’U(”)+
1

jaéu
where o5, is the variance of the control perturbation and
Vud |JXJQ}1> y denotes the gradient vector after j rollouts.
After m rollouts, the control sequence is updated by equation
(19) in which Vi J|xm) () is estimated by Vi J|%,, Unys

and the procedure repeated till convergence.

(I ]ae.,05.00 = Togimy g )(UP T = U™ (22)

B. Linear Time-Varying System Identification

The closed loop control design specified in (15) requires the
knowledge of the parameters A;, B;,1 < t < T, of the per-
turbed linear system. We propose a linear time variant (LTV)
system identification procedure to estimate these parameters.

First start from perturbed linear system given by equation
(18). Using only first order information, we estimate the
system parameters A;, B; in the LTV form: dx;y1 = Az, +
Btéut.Now write out their components for each iteration in
vector form as,

_ 820 o SaNTt
Y = [5x(t)+15$%+1 T 555?;11]’ X = 5u§ 5u§v—1 )
Y =[4, | BJX, (23)

where N is the total iteration number. 6x}, ; denotes the output
state deviation, dx} denotes the input state perturbations and
Sul* denotes the input control perturbations at time ¢ of the n‘"
iteration. All the perturbations are zero-mean, i.i.d, Gaussian
random vectors whose covariance matrix is ol where I is the
identity matrix and o is a scalar. Note that here one iteration
only has one rollout. Using the least squares method Ay and
Bt can be calculated as follows:

[A¢ | B =YX'(XX")71, (24)

The calculation procedure can also be done sequentially using
recursive least squares. It is highly amenable to parallelization
and is memory efficient.



C. Closed-Loop Control Design

Given the parameter estimate of the perturbed linear system,
we solve the closed-loop control problem given in (18). This
is a standard LQR problem. By solving the Riccati equation,
we can get the closed-loop optimal feedback gain K. The
details of the design are standard and are omitted here.

Algorithm 1: D2C Algorithm

1) Solve the deterministic open-loop optimization
problem for optimal open loop nominal control
sequence and trajectory ({u}}]_,,{Z;}] ;) using
gradient descent method (Section IV-A).

2) Identify the LTV system (A, B;) via least square
estimation (Section IV-B).

3) Solve the Riccati equations using estimated LTV
system equation for feedback gain {K; }7_; (Section
IV-C).

4) Set t = 1, given initial state 1 = Z7 and state
deviation dx; = 0.

while ¢t < T do

Uy = @: + Kt*(Sxt,
i1 = f(@r,ue) + ewy,
5£Et+1 = xt+1 — j:—l—l (25)

t=t+1.
end while

D. Convergence of the D2C Algorithm

The Decoupled Data-Based Control (D2C) Algorithm is
summarized in Algorithm 1. In the following, we provide
a convergence analysis of the open-loop design and LTV
identification parts of the D2C algorithm.

Proposition 3: Gradient Descent. Let the gradient V.J be
Lipshitz continuous, i.e., ||VJ(Uy) — VJ(Us)||| < L||U; —
Us||, for some L < oo, and the step size parameters in (19)
satisfy >, v = oo, and >, 7? < 0. Given E||U™||? < oo,
the iterates in (19), U (") almost surely converge to a set S,
where V.J = 0 on the set S.

Proof: The sample paths of the stochastic gradient
descent algorithm (19) almost surely can be approximated
asymptotically by the ODE U = —V.J(U), due to the above
assumptions and the fact that (22) is an unbiased estimator
of the true gradient, and the convergence of the algorithm
is almost surely determined by the limit points of the ODE
(this follows from the so-called “ODE method” approach to
Stochastic Approximation algorithms [15]). To characterize
the limit points, choose the Lyapunov function J for the above
ODE, then J = —V.J - V.J < 0. Hence, .J converges to a set
S where V.J = 0, proving the result. [ ]
Complexity of Stochastic Gradient Descent. The complexity
of the gradient descent algorithm, per gradient descent step,
is O(pT'), where p is the number of inputs, and T is the
control horizon. However, due to the nonlinear cost function

J, the convergence guarantees are only asymptotic, and the
complexity of the whole algorithm is O(KpT') where Ko,
is the steps to convergence which can vary with the initial
guess and the learning parameter schedule.

Proposition 4: Convergence of LTV identification. The least
squares estimates in (24), [A;, By] — [A¢, By], as N — oo in
the mean square sense. ‘

Proof: Without loss of generality, let the cov(éa:gz)) =
I, and cov(éu,(f)) = I,, where I, denotes a ¢ X ¢ identity
matrix. The least squares solution in (24) can be written
as Eflt,Bt] = YW XxMT (XN x(NT)=1 - where YY) =
B oY), XM = sz oz, and 67 =
[(53:7@, 6u§i)]T.
Using the Law of Large numbers, it is relatively straight-
forward to see that %X(N)X(N)T — Inyp as N —
oo almost surely. Let the noise after N steps be V()
(which is zero mean with covariance Iy), i.e., Yy =
[As, B ) X)) + V()| Then, the error in the LS estimate
is VIV x (T (X (V) x (N)T)=1 " which is zero mean and has
covariance (XM XM=l — L1 . — 0as N = oc.
Therefore, the LS estimate converges in mean square sense to
the true parameter values. [ ]
Complexity of LTV identification. The key to the complexity
of the above identification is how quickly does the sample
covariance %X(N)X(N)T — Inip. It can be shown that
N = O(n + p) samples are good enough to get close to the
limit with a very high probability if n + p is large enough
(Theorem 4.7.1 in [16]). We do not go into more details here
due to space constraints but this is borne out by our empirical
evidence. Thus, the complexity of the LTV idenitification is
O(n + p)T since we have T such identification steps.

Complexity of the D2C algorithm. The complexity of the
open-loop design is O(K.,pT) while that of the LTV iden-
tification, and hence the closed-loop design, is O(n + p)T.
However, in general, the steps to convergence, Ko, >> n,p,
and thus, the training time of the D2C algorithm is overwhelm-
ingly dominated by the open-loop part, an observation that is
borne out by our empirical results that follow (see Table I).

V. EMPIRICAL RESULTS

In this section, we compare the D2C approach with the
well-known deep reinforcement learning algorithm - Deep
Deterministic Policy Gradient (DDPG) [17]. For comparison,
we evaluate both methods in the following three aspects: 1)
Efficiency in training - the amount of time and storage required
to achieve a desired task, 2) Robustness to noise - the deviation
from the predefined task due to random noise in the process
in the testing stage, and 3) Ease of training - the challenges
involved in training with either of the data-based approaches.
We tested our method with four benchmark tasks, all imple-
mented in MuJoCo simulator [18]: Inverted pendulum, Cart-
pole, 3-link swimmer and 6-link swimmer (please see [19]
for details). The state space ranges from 2 to 26 dimensions
while the control space ranges from 1 to 6 dimensions in
these examples. An off-the-shelf implementation of DDPG



provided by Keras-RL [20] library has been customized for
our simulations. For fair comparison, ‘episodic reward/cost
fraction’ is considered with both methods. It is defined as the
fraction of reward obtained in an episode during training w.r.t
the nominal episodic reward (converged reward).

A. Performance Comparison

Training Efficiency: One way of measuring efficiency is
to collate the times taken for the episodic cost (or reward)
to converge during training. Plots in Fig. 1 show the training
process with both methods on the systems considered. Each
plot shows the training curve of one experiment. The curve
marked as original is the actual training curve reflecting the
original reward data. The one marked as filtered is the curve
after smoothing out the spikes to show a better view of the
reward trend as the training goes. Table I delineates the times
taken for training respectively. As the system identification
and feedback gain calculation in the case of D2C take only a
small portion of time, the total time comparison in (Table I)
shows that D2C learns the optimal policy substantially faster
than DDPG, and hence, has a better training efficiency.

Robustness to noise: However, from plots in Fig. 2, it is
evident that the performance of D2C is on par with or better
than DDPG up to a certain level of noise. It may also be noted
that the error variance in the D2C method increases abruptly
when the noise level is higher than a threshold and drives
the system too far away from the nominal trajectory that the
LQR controller cannot fix it. This could be considered as a
drawback for D2C. However, it must be noted that the range
of noise levels (up until 100 % of the maximum control signal)
that we are considering here is far beyond what is typically
encountered in practical scenarios. Moreover, it must also be
noted that the point at which the DDPG performance overtakes
that of D2C, the performance of both methods is poor from the
viewpoint of attaining the given task. In Fig. 3, we compare
the episodic cost during testing between the open-loop policy
applied along and the closed-loop policy of D2C. As expected,
the closed-loop performance is much better than the open-loop
performance albeit the closed-loop design is only a very small
fraction of the training cost (see Table I).

Ease of training: To elucidate the ease of training from
an empirical perspective, the exploration noise that is required
for training in DDPG mandates the system to operate with a
shorter time-step than a threshold, beyond which the simula-
tion fails due to an unbearable magnitude of control actions
into the system. For this, we train both the swimmers in one
such case (with At = 0.01 sec) till it fails and execute the
intermediate policy. Fig. 4 shows the plot in the testing-stage
with both methods. It is evident from the terminal state mean-
squared error at zero noise level that the nominal trajectory of
DDPG is incomplete and its policy failed to reach the goal.
The effect is more pronounced in the higher-dimensional 6-
link swimmer system (Fig. 4b), where the DDPG’s policy can
be deemed to be downright broken. Note, from Table I, that the
systems have been trained with DDPG for a time that is more
than thrice with the 3-link swimmer and 4 times with the 6-
link swimmer. Moreover, the starred entries in Table I indicate

that DDPG failed to converge. On the other hand, under the
same conditions, the seamless training of D2C results in a
working policy with even greater data-efficiency.

TABLE [: Simulation parameters and training outcomes

System Steps per Time- Training time (in sec.)
episode step D2C
(in sec.) | Open- | Closed- DDPG
loop loop
Inverted 30 0.1 12.9 < 0.1 2261.15
Pendulum
Cart pole 30 0.1 15.0 1.33 6306.7
3-link 1600 0.005 7861.0 13.1 38833.64
Swimmer 800 0.01 4001.0 4.6 13280.7*
6-link 1500 0.006 9489.3 26.5 88160
Swimmer 900 0.01 3585.4 16.4 15797.2*
Fish 1200 0.005 6011.2 75.6 124367.6

Critical__}
failure

Incomplete

nominal
Incomplete

nominal

E
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2
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L2-norm of terminal state error

Critical _
failure

Std dev of perturbed noise (Percent of max. control) Std dev of perturbed noise (Percent of max. control)

(a) 3-link swimmer (b) 6-link swimmer

Fig. 4: D2C vs DDPG at At = 0.01s

VI. CONCLUSIONS

In this paper, we proposed a near-optimal control algorithm
under fully observed conditions and showed that our method
is able to scale-up to higher dimensional state-space without
any knowledge about the system model. Due to the sequential
calculation used in the open-loop optimization and the system
identification, D2C is highly memory efficient and also conve-
nient for parallelization. We tested its performance and com-
pared them with a state-of-the-art deep RL technique - DDPG.
From the results, our method has significant advantages over
DDPG in terms of training efficiency and ease of training.
This primarily stems from the far smaller parameter space,
essentially open-loop sequences, that D2C searches over, as
opposed to a complex parameterization like Deep Neural Nets
for DDPG. The robustness of D2C is also better/ comparable
in most cases but has scope for further improvement by
employing more sophisticated feedback design and ensuring
that the data efficiency is not compromised. We also believe
further drastic reduction in the planning time can be achieved
by parallelization and a more sophisticated parametrization
and solution of the open-loop problem. Future work will focus
on these aspects of the D2C technique.

It is evident from the simulations that methods such as
D2C are able to achieve their goals accurately whereas DDPG
consumes an inordinate amount of time in ‘fine-tuning’ their
behavior towards the goal. However, we also note that, by
doing this, DDPG is tentatively exploring over the entire
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Fig. 3: Averaged episodic reward fraction

state-space and can result in a better generic policy. Never-
theless, we hope that our approach signifies the potential of
decoupling-based approaches such as D2C in a reinforcement
learning paradigm and recognizes the need for more hybrid
approaches that complement the merits of each.

vs noise level during testing for D2C
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APPENDIX
A. Proof of Lemma 1

Proof: ~We proceed by induction. The first general
instance of the recursion occurs at ¢ = 3. It can be shown
that: dx3 = (A2A1(ewp) + Az(ewy) + ewq) +

i
B oz

{A3S; (ewp) + S2(Aq(ewp) + ew;y + Sy (ewp))} . Noting  that

Ss
S1(.) and Saf. ) are second and higher order terms, it follows
that Sg is O(€?). Suppose now that z; = dz! + S; where S,
is O( ) Then: (;It_;,_l = At+1((5l’f+5f)+€’wt+St+1(6l'f)
(At+15$t + ewt) + {At+1St + St+1(5xt)} Noting that St+1

6Ilt+1 _ St
is O(e?) and Sy, is O(e?) by assumption, the result follows.

B. Proof of Lemma 2

Lemma 2: Let 6J7, 6JF be as defined in (11). Then,
E[§JT6J%] is an O(e*) function.
Proof: 1In the following, we suppress the explicit de-
pendence on 7 for §J7 and 6JF for convenience. Recall
that 6.7, S, Cyozt, and 8., S He(0xs) +

C#S,. As before, let us consider S3. We have that S3 =
121251(611)0) + SQ(Al(E’wo) + ew; + Sl((f’wo)). Note that
ewg = 0z} and Aj(ewp) + ew; = dab. Then, it fol-
6xl1T5’§721)(5:c11 537?55721)61;12
= A, + +
llTS(z)dxl, 5(2)5xl2,
O(e?), where the Hessian matrices {S;j)vj = 1,2---n}
correspond to the second order term in the Taylor expan-
sion of the n dimensional vector valued function S;(.). A
similar observation holds for H3(dz3) in that: Hs(dx3) =
5:L'?I:I§2)5xé + O(e?), where Ht@) represents the Hessian
matrix corresponding to the second order term in the Taylor
expansion of the scalar valued function H;(.). Therefore,
from the above equations, it follows that we may write:
Hi(0x:) + CF Sy = Y0, 02l7Q; - 0xL + O(%), for suitably
defined matrix coefficients @ ,. Therefore, it follows that
(SJQ Zt OHt((Sxt) + C St = _Z §$1TQT7—(5$ +
O(e ),for suitably defined matrices Q. Hence, 0J10Jy =
ZZT:O CF(824)02 T Qr 2L +O(€*). Taking expectations on
both sides: E[0.J10.J5] ZZTZOE[Cféxi(;xlTTQT,T(;xH +
O(e*).Break 6zt = (02} — d2L) + 62!, assuming
7 < t. Then, it follows that: E[CFéxidz!TQr d2l] =
E[CF6x 52 T Qr 62 ], due to the independence of §x! — Jz!
from dz!, and the fact that E[§x! — dz!] = 0. Note that we
may write 0zl = €[B,_jw,_1 + - + Bowo], for suitably
deﬁned co-efficients [y, 81 - --. Therefore, it follows that:

Sl QT sz =2 Zkl o kakl’ wy, for suitably defined ma-
trices QL7 ;7. Therefore, it follows that Cf¥ézl 62T Qr 02! =
€ S a s Dot k1 wglwgwggatf +: 1, for suitably defined
constants at’lj’tz 1,» Where w] represents the " input
noise term at time t and p is the total number of
inputs to the system. Hence, E[CFdzlézlTQr éxl] =
3Zt1,t2,t3_0 Zf,j,k:l [th%wfs]at’f’ti t5- Note now  that
]E[wtlwigwg] = 0 unless t; = to = t3, regardless of
1,7, k, since the noise is assumed to be white in time. If the
input channels are uncorrelated, and the input noise standard
Gaussian, it follows that E[wiwlwk] = 0 regardless of i, j, k
since odd moments of a zero mean Gaussian variable are zero.
Next, let us consider the case that the input channels are
correlated. Then wy VWv, where W is the covari-
ance of ws; and v is a Gaussian input vector that has
identity covariance. Then, it follows that: Elwiwiw?] =

b insiam1 BlViy ViyVig)diy i, iy, for suitably defined  coeffi-
cients d;, i, q,. However, due to our previous argument,
E[v;, vi,vi,] = 0 due to the noise input v being spatially uncor-
related and Gaussian. Therefore, from the above above argu-
ment it follows that: E[CFéxL 6T Qr -62L] = 0. Therefore,
using the above fact, it follows that E[0J;5J5] = O(e*),
thereby proving the result when ¢ > 7. An analogous argument

as above can be repeated for the case when 7 > . [ |

lows that: §3
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