
Testing Regex Generalizability And Its Implications
A Large-Scale Many-Language Measurement Study

James C. Davis, Daniel Moyer, and Ayaan M. Kazerouni
Department of Computer Science

Virginia Tech
{davisjam, dmoyer, ayaan}@vt.edu

Dongyoon Lee
Department of Computer Science

Stony Brook University and Virginia Tech
dongyoon@cs.stonybrook.edu

Abstract—The regular expression (regex) practices of software
engineers affect the maintainability, correctness, and security of
their software applications. Empirical research has described
characteristics like the distribution of regex feature usage, the
structural complexity of regexes, and worst-case regex match
behaviors. But researchers have not critically examined the
methodology they follow to extract regexes, and findings to
date are typically generalized from regexes written in only 1–
2 programming languages. This is an incomplete foundation.

Generalizing existing research depends on validating two
hypotheses: (1) Various regex extraction methodologies yield
similar results, and (2) Regex characteristics are similar across
programming languages. To test these hypotheses, we defined
eight regex metrics to capture the dimensions of regex rep-
resentation, string language diversity, and worst-case match
complexity. We report that the two competing regex extraction
methodologies yield comparable corpuses, suggesting that simpler
regex extraction techniques will still yield sound corpuses. But
in comparing regexes across programming languages, we found
significant differences in some characteristics by programming
language. Our findings have bearing on future empirical method-
ology, as the programming language should be considered, and
generalizability will not be assured. Our measurements on a
corpus of 537,806 regexes can guide data-driven designs of a
new generation of regex tools and regex engines.

“There are more things in heaven and earth, Horatio,
Than are dreamt of in your philosophy.”

–Hamlet

I. INTRODUCTION

For such a widely-used programming tool, regexes have
been surprisingly understudied. Although they have been
around for decades and appear in an estimated 30–40 %
of software projects [1], [2], only recently have they been
investigated from a software engineering perspective. Empir-
ical studies have examined topics like regex readability [3],
feature usage [1], structural complexity [4], evolution [5], and
worst-case performance (and concomitant security vulnerabil-
ities) [2], [6]. These studies have often been based on small-
scale regex corpuses extracted from a few thousand software
projects. Can their findings be generalized?

In this paper we formulate and test two generalizability
hypotheses underlying prior research. First, we test whether
prior results may have been biased by following different regex
extraction methodologies (§V). Researchers have extracted
regexes using static analysis [1], [2], [7] or runtime instru-
mentation [4], and to generalize from one methodology to the

other we must show that the extracted regexes are similar.
Second, we test whether prior results generalize to other
programming languages. For this test we rely on a large-scale
corpus of 537,806 regexes extracted from 193,524 projects
across eight programming languages (§VI). Our generalization
efforts depend on a comprehensive set of regex metrics (§IV).

Our findings support a nuanced notion of universal regex
practices. In our first experiment, we show that the regex
extraction methodology does not produce significantly dif-
ferent regex corpuses. In our second experiment, we found
that the regexes from different programming languages are
not significantly different on four of our eight metrics, and on
the other metrics only a few languages are outliers. Because
regexes appear to be similar across programming languages,
we were able to replicate many findings from prior research in
new programming languages on a larger regex corpus (§VII).

In §VIII we discuss the implications of our measurements
for regex tool designers and regex engine developers. For ex-
ample, visualization designers should ensure their approaches
render well on realistically-sized regexes, and regex engine
designers might prioritize regex feature support and optimiza-
tions based on their relative frequency of use in real regexes.

This work makes the following contributions:
• We identify two generalizability hypotheses underpinning

existing empirical regex research (§III).
• We define a comprehensive set of regex metrics permitting

regex characterization across three dimensions (§IV).
• We test these hypotheses using two regex corpuses collected

from 75 K and 190 K software projects, respectively, written
in three and eight popular programming languages. The gen-
eralizability hypotheses generally hold (sections V and VI).

• We test the replicability of prior regex research, and show
that this research generalizes (§VII). We describe the poten-
tial effect of outliers on the findings of prior work.

• We discuss the implications of our measurements for regex
tool designers and regex engine developers (§VIII).

II. BACKGROUND

A. Regular Expressions, Automata, and ReDoS

A regex is a way to describe strings that match a certain
pattern. Regexes are supported in most popular programming
languages. Software engineers use them to concisely conduct

���

�������UI�*&&&�"$.�*OUFSOBUJPOBM�$POGFSFODF�PO�"VUPNBUFE�4PGUXBSF�&OHJOFFSJOH�	"4&

����������������������������¥�����*&&&
%0*���������"4&�����������

sophisticated string operations like text processing, input san-
itization, and code search [8], [9].

Programming languages implement regex matching using
automaton simulation. A programming language’s regex en-
gine converts a regex pattern to a Non-deterministic Finite
Automaton (NFA) or Deterministic Finite Automaton (DFA)
representation. The regex engine tests for a pattern match by
simulating the behavior of the automaton on a candidate string
using static DFA simulation [10], Spencer’s backtracking NFA
simulation [11], or Thompson’s dynamic DFA simulation [12].
Most regex features, like Kleene stars (/a*/) and custom
character classes (/[aeiou]/), are truly regular in the
automata-theoretic sense and can be modeled through the
appropriate construction of the automaton graph and transition
function. Some regex engines also support extended regex
features like backreferences and lookaround assertions, which
are non-regular and entail a more complex automaton repre-
sentation and simulation [13]–[16].

The worst-case time complexity of a regex match varies
widely by regex engine, exposing many applications to a
denial of service vector. Most programming languages use
Spencer’s algorithm, which supports extended regex features
but suffers from exponential worst-case time complexity [17],
[18] due to the “catastrophic backtracking” that can occur
while simulating NFAs with high ambiguity [6], [19], [20].
Super-linear worst-case regex match time can lead to an algo-
rithmic complexity attack [21] known as Regular expression
Denial of Service (ReDoS) [17], [22], [23]. In a ReDoS attack,
an attacker triggers polynomial or exponential regex match
behavior in server-side software to divert resources away from
legitimate clients. For example, the company Cloudflare had
an outage in July 2019 due to a super-linear regex match [24].

B. Recent Regex Research: Tools and Characteristics
Though regex research has historically focused on the

mathematical properties of regexes, recent work has examined
regexes from a software engineering perspective. Researchers
have proposed a variety of tools to support engineers working
with regexes. For example, regex visualizations have been
proposed for comprehension [25]–[27]; regex input generators
for regexes have been developed to support comprehension
and testing [28]–[30]; and researchers have combated the
ReDoS security threat through mechanisms for worst-case
regex detection [6], [19], [31], [32] and prevention [18], [33]–
[36].

The better we understand how and why software engineers
use regexes, the better tools we can build to support them. To
guide this endeavor, empirical regex researchers have sought
to understand the characteristics of real-world regexes. The
efforts of these researchers have provided many hints about
how engineers use regexes in practice. Regexes are widely
used, reportedly appearing in 30–40 % of software projects
with applications like input sanitization, error checking, docu-
ment rendering, linting, and unit testing [1], [2], [4]. Software
engineers may rely more heavily on some regex features
than others, possibly tied to the relative comprehensibility of

TABLE I
EXISTING REGEX CORPUSES. NO COMPARISON HAS BEEN MADE

BETWEEN EXTRACTION METHODS. REGEX CHARACTERISTICS HAVE BEEN
STUDIED CAREFULLY IN THREE PROGRAMMING LANGUAGES. *THIS

CORPUS HAS ONLY BEEN USED TO COMPARE REGEX ENGINES (SEE §X).

Corpus Extraction method Languages (# Projects)
[1] Static analysis Python (4 K)
[2] Static analysis JavaScript (375 K), Python (72 K)
[4] Program instrumentation Java (1.2 K)

[7]* Static analysis Eight prog. languages (190 K)

different features [3]. Features like quantifiers, capture groups,
and character classes are commonly used in Python, while
backreferences and lookaround assertions rarely appear in
practical regexes [1]. Engineers may under-test their regexes,
perhaps relying on line coverage instead of automaton graph
coverage [4]. Most regexes may go unmodified after entering
version control [5]. And many prominent software modules
and web services rely on super-linear regexes and are vulner-
able to ReDoS [2], [6], [32].

If these preliminary empirical regex findings generalize,
they can guide research into more fruitful directions and nip
others in the bud [37]. For example, if regexes are as widely
used as is thought, then visualization and input generation
tools can be valuable aids for many developers. And if
super-linear worst-case time complexity is as common as has
been estimated, then addressing this behavior by overhauling
regex engines seems natural. Conversely, if regexes do not
change after entering version control [5], then regex-specific
differencing tools (e.g., for code review) may not have great
utility. And if non-regular regex extensions like backreferences
and lookaround assertions are as rare universally as initial
results suggest, then they should be a low priority for tool
support and regex engine optimizations.

III. MOTIVATION: ASSUMPTIONS AND APPLICATIONS

Empirical regex research depends on two generalizability
hypotheses. Generalizing this research will permit us to guide
future researchers and programming language designers.

A. Existing Regex Corpuses

As summarized in Table I, the corpuses used in prior
empirical regex research were created using one of two regex
extraction methodologies. The first three corpuses have been
analyzed in terms of regex characteristics, covering only three
programming languages. The fourth corpus has been used to
compare regex engine behavior, but the characteristics of the
regexes themselves have not been studied.

Comparing regex extraction methodologies. When a devel-
oper matches a string against a regex, they must specify the
regex pattern and construct a Regex object. The regex pattern
can be provided as a static string to the Regex constructor. Or
the developer might wish to supply a variable string, e.g., to
build a complex regex by concatenating its constituent parts.
Rasool and Asif suggest that this practice of regex templating,

���

which they call “abstract regexes,” may make regexes easier
to debug [38]. For a real-world example, the widely-used
marked Markdown parser relies heavily on regex templating.1
We illustrate these concepts in Listing 1.

Listing 1 Regex corpuses based on static analysis or program
instrumentation may yield different results. For example, the
regex used to match the emailStr is of varying complexity
depending on the regexType flag. Static analysis might
only be able to retrieve the simplest regex pattern, while an
instrumented application or runtime might identify all three
patterns if the software can be exercised thoroughly.
def isEmail(emailStr, regexType, externalRegex):
if regexType == "SIMPLE_REGEX":
reg = Regex(".+@.+")

elif regexType == "COMPLEX_REGEX":
NAME_REGEX = "[a-z0-9]+"
DOMAIN_REGEX = "[a-z0-9]+(\.[a-z0-9]+)+"
regex = NAME_REGEX + "@" + DOMAIN_REGEX
reg = Regex(regex)

else:
reg = Regex(externalRegex)

return reg.match(emailStr)

Regex corpuses have been constructed using either static
analysis or program instrumentation (Table I). These ap-
proaches have familiar tradeoffs. Using static analysis, re-
searchers can analyze an entire software project, but may not
be able to extract dynamically defined regex patterns like those
in Listing 1 without intra- and inter-function dataflow analysis.
In contrast, runtime analysis can extract both statically and
dynamically defined regex patterns so long as the relevant call
sites are evaluated during execution. It is not clear whether a
regex corpus based on one extraction methodology would be
comparable to a regex corpus based on the other.

Regex variation by language? Regex research has provided
hints about how engineers use regexes in practice, but these
works have been isolated to practices in three programming
languages. Engineers may choose a programming language
based in part on their task [39], [40] (“the right tool for the
job”), and some tasks may have greater call for pattern match-
ing. It is not unreasonable to suppose that the characteristics
of the regexes used to solve these problems may likewise vary
by programming language.

B. Two Regex Generalizability Hypotheses

We wonder whether variations in regex extraction method-
ology, as well as the present restriction of regex analyses to
only three programming languages, may mask variations in
regex characteristics. We formulate these questions as two
regex generalizability hypotheses: the Extraction Methodology
(EM) and Cross-Language (CL) hypotheses.
H-EM It does not matter whether a regex corpus is con-

structed using static analysis or program instrumentation.
At scale, using either extraction methodology will yield
a corpus with similar distributions of regex metrics.

1See https://github.com/markedjs/marked.

H-CL Regex characteristics are similar across programming
language. The distributions of regex metrics will be sim-
ilar for software from different programming languages.

C. Application: Data-Driven Regex Engine Design
Programming language designers and regex engine devel-

opers have several regex matching algorithms to choose from,
including Thompson’s [12] and Spencer’s [11]. While the
pros and cons of these algorithms can be debated, some are
noticeably more suitable than others on certain regexes, e.g.,
the well-known advantage of Thompson over Spencer engines
on ambiguous regexes [18]. To the best of our knowledge, the
regex engines in many programming languages were designed
without considering the characteristics of real regexes.

We lack both a comprehensive set of metrics that engine
designers should consider, and the measurements of real
regexes to guide their designs. To fill this gap, in the next
section we describe metrics that can indicate the relative costs
of different approaches (§IV), and we proceed to measure real
regexes and discuss the implications (§VIII).

IV. A COMPREHENSIVE SET OF REGEX METRICS

In this section we introduce our comprehensive collection of
regex metrics (Table II). We selected metrics to characterize
a regex in three dimensions: its representation, the diversity
of the language it describes, and the complexity of various
algorithms to solve its membership problem. These metrics
fulfill two purposes. First, they include most regex metrics
considered in prior research, allowing us to evaluate gen-
eralizability. Second, our metrics include those of particular
interest to the developers of regex tools and regex engines.
In testing these hypotheses, we characterize the largest extant
regex corpus in support of data-driven tool and engine designs.

A. Metrics for Regex Representation
We measure the representation of a regex in terms of

the pattern and its corresponding automata. The features and
structural complexity of a regex may impact regex compre-
hension [3], affecting areas like code re-use and code review.
These metrics may also influence the design of visualization
tools (“Which features does my visualization need to support?
How will typical regexes look in my visualization?”).

A regex’s pattern representation is the face it shows to
engineers. Measures on the pattern representation give some
sense of the impression an engineer has when examining the
regex. We first measure the length of this representation in
terms of the number of characters in the string encoding of
the pattern. Then we measure its Chapman feature vector [1],
counting the number of times each regex feature is used. For
example, for the regex /(a+)\1+/ we would compute a
regex length of 7 and report two uses of the + feature and
one use of the capture group and backreference features.

The pattern representation of an (automata-theoretic) regex
corresponds to an NFA and DFA representation used by a
regex engine to answer regex language membership queries.
As we discuss during our analysis, measures of the automata

���

TABLE II
REGEX METRICS ORGANIZED BY REPRESENTATION, LANGUAGE DIVERSITY, AND WORST-CASE MATCH COMPLEXITY. THE FINAL COLUMN REFERENCES

PREVIOUS STUDIES THAT MEASURE OR APPLY THIS METRIC. *: NO PRIOR SCIENTIFIC MEASUREMENTS.

Dimension Metric Description Implications Prior Studies

Representation
Pattern length Characters in the regex (C# translation) Length affects visualization, comprehension *

Feature vector sparseness Number of distinct features used More features: harder to comprehend *
NFA vertices Number of vertices in an epsilon-free NFA Size affects visualization, comprehension [4]

Lang. diversity # simple paths Num. of representative matching strings Comprehension; Test suite size [29] (basis)

Complexity

DFA blow-up Ratio of DFA vertices to NFA vertices Feasibility of static DFA-based algorithm *
Mismatch ambiguity Worst-case match time for backtracking NFA simulation Feasibility of Spencer’s algorithm [2], [6]

Average outdegree density Average completeness of outgoing edge set Cost of Thompson’s algorithm *
Has super-linear features Whether regex relies on super-linear regex features

(backreferences, lookaround assertions)
Unavoidable super-linear match complexity [1], [2], [4]

complexity can inform the design of a regex engine. We apply
a Thompson-style construction [12] to generate an (epsilon-
free) NFA: a graph with vertices corresponding to NFA
states connected by labeled edges indicating the character to
consume to transition from one state to another.2 We measure
the number of vertices in the NFA graph.

B. Metrics for Regex Language Diversity

A regex pattern encodes a string language, i.e., the family
of strings that its corresponding automaton will match. We
measure the diversity of each regex’s language with an eye to
its testability. The larger and more diverse a regex’s language,
the larger the variety in the strings the regex accepts, and the
more difficult it is to completely test and validate it.

We operationalize the notion of diversity by measuring
the size of a set of representative matching strings for that
language. We do this by measuring the number of distinct
paths from the start state to the accept state that use each node
at most once (i.e., the automaton graph’s simple paths [42]).
Each of these paths corresponds to a string in the language of
the regex and is distinct in some way from each other path. In
particular, for every optional node there is a simple path that
does and does not take it; for every disjunction /a|b/ there
are separate sets of simple paths exploring each option. This
family of strings is illustrated in Figure 1.3

������� ���	���	���

���
��
��
�

Fig. 1. Illustration of simple paths for the regex /a?b?c/.

2There are other NFA constructions optimized for fewer vertices or fewer
edges, and a rich literature on the automata minimization problem [41]. We
considered using minimized NFAs but found the algorithmic complexity was
too great to handle the longer regexes in our corpus.

3This family can also be thought of as the (finite) set of strings in the
language of the regex rloop−free after removing all loops from an original
regex r. The size of this family can be determined recursively from the regex
representation using rules like: |characters| = 1; |A∗| = |A?| = |A{0, }| =
|A|+ 1; |A ∨B| = |A|+ |B|; |AB| = |A| ∗ |B|.

Using simple paths to measure language diversity is similar
in spirit to using basis paths as proposed by Larson and
Kirk [29]. However, their goal was to obtain a manageable
set of test strings. We believe succinctness comes at the
cost of reduced comprehension. Basis paths can be used to
ensure node coverage, but may not fully illustrate the range
of “equivalence classes” in the regex’s language the way that
simple paths will.

C. Metrics for Regex Worst-Case Complexity

The worst-case time complexity of a regex match depends
on the algorithm used to solve it, and several regex member-
ship algorithms have been proposed with complexity ranging
from linear to exponential [11], [12], [43]. Our metrics in
this dimension can inform the design and application of regex
engines based on different algorithms.

First, we consider algorithms that have super-linear worst-
case complexity as a function of the regex (and input). Regex
engines based on these algorithms are reportedly easier to
implement and maintain [11], and so there is a tension between
language designers’ desires and the needs of software engi-
neers who rely on “pathological” regexes in practice. If a high-
complexity algorithm is used, pathological regexes become
security liabilities — they can [2], [17] and have [36], [44]
led to denial of service exploits (ReDoS).

Complexity in static DFA engines. One super-linear regex
match algorithm statically converts the NFA to an equivalent
DFA, offering linear time matches in the size of the input
and the DFA. A DFA representation, however, is well known
to have worst-case exponentially more states than its corre-
sponding NFA representation [10]. If regexes with enormous
DFA representations are common, this kind of algorithm is
impractical; if they are rare, then it could be used alone or as
the first approach in a hybrid regex engine.

To inform static DFA-based regex engines, we compute the
following metric. Using the machinery from the representation
metrics, we convert each regex NFA to a DFA. We compute
the ratio of DFA to NFA states to evaluate how frequently this
conversion results in an exponential state blow-up.

Complexity in Spencer engines. The Spencer algorithm [11]
is a super-linear matching algorithm that relies on a

���

backtracking-based NFA simulation. Spencer’s algorithm is
used in most programming languages, including JavaScript,
Java, and Python [7], [18]. Each time this algorithm has a
choice of edges, it takes one and saves the others to try
later if the first path does not lead to a match. Several
researchers have formalized the conditions for super-linear
Spencer-style simulation due to NFA ambiguity [6], [19], [31],
and shown that the worst-case simulation cost for a regex on
a pathological input may be classified into linear, polynomial,
or exponential as a function of the input string.

To inform Spencer-style regex engines, we compute the fol-
lowing metric. We measure a regex’s worst-case partial-match
complexity in a Spencer-style engine. For this measurement
we use Weideman et al.’s analysis [20].4 In our measurements
we report the proportion of regexes that this analysis marks
as polynomial and exponential among those it successfully
analyzes. If super-linear regexes are common in software
written in programming languages that use Spencer-style regex
engines, the designers of those programming languages may
wish to consider an alternative algorithm to reduce the risk of
ReDoS vulnerabilities.

Complexity in Thompson engines. The Thompson algo-
rithm [12], popularized by Cox [18], uses a dynamic-DFA
based NFA simulation. It forms the basis of the Go and
Rust regex engines. Each time a Thompson-style matching
algorithm has a choice of edges, it simulates taking all of
them, tracking the current set of possible NFA vertices and
repeatedly computing the next set of vertices based on the
available edges in the NFA transition table. In effect, a
Thompson-style engine computes the DFA dynamically, not
statically, and only computes the state-sets that are actually
encountered on the input in question. It offers worst-case
O(n∗m2) complexity for inputs of length n and regexes with
NFAs with m nodes, with the cost of each transition bounded
by the number of outgoing edges that must be considered for
each vertex in the current state-set. Note that each vertex may
have outgoing edges to between zero and all m of the vertices
in the graph, and the cost of each step of the Thompson
algorithm depends on the number of outgoing edges from the
current state-set.

We use the following metric to inform the design of a
Thompson-style engine: the average vertex outdegree density,
1
m

∑m
1

degvertexi
m = |E|

m2 , where E is the edge set of the
automaton. This is a [0, 1] metric, 0 for completely uncon-
nected graphs and 1 for completely connected graphs. For a
Thompson-style engine, if the current state-set has x nodes,
then it will cost an average of x times this metric to compute
the next state-set.

Unavoidable super-linear complexity. Most regex engines
support a feature set beyond traditional automata-theoretic
regular expressions. Of particular note are backreferences, a

4Weideman et al.’s analysis identifies both exponential and polynomial
regex behavior and is open-source. Rathnayake and Thieleke’s analysis only
considers exponential behavior [19]; Wustholz et al.’s implementation is not
open-source [6]; and Shen et al.’s mutation-based approach is unsound [32].

self-referential construct proved to be worst-case exponential
in the length of the input [45], and lookaround assertions,
which are typically implemented with super-linear complex-
ity. To round out our complexity metrics, we measure the
proportion of regexes that rely on these super-linear features,
through reference to the feature vector computed as part of the
regex representation metrics. Understanding the popularity of
these features may guide future regex engine developers in
deciding whether or not to support these features. The most
recent programming languages to gain mainstream adoption,
Rust and Go, decided not to support these features, and it
is not clear whether this decision will impose significant
portability problems on engineers transitioning software from
other languages to these ones.

D. Implementation of metric measurements
We built our measurement instruments on Microsoft’s Au-

tomata library [46], which underlies the Rex regex input
generation tool [28]. To the best of our knowledge this is the
most advanced open-source regex manipulation library. Our
fork extends the Automata library in several ways:
• We fixed several bugs in its automaton manipulations, elim-

inating long-running computation and memory exhaustion.
• We added support for generating the Chapman feature vector

of a regex.
• We added support for collapsing certain expensive portions

of a regex to facilitate simple path computation.
• We added support for emitting an automaton’s graph in a

format suitable for subsequent analysis.
• We introduced a command-line interface for automation.

The Automata library only supports .NET-compliant
regexes. We therefore implemented an ad hoc syntactic regex
conversion tool to translate regexes from other languages into
a semantically equivalent .NET regex before measuring them.
To reduce bias, we converted at least 95 % of the regexes
originating in each language. These translations sufficed:
1) We replaced Python-style named capture groups and back-

references, (?P<name>A)...(?P=<name>), with the
.NET equivalent, (?<name>A)...\k<name>.

2) .NET only permits curly brackets to indicate repetition,
while some other languages interpret curly brackets with
non-numeric contents as a literal string. We escaped any
curly bracket constructions of this form.

3) .NET does not support the /\Q...\E/ escape notation.
We removed the Q-E bookends and escaped the innards.

4) .NET does not support certain inline flags. We replaced
the Unicode support flag with the “case insensitive” flag to
preserve the presence of the feature while ensuring .NET
compatibility.

The Automata library does not support simple path mea-
surements, so we analyzed the NFA graph it produced using
the NetworkX library [47].

The Automata library can parse all .NET-compliant regexes,
but it can only produce NFAs for regexes that are regular (e.g.,
no support for backreferences, lookaround assertions, and
greedy matches). We therefore omit automata measurements

���

when necessary. We also omit automata measurements when
the Automata library took more than 5 seconds to generate
them.

V. THE EXTRACTION METHODOLOGY HYPOTHESIS

Here we test the H-EM hypothesis: “It does not matter
whether a regex corpus is constructed using static analysis or
program instrumentation.” We found no reason to reject this
hypothesis in the software we studied.

We tested H-EM in the context of open-source software
modules (libraries). Lacking access to closed-source software,
we studied open-source software out of necessity. We opted to
study modules rather than applications by choice. In our ex-
perience, modules have less variability in design and structure
than do projects randomly sampled from GitHub, facilitating
automated analysis. In addition, the ecosystem of most popular
programming languages includes a large module registry, and
so modules were a convenient target for our cross-language
comparison experiment (H-CL). Using modules to test H-EM
as well unified our methodology.

A. Methodology

Summary. Our methodology is summarized in Figure 2, and
Table III provides the details. We targeted software modules
written in the three most popular programming languages
on GitHub: JavaScript, Java, and Python [48]. We extracted
regexes using both static analysis and program instrumen-
tation. After creating a regex corpus, we used statistical
tests to determine whether there were significant differences
between the regexes extracted using each methodology in any
programming language.

������� �� ����

���������!��
������

� � �������#
�# ��� ���

��� �!���
����#������� ��

���������� ��������

�!�����!��
 �� ��!� �

������
����#��

������!���
 ��
� �!�

� �
������
�

� ��	�
�

�������������	�� ������
���	��
� �
�
�
�

�������� � ���
�� ����

��"���� $
�� ����

������#� $
�� ����

�������	�
����	��

	�� ����! �����
������ �

Fig. 2. Analysis flowchart. We performed regex extraction for H-EM, and for
H-CL we leveraged an existing corpus derived using similar methodology.

Software. Modules were chosen by identifying the most
prominent module registry for each language, mapping its
modules to GitHub, and examining approximately the most
important 25,000 modules from each. For JavaScript we used

npm modules [49], for Python we used pypi modules [50],
and for Java we used Maven modules [51]. Because software
engineers commonly star modules that they depend on, we
used a module’s GitHub stars as a proxy for importance [52].
We extracted regexes from the entire module source code,
both production code (e.g., src/) and test code (e.g., test/).
We considered only source code written in the language
appropriate for the module registry (e.g., only Python files
for pypi modules, as determined by the cloc tool [53]).

Extraction through static analysis. We followed the method-
ology described in [1], [2], [7]. In each language, we used
an AST builder to parse the module source code and visit
the regex-creating call sites. We extracted statically-defined
regex patterns from each such call site. We did not perform
any dataflow analysis: we extracted string literals used as
the regex pattern, and did not attempt to resolve non-literal
arguments. For example, this extraction would only retrieve
the “SIMPLE REGEX” from Listing 1.

We examined the documentation for each programming lan-
guage to learn the regex-creating call sites. Generally, regexes
can be created directly through the language’s Regex type and
indirectly through methods on the language’s String type. For
example, in JavaScript you can create a regex directly using
a regex literal, /pattern/, or the RegExp constructor, new
RegExp(pattern), or indirectly using a String method like
s.search(pattern). The AST libraries and regex-creating
call sites we identified for each language are listed in Table III.

Extraction through program instrumentation. We followed
a methodology similar to that of Wang and Stolee [4], but
repaired one of their threats to validity. We targeted the same
regex-creating call sites as we did in the static analysis. We
applied a program transformation to instrument the (potentially
variable) regex pattern argument at these call sites. Our instru-
mentation consisted of an inline anonymous function to log the
pattern and return it, avoiding side effects. We then executed
the test suites for the modules and collected the regexes that
reached our instrumentation code. For example, this extraction
would retrieve each of the regexes from Listing 1, provided
the test suite covered each path.

We automatically executed the test suite for each module
that used one of the common build systems for its registry
(Table III). We identified these build systems using a mix
of Internet searches and iterative analysis of modules from
each registry. Because our source code-level instrumentation
did not follow the coding conventions of the projects, some
build attempts initially failed during an early linting stage. We
configured our builds to skip or ignore the results of linting.

We found that many modules did not have test suites [65],
and others failed to build due to external dependencies. We
took several measures to increase the number of successful
test executions. In Java, we installed all Android SDKs and
Build Tools using Google’s sdkmanager, permitting us to
build many modules intended for use on Android. In Python,
we attempted to run test suites under Python 2.7 and Python
3.5/6 using many different build systems. However, these ad

���

TABLE III
REGEX EXTRACTION DETAILS FOR H-EM. FOR STATIC ANALYSIS, WE EXTRACTED ANY CONSTANT REGEX PATTERNS USED AT THESE CALL SITES. FOR

PROGRAM INSTRUMENTATION, WE WRAPPED THESE CALL SITES WITH A CALL TO A LOG ROUTINE.

Language Regex call sites AST module(s) Build system(s) Sample commands
JavaScript RegExp: RegExp literals, RegExp constructor

String methods: match, matchAll, search
Babel [54] npm [55] npm install-build-test

Java java.util.regex.Pattern: compile, matches
String methods: matches, replaceFirst, replaceAll, split

JavaParser [56] Maven [57], Gradle [58] mvn clean-compile-test

Python re module: compile, escape, findall, finditer,
fullmatch, match, search, split, sub, subn

ast, astor [59] Distutils [60], Tox [61],
Nox [62], Pytest [63], Nose [64]

python3 setup.py test

hoc approaches may have caused us to miss projects with other
build systems or dependencies.

Collecting regexes via source code instrumentation ensured
that we captured only the regexes created within each module,
permitting direct comparison of the regexes extracted through
the two different methodologies. This approach counters one
of the threats to [4], which instrumented the language runtime
and attempted to filter out third-party regexes.

Constructing the regex corpus. After extracting regexes from
each module using the two methods, we combined the results
into a corpus of unique regex patterns based on string equality
of the regex pattern representations. We then noticed that some
projects contributed orders of magnitude more regexes to the
corpus than others did. The median number of unique regexes
in regex-using projects was 1–3 in our experiment, while a
few outlier libraries defined hundreds or thousands of distinct
regexes — enough to bias statistical summaries of the regex
corpus.5 We therefore omitted regexes from projects at or
above the 99th percentile of the number of unique regexes
per project.

The regex corpus used to test the H-EM hypothesis is sum-
marized in Table IV. Several elements of this corpus are worth
noting. The corpus contains a moderate number of regexes
extracted using static analysis and program instrumentation,
ranging from around 15 K (Java) to around 80 K (JavaScript).
We found that 30–50 % of the modules in each language used
at least one regex, supporting previous estimates [1], [2], [4].
We were able to extract regexes from 3 K–4 K modules using
program instrumentation, or about one third of the number
from which we obtained regexes through static analysis.6
Lastly, as you can see in the final row of Table IV, about
half of the regexes obtained through program instrumentation
were not obtained through static analysis and would thus not
have been captured by a static-only extraction methodology.

Threats and considerations. Our approach is best-effort,
neither sound nor complete. JavaScript and Python are dy-
namically typed, which could lead to false positives (non-
regexes entering our corpus). For example, our JavaScript

5For example, the most prolific regex producers were pypi’s
device_detector module, which has 4,953 distinct regexes to
match user-agent strings, and Maven’s recursive-expressions
module, which creates 3,398 regexes to test its extended regex APIs.

6We attribute this proportion to a combination of our failure to run the test
suite, and poor code coverage within successful test suites.

TABLE IV
SUMMARY OF CORPUS USED TO TEST H-EM. FOR EACH CELL “X (Y)”,

WE OBTAINED X UNIQUE REGEXES ACROSS (Y) REGEX-USING MODULES.
THE FINAL ROW GIVES THE REGEX INTERSECTION. THIS CORPUS

CONTAINS 124,800 UNIQUE REGEXES.

Extraction method JavaScript Java Python
Static 71,799 (13.1 K) 10,237 (8.2 K) 27,641 (9.1 K)

Instrumentation 21,759 (4.4 K) 9,236 (3.1 K) 11,514 (3.7 K)

Static ∩ Inst. 13,633 3,463 5,690

instrumentation relies on method names and signatures to find
regexes, and for example may emit non-regexes if a class has a
“match” method that shares the signature of the corresponding
String method (Table III). Our analysis is also subject to
false negatives, through modules that could not be parsed or
built by our analyses (e.g., unsupported language versions or
unfamiliar build systems), and through modules that create
regexes via third-party APIs (e.g., using an “escape special
chars and return a Regex” API). We appeal to the scale of our
dataset to ameliorate concerns about corpus validity.

For each module, we limited the static and dynamic phases
of regex extraction to 10 minutes, and included in our corpus
all regexes extracted during this time limit. Regex extraction
and metric calculation were performed on a 10-node cluster of
server-class nodes: Ubuntu 16.04, 48-core Intel Xeon E5-2650
CPU, 256 GB RAM.

B. Statistical Methods
We used statistical methods to determine whether there is

evidence to reject H-EM — whether the regexes extracted us-
ing these two methodologies exhibited significant differences
along any of our regex metrics. The statistical tests we chose
were influenced by the distribution of the regex characteristics.
Tests such as the Analysis of Variance (ANOVA) are typically
used to evaluate such hypotheses. However, these tests require
normality and homogeneity of variance, and none of the regex
metric distributions met these assumptions. Therefore, we
instead used the nonparametric Kruskal-Wallis test [66], with
language and extraction mode as the treatment variables and
our metrics as the dependent variables.

We found that hypothesis tests alone did not usefully
describe our data. The scale of our regex corpus gave us
tremendous statistical power, causing hypothesis tests to detect
statistically significant but practically irrelevant differences in

���

Fig. 3. Lengths of regexes extracted statically and dynamically, grouped by
language. Whiskers indicate the (10, 90)th percentiles. Outliers are not shown.
The text in each box shows the total number of regexes included in that group.

the data. So, after performing the Kruskal-Wallis hypothesis
test, we calculated effect sizes for pairwise differences between
groups. Because the distributions of regex characteristics do
not meet the conditions assumed by parametric statistical tests,
we applied a nonparametric difference effect size measurement
dr derived from the commonly used Cohen’s d [67]. The dr
measure is a scaled robust estimator of Cohen’s d proposed
by Algina et al. [68], and shown to be robust to non-normal
and non-homogeneous data [69]. It takes on scaled values
indicating the size of the difference between two samples,
ranging from 0 (no difference) to 1 (large difference).

C. Results
As indicated in Table IV, to test H-EM we split the regex

corpus into two subsets: those extracted using static analysis,
and those extracted using program instrumentation. Regexes
found using both techniques were included in both subsets.

We compared the two subsets in terms of the metrics
described in §IV. For all metrics, we found negligible-to-small
effect sizes (dr <= 0.3) between the static and dynamic
subsets within each language. Figure 3 is illustrative: the
similarity of regex lengths between the two subsets in each
language is visually apparent. Other metrics look similar.

Therefore, we are unable to reject the null hypothesis H-EM.
This conclusion supports the generalizability of prior empirical
regex findings — from regexes declared using string literals
to those generated dynamically, and vice versa.

VI. THE CROSS-LANGUAGE HYPOTHESIS

Here we test the H-CL hypothesis: “Regex characteristics
are similar across programming languages.” The H-CL hypoth-
esis held for many characteristics. However, we identified sev-
eral metrics on which there were moderate to large effect sizes
between programming languages. Not all regex characteristics
span programming languages. Some differ significantly.

A. Methodology
As we reported in §V, we did not reject the H-EM hypothe-

sis in any of the three programming languages we studied. We
used this finding as a basis for our methodology for testing

TABLE V
METRICS FOR EACH PROGRAMMING LANGUAGE IN THE H-CL

EXPERIMENT. THE SECOND COLUMN GIVES THE RANGE OF THE MEDIAN
OR THE OBSERVED PERCENTAGE, AND THE THIRD NOTES PROGRAMMING
LANGUAGES WITH SIGNIFICANT DIFFERENCES FROM OTHER LANGUAGES.

Metric Low / High Unusual langs.

Length Perl: 14 / Go: 21 Perl
Feat. vect. sparseness Ruby: 2 / Go: 4 Ruby, JS

NFA vertices Java: 7 / Ruby 14 Ruby

simple paths Go: 1 / Python: 2 –

DFA blow-up Perl 1.1 / Ruby 1.7 –
Mismatch ambiguity Ruby: 19.1 % / Python: 38.4 % –

Avg. outdegree density Ruby: 0.08 / Java: 0.19 Ruby
Has super-linear features Perl: 2.3 % / JS: 4.3 % –

H-CL. We evaluated the regex characteristics for software in
many languages based solely on regexes obtained through
static analysis. For this comparison, we drew on the polyglot
regex corpus developed in [7]. This corpus contains 537,806
unique static regexes extracted from 193,524 popular software
modules written in eight programming languages: JavaScript,
Java, PHP, Python, Ruby, Go, Perl, and Rust. These regexes
were obtained statically using extraction methods similar to
those described in §V-A.

We followed the same measurement and statistical approach
for H-CL that we did for H-EM. We measured the char-
acteristics of the regexes in the polyglot regex corpus and
again found that the distributions did not meet the conditions
of normality and homogeneity of variance. Again the large
sample size caused nonparametric Kruskal-Wallis hypothesis
tests to yield uniformly significant differences. Thus, we report
programming languages with a moderate (dr > 0.5) or large
(dr > 0.7) pairwise effect size.

B. Results
Table V summarizes the results for each metric. We report

the details for the metrics with significant effect sizes below.
In §VIII we discuss some of the implications of these and
other measurements.
• Pattern length. Perl regexes tend to be shorter than those in

Go and Rust, with moderate effect sizes (Figure 4).
• Features used. Regexes in Ruby (large effects) and

JavaScript (moderate) tend to use fewer features than
regexes in PHP, Python, Go, and Rust (Figure 5).

• # NFA vertices. Regexes in Ruby tend to have more NFA
vertices than those in Java and Perl (moderate) (Figure 6).

• Average outdegree density. Regexes in Ruby have a signif-
icantly smaller outdegree density than those in Perl, PHP,
and Rust (moderate), and Java (large) (Figure 7).

VII. REPLICATING PREVIOUS REGEX RESEARCH

Using the H-CL corpus, we attempted to replicate and
generalize many of the findings described in §II-B.

Regex use. In agreement with prior estimates of regexes
in 30–40 % of modules (Python, JavaScript [1], [2]), regex
use is common in the modules that contributed to the H-CL

���

Fig. 4. Regex lengths per language. Whiskers are (10, 90)th percentiles.
Outliers are not shown.

Fig. 5. Number of distinct features used by regexes in different programming
languages. Whiskers indicate the (10, 90)th percentiles. Outliers are not shown.

Fig. 6. Regex NFA size (# vertices) per language. Whiskers are (10, 90)th

percentiles. Outliers are not shown.

Fig. 7. Average outdegree density for each language. Whiskers are (10, 90)th

percentiles. Outliers are not shown.

regex corpus, ranging from 23 % (Go) to 71 % (Perl). This
finding did not generalize to Rust; only 5 % of Rust modules
contained regexes.

Regex feature popularity. Feature usage rates in Python
regexes were in agreement with findings from Chapman and
Stolee [1]. The relative popularity ranking of different regex
features is approximately similar across all programming lan-
guages in our corpus. For example, across languages, capture
groups like /(a)/ are a popular feature, while inline flag
changes like /(?i)CaSE/ are relatively rarely used.

Super-linear regexes. The frequency of super-linear behavior
when applying partial regex matches in Spencer-style engines
has been estimated at 20 % in Java [6] and around 10 % in
JavaScript and Python [7], and with most of these matches
exhibiting polynomial rather than exponential behavior. Our
results agreed, estimating super-linear regex rates between 20–
40 % under partial-match semantics, with a majority polyno-
mial. These rates are upper bounds due to two causes of false
positives. First, some of those regexes are used with full-
match semantics, not partial-match semantics. Second, we did
not dynamically each regex’s performance in its programming
language(s). Real Spencer-style regex engines may not meet
all of the assumptions of Weideman et al.’s Java-centric
performance analysis.

Prior researchers have reported that developers do not com-
monly use super-linear features (backreferences, lookaround
assertions), with rates below 5 % reported in JavaScript,
Python, and Java [2], [4]. This rate holds in all programming
languages we studied that support those features.

Automaton sizes. We were not initially able to replicate
findings from Wang and Stolee’s work describing automaton
sizes [4]. They reported that the (Java) regexes in their
corpus, obtained using program instrumentation, had much
larger DFAs than we found, with a 75th percentile of 70
nodes and 212 edges. The Java regexes in the corpus we
analyzed (obtained using static analysis) have a 75th percentile
of only 10 nodes and 70 edges. We first confirmed that our
measurement instrument could replicate their results on their
corpus. We then wondered if a few atypical projects might
dominate their corpus, as in our corpus prior to our filtering
step (§V-A). Indeed, we found that 19 source files in their
corpus sat at or above the 99th percentile of unique regexes,
and contributed more than half of the unique regexes in their
corpus. After filtering out these files, our two corpuses had
similar DFA measures.

This comparison emphasizes the importance of considering
outlier projects during regex corpus construction. In both
corpuses, a few projects contained enough regexes to bias the
statistics derived from analyzing thousands of projects. We
believe filtering out the regexes from these outlier projects
offers a more accurate perspective on the population of “aver-
age” regex-using projects. However, this may be a matter of
preference; perhaps major users of regexes deserve a greater
voice in corpuses. We are grateful to Wang and Stolee’s
commitment to open science, permitting us to confirm that

���

this phenomenon occurred in both sets of software and that
the same filtering approach was effective on both sets.

VIII. DISCUSSION

A. Implications of regex measurements
In the preceding sections we applied our measurements

to test the validity of the H-EM and H-CL hypotheses. In
those experiments we compared the relative values of the
measures in different subsets of regex corpuses. However, the
specific values of our measurements may be of interest to regex
tool designers and regex engine developers. Though there are
outliers in each category, appropriate percentiles are useful for
reasoning about the common case of regexes encountered by
regex tools and engines.

Regex Representation. Measures of regex representation (pat-
tern, automaton) may be the most relevant for regex visual-
ization and debugging tools. The (25,75)th percentile lengths
of regexes in every language are between 5 and 40 characters,
with medians of between 15 and 20 characters. Pattern-based
regex tools (e.g., syntax highlighters [70], match/mismatch
aids [71]) should be made to perform well on regexes of
these lengths. Similarly, NFA-based regex tools (e.g., railroad
diagrams [70]) should accommodate NFAs with between 5 and
30 NFA states, which will cover the (25,75)th percentile range
in every language.

Language diversity. The 90th percentile of simple path family
size for regexes in every language is at most 10. This means
that the vast majority of regexes have at most ten simple
paths through their NFA representation, so a covering set of
at most ten inputs is sufficient to enumerate the “equivalence
classes” of these regexes. Larson and Kirk’s basis path-
based approach [29] would yield even fewer inputs. Thus,
exhaustive representative input generation is quite feasible for
most regexes. This is not currently a feature in existing popular
regex tools, and we recommend that they incorporate it as a
cheap but potentially valuable feature.

Worst-case complexity. Our findings in this dimension can
inform the design of the next generation of regex engines.

First, we report that a static DFA-based matching algorithm
is feasible for the vast majority of regexes (Figure 8). The
bottom 90 % of regexes have a blow-up factor of 2.5–3.75
in every language, implying that constructing and storing the
DFA will not cost much more than the NFA would. A naive
DFA approach would offer a guaranteed linear-time solution
in the size of the original regex for 90 % of regexes.

Second, it appears that super-linear regexes are common in
any programming language that uses a Spencer-style engine.
Encouragingly, because we found that fewer than 5 % of
regexes use super-linear features (backreferences, lookaround
assertions) in any programming language, Thompson’s al-
gorithm can be applied to almost all regexes in every pro-
gramming language. This change would address most ReDoS
vulnerabilities in a single stroke. We therefore urge program-
ming language designers to adopt hybrid regex engines, using
Thompson’s algorithm where possible and only relying on

Fig. 8. DFA blowup for each language. Whiskers are (10, 90)th percentiles.
Outliers are not shown.

Spencer-style algorithms in the rare cases when super-linear
features are used. Eliminating support for super-linear features
seems infeasible in languages that already support them, but a
hybrid engine may be a viable solution to the ReDoS problem.
This approach has previously been taken by grep [72].

Lastly, were regex engine designers to incorporate Thomp-
son’s algorithm, as have the designers of Rust and Go, they
should consider its average cost. This cost depends on the
number of transitions that must be considered as the algorithm
updates its current state-set. In most programming languages
the 90th percentile NFA outdegree density is no larger than that
of the regexes in Rust (0.38) and Go (0.44), so lessons learned
in Rust and Go may be applicable to other programming
languages. However, in Java the 90th percentile NFA outdegree
density is much higher, roughly 0.75. Thus, many languages
can adopt a Thompson-style engine by referencing the ap-
proach in Rust and Go, but in Java more careful consideration
may be required (Figure 7).

B. Thinking More Broadly

Software engineers must master many tools during their
careers. These tools — including regular expressions, query
languages (SQL, GraphQL), shell scripting (bash, Power-
Shell), version control systems (git, SVN), and virtualization
technologies (Kubernetes, Docker) — are useful in and trans-
ferable to many engineering contexts. This paper is part of an
effort to understand the ways in which software engineers use
these external tools, the challenges they face as a result, and
the ways in which researchers can support them. In this work
we focused specifically on whether software engineers write
similar regular expressions (regexes) in different programming
languages. In concurrent work we have applied qualitative
methods to enrich our understanding [73]. We anticipate that
findings from one family of tools may generalize to others, and
hope to merge our results with ongoing theory-building work
on the tools and expertise that software engineers need [74].

IX. THREATS TO VALIDITY

Internal validity. As noted in §V-A, our regex extraction
methodologies were liable to both false positives (non-regexes

���

included) and false negatives (real regexes excluded). Al-
though regrettable, we do not believe that these inaccuracies
systematically biased our corpus.

When the modules we studied accepted external regexes
(e.g., the third case in Listing 1), our program instrumentation
approach would capture any regexes specified through API
calls in the test suite. These “test” regexes might resemble
the other regexes in the module not because they would be
similar in production usage, but because they were authored
by the same developer(s) who wrote the other regexes in
the module. Within a given module, the regexes extracted
through static analysis and program instrumentation might
have similar characteristics not because of intrinsic similarities
but rather because of developer biases. We hope, however, that
we sampled a diverse enough set of modules to observe many
different developers’ styles for regexes.

We considered all unique regexes equally, deduplicating the
regexes by their pattern (string representation). Focusing on the
characteristics of subsets of our corpus, e.g., popular regexes
or test/production regexes, could be a topic for future study.

External validity. Part of the purpose of our study was
to address threats to external validity in prior research, by
testing whether the regex extraction methodology biased regex
corpuses (§V) and whether previous empirical regex findings
generalized to regexes written in other languages (§VI). We
performed our experiments in the context of open-source
software modules. The generalizability of this approach to
other software — e.g., applications or closed-source software
— is yet to be determined. Given the many programming
languages considered in our analyses, we would be surprised
if our findings did not generalize to regexes in other general-
purpose programming languages. However, it is not clear
whether they will apply to other pattern-matching contexts,
e.g., to the regexes used in firewalls and intrusion detection
systems [34], [75].

At each stage in our analysis (Figure 2), some regexes
“leaked out”. For example, we could not translate some
regexes into the C# syntax. The losses were generally ac-
ceptable — for all but one of the metrics our measurements
included at least 90 % of the regexes. The exception was the
worst-case Spencer analysis, for which we could measure only
about 80 % of the regexes. The missing regexes might have
different characteristics, e.g., relying on unusual features.

Construct validity. Table II summarizes the metrics we
used to characterize regexes. Most of these metrics, or their
relatives, have been applied in prior work, and measure fun-
damental aspects of regexes. The new metrics we introduced
are based on factors considered by existing regex engines.

We considered but omitted two metrics considered by prior
work [2], [4], [7]. First, we do not generate mismatching
strings for the language, although these may be of similar
interest for testing purposes. These could be generated in
a similar way by first taking the complement of the regex.
Second, we do not attempt to label a regex based on the
set of strings that it matches, e.g., “a regex for emails”. The

specific string language that a regex matches is an application
concern. Our metrics are instead intended to characterize the
components with which an engineer chose to construct a regex.

X. RELATED WORK

Instead of automaton simulation, Brzozowski proposed us-
ing regex derivatives to implement regex matching [43]. We
are not aware of any major regex engine that uses Brzozowski
derivatives, so we did not discuss our metrics with regard to
this algorithm.

We recently studied the problem of regex portability [7].
Where the current paper examines the differences between
the regexes that developers use in different programming
languages, in that work we explored the differences between
the regex engines used by different programming languages.
Both studies built on the same large-scale polyglot regex
corpus.

XI. CONCLUSION

Previous empirical research on regex characteristics focused
on statically-extracted regexes in software written in a small
number of programming languages. This focus was not my-
opic: based on our suite of eight metrics we found that regex
corpuses are similar whether they follow a regex extraction
methodology based on static analysis or program instrumen-
tation, and some characteristics of regexes are similar across
many programming languages. However, some regex charac-
teristics do not generalize across programming languages, and
we encourage future empirical regex researchers to design their
studies accordingly. We hope our methodological refinements
and our efforts to validate generalizability hypotheses lay
the foundation for further empirical regex research. We look
forward to a new generation of regex tools and regex engines
inspired by our measurements.

REPRODUCIBILITY

To facilitate reproducibility, we published an artifact at
https://doi.org/10.5281/zenodo.3424960. This artifact contains
our measuring instruments for regex metrics (§IV) and the
regex corpus used to test H-EM (§V). The many-language
regex corpus used to test H-LR is available elsewhere [7].

ACKNOWLEDGMENTS

We appreciate the remarks from the reviewers. We are
grateful to C. Chapman, P. Wang, and K. Stolee for their
feedback. This work was supported in part by the National
Science Foundation grant CNS-1814430.

���

REFERENCES

[1] C. Chapman and K. T. Stolee, “Exploring regular expression usage and
context in Python,” in International Symposium on Software Testing and
Analysis (ISSTA), 2016.

[2] J. C. Davis, C. A. Coghlan, F. Servant, and D. Lee, “The Impact of
Regular Expression Denial of Service (ReDoS) in Practice: an Empirical
Study at the Ecosystem Scale,” in The ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2018.

[3] C. Chapman, P. Wang, and K. T. Stolee, “Exploring Regular Expres-
sion Comprehension,” in ACM International Conference on Automated
Software Engineering (ASE), 2017.

[4] P. Wang and K. T. Stolee, “How well are regular expressions tested
in the wild?” in The ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), 2018.

[5] P. Wang, G. R. Bai, and K. T. Stolee, “Exploring Regular Expres-
sion Evolution,” in Software Analysis, Evolution, and Reengineering
(SANER), 2019.

[6] V. Wustholz, O. Olivo, M. J. H. Heule, and I. Dillig, “Static Detection
of DoS Vulnerabilities in Programs that use Regular Expressions,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), 2017.

[7] J. C. Davis, L. G. Michael IV, C. A. Coghlan, F. Servant, and D. Lee,
“Why arent regular expressions a lingua franca? an empirical study on
the re-use and portability of regular expressions,” in The ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), 2019.

[8] Wikipedia contributors, “Regular expression — Wikipedia, the free
encyclopedia,” https://web.archive.org/web/20180920152821/https://en.
wikipedia.org/w/index.php?title=Regular expression, 2018.

[9] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil, “An examination
of software engineering work practices,” in Centre for Advanced Studies
on Collaborative Research (CASCON), 1997.

[10] M. Sipser, Introduction to the Theory of Computation. Thomson Course
Technology Boston, 2006, vol. 2.

[11] H. Spencer, “A regular-expression matcher,” in Software solutions in C,
1994, pp. 35–71.

[12] K. Thompson, “Regular Expression Search Algorithm,” Communications
of the ACM (CACM), 1968.

[13] C. CÂMPEANU, K. SALOMAA, and S. YU, “A Formal Study of
Practical Regular Expressions,” International Journal of Foundations of
Computer Science, vol. 14, no. 06, pp. 1007–1018, 2003.

[14] C. Câmpeanu and N. Santean, “On the intersection of regex languages
with regular languages,” Theoretical Computer Science, vol. 410, no.
24-25, pp. 2336–2344, 2009.

[15] M. Berglund and B. van der Merwe, “On the Semantics of Regular
Expression parsing in the Wild,” Theoretical Computer Science, vol.
578, pp. 292–304, 2015.

[16] M. Berglund, B. Van Der Merwe, B. Watson, and N. Weideman, “On
the Semantics of Atomic Subgroups in Practical Regular Expressions,”
Springer CIAA, 2017.

[17] S. Crosby and T. H. E. U. Magazine, “Denial of service through regular
expressions,” in USENIX Security work in progress report, vol. 28, no. 6,
2003.

[18] R. Cox, “Regular Expression Matching Can Be Simple And
Fast (but is slow in Java, Perl, PHP, Python, Ruby, ...),” 2007.
[Online]. Available: https://web.archive.org/web/20190906154019/https:
//swtch.com/∼rsc/regexp/regexp1.html

[19] A. Rathnayake and H. Thielecke, “Static Analysis for Regular Expres-
sion Exponential Runtime via Substructural Logics,” Tech. Rep., 2014.

[20] N. H. Weideman, “Static Analysis of Regular Expressions,” Master’s
thesis, Stellenbosch University, 2017.

[21] S. A. Crosby and D. S. Wallach, “Denial of Service via Algorithmic
Complexity Attacks,” in USENIX Security, 2003.

[22] A. Roichman and A. Weidman, “VAC - ReDoS: Regular Expression
Denial Of Service,” Open Web Application Security Project (OWASP),
2009.

[23] B. Sullivan, “New Tool: SDL Regex Fuzzer,” 2010. [Online].
Available: https://web.archive.org/web/20190917040133/https://www.
microsoft.com/security/blog/2010/10/12/new-tool-sdl-regex-fuzzer//

[24] Graham-Cumming, John, “Details of the cloudflare outage on
july 2, 2019,” https://web.archive.org/web/20190712160002/https://blog.
cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/.

[25] A. Blackwell, “SWYN: A visual representation for regular expressions,”
Your Wish is My Command: Programming by . . . , pp. 1–18, 2001.

[26] F. Beck, S. Gulan, B. Biegel, S. Baltes, and D. Weiskopf, “RegViz:
Visual Debugging of Regular Expressions,” in Companion Proceedings
of the 36th International Conference on Software Engineering (ICSE
Companion), 2014.

[27] J. Avallone, “Regexper,” https://regexper.com/, 2013.
[28] M. Veanes, P. De Halleux, and N. Tillmann, “Rex: Symbolic regular

expression explorer,” International Conference on Software Testing,
Verification and Validation (ICST), 2010.

[29] E. Larson and A. Kirk, “Generating Evil Test Strings for Regular Ex-
pressions,” in International Conference on Software Testing, Verification
and Validation (ICST), 2016.

[30] P. Arcaini, A. Gargantini, and E. Riccobene, “MutRex: A Mutation-
Based Generator of Fault Detecting Strings for Regular Expressions,”
in International Conference on Software Testing, Verification and Vali-
dation Workshops (ICSTW), 2017.

[31] N. Weideman, B. van der Merwe, M. Berglund, and B. Watson,
“Analyzing matching time behavior of backtracking regular expression
matchers by using ambiguity of NFA,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 9705, 2016, pp. 322–334.

[32] Y. Shen, Y. Jiang, C. Xu, P. Yu, X. Ma, and J. Lu, “ReScue: Crafting
Regular Expression DoS Attacks,” in ACM International Conference on
Automated Software Engineering (ASE), 2018.

[33] A. Hume, “A Tale of Two Greps,” Software - Practice and Experience,
vol. 18, no. 11, pp. 1063–1072, 1988.

[34] C. J. Coit, S. Staniford, and J. McAlerney, “Towards faster string
matching for intrusion detection or exceeding the speed of Snort,” in
Proceedings DARPA Information Survivability Conference and Exposi-
tion II (DISCEX), 2001.

[35] B. Van Der Merwe, N. Weideman, and M. Berglund, “Turning Evil
Regexes Harmless,” in SAICSIT, 2017.

[36] J. C. Davis, E. R. Williamson, and D. Lee, “A Sense of Time for
JavaScript and Node.js: First-Class Timeouts as a Cure for Event
Handler Poisoning,” in USENIX Security Symposium (USENIX Security),
2018.

[37] J. Brooks, Frederick P., “The Computer Scientist as Toolsmith II,”
Communications of the ACM (CACM), vol. 39, no. 3, pp. 61–68, 1996.

[38] G. Rasool and N. Asif, “Software artifacts recovery using abstract regu-
lar expressions,” in IEEE International Multitopic Conference (INMIC),
2007.

[39] J. K. Ousterhout, “Scripting: Higher level programming for the 21st
century,” Computer, vol. 31, no. 3, pp. 23–30, 1998.

[40] L. Prechelt, “An empirical comparison of seven programming lan-
guages,” Computer, vol. 33, no. 10, pp. 23–29, 2000.

[41] M. Holzer and M. Kutrib, “Descriptional and computational complexity
of finite automata - A survey,” Information and Computation, vol. 209,
no. 3, pp. 456–470, 2011.

[42] “networkx.algorithms.simple paths.all simple paths,” https:
//web.archive.org/save/https://networkx.github.io/documentation/
networkx-2.3/reference/algorithms/generated/networkx.algorithms.
simple paths.all simple paths.html.

[43] J. A. Brzozowski, “Derivatives of Regular Expressions,” Journal of the
Association for Computing Machinery, vol. 11, no. 4, pp. 481–494, 1964.

[44] C.-A. Staicu and M. Pradel, “Freezing the Web: A Study of ReDoS
Vulnerabilities in JavaScript-based Web Servers,” in USENIX Security
Symposium (USENIX Security), 2018.

[45] A. V. Aho, Algorithms for finding patterns in strings. Elsevier, 1990,
ch. 5, pp. 255–300.

[46] Microsoft, “Automata and transducer library for .net,” https://github.com/
AutomataDotNet/Automata.

[47] A. Hagberg, P. Swart, and D. S Chult, “Exploring network struc-
ture, dynamics, and function using networkx,” Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

[48] GitHub, “The state of the octoverse,” https://octoverse.github.com/,
2018.

[49] “npm - the heart of the modern development community,” https://www.
npmjs.com/.

[50] “Pypi - the python package index,” https://pypi.org/.
[51] “Maven repository,” https://mvnrepository.com/.

���

[52] H. Borges and M. Tulio Valente, “What’s in a GitHub Star? Understand-
ing Repository Starring Practices in a Social Coding Platform,” Journal
of Systems and Software, vol. 146, pp. 112–129, 2018.

[53] “cloc: cloc counts blank lines, comment lines, and physical lines
of source code in many programming languages,” https://github.com/
AlDanial/cloc.

[54] “Babel,” https://babeljs.io/.
[55] “npm: A package manager for javascript,” https://github.com/npm/cli.
[56] “Javaparser,” https://javaparser.org/.
[57] “mvn: Apache maven,” https://github.com/apache/maven.
[58] “gradle: Adaptable, fast automation for all,” https://github.com/gradle/

gradle.
[59] “astor: Python ast read/write,” https://github.com/berkerpeksag/astor.
[60] “distutils: Building and installing python modules,” https://docs.python.

org/3/library/distutils.html.
[61] “tox: Command line driven ci frontend and development task automation

tool,” https://github.com/tox-dev/tox.
[62] “nox: Flexible test automation for python,” https://github.com/theacodes/

nox.
[63] “pytest: The pytest framework,” https://github.com/pytest-dev/pytest.
[64] “nosetests: Nose is nicer testing for python,” https://github.com/

nose-devs/nose.
[65] R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab,

“Why Do Developers Use Trivial Packages? An Empirical Case Study
on npm,” in The ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), 2017.

[66] W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion variance
analysis,” Journal of the American statistical Association, vol. 47, no.
260, pp. 583–621, 1952.

[67] J. Cohen, “A power primer.” Psychological bulletin, vol. 112, no. 1, p.
155, 1992.

[68] J. Algina, H. Keselman, and R. D. Penfield, “An alternative to co-
hen’s standardized mean difference effect size: a robust parameter and
confidence interval in the two independent groups case.” Psychological
methods, vol. 10, no. 3, p. 317, 2005.

[69] J. C.-H. Li, “Effect size measures in a two-independent-samples case
with nonnormal and nonhomogeneous data,” Behavior Research Meth-
ods, vol. 48, no. 4, pp. 1560–1574, Dec 2016.

[70] “Regexr: Learn, build, & test regex,” https://regexr.com.
[71] “Online regex tester and debugger: Php, pcre, python, golang and

javascript,” https://regex101.com.
[72] J. E. Friedl, Mastering regular expressions. O’Reilly Media, Inc., 2002.
[73] L. G. Michael IV, J. Donohue, J. C. Davis, D. Lee, and F. Servant,

“Regexes are hard: Decision-making, difficulties, and risks in pro-
gramming regular expressions,” in ACM International Conference on
Automated Software Engineering (ASE). ACM, 2019.

[74] S. Baltes and S. Diehl, “Towards a theory of software development
expertise,” in Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, 2018, pp. 187–200.

[75] M. Roesch, “Snort - Lightweight Intrusion Detection for Networks,” in
Large Installation System Administration Conference (LISA), 1999.

���

