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a b s t r a c t

We investigate the dynamics of an immortal branching process. In the classic, critical
branching process, particles give birth to a single offspring or die at the same rates. Even
though the average population is constant in time, the ultimate fate of the population is
extinction. We augment this branching process with immortality by positing that either:
(a) a single particle cannot die, or (b) there exists an immortal stem cell that gives
birth to ordinary cells that can subsequently undergo critical branching. We also treat
immortal two-type branching. We discuss the new dynamical aspects of these immortal
branching processes.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

We dedicate this contribution to the memory of Dietrich Stauffer, a singular personality in the physics community. He
as a man with strong views, who spoke with few compunctions, and who had a great sense of humor. Looking back at
he emails that he exchanged with one of us (SR) brought back pleasant memories of his caustic wit. One such example
s Dietrich’s email to another person (with a cc to me) in which he writes: ‘‘I am very grateful that you try to educate the
anadian citizen Sid Redner [yes, SR is Canadian] in a civilized language. But since he is a traitor working for the Southern
nemy [meaning the USA], I doubt that you will have a long-lasting success. He does not even use the spelling of Her
ritannic Majesty, Canada’s head of state’’. He enjoyed making fun of SR’s allegedly traitorous behavior (or behavior) and
R enjoyed getting poked by him. In addition to the many verbal and written barbs that we exchanged, it was also a great
leasure to discuss science and indeed any field of academic study with him. He will be sorely missed.
Dietrich is best known for his contributions to the field of percolation [1]. Percolation has applications to diverse

ields; one such example is epidemic spread. From the dynamical perspective, the temporal course of an epidemic can be
iewed as a birth/death or a branching process. Namely, an infected individual can infect someone who is not yet sick
nd an infected individual can be ‘‘removed’’ by either recovering or expiring. If we denote an infected individual as P,
he epidemic dynamics can be symbolically represented as

P → P + P rate r
P → ∅ rate 1 (1)

where the death rate is set to one by choosing appropriate time units. The critical branching process in which the birth
and death rates are the same, r = 1, is especially popular, and has numerous applications [2–4]. Although the adjective
‘‘critical’’ suggests that this branching process is idiosyncratic because of the tuning of the birth and death rates, this case
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s arguably more important than its subcritical and supercritical brethren. Indeed, subcritical branching (r < 1) quickly
oes extinct while supercritical branching (r > 1) results in unlimited growth.
Branching processes are related to the stochastic version of the susceptible–infected–recovered (SIR) infection model,

n which Ps correspond to infected individuals and ∅s to recovered. In the SIR model [5–8], the population consists
f susceptible, infected, and recovered individuals. The infection spreads by contact between infected and susceptible
ndividuals, while infected individuals spontaneously recover or die. In the context of infectious diseases, critical branching
rocesses arise as a balance between human efforts that strive to reduce the infection rate [6] and natural evolution that
ncreases the infectivity of diseases [7]. Critical branching can also describe homeostasis (the maintenance of healthy
issues) [9,10]. For instance, the maintenance of skin cells arises when progenitor cells (P), which exist far below the
pidermis, undergo critical branching and (instead of death) differentiate into post-mitotic cells that are eventually shed.
In this contribution, we study immortal branching processes (IBPs). Our first example is identical to the critical

ranching process with a simple twist—when a single cell remains, it cannot die. One of the motivations for this type
f modeling is the long-term dynamics of HIV infection in which a nearly undetectable level of viral load can linger in
atients for a decade or longer and then subsequently increase [11]. This branching without the possibility of extinction
reatly oversimplifies the HIV dynamics, but perhaps it points the way to more realistic models. We analyze this model in
ection 3 and demonstrate unexpectedly subtle dynamics that are replete with logarithmic corrections in the long time
imit.

Another IBP is a critical branching process that is augmented by the presence of a single immortal stem cell whose
roperties are not affected by progenitor cells. The reaction steps of this IBP are

S → S + P rate β

P → P + P rate 1
P → ∅ rate 1

(2)

he first process accounts for a stem cell (S) that creates a single progenitor cell P, while the latter two reactions represent
ritical branching. Mathematically, the reactions (2) correspond to critical branching with input. The strength of the source,
hich is quantified by β , can vary with time in principle. For simplicity, we focus on the case where β = const. There is
o extinction because the stem cell is immortal and the average number of progenitor cells grows as βt .

. Critical branching

It is helpful to first recall basic facts about critical branching. The probability Pm(t) to have m cells at time t satisfies
he rate equation

dPm
dt

= (m+ 1)Pm+1 − 2mPm + (m− 1)Pm−1 . (3)

The first term on the right-hand side corresponds to any one of m+1 cells dying with rate 1; the other terms have similar
explanations. We always assume that the system initially contains a single cell, Pm(t = 0) = δm,1.

There are various ways to solve Eqs. (3). Perhaps the simplest makes use of the exponential ansatz (see, e.g., [12])

Pm(t) = A(t)[a(t)]m−1, (4)

which often works for infinite sets of equations with linear dependences on m. With ansatz (4), the infinite set of Eqs. (3)
educes to dA

dt = 2A(a− 1) and da
dt = (a− 1)2, from which A = (1+ t)−2 and a = t/(1+ t). Thus

Pm(t) =
tm−1

(1+ t)m+1 (5)

is the probability that there are m cells at time t . To appreciate the meaning of this solution, it is useful to look at the
integer moments

⟨mk
⟩ =

∑
m≥1

mkPm(t).

The first few moments are ⟨m0
⟩ = (1+ t)−1, ⟨m1

⟩ = 1, ⟨m2
⟩ = 1+2t . The zeroth moment is just the probability that the

opulation does not go extinct—the survival probability. Even though ⟨m0
⟩ → 0 as t → ∞ so that eventual extinction

ecessarily occurs, the mean extinction time is infinite. The conserved nature of the first moment reflects the equality of
he birth and death rates so that the average population size is constant. In contrast, for those realizations that do not go
xtinct, the population grows linearly with time, as manifested by the behavior of the second moment.

. Branching without extinction

We now amend critical branching so that extinction is impossible. A simple way to impose this constraint is to retain
he rules of critical branching but forbid death when only a single cell remains. That is, Eqs. (3) remain valid for m ≥ 2,
while the probability P1(t) now evolves according to

dP1
= −P1 + 2P2 . (6)
dt
2
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To solve Eqs. (3) and (6), first notice that the ansatz (4) no longer solves them, which suggests that the solution does
ot have an exponential form. Instead, we proceed conventionally and introduce the Laplace transform

P̃m(s) =
∫

∞

0
dt e−stPm(t),

o recast (3) and (6) into the linear algebraic equations

(s+ 2m)̃Pm = (m− 1)̃Pm−1 + (m+ 1)̃Pm+1 m ≥ 2 ,

(s+ 1)̃P1 = 2̃P2 + 1 .
(7)

We now apply the generating function method. By standard steps, we find that the generating function

P(s, z) =
∑
m≥1

P̃m(s) zm

atisfies the ordinary differential equation (ODE)

sP = (z − 1)2
dP
dz

+ (z − 1)̃P1(s)− z . (8)

The details of the solution to this equation and the inversion of the Laplace transform are given in Appendix A. The final
result for the population distribution in the Laplace domain is

P̃m(s) =
1

sesΓ (0, s)

∫
∞

0
dη e−sη ηm−1

(1+ η)m+1 . (9)

While it does not seem possible to invert this Laplace transform and obtain Pm(t) in terms of elementary or standard
pecial functions, we can determine the long-time behavior from the s → 0 asymptotic of the Laplace transform. Using
he asymptotic formula (see, e.g., [13])

Γ (0, s) = − ln s− γ +

∑
k≥1

(−s)k

k× k!
,

where γ = 0.577 215 . . . is Euler’s constant and Γ (0, s) =
∫
∞

s du e−u/u is the incomplete Gamma function, the leading
→ 0 behavior of P̃1(s) is

P̃1(s) ≃
1

s(− ln s− γ )
, (10a)

from which we deduce the unexpectedly slow long-time decay

P1(t) ≃
1
ln t

. (10b)

his behavior strongly contrasts with P1(t) ≃ t−2 in critical branching. Because there is no mechanism for an isolated
article to die, this leads to a much slower temporal decay of P1(t).
We now use this solution for P1(t) in conjunction with the rate equations (3) and (6) to recursively find the asymptotic

ehavior of Pm(t). Substituting (10b) into (6) leads to

P2(t) ≃
1
2

1
ln t

to leading order. Substituting these asymptotic forms for P1(t) and P2(t) into the rate equation (3) with m = 2, we find

P3(t) ≃
1
3

1
ln t

to leading order. Continuing this procedure iteratively gives

Pm(t) ≃
1
m

1
ln t

, (11)

hich should be valid for t ≫ 1 and m ≪ t .
To determine the distribution Pm(t) when m ∼ t , it is helpful to first determine the asymptotic growth of the moments

⟨mk
⟩. Using Eqs. (3) and (6), we deduce the rate equation d⟨m⟩

dt = P1. Combining this with the expression for P1(t) in (10b),
he asymptotic growth of the average number of cells is

⟨m⟩ ≃
t

ln t
. (12)

imilarly d⟨m2
⟩

dt = 2⟨m⟩ + P1 which in conjunction with (10b) and (12) gives

⟨m2
⟩ ≃

t2
. (13)
ln t
3
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or general k ≥ 2, the evolution equation for ⟨mk
⟩ is

d⟨mk
⟩

dt
= 2

⌊
k
2

⌋∑
a=1

(
k
2a

)
⟨mk−2a+1

⟩ + P1 , (14a)

hose leading behavior is

d⟨mk
⟩

dt
≃ 2

(
k
2

)
⟨mk−1

⟩ . (14b)

he results for the first two moments suggest that ⟨mk
⟩ ≃ Ck tk/ln t . Substituting this ansatz into (14b), we find that this

nsatz is consistent and moreover it serves to fix the amplitude Ck. The final result is

⟨mk
⟩ ≃ (k− 1)!

tk

ln t
(15)

or k ≥ 1. (The zeroth moment is ⟨m0
⟩ =

∑
m≥1 Pm(t) = 1 because extinction is impossible.)

The small-m tail of Pm(t) and the behavior of the moments suggest that the full distribution Pm(t) has the following
caling behavior

Pm(t) ≃
1
m

1
ln t

F (µ), µ =
m
t
, (16)

ith F (0) = 1. Using this distribution, we now express the moments ⟨mk
⟩ through the integrals of the scaled distribution:

⟨mk
⟩ ≃

tk

ln t

∫
∞

0
dµµk−1F (µ).

Thus we have the condition
∫
∞

0 dµµk−1F (µ) = (k− 1)!, which allows us to fix the scaling function: F (µ) = e−µ. Finally,
we obtain

Pm(t) ≃
1
m

1
ln t

e−m/t . (17)

t is instructive to compare this scaling form with that of the critical branching process. From (5), this latter scaling form
s

Pm(t) ≃
1
t2

e−m/t . (18)

e again see that the population distribution has a much slower temporal decay than in critical branching; this occurs
ecause of the effective ‘‘source’’ at m = 1.

4. Branching with input

A biologically motivated version of immortal branching is based on stem cells that are always active. We focus on a
system that begins with a single stem cell S. This stem cell can give birth to ordinary (mortal) cells, S → S+ P, and these
mortal cells subsequently undergo critical branching. We denote the rate at which stem cells give birth as β; for ordinary
cells, the birth and death rates are set to 1.

Denote again by Pm(t) the probability to have m cells, i.e., the stem cell and m − 1 mortal cells. The probability that
only a stem cell exists obeys

dP1
dt

= −βP1 + P2 , (19a)

while for m ≥ 2 the rate equations are

dPm
dt

= mPm+1 − [2(m− 1)+ β]Pm + (m− 2+ β)Pm−1 . (19b)

One can verify by direct substitution that

Pm(t) =
Γ (m− 1+ β)
Γ (m)Γ (β)

tm−1

(1+ t)m−1+β
(20)

s the solution of Eqs. (19). In the scaling region m, t → ∞ with µ = m/t finite, this solution acquires the scaling form

Pm(t) ≃ t−1Φ(µ), Φ(µ) =
µβ−1

e−µ . (21)

Γ (β)

4



P.L. Krapivsky and S. Redner Physica A 571 (2021) 125853

W

b
t
t
s

t
d
p

R
m

W

w

w
E
T

B

I
v
b

ith this scaling form, the leading behavior of the moments are given by

⟨mk
⟩ ≃ tk

Γ (β + k)
Γ (β)

. (22)

The IBP described by Eqs. (19) is often known as a branching process with immigration. The solution (20) was derived
y Kendall [14]; see [15] for recent work. We now discuss a multistage IBP that may have relevance to cancer, where
umor cells often undergo multiple stages [16,17]. The simplest step in this direction to allow for the possibility of two-
ype branching [18]. These models are analytically tractable [19]; models with three-type branching have not been solved
o far.
Two-type branching processes also give a good description of experimental data [9] on the cell dynamics of skin

issue. The experimental data are well fit by a model that involves progenitor cells (P) that can divide (proliferate) and
ifferentiate, and post-mitotic cells (M) that eventually disappear (leave the basal layer). The elemental steps of this
rocess are

S → S + P rate β

P → P + P rate r
P → P +M rate 1− 2r
P → M +M rate r
M → ∅ rate γ

(23)

With no source (β = 0), this two-type branching process was solved in [20]. We now generalize the approach of
ef. [20] to β > 0. We account for the populations of progenitor and post-mitotic cells by Pm,n(t), the probability to have
clones of P and n clones of M . This probability distribution evolves according to the master equation

dPm,n

dt
= [r(m− 1)+ β]Pm−1,n + r(m+ 1)Pm+1,n−2

+ (1− 2r)mPm,n−1 + γ (n+ 1)Pm,n+1 − (m+ γ n+ β)Pm,n . (24)

e again introduce the generating function

P(x, y, t) =
∞∑

m,n=0

xmynPm,n(t),

hich satisfies the partial differential equation (PDE)

∂tP+ U∂xP+ V∂yP = WP (25)

here U = x(1 − y) − r(x − y)2, V = γ (y − 1) and W = β(x − 1). For an initially empty system P(x, y, t = 0) = 1.
q. (25) is a first-order hyperbolic PDE and like all such equations, can be solved using the method of characteristics [21].
he characteristics are determined by equations

dx
dt

= U = x(1− y)− r(x− y)2

dy
dt

= V = γ (y− 1)
(26)

y construction of the characteristic equations, the time derivative along a characteristic is given by

dP
dt

= ∂tP+ U∂xP+ V∂yP

Combining this with Eq. (25) we get dP
dt = WP, which we integrate to yield

P(X, Y , T ) = exp
{
β

∫ T

0
dτ [x(t)− 1]

}
. (27)

t is convenient to think of t as a ‘running’ time, so we use the notation T for the final time. The functions x(t) and y(t)
ary along the characteristic and rather than parameterizing by initial values x(0) and y(0) it is preferable to parameterize
y the final values X = x(T ) and Y = y(T ).
To compute the generating function, Eq. (27), we need to determine x(t) along the characteristic. We integrate the

second of Eqs. (26) to give

y− 1 = (Y − 1)eγ (t−T ) . (28)

Substituting this into the first of (26) and changing the time variable t to

u = γ (1− Y ) eγ (t−T ) , (29)
5
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dx
du

=
x
γ

−
r
γ u

(x− 1+ u)2 . (30)

This Riccati equation admits an exact solution in terms of confluent hypergeometric functions [20]. Thus one can obtain
a solution, but it is complicated and difficult to use to obtain explicit results in the general case. A solution in terms of
elementary functions is possible in the special case r =

1
4 and γ = 1 (Appendix B). Two prominent results from this

analysis are: (i) Pm(t), the probability to have m progenitor cells, and any number of post-mitotic cells and (ii) Pm,0(t), the
probability to have m progenitor cells, and no post-mitotic cells. The former is given by

Pm(t) =
Γ (m+ 4β)

Γ (4β)Γ (m+ 1)
1

(1+ t/4)4β

(
t/4

1+ t/4

)m

. (31a)

his result coincides with the exact solution (20) with the understanding that m counts the number of progenitor cells,
nd the birth and death rates are r = 1/4. The latter probability distribution is

Pm,0(t) =
Γ (m+ 4β)

Γ (4β)Γ (m+ 1)
eβ(1−e−t )

(1+ t/2)4β

(
t/4

1+ t/2

)m

. (31b)

. Discussion

We analyzed two immortal branching processes (IBPs). The first is a simple extension of critical branching in which
xtinction cannot occur. The emergent behaviors are remarkably subtle, that are replete with logarithmic corrections.
he second is a branching process with a steady input of cells, or equivalently, immigration. Such a steady input
rises in a variety of non-equilibrium many-body processes, such as aggregation with a steady input of monomers [12],
ragmentation with a steady input of large clusters [22], and turbulence with a steady energy input at large scales [23,24].
n these examples, many new features were uncovered by incorporating steady input. Rich behaviors also occur in
patially extended systems with a spatially localized input [25,26] and the role of spatial degrees of freedom in IBPs
oses interesting challenges.
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ppendix A. Derivation of Eq. (9)

To solve the governing differential equation (8) for the generating function, we introduce the auxiliary variable
ζ = 1/(1− z) to recast this equation as

sP =
dP
dζ

+ 1−
P̃1(s)+ 1

ζ
. (A.1)

This linear inhomogeneous ordinary differential equation may be readily solved to yield

P =
1
s
−
(̃
P1(s)+ 1

) ∫ ∞

0

dη
η + ζ

e−sη
+Φ(s) esζ . (A.2)

To fix the integration constant Φ(s) we take the Laplace transform of the normalization condition
∑

m≥1 Pm(t) = 1 to
ive

∑
m≥1 P̃m(s) = 1/s. This then implies that limz→1− P(s, z) = 1/s. Since the limit z → 1− corresponds to ζ → +∞,

he second term on the right-hand side of (A.2) vanishes while the third term, Φ(s) esζ , diverges if Φ(s) ̸= 0. We thus
onclude that Φ(s) = 0.
Returning to the original variable z, we rewrite (A.2) as

P =
1
s
−
[̃
P1(s)+ 1

] ∫ ∞

0
dη e−sη 1− z

1+ η − ηz
. (A.3)

e now expand in a Taylor series in z to give the population distribution

P̃m(s) =
[̃
P1(s)+ 1

] ∫ ∞

dη e−sη ηm−1
. (A.4)
0 (1+ η)m+1

6
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pecializing (A.4) to m = 1 we obtain a closed equation for P̃1(s). After some straightforward steps, this equation simplifies
o

P̃1(s) =
1

sesΓ (0, s)
− 1 , (A.5)

here Γ (0, s) =
∫
∞

s du e−u/u is the incomplete Gamma function. Substituting the above form for P̃1(s) in (A.4), we obtain
q. (9).

ppendix B. Solution for Pm(t) and Pm,0(t) when r =
1
4 and γ = 1

For r = 1
4 and γ = 1, the Riccati equation (30) admits a solution [20] in terms of elementary functions

x = 1+ u+
1

1
4 ln u+ C

. (B.1)

hen t = T , we have x = X and u = 1− Y for γ = 1. These requirements fix the constant C to be

C = −
1
4 ln(1− Y )− (2− X − Y )−1 . (B.2)

sing this result we rewrite (B.1) as

x(t) = 1+ (1− Y ) et−T
−

(
T − t
4

+
1

2− X − Y

)−1

. (B.3)

ubstituting (B.3) into (27), computing the integral, and returning to the original variables x, y, t , we obtain

P(x, y, t) =
exp

[
β(1− e−t )(1− y)

][
1+ t

4 (2− x− y)
]4β . (B.4)

We now specialize (B.4) to the case y = 1 and expand this generating function in a Taylor series in x. This gives
Eq. (31a). In a complementary way, we specialize (B.4) to the case x = 1 and use the definition

P(1, y, t) =
∞∑
n=0

ynΠn(t) , (B.5)

hich expresses this restricted generating function in terms of Πn(t), the probability to have n post-mitotic cells.
xpanding P(1, y, t) in a Taylor series in y leads to

Πn = eβ(1−e−t )
n∑

k=0

[−β(1− e−t )]k

k!
Pn−k(t) , (B.6)

with Pm given by (31a).
Using (B.4) we obtain a simple expression for the probability to have no cells of any kind:

P0,0(t) = P(0, 0, t) =
eβ(1−e−t )

(1+ t/2)4β
. (B.7)

The temporal behavior of (B.7) is the same as that for the probability to have no progenitor cells, P0 = (1 + t/4)−4β

(Eq. (31a)), although with different amplitudes: P0 > P0,0(t). Finally, we specialize (B.4) to y = 0 to give

P(x, 0, t) =
∞∑

m=0

xmPm,0(t) =
exp

[
β(1− e−t )

][
1+ t

4 (2− x)
]4β . (B.8)

xpanding this expression in a Taylor series gives the probabilities of having only progenitor cells quoted in Eq. (31b).
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