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Abstract Tracer methods are widespread in computational geodynamics for modeling the advection
of chemical data. However, they present certain numerical challenges, especially when used over long
periods of simulation time. We address two of these in this work: the necessity for mass conservation of
chemical composition fields and the need for the velocity field to be pointwise divergence free to avoid
gaps in tracer coverage. We do this by implementing the hybrid discontinuous Galerkin (HDG) finite
element (FE) method combined with a mass conserving constrained projection of the tracer data. To
demonstrate the efficacy of this system, we compare it to other common FE formulations of the Stokes
system and projections of the chemical composition. We provide a reference of the numerical properties
and error convergence rates which should be observed by using these various discretization schemes.
This serves as a tool for verification of existing or new implementations. We summarize these data in

a reproduction of a published Rayleigh-Taylor instability benchmark, demonstrating the importance

of careful choices of appropriate and compatible discretization methods for all aspects of geodynamics
simulations.

1. Introduction

Melting at mid-oceanic ridges causes differentiation of the Earth's mantle with the formation of a distinct
basaltic crust on top of a depleted peridotite layer. The recycling of this oceanic crust in subduction zones,
where additional differentiation may occur, causes the continuous formation of chemical heterogeneity in
the Earth's mantle which adds to compositional heterogeneity that may have been formed during Earth's
formation and magma ocean solidification (e.g., Labrosse et al., 2007).

Mantle convection models that incorporate these differentiation processes can predict how any formed het-
erogeneity is mixed back in or retained in the mantle (Kellogg, 1992; Tackley, 2015; van Keken et al., 2002,
2014) and help decipher the processes that lead to the long term chemical evolution of the Earth as seen in
geochemistry (Christensen & Hofmann, 1994; R. E. Jones et al., 2019; Samuel & Farnetani, 2003; Tucker
et al., 2020; Xie & Tackley, 2004), the formation of the structure of the Earth's mantle as imaged by seismo-
logical methods (Ballmer et al., 2016; Bull et al., 2009; Haugland et al., 2018; T. D. Jones et al., 2020), and
the Earth's thermal state and evolution (Li & McNamara, 2018; Nakagawa & Tackley, 2005; Zhong, 2006).

Implementing the chemical buoyancy term into the Stokes equations that follow from the conservation
of momentum tends to be more challenging than that of thermal buoyancy because diffusion of relevant
chemical species (such as silicon and oxygen) is many orders of magnitude smaller than thermal diffusion
and can be assumed zero. In geodynamical applications several distinct methods have been used to repre-
sent the chemical buoyancy. These include (i) methods that delineate the boundary between two volumes
of distinct chemical composition such as the marker chain method (Christensen & Yuen, 1984; Lin & van
Keken, 2006; Schmeling, 1987) and volume or moment of fluid methods (Pilliod & Puckett, 2004; Robey
& Puckett, 2019; Zalesak, 1979); (ii) tracer methods where individual tracers carry a relative proportion
of the chemical buoyancy (Brandenburg et al., 2008; Christensen & Hofmann, 1994; Gerya & Yuen, 2003;
O'Neill et al., 2006; Tackley & King, 2003); and (iii) representing the chemical density as a composition field
and solving the advection-diffusion equation with low chemical diffusivity (e.g., Hansen & Yuen, 2000;
Kellogg & King, 1993), which in the presence of thermal buoyancy leads to double-diffusive convection
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(Turner, 1974). A comprehensive, if now slightly dated, comparison of these three methods is provided in
van Keken et al. (1997).

Further complications occur if the compositionally distinct materials have different rheological behavior.
In this case, the continuity in stress across the interface causes a discontinuity in strain rate which is not a
trivial problem to solve. See Suckale et al. (2010) for an elegant solution using a combination of ghost fluids
and the level-set method.

In the past decade or so, there has been significant progress improving methods for the accurate solution
of thermochemical convection which are based on, among others, application of discontinuous Galerkin
(DG) finite element (FE) methods (He et al., 2017), further use of level-set methods (Hillebrand et al., 2014;
Samuel & Evonuk, 2010), and adaptive remeshing (Davies et al., 2007; Leng & Zhong, 2011). Modeling
of thermochemical convection has also become more readily available to a larger group of researchers
through community codes such as Advanced Solver for Problems in Earth's ConvecTion (as demonstrated
by Gassmoller et al., 2018; and Robey & Puckett, 2019). The reliability of new methods has been demonstrat-
ed by careful benchmarking and error testing (e.g., Thielmann et al., 2014; Vynnytska et al., 2013).

In this study, we will focus on tracer methods. Their popularity arises primarily from their robustness when
advecting sharp jumps in material properties in the absence of diffusion. In contrast, field-based methods
under these circumstances are prone to instability arising as numerical oscillations or suffer from signifi-
cant overdiffusion. The tracer methods are also more practical than the marker chain method for tracing
chemical buoyancy over long time scales as typical mantle mixing leads to exponential growth of length of
the marker chain (van Keken et al., 1997). Additionally, the implementation of basic tracer advection meth-
ods is straightforward in both two-dimensional and three-dimensional. Each position and chemical datum
pair in a population of tracers is simply advected through a velocity field using discrete time integration.

Tracer methods are not without their issues however. Pointwise chemical data associated with the tracers
must be transferred, or projected, onto a mesh-based composition field before they can be used to set ma-
terial properties such as buoyancy or viscosity. Various methods have been proposed for this projection,
many of which depend on treating the tracers as delta-function sources within the domain. In the Dirac
delta source, or “Stokeslet” method (e.g., Christensen & Hofmann, 1994), direct integration of these delta
functions with an associated mass per particle is used to derive the buoyancy source on the right hand side
of the Stokes system. The so-called tracer ratio and absolute methods (Tackley & King, 2003) use integrals
of the delta functions to count the number of particles of a particular type per cell. Weighting these counts
by either a volume fraction per particle for the absolute method or by the total number of particles per cell
for the ratio method results in a mesh-based composition field.

The properties of the projected composition field vary widely depending on the algorithm. Ideally, the field
should be conserved both globally across the domain and locally within each cell of the mesh. Additionally,
the error in the field representation should converge at an optimal rate as the number of cells in the mesh
increases, provided some minimum number of particles per cell is maintained. The absolute and Dirac delta
methods achieve global but not local conservation. The tracer ratio method is neither locally nor globally
conservative (Trim et al., 2020) but it does have the advantage that the composition field remains bounded
between set limits (Tackley & King, 2003). In general, however, the integration of Dirac delta functions
does not satisfy the smoothness, or regularity, requirements for finite elements. This causes algorithms
that depend on it to typically experience reduced error convergence rates even when using nonconforming
methods (e.g., Houston & Wihler, 2012; Scott, 1973). When the composition field is used to drive or influ-
ence the flow, for example through the buoyancy and viscosity terms, respectively, this may in turn lead to
suboptimal convergence of the velocity approximation.

During advection tracers may drift apart (e.g., Trim et al., 2020; Wang et al., 2015), leaving gaps in cover-
age that may cause projection algorithms to break down when cells lack particles. This often requires the
introduction (and removal) of tracers (e.g., Moresi et al., 2003), adding to the complexity of the algorithm.
In incompressible flows, however, the root cause of this problem is that the discrete velocity solution is
generally only divergence free in some discrete sense and not at every point in the domain. Thus over long
simulations two particles may diverge even if they are initially in close proximity to each other.
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(a) (b) ()

Figure 1. Example of tracers advected using a fourth order Runge-Kutta method in a forced cavity model. The
geometry is a unit square and flow is forced by uniform horizontal velocity along the top boundary with free-slip
boundaries elsewhere. The coloring of the tracers is provided solely as a visual aid and plays no other role in the
simulation. (a) Initial configuration of the tracers. (b) Tracer distribution after 50 overturn times using a traditional
Taylor-Hood finite element method. (c) as (b) but now with the new hybrid discontinuous Galerkin finite element
method that guarantees the velocity field representation is pointwise divergence free. The mean number of particles per
cell is 50 and the standard deviations from the mean in each case are: (a) 7.23, (b) 23.1, and (c) 8.01.

Various velocity field reconstruction techniques have been proposed that maintain uniform particle dis-
tributions in the incompressible limit (Jenny et al., 2001; McDermott & Pope, 2008; Wang et al., 2015).
Importantly, Maljaars et al. (2018) demonstrated that particle drift is mitigated when the incompressibility
constraint is accurately satisfied. This is demonstrated in Figure 1 where initially evenly distributed par-
ticles (Figure 1a) develop significant gaps as the driven lid cavity simulation progresses when the Stokes
equations are discretized using the commonly used Taylor-Hood (TH) FE pair (Figure 1b). The use of a
new hybrid discontinuous Galerkin (HDG) discretization that we will discuss further below guarantees that
the incompressibility constraint is satisfied at every point in the domain. This maintains a consistent, even
distribution of particles throughout the domain without the formation of gaps like those that occur with the
TH discretization (Figure 1c).

The simple comparison in Figure 1 shows that, while stand-alone tracer advection algorithms are straight-
forward to implement, coupling them to a velocity solution may lead to significant artifacts. Here, we
demonstrate a holistic approach to chemical advection by tracers in geodynamic models using finite ele-
ments on two-dimensional triangular meshes. This approach is straightforward to extend to three-dimen-
sional tetrahedral meshes. Extension to elements with non-affine local-to-global mapping (e.g., general
quadrilaterals/hexahedra and high order polyhedral cells) is not covered here as it would require different
FE basis functions, chosen such that the divergence of velocity lies in the pressure space (see Section 5.3).

Our new approach requires us to reconsider the discretization of the entire system of equations. In the
remainder of this study, we will demonstrate each stage individually: the advection of the tracers; the pro-
jection of their data to a chemical composition field in a conservative manner; and the appropriate spatial
approximation of the velocity field such that it inherently satisfies the incompressibility constraint of the
Stokes system of equations, overcoming spurious particle drift.

Advection of the composition field using tracers requires the solution of an ordinary differential equation
(ODE) for each tracer in the domain. These ordinary differential equations (ODEs) may be discretized and
numerically integrated using any appropriate method. In this work we will use (but are not limited to) flex-
ible arbitrary order Runge-Kutta (RK) methods. We provide a brief overview of these methods in Section 3.

Before solving the Stokes system we must project the tracer data to a mesh-based composition field. In Sec-
tion 4, we focus on the least squares projection, which preserves optimal error convergence during mesh
refinement (Maljaars et al., 2018; Thielmann et al., 2014). However, it does not satisfy mass conservation so
we exploit the partial differential equation (PDE)-constrained least squares projection (Maljaars et al., 2019,
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Table 1

Summary of Tracer Data Projection Methods. See Also Sections 1 and 4

This work

I, projection

PDE-constrained [, projection

Not implemented here

Dirac delta “Stokeslet” source

Dirac delta projection

Minimizes square distance between tracer data (X(t), @(¢)) and the composition field ¢, x,t). Does not guarantee
conservation. For smooth functions error converges at the optimal rate O(H**Y). When projecting into a DG FE space
requires only local solves on each element

I, projection augmented by the PDE-constraint of the advection equation. HDG discretization of the variational problem

exactly conserves the composition function. Requires a global solve over the domain

Direct application of point source data to the right hand side of the Stokes system. Does not satisfy regularity requirements

of the FE scheme. Will reduce convergence rate of the error of the velocity FE approximation to O(h) (Scott, 1973;
Houston & Wihler, 2012). Does not provide a field representation ¢,(x, t) required by the viscosity model

L, projection of tracer data to an FE space. Same issue applies in the projection of Dirac delta functions to a composition

field whose FE approximation error measured in the L, norm will be suboptimal at a rate O(h). Requires a global solve
over the domain if projecting into a continuous FE space

2020), which allows us to enforce both global and local conservation properties on the composition field
(Section 4.2). We provide a brief summary of tracer projection methods in Table 1.

A key benefit of this tracer projection approach is its treatment of tracer data as a pointwise approximation
of a continuous field. Contrary to the “Stokeslet” method composed of Dirac delta sources, this approach al-
lows us to both add and remove tracers mid-simulation without breaking local or global mass conservation
when performing the PDE-constrained projection. This is not demonstrated here as the carefully selected
velocity discretization, resulting lack of particle drift, and near uniform mesh resolution mean that all sim-
ulations are robust without the addition or removal of particles.

Numerous methods exist for the discretization of the Stokes system but we focus in this work on the FE
method due to its ability to manage complex geometries, viscosity models, and tools for error analysis (Bren-
ner & Scott, 2010). We summarize some of the more frequently used FE methods used in geodynamics in
Table 2 but focus here on methods that produce pointwise divergence free velocity fields. For tracer advec-
tion in incompressible flows this has the essential property of preventing tracer “drift” as demonstrated
in Figure 1c. Several methods exist with this property (e.g., Cockburn et al., 2007; Evans & Hughes, 2013;
Guzmdn & Neilan, 2014; Morgan & Scott, 2018; Scott & Vogelius, 1985). In this work, we exploit the new
HDG method (Cockburn et al., 2010; Labeur & Wells, 2012; Rhebergen & Wells, 2018a) and compare its
properties to the commonly used TH scheme.

After introducing the methods, we test them in Section 7 using a series of computational geophysics bench-
marks from the literature. We examine the impact of each specific discretization method on the accuracy of
the results with the goal of demonstrating how a holistic approach is necessary to maintain accuracy and
consistency in a fully coupled tracer-based model.

Throughout this work, we focus on the equations underlying geophysical mantle convection models. How-
ever, we refer to Maljaars et al. (2018) regarding application to problems including inertia via the Navi-
er-Stokes system and Maljaars et al. (2021) regarding the applicability of the proposed methods to various
scientific models. This flexibility allows the use of the HDG method in a broad set of geophysical applica-
tions including those arising in oceanography and studies of core dynamics. While we demonstrate the
applicability of this method to incompressible flows in this study, the method can also be applied to weakly
compressible flows under the anelastic liquid approximation (e.g., Jarvis & Mckenzie, 1980). We plan to
demonstrate this in a future submission.

2. Problem Definition and Geometry

Let Q be the computational domain of spatial dimension d = 2 which accurately represents the problem
geometry, for example a mantle convection cell. Furthermore, let 6Q be the boundary of this domain with
outward pointing unit normal vector n. A depiction of this discretization is shown in Figure 2. Given an
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Table 2
Summary of FE Discretization Schemes of the Stokes System Used in This work. See Also Section 5 and Section S4. We
Refer to Boffi et al. (2013) and the References Cited Therein for More Information on FE pairs

Demonstrated in main text

TH Velocity and pressure FE approximations converge at the optimal rates O(h"*') and O(h”) as measured in
the L, norm. Globally satisfies the integral divergence free constraint JoV-u,dx = 0, however u,, is not
pointwise divergence free
HDG Scheme coupling FE functions defined on both the cells and the facets. Velocity and pressure L, error

converges at optimal rates. Yields a pointwise divergence free velocity approximation V-u(x) = 0Vx
€Q. Can be formulated such that local components of the problem are eliminated before a global
solve by static condensation

Demonstrated in supporting information

DG Nonconforming FE scheme permitting discontinuities in the solution. Velocity and pressure L, error
converges at optimal rates. Enforces the divergence free constraint such that [oV-u,dx = 0 and
[ V-u,dx = 0, Vk e 7. The resulting discontinuous velocity field w, is incompatible with the
PDE-constrained [, projection method. The degree of freedom count is typically much larger than
conforming methods

MINI Velocity FE space enriched by the cubic vector bubble element. Allows equal order approximation of
velocity and pressure (p > 1). Enforces the divergence free constraint in the global sense [V -u,dx = 0.

P2BDG1  Insome settings it is beneficial to have a discontinuous pressure approximation. This stable element pair
combines the enriched velocity FE space of degree p > 2 of the MINI element with the p — 1 degree
FE DG space for the pressure. This element pair satisfies the divergence free constraint only in the
global sense JoV-wudx = 0

P2DGO Also permits a discontinuous pressure approximation by combining the standard p > 2 vector FE space
for the velocity and p — 2 DG FE space for the pressure. Although this yields a decrease in the
number of degrees of freedom, the convergence rate of the velocity solution as measured in the L,
norm is suboptimal O(A")

initial time t = 0 and final time ¢, we define the time intervalr € Z, = (0,#,]. Subject to appropriate bound-
ary and initial conditions we seek the velocity u, pressure p, and chemical composition ¢ of the coupled
problem in Q x 7,

-v. [Zﬂé(u)J +Vp =f, 1)

V-u =0, )

(a) Analytical domain

(b) Discretized mesh

Figure 2. (a): an abstract domain Q with boundary 00 and outward pointing unit normal vector n. (b): the
discretization of  into a mesh comprised of tessellating triangles 7 = {x}. The first nine triangles are labeled. A subset
of the outward pointing normals of the facets are also shown.

SIME ET AL.

50of 32



A7
ra\“1%
ADVANCING EARTH
AND SPACE SCIENCE

Geochemistry, Geophysics, Geosystems 10.1029/2020GC009349

1.0 1.0 1.0 1.0

=05 0.5
0.0 0.0 0.0 0.0
0.0 0.5 10 0.0 0.5 1.0

Figure 3. Discretization of a composition field by tracer data. (a): example analytical composition field ¢(x, ¢). (b):
discretization of ¢(x, t) by pointwise interpolation to tracer data ®(r) = {#(x ,,,t)}lpvﬁl at positions X(¢).

9 . -
StV (ug) =0. (3)

’ 1
here, 7 is the viscosity, £(u) = E(Vu + VuT) is the rate of strain tensor and f is the momentum source. In

this work we are primarily interested in the case where 7 = 7(¢) and f = f(¢), however this is not a limita-
tion. The definition of the viscosity and momentum source is prescribed by the underlying physical model.

To discretize the domain, we subdivide Q into non-overlapping triangles which tessellate the geometry
generating a conforming mesh. We write x to denote a triangle in the mesh 7 such that 7 := {«x}. We refer
to each k¥ € 7 as an element or cell in the mesh which has measured diameter h,, the maximum distance
between two points in the cell. We also employ the notation & to indicate that a quantity has been discre-
tized conforming to the underlying mesh. Furthermore, each cell x has a boundary ox with corresponding
outward pointing unit normal vector n, (see Figure 2b).

3. Discretization of a Field by Tracer Data

Consider the advection equation stated in Equation 3. Instead of a field, ¢(x, t), we use a tracer method to
make discrete pointwise approximations. In this setting, we generate N, tracers in the domain Q such that
each tracer has position x,(t) € Q, p = 1, ..., N,. We may therefore define the set of tracer positions X inside
the domain

X(t) = {Xp(t)}::. )

Each tracer may carry arbitrary numerical data. For example, we assign the pth tracer's datum regarding
the composition field value ¢,(t), p = 1, ..., Nj,. So, we now define the composition data associated with the
tracers

) = {g,0} " 5)

An example of the discretization of the field ¢(x, ¢) by the point coordinates X(f) and the interpolated data
®(1) = {, (1) = ¢(x,,(1).1)} ", is shown in Figure 3.

It is important to note that in our field discretization implementation the tracer data have no associated
physical mass or volume. It is the composition field itself that carries these physical data. Therefore, by
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P - - ~ \ this meth'od we may add or remove tra(':ers as necessary with n9 concern
for breaking mass or volume conservation. However, conservation of the
field itself requires consideration which we address later in Section 4.
4 “« | - \x N\
3.1. Time Integration
ooy S N ¢
The total derivatives of the tracer data subject to the advection equation
read
DR «
Xp(t + A1) Wy, (6)
\ X ~ ” / dt
x,(1) dx
\ \1’ N g o d—t” =u(x,,n), p=1...N, (7)
Figure 4. Example tracer advection through a velocity field. The blue clearly, once the initial composition data @(t = 0) have been prescribed,
arrows show a velocity field uy(x) defined on an FE mesh. A tracer with Equation 6 demands their values never change for ¢ > 0. However, the ap-

position datum x,(t) is advected to its new position at time step x,(t + Af).

proximation of the evolution of the tracers' positions should be computed
from Equation 7 by numerically integrating the N, independent ODEs.
See Figure 4 for a depiction of numerical advection of a tracer through a
velocity field.

The time derivative in Equation 7 must be integrated in order to compute the evolution of the tracer distri-
bution. Precise time integration of the tracers is important to ensure a good approximation of the evolution
of the composition field. In this work we will consider our implementation of the explicit RK time integra-

tion method. We write RK¢, with ¢ € N indicating the order of the method we use. For detailed analysis of
RK methods we refer to Butcher (1987).

Given an initial time ¢, = 0 and final time ¢z, we discretize the simulation time interval Z, = [t,#z] into the
points
Ty, = {tostintp}s fg <t <..<tp, ®)

where At, = t,4; — t,. The way in which At, is chosen is a key factor in stability and accuracy of the RK
method. Here, we make our choice based on a form of the Courant-Friedrichs-Lewy (CFL) criterion

hmin
C)

At, =Copp ———,
max, o u,(X,t,)

where Ccry, is the constant CFL parameter and hp, is the smallest diameter measure of the mesh's cells. We
refer to LeVeque (2007) for a comprehensive analysis of time integration methods.

3.2. Explicit Runge-Kutta Method Summary

The general form of the RK¢ method is as follows: find X, .1, p = 1, ..., N, such that

’
Xp,n+l = Xp,n + Atn Z:lbikp,i (10)
i=
where € > 1 and
4
kp’l. =u/x,,+ At, jzla,jkm,tn + At,c; | (11)
SIME ET AL. 7 of 32
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Table 3
The RK¢€ Methods Used in This Work
Method Butcher tableau Iteration
RK1 00 K, =u(x,,.t,)
1 Xp,n+l = Xp,n + Atnkp,l
RK2 0 0 K, =u(x,,.,)
1 1 0 k,, =ux,, +Ark, .1, + At,)
11 At,
E E Xp,n+| = xp,n +Tl(kp,l + kp,Z)
RK3 0 0 kp,l = u(xp,n’tn)
1 1 1 1
5 E 0 kp,2 = U(Xp‘n +5Atnkp,1’tn ar EAtn)
3 3 3 3
Z 0 Z 0 kp,3 = u(xp,n + ZAtnkp.Z’tn + ZAI,,)
2 1 4 2 1 4
; 3 3 Xpnil = Xpp + At, [;kp‘l +§kp‘2 +;kp‘3]
RK4 0 0 K, =u(x,,.t,)
1 1 1 1
> 3 0 k,, =ux,, +5Atnkp,l’tn + EAt")
1 0 1 0 1 1
5 E kp'3 = “(Xp,n +5Az,,kp,2,tn + EAI")
1 0 0 1 0 k,, =u(x,, + ALk, .1, +At,)
1 1 1 1 1 1
6 3 3 6 Xp i1 = Xy +Atn[g(kp,l +kpv4)+§(k,,'2 +kpy3)]

The quantities a;;, b;, and ¢; are drawn from the so-called Butcher tableau (Butcher, 1987)

G an
12
Cop Gp v Ay 12)
b, b,

Note that to achieve optimal convergence the RK¢ method requires ¢ — 1 additional computations of the
Stokes FE solution, which may significantly increase the expense of higher order RK methods. We do not
consider temporal interpolation of the velocity field to reduce this cost as it would introduce an additional
source of numerical error and adversely affect the convergence rates we present. We note, however, that any
higher order interpolant that aimed to balance expense and accuracy would also have to ensure that the

divergence free properties of the velocity field are preserved. The RK¢ methods implemented for this work
are shown in Table 3.

4. Projection of Tracer Data to a Field

Let ¢p(x, t) be the approximation of the true composition field ¢(x, t). With the tracer positions X(¢) and
composition data @(t), we must define methods by which these data may be represented by ¢u(x, t). We
propose two methods here: the straightforward least squares (l,) projection and the PDE-constrained [, pro-
jection. We summarize properties of these and other commonly used methods in Table 1.

4.1. Least Squares Projection

First we choose a finite dimensional space of functions W"* which is composed of piecewise polynomials
of degree k into which the tracer data will be projected. We will specify choices for this space after we have
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constructed the least squares projection operation. This [, projection minimizes the difference between the
tracer data and its field projection in a least-squares sense. Given tracer positions X(¢) and composition data
@(t), the 1, projection operator corresponds to the following minimization problem: find ¢u(x, £) € W™
which satisfies

Ny,

. 1 2
min  J(¢,) = X —(4x,0).0 - ,0) . (13)
¢I15Wh’k P 2
This corresponds to solving the following linear system: find ¢;(x, t) € W"* such that
Ny
zl(¢/,(xp(l),l) - ¢,,(l))W/, (x,(1) =0 (14)
p=

for all w, € W™k,

We choose W" to be the nonconforming FE space of discontinuous piecewise polynomials, that is the

standard DG FE space. We therefore write W,S”Gk to emphasize the space's characteristic and define it as
follows

ng‘ = {v : vissquare integrable in Q and is composed as)

of piecewise polynomials of degree k > 0 defined on each x € 7}.

This choice offers a number of benefits. We may better approximate the discontinuity between composition
phases compared with standard continuous spaces. Furthermore the linear system (14) may be written as a

summation of local (i.e., cellwise) equations, that can be solved independently for each cell k¥ € 7, that is:
find @, (x,r) € WX such that

NI’K

2 3 (% (0.0 = 8, 0w (x,, () = 0 (16)

xeT p,

for all w;, € Wi, Here, N », 18 the number of tracers inside cell x and p, =1....,N, are the indices of the
tracers which reside in the cell x exclusively. This local solution method is typically more computationally
efficient than solving the global system that would be generated by a standard continuous FE space.

In some geodynamical models, we must constrain the composition function to reside within bounded lim-
its. For example, @min < Pu(X, £) < Pmax VX € Q Where @i, and Py, are minimum and maximum values
permitted for ¢, respectively. This is pertinent in the case k > 1, considering numerical oscillations will
yield overshoots and undershoots in the projected composition field. See Goldfarb and Idnani (1983) for a
background on quadratic programming for such problems. In our implementation we make use of Quad-
Prog++ to perform the box-constrained numerical optimization (Gaspero, 2020).

The I, projection scheme is not conservative. Hence, the composition field will incur a mass conservation
error over time. To solve this issue we next exploit a PDE-constrained I, projection, recently introduced in
Maljaars et al. (2019).

4.2. PDE-Constrained Projection

Consider again the minimization problem Equation 13. We augment this problem with the constraint of the
advection Equation 3, so that the full problem reads: find ¢, (x,t) € W]S”Gk which satisfies
Np

: I
min J($) = 2 S (hx,0.0 - 4,0)) (17a)

I eWpg
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o¢, _ .
subject to: or V() =0 in€, (17b)

¢h = ¢m on aQin’

where 00, = {x € 0Q: u,(x)-n(x) < 0} is the region of the exterior boundary where the velocity field flows
into the domain Q and ¢;, is the prescribed incoming composition data on the inflow boundary. We also
write 0Q,, = 0Q2\0Q;, which is the outflow portion of the exterior boundary.

The implication is that the minimization problem now carries information regarding conservation of ¢,(x,
t) as the simulation evolves. In fact, it can be shown that the HDG FE discretization of the system Equa-
tion 17 exactly conserves ¢, globally and locally (to machine precision). We exploit this exact mass conser-
vation property in this work and refer to Maljaars et al. (2019) for the details of this analysis.

For now, we will state the FE problem which solves the system Equation 17. To formulate the HDG problem
we require three FE spaces WX, T" and WX, Here, W/i¥ is the standard DG space of degree k, 7" = Wi is
also a standard DG space of degree 0 (i.e., piecewise constants per cell' (This choice is made as no discerni-
ble advantage is observed when employing higher order spaces (Maljaars et al., 2019)) and VT/S'GK is composed
of piecewise polynomials of degree k defined on the facets of the mesh and discontinuous between facets.

By multiplying Equation 17b with a Lagrange multiplier 1, € T" and applying integration by parts, which

introduces an unknown flux (Zh € Wé'é( on interior facets, the optimization problem amounts to finding the
stationary points of the Lagrangian functional:

N

— 1 2
LthZa) = Z (4, 0.0 = 4,(0))
p

g,
—+A,dx — -VA,d
+IQ o padX Kg-[lcuh¢h 74X (18)

+ szax\m u, -0, ds + Imom uy, - ng,A,ds + Iagm w, - g, A,ds
1o~ v 1 )
+ 2 Joe=B(d - ) ds+ L [~C(Vg,) ax
xeT 2 xkeT = 2

Let us take a moment to examine the lines in Equation 18. The first should be familiar from Equation 17
arising from our desire to minimize the squared distance between the tracer values and the field approx-
imation. The second and third lines are the HDG discretization of the weak formulation of the advection
equation, that is, the constraint PDE in Equation 17. The first term in the final line arises from the HDG dis-
cretization where § > 0 is a parameter which prevents the problem from becoming singular when u,-n, = 0
by penalizing jumps between the field approximation defined on the cells ¢, and the facets Eh In all com-
putations in this work we choose § = 107° so that the regularization term governed by § is smaller than the
term resulting from the objective function in Equation 17a. The final term introduces a gradient penalty
parameter {> 0. For { > 0, this term penalizes the overshoot and undershoot oscillations which occur when
approximating a discontinuous function of degree p > 1 where a discontinuity is not aligned with the mesh.

The FE approximation (g,.é,.4,) € Wik x WX x T" at the stationary points of Equation 18 is computed
by taking the Fréchet derivative and solving the resulting linear system (Maljaars et al., 2019), that is, find
(G ) € WK x WhK « T" such that

¥ ry 06
2 (80,00 = 8,0)80,05,0) = % o B(8, )0 ds + o azﬁh 2, dx

- ZTJK w, - V4,0, dx + |5, W, - 02,50, ds + ZTIKqus,, -V, dx =0,

19)

Jg%éﬂhdx - X [, u,é, - VSi,dx
ot kel _ (20)
+K§Tjax\ag u;, - n,.4,04,ds + Iagou, u,, - ng,04,ds + Iagin u, -ng,64ds =0,
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3 lovea Wy - mdofds + 3 o, ﬁ(ah - ¢h)5¢7hds =0, (21)
xeT keT

for all (5¢,.58,.64,) € Wik x W& « T". For numerical analysis details we refer to Maljaars et al. (2019),
and for implementation and practical demonstration we refer to Maljaars et al. (2021). Although the alge-
bra deriving this system appears daunting, the Unified Form Language component of the FEniCS project
facilitates automatic symbolic differentiation of forms like Equation 18 (Alnees et al., 2014). Furthermore,
we exploit the concept of static condensation (also known as Guyan reduction, Guyan, 1965) by locally

eliminating the unknowns ¢, and 4, in favor of 5,1 on each element during matrix assembly (see Section S2
for a brief overview and Maljaars et al. (2021) regarding practical implementation). Therefore we only need

solve for Eh in a global sense, thereby vastly reducing size of the underlying linear system.

A key result of this formulation is that we achieve local and global conservation of ¢, (Maljaars et al., 2019).
Consider the component of the Fréchet derivative in all directions 4, Equation 20. To show global conser-
vation we assign 64, = 1 to yield

P _
o %dx + ZTIax\ag u, - n,.g,ds + Iaszom uy, - ngds + I@Qin u;, - ngds = 0. (22)

Since ¢ is single valued across a facet, the flux at interior facets vanishes if u, has continuous normal
components across the facets (as in the case of the TH and HDG schemes), thus leaving us with the global
conservation statement

0
IQ%dx = —fagout u, - ng,ds — Iagin u, - ng,ds. (23)

This equation shows that the net change in ¢ over the domain Q equals the total ingoing flux over the ex-
terior boundary of the domain, thereby proving global mass conservation. Note that using nonconforming
FE methods such as standard DG FE to compute u;, will not inherently provide a uy, field with the necessary
continuity requirements to obtain conservation of ¢y,

To show local conservation we assign 61, = 1 on x and 64, = 0 on Q\x

[ 9

o u, -ngds + jamagin uy, - ngds = 0. 24

dx + [ 00 W), - 0 hds + Iamagom

The change in the composition field ¢, in a cell x is determined by the incoming and outgoing fluxes over
the cell boundary 0Ok, thus demonstrating local conservation in terms of the numerical flux u, - ng,.

4.3. A 6-Scheme (Which may be Independent of 6)

Consider the semi-discrete formulation of the PDE-constrained [, projection Equations 19-21. We discretize
the time derivative using a 8 scheme such that

= og + (1 - O)gy (25)

where 0 < 0 < 1 such that the time derivative is approximated by

1
ob, _ H -

a T an, =
Furthermore, we note that
SIME ET AL. 11 of 32
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SH0 = 0op" + (1 - )5 = 054, (28)
since the Fréchet derivative of the known quantity 6¢;" has no variation.
The discrete system may therefore be written

Agl((pg”l( HM) ¢”)6¢m+1 ) ZIPK (Wrl ¢11ﬂ+1)5¢/,”+1ds

p=

m+1
o 9% ax—6 ™ Vs a0l i nd s s (29)
t out

+ Z J’ Cv¢m+l V5¢,’1"+ldx — 0’

¢m+1 ¢
[ l Ph — O sp,dx — z [ g™ - V&3,dx

m

+K§7j‘7"\59“h o '“rc‘/bhml&/,ds 15 g (i)™ - 62, ds (30)
+o0,, W4,)"*" - nS%ds = 0,

% fovrcay, wi m40f s + 2 Lo B - o ogrlas <o, (31)
Ke

Recall that we have made the choice that T" is composed of piecewise constant values on the facets of the
mesh. Therefore, all terms including VA, and V84, vanish. Furthermore, if u,-n = 0 on 0Q2 (as is common
in geodynamical simulations), this leaves us with a formulation independent of 6.

4.4. Number of Tracers per Cell

We must carefully consider the number of tracers per cell required to obtain an accurate reconstruction of
¢n(x, t) from the particle data. The minimum data per cell to construct ¢,(x, t) is one tracer per FE degree of
freedom defined on the element. This is clear when examining Equation 16, since the linear system will be
underdetermined should N, _be smaller than the local dimension of the approximating function space on
%, dim Wgé( (x)- In essence, we have the requirement that

N, =z dimWix), xeT. (32)

Although this provides a minimum bound, in practice it is the authors’ experience that choosing

N, _ =15(k +1) is robust over long simulation times.

5. Finite Elements for the Stokes System

In the previous sections, we established the methods by which the composition field will be approximated
by tracer data. Specifically in Section 3, we established time integration methods for tracer positions and
in Section 4 how we project the tracer data onto the composition field ¢,(x, ). In this section, we show
how the velocity approximation will be computed in the ODE Equation 7 by means of solving a Stokes
system.

We discretize the momentum and continuity equations Equations 1 and 2 with the FE method, seeking
approximations of the velocity and pressure, u,, and p, in the domain , respectively. This is subject to
the boundary conditions u, = up on 6Qp and 2né(u) — pI) - n = g, on 0Qy where / is the identity tensor.
Here, 0Qp and 0Qy, are the subdivision of 0 into non-overlapping Dirichlet and Neumann components,
respectively, where 0Qp, is not empty (0Q2 = 0Q2pU0Qy, 02pNOQN = @, and 6Qp # B).

There are numerous FE methods for approximating Equations 1 and 2. We will present the TH and HDG
methods. A small subset of other methods is discussed in Section S4. Furthermore, for each method, we
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summarize and state salient properties in Table 2. For extended detail see the cited monographs and refer-
ences therein.

5.1. Taylor-Hood

The TH method (Taylor & Hood, 1973) is a commonly used FE method for discretizing the incompressible
Stokes system. In this setting, we seek the velocity approximation u, in the vector space V*? which compris-
es functions of dimension d composed of piecewise polynomials of degree p > 2 defined on each element
x € T and continuous in Q. This is the “typical” conforming and continuous FE vector space of functions.
We further define Voi? = (v e VP : v loq,, = up) and Vé’é% ={veV" .y lag, = 0} which are the contin-
uous FE function spaces satisfying arbitrary Dirichlet boundary data up and homogeneous boundary data,

respectively. We also seek the pressure approximation p, in Q"P~' which is the “typical” conforming and
continuous scalar FE space of order p — 1. The TH FE problem reads: find (uy, p,) € V*? x Q""~* such that

I 2ne(uy) : £(v),)dx — lo PV -vidx = [of - v,dx - IEQN gy - Vids G33)

~loq,V - udx =0 (34)

for all test functions (v,,q,,) € Vé’épo x QP71

5.2. Hybrid Discontinuous Galerkin

Introduced in Cockburn and Gopalakrishnan (2009), Labeur and Wells (2007) and developed further in
Cockburn and Sayas (2014), Cockburn et al. (2011), and Nguyen et al. (2010), HDG methods have recently
gained significant interest (Cockburn et al., 2010; Labeur & Wells, 2012; Maljaars et al, 2018, 2019; Rhe-
bergen & Wells, 2018a, 2020). One of the most attractive characteristics of the HDG method for the Stokes
system is that it lends itself to a pointwise divergence free velocity field approximation. By this, we mean
that

Vou,(x,n)) =0 VxeQ. (35)

This is particularly important when using tracer methods in geodynamics where advection is dependent on
pointwise evaluation of an incompressible velocity field.

The term “hybrid” is used to imply that the HDG method is composed of FE functions drawn from a pairing
of FE spaces defined on the mesh cells and FE spaces defined on the mesh facets. We refer to Rhebergen
and Wells (2020) for specific choices of these spaces, their analysis and properties. In this work we use the
embedded discontinuous Galerkin HDG formulation drawing on the advantage of a pressure-robust” (The
velocity error estimates do not depend on the pressure error (Rhebergen & Wells, 2020)., H(div)-conform-
ing® (The divergence of the velocity is piecewise continuous (square integrable). and pointwise divergence
free approximation with reduced degree of freedom count in the velocity component of the global linear
system compared to other HDG methods (see Rhebergen & Wells, 2020).

The velocity and pressure approximations are comprised of two components:

1. uy, and p, are drawn from the vector FE space VS’G" and scalar FE space QS’GF’", respectively, which are
continuous on each element ¥ € 7 and discontinuous in 2, that is, the standard DG spaces of degree p

and p — 1, respectively

2. u, and p,, are drawn from V" and éﬁ’g, respectively. Here VP is the vector space of piecewise polyno-
mials of degree p defined on the facets of the mesh and continuous between facets, and éﬁ’g is the scalar
space composed of piecewise polynomials of degree p defined on the facets of the mesh and discontin-
uous between facets
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To enforce Dirichlet boundary conditions, we modify the vector space defined on the facets such that it
satisfies the boundary data u,, log,, = u, that is, Vol = (Ve V"™ ¥y, p= Up}. Furthermore, we define

Vel = (Ve V™ V10, = 0).
Th : . . = - hp  y/hp hp-1  ~hp
e HDG FE formulation is as follows: find (uh,uh, D> ph) e Vpg x Ve x0Opg  x Opg such that

- Y J.o:Vvdx+ X faKc:rnK - v,ds
- keT -

keT (36)
+ ZTIaK 277(‘_1h - “h) ~e(Vnds = [of - vdx,
Ke -
T Jopon, - Vyds = IaQN gy * Vuds, 37
xkeT —
2 '[K' u, - Vgdx— X Jax u, -n.qds =0, (38)
xkeT xkeT
Y sou, -n,g,ds — [ o0, -ng,ds =0, (39)
xkeT
for all (vh,V,,,q,,,ﬁh) e ViP x ‘7];'(’:‘:) x QbP~1 x OlP Here,
g =-2n&w,)+p,L (40)
~ ' _ a —
g = _zng(uh)+phé_h_277(uh ‘“h)®“m (41)

K

are the stress tensor and stress tensor numerical flux, respectively, where h, is the measure of the cell
diameter and « is a penalty parameter similar to those found in interior penalty methods chosen in this
work to be a = 6p? (as in Rhebergen & Wells, 2018a). Careful choice of « is required to ensure stability of
the numerical method (e.g., Lew et al., 2004). The factor p® is chosen based on analysis (e.g., Prudhomme
et al., 2000).

At first glance, the four equations appear to demand a large increase in computational expense when com-
pared with the TH method. However, the local components, uy, and p, of Equations 36 and 38, may be elim-
inated in favor of the global components u, and p, by the process of static condensation (see Section S2).
Regarding preconditioning of this global system we refer to Rhebergen and Wells (2018b).

5.3. Pointwise Divergence Free Fields

In this section, we define a measure of the error in the incompressibility of our discretized velocity field
u,,. Moreover, we will briefly show why the HDG formulation yields a pointwise divergence free velocity
approximation unlike the TH scheme.

We define the following error norm

1
L
Dy =l Vo8, Iy @)= (IQ(V ‘) dsz (42)

which measures the square distance of the divergence of u, from the desired divergence free value* (L,(Q)
1

is the set of all real valued functions defined on Q such that| v | L= (f o lv(x) [ dx)E < ).

By the TH formulation Equation 34, we have that fgthuh dx = 0 for all g, € Q"~!. In order to fulfill
lla,llgiy = O we need to choose g, = V-u,. However, this choice does not satisfy the regularity constraint
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— . -1 . . .
qn€ Q"P ' given that V - u,, € Qﬁ’g . In essence, g, and V-u, are continuous and discontinuous across the

elements x € 7, respectively, so that condition Equation 42 cannot be satisfied.

Now, consider the HDG formulation of the continuity Equation 38. Integrating by parts, we have
Yeerloq,V -u,dx =0 for all ¢, € Op®! In this setting, it is valid to make the choice g, = V-uy, and the
measure lluyllgy = 0 is satisfied. One may further use this argument to show that u,, is also pointwise diver-
gence free (see Rhebergen & Wells, 2018a).

6. Implementation and Data Availability

The code developed to run all the numerical experiments in this work is available in the public repository
Sime (2020). The dependencies of the code are briefly discussed in this section. For portable deployment in
a Docker container we refer to Hale (2020) and Hale et al. (2017).

The core FE computations are performed using the components of the FEniCS project (Alnes et al., 2015).
The Lagrangian-Eulerian on Particles (LEoPart) library (Maljaars et al., 2021) is used in conjunction with
FEniCS for managing tracer data, Runge-Kutta numerical integration, I, projection, PDE-constrained [,
projection, and static condensation HDG system assembly. We further exploit the techniques described in
Houston and Sime (2018) for the automatic generation of DG and HDG formulations. The PETSc (Balay
et al., 2019a, 2019b) library is used for its data structures for sparse numerical linear algebra in addition to
the multifrontal parallel solver MUltifrontal Massively Parallel Sparse direct Solver (Amestoy et al., 2000)
for the direct factorization of matrices.

The components of the FEniCS project have been demonstrated to be scalable with parallel computation
(e.g., Richardson et al., 2019). LEoPart leverages the inherent parallelism of the FEniCS project and Mal-
jaars et al. (2021) demonstrate scalable performance of matrix assembly and particle advection. Regarding
scalable solution of the HDG FE Stokes system reduced by static condensation using iterative methods we
refer to the construction of an appropriate preconditioner discussed in Rhebergen and Wells (2018b).

7. Numerical Experiments

‘We have now established the fundamentals to be used in our tracer advection numerical experiments. We will
examine our implementation of each aspect of the discretization of the incompressible Stokes Equations 1-3.

As a preliminary step, we verify our FE implementation of the Stokes system and advection of tracers by the
RK¢ method. In Section S5.1, we choose velocity and pressure solutions of the Stokes system a priori such that
we may compute the error of their respective FE approximations. On a hierarchy of successively finer grids we
observe this error to converge at optimal rates as predicted by FE analysis, verifying our implementation. In a
similar fashion in Section S5.2, we verify our implementation of tracer advection by the RK# method.

With this foundation, the projection of tracer data to a field by the [, and the PDE-constrained [, projection
is verified in Section 7.1. Incorporation of these projection schemes into a coupled system where a solution
is known a priori is examined in Section 7.2. With all of these methods verified, we proceed to solve the
Rayleigh-Taylor problem benchmark showcased in van Keken et al. (1997) in Section 7.3. We provide more
extensive experimental results in the Section S5.4, particularly applied to other frequently used FE schemes
for the Stokes system as summarized in Equation 2.

Throughout this section, we write “bounded/penalized” projection to mean that we employ box-constrained
optimization and the penalized gradient ({> 0) methods in the case of [, and PDE-constrained [, projection,
respectively. See Section 4.2 for details. Additionally, for each experiment, we select Ccpy, = 1.

7.1. Tracer Advection and Projection to a Field

With the Stokes system FE scheme and tracer advection verified (see Sections S5.1 and S5.2), we examine
the projection of tracer data X(¢) and @(¢) to a composition field representation. The manufactured exam-
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Figure 5. The domain Q and manufactured velocity u(x, t = 0) used in (a) Equation 43 and Section 7.1 and (b)
Equation 47 and Section 7.2. The blue line emphasizes linear and quadratic growth in flow speed with radius.

ples in this section are inspired by those shown in Maljaars et al. (2019). Here, two different sources of error
are to be considered:

1. The temporal approximation of the tracers' positions
2. The spatial approximation of the composition field representation

Let Q be the unit disc of radius r = 0.5 centered at r, = (0, 0). We define the rotational and time varying

velocity field
7Y 2, 1
u—[x](cos t+2]. (43)

This velocity field is shown in Figure 5 at ¢t = 0. It can be shown that the period of one rotation of any
tracer in this velocity field occurs at t = 2. We examine two cases of a smooth and non-smooth compo-
sition field

Smooth: d(x,t) = sin(2zxy)sin(2zyy,), (44)
N N 1 if 6, >0,
on - smooth: #(x,t) = 0 ifg, <0, (45)

where
ox,t) =- t+lsin(2t) ,
4

Xg cos@ —sinf ) x (46)
Yo |  |sin@ cos@ ||y

o = arctan2(y,,x,),

rot

and arctan2(, -) is the standard two argument arctangent function (defined in Section S1). The initial con-
ditions ¢(x, t = 0) in both cases are shown in Figure 6. The smooth case is designed to test the error con-
vergence rate of the projected tracer data through time. The non-smooth case gives an indication of the
performance of the projection methods when modeling chemical phase interfaces by a discontinuity in
the composition function. For example those which may require bounded/penalized projection to yield
physically relevant composition field approximations to mitigate the impact of overshoots and undershoots
(see Sections 4.1 and 4.2).
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Figure 6. The smooth and non-smooth functions used in the manufactured field advection example in Section 7.1.
3
Shown are the initial ¢,(x, t = 0) and evolved ¢, (x,t = E”) fields as computed by the PDE-constrained projection

method where k = 2. Note in (d) the non-smooth case projection yields large overshoots and undershoots. (e) Using a
penalized gradient method ({ = 25) reduces the severity of these overshoots and undershoots. The convergence of the
error of these functions is quantified in Figure 7.

We measure two components of the error in this experiment:

L. I ¢ = @, I, (o) The spatial error of the composition field approximation
2. €ng = fg(qﬁh(x, t) — ¢u(x, 0))dx: The mass conservation error

‘We compute the projected composition over a period of one rotation for the smooth, non-smooth, and non-
smooth & bounded/penalized functions (see Figure 6 for examples using the PDE-constrained projection).
In the bounded/penalized case, we use box-constrained optimization in the I, projection and we select
¢ =25 in our PDE-constrained [, projection operator. Per mesh cell we generate 25 tracers by drawing their
initial positions from a random uniform distribution defined in the cell's geometry.

The error through time for each of the smooth and non-smooth cases is shown in Figure 7. Here, we see in
the smooth case that a comparison between the error using the [, and PDE-constrained [, projection meth-
ods is indistinguishable at this scale. In the case of L, projection method €4 is converging. However, the
difference in the mass conservation properties between the two methods is obvious as the PDE-constrained
I, method conserves ¢, to machine precision.

In the non-smooth case, the composition field approximation error from the I, and PDE-constrained [,
projection methods is very similar. However, the k = 1 and k = 2 high order approximations show no
great benefit over the low order k = 0 approximation. This is expected as the interface discontinuity is not
aligned with the mesh, yielding suboptimal convergence rates. See, for example, in Figures 7b1 and 7cl1,
the four “dips” in error corresponding to the interface discontinuity approximately lining up with the mesh
constructed in our experiment. Despite this suboptimal convergence ¢, is conserved in the case of PDE-con-
strained I, projection by measurement of ex4. The I, projection shows no evidence of €,, converging with
increased approximation order.
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In the non-smooth and bounded/penalized case, we see similar results to the non-smooth and unbounded/
unpenalized case. However, we have that the errors in the approximation of the composition field are slight-
ly larger when using both projection methods.

The convergence properties in the smooth initial condition case after one rotation at time ¢ = 27 are shown
in Figure S6. Evidently we recover optimal rates and recover exact mass conservation €5, when using the
PDE-constrained projection. Not shown are the convergence properties of the non-smooth cases since the
exact field is recovered at t = 27 in even the lowest order FE approximation.

7.2. Coupled Manufactured Solution

We have demonstrated and verified: the spatial approximation of the Stokes subsystem FE solution in Sec-
tion S5.1, the temporal approximation of the advected tracers' positions in Section S5.2, and the spatiotem-
poral approximation of the projection of the tracer values to a FE function representation in Section 7.1.

Now, we examine the fully coupled case where the tracers representing the composition data are advected
based on the FE approximation of the Stokes subsystem, which in turn also depends on the projection of
the tracer data onto an FE function space. Analytical solutions for such problems are extremely difficult to
derive in the context of geodynamics simulations. Therefore, we manufacture the following problem.

Let Q = {(x,y) : 4/x> + y* < 2} be the disc of radius 2. We compute the FE approximation of the Stokes
system (Equations 1 and 2) in Q where we prescribe the velocity and pressure fields

-y 1
ux,t) =+/x%+ 2 [ . ](coszz + EJ @7
px,t) =0.

Furthermore, two composition functions are defined to be advected through the velocity field:

2 2
Smooth: p(x,1) = exp[— (X = Xo) 2-;())‘9 ~ %) J, (48)

1
Non - smooth: d(x,1) = { 0 ot (49)

here, & = 0.1, (X0, y0)=(0.25, 0) is the initial center point of the Gaussian function and
O(x,1) = —x>+ y2 [t + %sin(Zt)],

Xy cos@ —sind|( x (50)
Yo " |sin@ cos@ ||y

Orot = arctan2(y,, xy).

The velocity field is shown in Figure 5b and the smooth and non-smooth composition functions are shown
in Figure 8.

In the Stokes system, we set the viscosity and momentum source to

n=1 f=r+gg, (51)
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Figure 7. Computed error from the field advection manufactured solution experiment described in Section 7.1. The
left column shows composition field approximation error measured in the L, norm with time. The right column shows
1.42

and mass conservation error with time. The disc geometry is discretized with a mesh such that max,._.; i, = TR

and min,..; h, = 3]—2 In (al) and (bl) the L, error difference between [, and PDE-constrained I, projection is
indistinguishable at this scale. This is also true in (c1) for the k = 0 case. We show evidence for optimal convergence of
the smooth function approximation in Figure S6. Projection of the non-smooth composition function is achieved with
suboptimal convergence rates, to be expected from the inability to resolve the intraelement discontinuity. In (a2), (b2),
and (c2), we achieve exact mass conservation by PDE-constrained projection (to machine precision), even when error
convergence of the non-smooth composition field is suboptimal. An accumulation of machine precision error over
simulation time is observed in the non-smooth cases.

where g=(0,—1)" is the unit vector acting in the direction of gravity and

- |7 (coszt+lj—¢§ (52)
’x2+y2 —-X 2
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(a) Smooth t =0 (b) Smooth t = %

(c) Smooth t =0 (d) Smooth t = %

(e) Non-smooth t =0 (f) Non-smooth t = &

(i) Non-smooth penalized
s

() Non-smooth t = 0 (h) Non-smooth t = z t=1
| _
0 05 1
n(x, t)

Figure 8. The smooth and non-smooth functions used in the manufactured solution example Equations 48 and 49 described

i
in Section 7.2. Shown are the initial t = 0 and evolved t = ) particle distributions X(¢), @(f), and fields ¢,(x, t) computed by

PDE-constrained projection. Note in (h) the non-smooth case with no penalization of the gradient in the projection (= 0)
yields large undershoots and overshoots. The convergence of the error of these functions is quantified in Figure 9.

is the conservation of momentum equation residual of the true solution (We use the true value of ¢ in the
construction of the residual, r, prescribed by Equations 48 and 49).

We measure the following errors:

1. lhu(x,1) = u,(X,0) llL, @) velocity field approximation error
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Figure 9. Coupled manufactured solution computed error. The disc geometry is discretized with a mesh such that

1.42 1
max, .z h, = ETR and min, 7 h, = N The velocity and composition field approximation errors using the third order

HDG (p = 2) and TH methods are indistinguishable at this scale. From the data in columns (b) and (c), we observe no
benefit using higher order methods to approximate a discontinuous composition field. In all cases, the PDE-constrained
I, projection method preserves exact mass conservation and the HDG method provides pointwise divergence free
velocity fields (to machine precision).

2. lluu(x, tllg,y: divergence free constraint error

3. 1 p(x,1) = ¢, (X,1) I, () composition field approximation error
4. epp= fg(th(x, ) — ¢n(x, 0)) dx: mass conservation error

r

Example solutions using the PDE-constrained projection at? = EX the error functionals computed in the sim-
T T

ulation time domain? € Z, = (0,5] and their convergence rates at final time ¢ = ~ are shown in Figures 8-10,
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Figure 10. Coupled manufactured solution error functionals convergence rates measured at t = X The cell measure

here is selected such that h = min,..; 4. The difference between the p = 2 HDG and TH methods, in addition to the I,
and PDE-constrained [, projection, are indistinguishable at this scale. (a) Optimal convergence rates are observed in the
approximation of the smooth composition field. (b) Inadequate representation of intraelement discontinuities causes
convergence rates to be suboptimal in the non-smooth case. (c) Use of bounded/penalized projection to alleviate impact
of undershoots in the composition field projection has a small detrimental impact on convergence rates with the benefit
of a more robust solver for the Stokes system.

respectively. Here we demonstrate the second order HDG (p = 1, k = 1, and ¢ = 2) and third order HDG and
TH (p = 2, k = 2, and ¢ = 3) methods. In each case the initial tracer configuration is generated with 25 tracers
per mesh cell where X(t = 0) is drawn from a random distribution defined on the cells’ geometries.

In the case of the smooth composition field, we observe optimal convergence rates of the numerical meth-
ods. However, in the non-smooth case the inability to represent the intraelement discontinuity in the com-
position function yields suboptimal convergence rates. These suboptimal results are expected and follow
from our findings in Section 7.1 and Figure 7.

7.3. Rayleigh-Taylor Instability

In the previous section, we demonstrated and validated: the exact conservation of the composition function;
the pointwise divergence free velocity approximation; and the optimal convergence rates of the numerical
approximation for smooth problems. We now turn to the Rayleigh-Taylor instability benchmark from van
Keken et al. (1997) which is an example relevant to geodynamics simulations.

The Rayleigh-Taylor instability problem models the buoyancy driven evolution of a compositionally light ma-
terial which initially resides below a compositionally denser layer. The chemical composition field is con-
structed such that ¢ = 0 and ¢ = 1 correspond to the immiscible light and dense materials, respectively. A key
challenge lies in simulating the moving discontinuity at the interface between these immiscible materials.

In all of the numerical experiments in this section, we employ bounded/penalized projection methods of
the tracer data. As in the previous section, the initial tracers' positions are drawn from a random distribution
defined on the mesh cells' geometries where we generate 25 tracers per mesh cell.
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Might = 1.0 Might = 0.1

Tracer

Field

Tracer

Field

k=1

Figure 11. Snapshots of the Rayleigh-Taylor instability benchmark at t = 1,500 (cf. van Keken et al., 1997). Shown
are the tracer distributions, tracer data and their PDE-constrained [, projection onto the composition field space Wé"c'f
of degree k{0, 1}. Dark and light colors correspond to dense (¢, ¢, = 1) and light (¢, ¢, = 0) material, respectively. In
all cases, the Stokes system is solved using the p = 1 HDG scheme on a mesh of 160 x 160 bisected quadrilaterals with
1,280,000 tracers and 7gense = 1. For more details see Section 7.3.2.
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(a) Initial condition (b) TH (c) HDG

Figure 12. Tracer distribution in the Rayleigh-Taylor instability problem where 9gense = 1 and ;g = 0.01. Dark and
light colors correspond to compositionally dense ¢, = 1 and light ¢, = 0, p = 1, ..., N, material, respectively. The mesh
comprises 40 X 40 equally sized bisected quadrilaterals. Each triangle hosts 25 uniform randomly distributed tracers at
its initial state giving rise to N, = 80,000. (a) The initial condition Equation 55, (b) the TH solution at time ¢ ~ 634 where
there are large empty spaces between tracers and “bunching” close to the interface discontinuity, (c) the HDG solution
at time ¢ ~ 634 where the tracers have remained evenly distributed.

7.3.1. Problem Definition

The domain Q is the rectangle with bottom left and top right corners positioned at (0, 0) and (H = 1,
L = 0.9142), respectively. The chemical composition function is constructed such that

0 Vx € light material,

Pp(x,1) = (53)

1 Vx € dense material.

the viscosity of the light and dense materials are the constant values 7jign and 7gense, respectively. We con-
struct the global viscosity function from the composition function such that

17 = Mign + ¢(77dense - Ulight)- (54)
the initial state of the composition field introduces a perturbation of the system from equilibrium

0 y<d,+ Lcos da s
P(x,t =0) = 50 L

1 otherwise.

(55)

here d,, = 0.2 is the thickness of the initial compositionally light (buoyant) material layer.

The velocity boundary conditions are set as follows:

1. No flow condition u = (0,0)" on the top and bottom boundaries y = 0 and y = H

2. Free-slip condition u-n = 0 and [(277 é(u) -plL )-n |-z = 0on the left (x = 0) and right (x = L) bounda-
ries, respectively, where 7 is a unit vector tangential to the boundary

The momentum source is prescribed such that f = ¢g, where g=(0,—1)" is the unit vector acting in the

direction of gravity.

7.3.2. Computed Snapshots

The mesh of triangles is constructed from 160 X 160 equally spaced and bisected quadrilaterals. This mesh
is then displaced to approximately align the facets with the discontinuity required by the initial condition
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Figure 13. Measured relative error in u,,, computed from the Rayleigh-Taylor instability benchmark. Here, we see

we can at best achieve approximately second order error convergence rates. The expense of higher order RK methods
(¢ > 3) and composition field function spaces k > 1 is not warranted unless intraelement discontinuities may be
precisely resolved. PDE-constrained [, projection is used to generate the composition field representation of the tracer
data. The left and right columns show cases where the composition field function belongs to the k = 0 and k = 1 DG FE

spaces, respectively.

Equation 55. Each triangle is initially seeded with 25 tracers giving rise to a total of N, = 1,280,000 trac-
ers in the domain. The initial tracer data is assigned by pointwise interpolation of Equation 55, that is,

N
(1 = 0) = {§(x, (1 = 0).1 = 0)}, 2.
In Figure 11, the Stokes system is discretized by the p = 1 HDG scheme. The composition field is construct-
ed by exploiting PDE-constrained I, projection of the tracer data onto the k €{0, 1} DG FE space. The time
integration of the particle advection is computed using the RK3 method, although this order of accuracy is
superfluous given the second order Stokes and composition field approximation.
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Figure 14. Rayleigh-Taylor instability benchmark data where k = 0. Using the TH and HDG methods combined with [, and PDE-constrained [, projection we
compare the evolution of: (a) the root-mean-square velocity, (b) the mass conservation error and (c) the error in the divergence free velocity constraint. In all
cases we see that in (b) PDE-constrained projection provides exact mass conservation (to machine precision). Furthermore in (c) the HDG FE method provides
pointwise divergence free velocity field approximations. The TH method does not provide a robust solution framework prematurely ending our simulations (cf.

Figure 12). See Section 7.3.5 for details.
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In this first experiment, we examine the cases where 7gense = 1 and nygn: € {1, 0.1, 0.01}. We show the trac-
er distribution and projected composition field snapshots at time ¢t = 1,500 in Figure 11 (cf. van Keken
et al., 1997).

7.3.3. The Impact of a Pointwise Divergence Free Field

A key message of this work is the benefit of pointwise divergence free velocity field approximations yield-
ed from HDG FE solutions. The initial tracer configuration which interpolates the initial condition Equa-
tion 55 is shown in Figure 12. Also shown is the tracer distribution of the composition data computed from
PDE-constrained I, projection method where the velocity field is approximated using either the TH or the
HDG FE scheme at time ¢ =~ 634 where gense = 1 and 7jjgn = 0.01. This is the final time step after which the
TH scheme fails due to the lack of sufficient tracer data in the mesh cells. This is evident from the large
empty spaces in the tracer distribution using TH. We also see “bunching” of the tracers close to the inter-
face discontinuity. Compare this with the pointwise divergence free velocity approximation of the HDG FE
scheme, in which the tracers remain well distributed owing to this numerical property.

7.3.4. Relative Error Convergence of Functionals

We examine three viscosity contrast scenarios where 7gense = 1 and nijgn; €{1, 0.1, 0.01}. Based on our findings
in Sections 7.1 and 7.2, we expect that sharp discontinuities in the composition field will have a negative im-
pact on error convergence rates. The composition field appears in both the viscosity and momentum source
terms in the Stokes system. Therefore, we pay close attention to the difference in convergence rates in the
smooth and non-smooth viscosity cases, 7 = 1 and 7gn€{0.1, 0.01}, respectively.

The functional of interest is the root-mean-square velocity
| QU - udx
Uppg = /— (56)
ms J'Q dx

100 n]igh[ = 10,
tp =950 gy = 0.1, (57)
10 7jigne = 0.0

we measure U, at final time ¢y where

using the computed numerical data we evaluate the relative error changes between mesh refinement levels

where 7 is a mesh consisting of m € {20% 407, 807, 160’} bisected quadrilaterals, evenly dividing the domain
into 2 m triangles. Inside each triangle 25 tracers per cell are generated to form the initial condition Equa-
tion 55 such that there are 20,000, 80,000, 320,000 and 1,280,000 tracers in the mesh, respectively. In each
case, we use the PDE-constrained [, projection to generate the composition field representation of the tracer
data. The relative error in our computation of u,,s is measured as follows

uh,rms - u2h,rms

Crel (uh,rms) = ’ (58)

uh,rms

where uj, ;s and Uy, ms correspond to fine and coarse approximations of u,,s on meshes with cell diameter
h and 2h, respectively, and h = min,_; A,.

The computed root-mean-square velocity functional values with mesh (and implicitly time step by the CFL
criterion) refinement are shown in Figure S7. The relative error is shown in Figure 13.

The convergence rates of the relative changes in error are suboptimal as expected from the inability to
resolve intraelement discontinuities. The choice of £ > 2 in the RK¢ method plays only a small role in the
approximation error. Although the RK4 method may appear to yield high order rates of convergence, in
each case this is only featured in the m = 80 and m = 40 comparison. Examining the rates at m = 160 the
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Figure 15. Rayleigh-Taylor instability benchmark data where k = 1. As in Figure 14, we compare the evolution of: (a) the root-mean-square velocity, (b) the
mass conservation error and (c) the error in the divergence free velocity constraint in the TH and HDG methods. Again, we see that in (b) and (c) that PDE-
constrained projection provides exact mass conservation and the HDG FE method provides pointwise divergence free velocity field approximations to machine

precision, respectively. See Section 7.3.5 for details.
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approximation error benefit of RK4 over its lower order counterparts is small considering its computational
cost (three solutions of the Stokes equations).

Although the TH and HDG methods compare favorably at equivalent approximation order (p = 2), one must
bear in mind that over long time periods the TH results will be severely affected by the lack of a pointwise
divergence free field approximation (see Section 7.3.3 and Figure 12 for example). Evidently the higher order
approximation of the composition field, k = 1, offers no obvious advantage over the k = 0 field representation.
Although this is to be expected for the field representation of a discontinuity as examined in Sections 7.1 and 7.2.

7.3.5. Comparison of Stokes Finite Element Formulations

Here, we provide a reference of the various FE methods for the Stokes system when used in the Rayleigh-Tay-
lor instability benchmark. The mesh is generated as described in the previous section. With each FE discre-
tization scheme we are interested in the error incurred by the divergence free velocity approximation lluyllgy
as well as the mass conservation error through time €,4. We employ the RK3 method for time integration in
all experiments in this section.

The functional of interest is again the root-mean-square velocity u,ms computed from the Stokes FE approx-
imation equation Equation 56. We set 9gense = 1 and prescribe final time ¢r and 7gn according to

500 Might = 1,
tp =4200 Mighe = 0.1, (59)
60 Myighe = 0.01.

these time intervals capture the period over which the bulk of the light material rises to the top of the do-
main showing large changes in u,s. To see measured computations of u,mys over larger time intervals we
refer to van Keken et al. (1997) and Maljaars et al. (2021).

We show results computed using p = 2 TH and p&{1, 2} HDG FE schemes for the Stokes system. The cases
where k = 0 and k = 1 are shown in Figures 14 and 15, respectively. Further results using other common FE
schemes for the Stokes system (particularly those in Table 2) are shown in Section S5.4.

Some key observations are as follows:

1. Of the methods demonstrated, solely the HDG scheme offers pointwise divergence free velocity field ap-
proximations. One should expect that using a non-pointwise divergence free discretization would lead to
failure over long time simulations as exhibited in Section 7.3.3. In fact, we find that even over short time
simulations the TH scheme for the Stokes system is insufficient as a robust solver for the Rayleigh-Taylor
benchmark with tracers. Our implementation fails to complete the TH simulations successfully due to
insufficient tracer data in mesh cells, even in the isoviscous 7;;,, = 1 case

2. In the TH scheme, larger viscosity contrasts incur larger llullg, error. This should be expected as rapid
changes in viscosity will be difficult to resolve for a high order conforming FE method

3. A comparison of the [, and PDE-constrained [, projection methods appear to yield only subtle differences
in the evaluation of u,,s. However, using the non-conserving [, projection method breaks the physical
law demanded by the conservation model

4. Projection of the tracer data into the k = 1 space appears to offer little to no benefit over the k = 0 space.
This is expected as discussed in Section 7.1 for non-smooth composition fields

8. Conclusion

Using the HDG Stokes and PDE-constrained [, tracer projection numerical scheme, we have the following
attractive properties:

1. Exact mass conservation of the composition field

2. A pointwise divergence free velocity field which mitigates tracer dispersion

3. Optimal convergence rates of the approximation error as measured in the L, norm provided regularity
is satisfied
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