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We investigate majority rule dynamics in a population with two classes of people, each with two opinion states
±1, and with tunable interactions between people in different classes. In an update, a randomly selected group
adopts the majority opinion if all group members belong to the same class; if not, majority rule is applied with
rate ε. Consensus is achieved in a time that scales logarithmically with population size if ε � εc = 1

9 . For ε < εc,
the population can get trapped in a polarized state, with one class preferring the +1 state and the other preferring
−1. The time to escape this polarized state and reach consensus scales exponentially with population size.
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A major theme in modeling social dynamics is understand-
ing the conditions that cause a population to either reach
consensus or a polarized state, in which a diversity of opin-
ions persists (see, e.g., Refs. [1–4]). The voter model [5–14]
provides a simple description for consensus formation. In a
single update, a randomly selected voter, which can be in one
of two opinion states, adopts the opinion state of a randomly
selected neighbor. Consensus is necessarily reached in a fi-
nite population. In contrast, polarized states arise in models
where interactions between individuals of different classes
are limited. Prominent examples include the Axelrod model
[15–18], in which individuals interact only if they share a
common social trait; the bounded confidence model [19–21],
in which individuals interact only if they are sufficiently close
in opinion space; multistate voter models, with interactions
only between voters in compatible states [22–24]; and social
balance models, with edges that specify friendly or unfriendly
relations and dynamics that reduce social stress [25–29].

Here, we extend majority rule dynamics [30–38] to probe
this tension between consensus and polarization in a math-
ematically principled way. The original majority rule model
describes opinion evolution in a population where each in-
dividual can be in one of two equivalent opinion states +1
and −1. Individual opinions change as follows: (i) Pick a
group of size G (with G odd to ensure that a majority exists)
from the population. (ii) All selected individuals adopt the
opinion of the group majority. These steps are repeated until
the population necessarily reaches consensus, either all +1
or all −1. If individuals reside on the nodes of a complete
graph, the consensus time scales logarithmically with popula-
tion size [31]. For finite-dimensional lattices, where the group
consists of contiguous individuals, the consensus time scales
algebraically with population size [39,40].

Our model, which we term the homophilous majority rule
(HMR), captures a pervasive aspect of social interactions—

namely, homophily [41–43], in that individuals tend to ignore
the opinions of people unlike themselves. The simplest situa-
tion is a population that consists of two classes of people that
we denote as A and B. The update follows that of majority
rule, with a simple but crucial twist: (i) Pick a group of
individuals at random from the population. (iia) If all group
members are from the same class, they adopt the majority
opinion. (iib) If the group consists of individuals from dif-
ferent classes, they adopt the majority opinion with rate ε;
otherwise, no opinion change occurs. Thus the “mixing pa-
rameter” ε, which we tacitly assume to be less than 1, is the
rate at which an individual joins the majority in a hetero-
geneous group. That is, heterogeneity impedes consensus, a
property that has been the focus of considerable social science
research (see, e.g., Refs. [44–47]).

When the mixing parameter ε exceeds a critical value
εc = 1

9 , the population quickly reaches consensus, in which
the average consensus time scales logarithmically with pop-
ulation size. When ε < εc, the population can get trapped
in a polarized state, with one class preferring the +1 state
and the other preferring the −1 state. The time to escape
this polarized state and reach consensus scales exponentially
with population size. For large N , consensus is therefore not
achieved in any reasonable timescale. Moreover, the distri-
bution of consensus times contains multiple scales, so that
different instances of the population reach consensus at wildly
different times.

Rate equations. First, we treat the special case of mix-
ing parameter ε = 1 by the deterministic rate equation. We
focus on the simplest case of group size G = 3 and briefly
comment about larger-size groups in the conclusions. The
density ρ(t ) of individuals with opinion +1 evolves according
to ρ̇ = ρ2(1 − ρ) − ρ(1 − ρ)2. The first term accounts for the
increase in ρ due to groups that consist of two individuals with
opinion +1 and one individual with opinion −1. A parallel
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FIG. 1. Flow field of the dynamical system defined by Eq. (1) for the cases: (a) ε = 0.25 (greater than εc = 1
5 ), (b) ε = 0.15 (between

εc = 1
9 and εc), and (c) ε = 0.08 (less than εc). The arrow colors indicate the flow magnitude [blue (darker) slow, red (lighter) fast] and the

symbols indicate the locations of the fixed points: red dots for stable, blue circles for saddles, and the black circle at ( 1
2 , 1

2 ) in (b) and (c) for
unstable.

explanation accounts for the second term. The rate equation
has two stable fixed points, ρ = 0, 1, corresponding to con-
sensus, and an unstable fixed point ρ = 1/2. The average
consensus time grows logarithmically with system size [31].

Consider now the HMR model for arbitrary ε � 1. We
analyze the symmetric situation of 2N total individuals, with
N in each class. Denote by nA and nB the number of A’s and
B’s with opinion state +1. In the N → ∞ limit, the densities
a = nA/N and b = nB/N obey

ȧ = F (a) + εG(a, b), ḃ = F (b) + εG(b, a), (1)

where

F (x) = x2(1 − x) − x(1 − x)2,

G(x, y) = (1 − x)[2xy + y2]−x[2(1 − x)(1 − y) + (1 − y)2]

(see the Supplemental Material [48] for details). The dynam-
ical behavior of the system (1) is quite rich, as illustrated
by the flow field for generic values of ε in each of the
three domains: (i) ε > εc = 1

5 ; (ii) εc < ε < εc with εc = 1
9 ;

(iii) ε < εc (Fig. 1).
When ε > εc, the consensus fixed points at α− ≡ (0, 0)

and α+ ≡ (1, 1) are stable nodes, while the fixed point β ≡
( 1

2 , 1
2 ) is a saddle. From any initial condition that does not lie

on the line a + b = 1, the population quickly reaches consen-
sus at α− for a + b < 1 and consensus at α+ for a + b > 1.
For initial conditions that lie on the line a + b = 1, the pop-
ulation is driven to the fixed point β. However, stochastic
finite N fluctuations drive the system from this line (and even
from the fixed point β if the evolution begins there) and either
consensus is reached with equal probabilities. We show below
that the consensus time scales as lnN in all cases for ε > εc.

In the intermediate regime, εc < ε < εc, the fixed point β

changes from a saddle to an unstable node and two additional
saddle-node fixed points

γ± = 1
2 (1 ± �, 1 ∓ �), � =

√
(1 − 5ε)/(1 − ε), (2)

emerge from β. These fixed points recede from β as ε

decreases below εc while remaining on the line a + b = 1

(Fig. 2). According to the rate equations, if the initial con-
dition lies on the line a + b = 1, except for (a, b) = β, the
population is drawn to one of the fixed points γ±. At γ+, for
instance, a fraction 1

2 (1 + �) of A’s is in the +1 state, while
the same majority of B’s is in the −1 state. Thus the total
population is polarized but evenly balanced, with one-half in
the +1 opinion state and the other half in the −1 state. All
other initial conditions are again driven to consensus.

FIG. 2. Fixed-point coordinates as function of ε, with dotted,
dashed, and solid indicating unstable, saddle, and stable nodes, re-
spectively. Magenta (horizontal line): The symmetric fixed point
β = ( 1

2 , 1
2 ). Red/blue (the parabola that starts at εc, with the lower

branch corresponding to red and the upper branch to blue): The two
reflection-symmetric fixed points γ± in the range ε = 0 to εc = 1

5 .
For fixed ε in this range, the two plotted values give the (x, y) and
(y, x) coordinates of γ±. Green/orange (the two parabolas that start
at εc, with the lower branches corresponding to green and the upper
branches to orange): The four nonsymmetric fixed points δi that
emerge from γ± at εc = 1

9 . For fixed ε, the green (lighter) plotted
values give the (y, x) and (x, y) coordinates of δ1 and δ3, respectively,
while the (darker) orange plotted values give the (x, y) and (y, x)
coordinates of δ2 and δ4,
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FIG. 3. The basin of attraction to the consensus fixed point (0,0)
[blue (black)] and (1,1) [yellow (white)] and to the mixed-opinion
fixed points γ± [orange (gray)] for the case ε = 0.1.

When ε < εc, four additional fixed points δi (i = 1, 2, 3, 4)
emerge, two from γ+ and two from γ−. These four fixed
points are saddle nodes, while the fixed points γ± become
stable. There are now two disjoint domains in phase space that
are attractors to one of these mixed-opinion fixed points γ±
(Fig. 3). In this regime, the population-average interaction is
sufficiently weak that A’s and B’s form their own and distinct
near-consensus enclaves when the initial condition is within
either of these basins of attraction for γ+ or γ− [Fig. 1(c)].
Again, the population is polarized but evenly balanced and
there is a range of initial conditions for which the population is
driven to this polarized state. Initial conditions that lie outside
these two basins of attraction are again quickly driven to one
of the consensus fixed points.

In principle, we can extend the rate equation approach to
larger group sizes G, but the analytical calculation quickly
becomes intractable. For G = 5, a visual inspection of the
flow diagram indicates that εc ≈ 0.081 and εc ≈ 0.032, com-
pared to εc = 1

5 and εc = 1
9 for G = 3. This decreasing trend

suggests that as G increases, ε must be extremely small to
forestall consensus.

Finite-population simulations. Even for a perfectly mixed
population, the rate-equation approach does not fully capture
the stochastic dynamics. Because of finite-N fluctuations, the
only true attractors of the dynamics are the consensus fixed
points. If the population state is in the basin of attraction of
one of the fixed points γ± (the situation pertinent for ε < εc),
the dynamics first draws the population to one of these fixed
points. Eventually, however, a sufficiently large stochastic
fluctuation pushes the population out of these basins and to
one of the consensus fixed points. The probability to leave
either of these basins is exponentially small in N , which
implies that the time to reach consensus grows exponentially
with N . Although consensus is the true final state, reaching
consensus requires a time that is practically unattainable for a
population of any appreciable size. Thus for ε < εc, consensus
is effectively not reached.

FIG. 4. The average consensus time 〈t〉 vs N for the balanced
initial condition for (a) various ε and (b) close to the transition at
ε = εc. In (a), the abscissa is on a logarithmic scale in the main panel
and the ordinate is on a logarithmic scale in the inset, where data for
the case ε = 1

16 are shown.

An analogous dichotomy occurs in population dynamics
models, such as the logistic process, where the rate equation
predicts a steady state, whereas extinction is the final out-
come [49–51]. In these processes, extinction occurs in a time
that scales exponentially with the quasisteady-state population
size predicted by the rate equation (see, e.g., Refs. [52–55]).
The HMR model exhibits a similar rare-event driven approach
to a final consensus, but with the additional feature that this
approach is governed by two very different timescales.

In our simulations, we first select three individuals at ran-
dom from the entire population. If these individuals are all
from the same class, majority rule is applied. If the group
consists of different classes of individuals, majority rule is
applied with probability ε; otherwise, nothing happens. The
time is incremented by 3/N in each update so that every
individual is considered once, on average, in a single time unit.
This update is repeated until consensus is achieved. We inves-
tigated several generic initial conditions: (a) a fully polarized
state, with A’s entirely in the +1 state, and B’s entirely in the
−1 state; (b) a “balanced” state, in which half of both the A’s
and B’s are in the +1 state; (c) “imbalanced” states, in which
a fraction q of the A’s and a fraction 1 − q of the B’s are in the
+1 state. This initial condition lies along the line a + b = 1 in
state space. The results for these initial conditions are quali-
tatively similar and we primarily focus on the balanced initial
condition.

For ε > εc, the average consensus time 〈t〉 grows logarith-
mically with N . This is an exact result [31] for the original
MR model (ε = 1), and it is also proved to occur for majority-
like stochastic processes that are described by rate equations
that possess only saddles and sinks—escaping a saddle and
reaching a sink takes O(lnN ) time [34,37]. This logarith-
mic dependence also occurs in the regime εc � ε � εc. In
this intermediate regime, when the initial state is on the line
a + b = 1, finite-N fluctuations will drive the population state
off this line (where γ± are attractors), after which consensus
is quickly reached.

When ε decreases below εc = 1
9 , the N dependence of 〈t〉

suddenly changes from logarithmic to exponential [Fig. 4(b)].
Strikingly, this exponential dependence sets in only after
N � 4000 for the case ε = 0.1, a feature that arises from the
geometry of the basin of attraction [Fig. 3(b)]. To reach one
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FIG. 5. The consensus-time distribution for the balanced initial
condition when ε = 0.03 for N = 40, 80, and 120.

of the fixed points γ± when starting from (a, b) = ( 1
2 , 1

2 ), the
population state has to navigate within the tongue between
the separatrices that border the basins of attraction to γ±. This
tongue is narrow when ε is close to εc, so the population state
is typically and quickly drawn to a consensus fixed point in
this range. However, if either fixed point γ± is reached, the
escape time scales exponentially with N . These two outcomes
explain the existence of two drastically different timescales
in P(t ), the consensus-time distribution (Fig. 5). We may
estimate the probabilities of the two outcomes from the data
for P(t ) and find that the probability to reach one of the
fixed points γ± vanishes as ε → εc from below; a bound
for this probability is given in the Supplemental Material.
Finally, note that this bimodal consensus-time distribution
(Fig. 5) arises when the starting state is (a, b) = ( 1

2 , 1
2 ). If

the starting point lies inside the basin of attraction of γ±,
the consensus-time distribution is asymptotically exponential,
P(t ) = 〈t〉−1e−t/〈t〉, and is fully characterized by the average
consensus time [55].

Deep in the ultraslow regime, these two disparate
timescales can be readily quantified. For example, for ε =
0.03, the average consensus time 〈t〉 over 105 realizations
is approximately 1304, 57 104, and 2 477 250 for N = 40,
80, and 120. The underlying distribution of consensus times
consists of two widely separated peaks (Fig. 5). These peaks
are located at roughly t ≈ 23.8 and 3.3 × 103 for N = 40,
t ≈ 29 and 1.6 × 105 for N = 80, and t ≈ 33 and 8.9 × 106

for N = 120. The smaller of these two times grows close to
logarithmically with N , while the larger time grows roughly
exponentially with N . Thus the average consensus time is not
a useful measure of how long it takes a given realization of the
population to reach consensus.

To appreciate the dynamical source of these disparate
timescales for ε < εc, it is useful to trace individual state-
space trajectories. Figure 6 shows two such trajectories for
ε = 0.03 and N = 80. One (magenta) corresponds to quick
consensus, in which the trajectory moves quasisystematically
from the initial state of (a, b) = ( 1

2 , 1
2 ) to consensus at (0,0) in

a time of roughly 29.5. The other trajectory (multiple colors)
shows an ultraslow approach to consensus. The blue portion

FIG. 6. Two state-space trajectories for ε = 0.03 and N = 80
that both start from ( 1

2 , 1
2 ): (magenta) a trajectory that “directly” goes

to consensus at (0,0); (blue/green/red) a “wandering” trajectory that
quickly reaches a metastable state near the fixed point γ+ before
eventually reaching consensus.

shows the first 100 steps, where the population state quickly
goes from ( 1

2 , 1
2 ) to a metastable state near the fixed point

γ+ ≈ (0.968, 0.032). The green portion shows the trajectory
in the time range between t ≈ 100 and 0.999T , where T =
126 456 is the consensus time for this trajectory. This part of
the trajectory wanders stochastically about the fixed point γ+
until a large fluctuation drives this trajectory outside the local
basin of attraction, after which the consensus fixed point at
(1,1) is reached (red portion of the trajectory).

When ε = εc, which defines the boundary between loga-
rithmic and exponential dependence of the average consensus
time, we might expect 〈t〉 to scale algebraically with N .
Instead, simulations indicate logarithmic scaling [Fig. 4(b)].
We also might anticipate that the consensus time is a non-
self-averaging random quantity in the intermediate regime
εc � ε � εc because of the presence of the fixed points
γ±. However, simulations suggest that the consensus time
is self-averaging for all ε � εc. Specifically, we found that
the fluctuation measure R ≡

√
〈t2〉/〈t〉 → 1 faster than alge-

braically in N when ε > εc, and as N−1/2 when ε = εc. These
results suggest that the consensus time t is a self-averaging
random quantity that scales as lnN for all ε � εc.

Majority rule in a two-class population favors quick con-
sensus (logarithmic in population size N) when individuals
heed members of the other class with a rate greater than
11%. Otherwise, a polarized state typically occurs, in which
one class favors the +1 opinion and the other class favors
−1, even though neither class has an internal opinion pref-
erence. This polarized state is practically eternal in that the
escape time to reach consensus scales exponentially with N .
This frozen-in polarization seems characteristic of the cur-
rent social climate [56–59] and illustrates the crucial role
of interactions between different classes of individuals in
fostering either camaraderie or animosity. However, as the
group size G increases, there is a wider range of values for
the mixing parameter ε for which polarization appears to be
less likely. Our work also raises several challenges, such as
understanding homophilous majority rule on more realistic
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or dynamically evolving networks, heterogeneous group-
ings of individuals, and the role of more than two opinion
states.
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suggestions. S.R. was partially supported by NSF Grant No.
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